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Abstract

We study a stochastic differential equation driven by a gamma process, for which we give results
n the existence of weak solutions under conditions on the volatility function. To that end we provide
esults on the density process between the laws of solutions with different volatility functions.

2023 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The goal of the present paper is to give conditions such that the Lévy-driven stochastic
ifferential equation

dX t = σ (X t−) dL t , X0 = 0 (1)
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has a weak solution that is unique in law. Here L is a gamma process with L0 = 0 and therefore
L is a subordinator, i.e. a stochastic process with monotonous sample paths. Furthermore, L
has a Lévy measure ν admitting the Lévy density

v(x) = αx−1 exp(−βx), x > 0, (2)

where α and β are two positive constants. The process L has independent increments, and
L t − Ls has a Gamma(α(t − s), β) distribution for t > s. Recall that the Gamma(a, b)
istribution has a density given by x ↦→

ba

Γ (a) xa−1e−bx for x > 0. In view of financial
pplications, the function σ will be referred to as volatility function.

Rather surprisingly, there is little to find in the literature on properties of Eq. (1) with a
amma process as the driver, even when it comes down to existence of solutions, which is
n sharp contrast to the situation for Brownian motion driven equations. Under the condition
hat σ is Lipschitz continuous (which is stronger than what we will require in this paper),
t is known that (1) has a unique strong solution, see Protter [14, Theorem V.6], or Jacod
nd Mémin [4]. There are some references on the existence of weak solutions (the latter also
alled solution-measures) as well, but in very general situations with general semimartingales
s driving processes. For example, Jacod and Mémin [6] has existence of weak solutions on a
omplicated product space (see Theorem 1.8 there), but not of uniqueness in law and under a
ontinuity condition on σ . Similar remarks apply to the results of Jacod and Mémin [5] (also
heorem 1.8 in this reference), where even the assumption that σ is bounded has been made.
nder the assumption that the volatility function σ is measurable, positive and satisfies a linear
rowth condition, we will see in Theorem 5 that Eq. (1) admits a weak solution that is unique
n law. This is the main result of the present paper. Note that our assumptions are weaker than
hose in the just mentioned references.

We will now briefly outline the relevance of gamma processes and gamma-driven stochastic
ifferential equations. They form a special class of Lévy processes (see, e.g., Kyprianou [11]),
re a fundamental modelling tool in several fields, e.g. reliability (see van Noortwijk [16])
nd risk theory (see Dufresne et al. [3]). Since the driving gamma process L in (1) has
on-decreasing sample paths and the volatility function σ is non-negative, also the process

X has non-decreasing sample paths. Such processes find applications across various fields.
reliability model as in (1) has been thoroughly investigated from a probabilistic point

f view in Wenocur [17], and constitutes a far-reaching generalisation of a basic gamma
odel. Furthermore, non-decreasing processes are ideally suited to model revenues from an

nnovation: in Chance et al. [2], the authors study the question of pricing options on movie box
ffice revenues that are modelled through a gamma-like stochastic process. Another potential
pplication is in modelling the evolution of forest fire sizes over time, as in Reed and McKelvey
15].

Any practical application of the model (1) would require knowledge of the volatility function
, that has to be inferred from observations on the process X . This is a statistical problem to
hich we present a nonparametric Bayesian approach in Belomestny et al. [1]. The obtained

esults in that paper assume either a piecewise constant volatility function σ or a Hölder
ontinuous one. In both cases one needs existence of weak solutions to (1) and a likelihood
atio. The present paper covers those two cases and provides the probabilistic foundations of the
tatistical analysis. For a survey of other contributions to statistical inference for Lévy-driven
DEs we also refer to Belomestny et al. [1].
2
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2. Absolute continuity and likelihood

In the proof our main result, Theorem 5, we need the likelihood ratio between different laws
f solutions to (1). In this section we give the relevant results.

Let (Ω ,F ,F,P) be a filtered probability space and let (L t )t≥0 be a gamma process adapted
o F, whose Lévy measure admits the density v given by (2). Assume that X is a (weak)
olution to (1). For convenience of the reader we recall here the definition of a weak solution.

efinition 1. A weak solution to Eq. (1) is by definition a filtered probability space
Ω ,F ,F,P), together with càdlàg processes X and L defined on this space, both adapted to

the filtration F, such that L is a gamma process and such that (1) is valid for all t ≥ 0.

We assume that X is observed on an interval [0, T ]. We denote by Pσ
T its law. Here we

follow the set up commonly used in the literature, which assumes that the paths of X and
L , and all other processes involved, are elements of the Skorokhod space D[0, ∞), i.e. the
space of càdlàg functions, endowed with the Skorokhod metric, see Jacod and Shiryaev [7,
Chapter 6]. The measure Pσ

T is then a probability distribution on D[0, T ]. The precise form
of the underlying space (Ω ,F ,F,P) is at this stage less relevant. Later on, when we treat
existence of weak solutions, we will specify the corresponding Skorokhod space as well, and
then X will be the canonical process, so X t (ω) = ω(t) and the filtration needed will become
the canonical filtration, Ft = σ (Xu, u ≤ t).

In agreement with the notation Pσ
T , we let P1

T be the law of X when σ ≡ 1, in which case
X t = L t , t ∈ [0, T ]. The measure P1

T will serve as a reference measure. The choice σ = 1
for obtaining a reference measure is natural, but also arbitrary. Many other choices for the
function σ are conceivable, in particular other constant functions. The question we are going
to investigate first is under which conditions the laws Pσ

T and P1
T are equivalent. Suppose that

the process σ (X t−), t ∈ [0, T ] is strictly positive and define

vσ (t, x) =
1

σ (X t−)
v

(
x

σ (X t−)

)
. (3)

irst, we will show that for X , as weak solution satisfying (1), the compensated jump measure
nder Pσ

T is determined by (3). Recall that the jump measure µX associated with an adapted
rocess X is determined by the integral

∫
[0,t]×R f (s, x)µX (ds, dx) =

∑
s≤t f (s,∆Xs)1{∆Xs ̸=0}

or all f for which the integral is finite, see also Jacod and Shiryaev [7, Section II.1 and
roposition II.1.16]. By the càdlàg property of X , the sum here contains at most countably
any terms. Note that µX is an integer valued random measure. It has a compensator, a

redictable random measure ν, essentially determined by the property that the integral processes

[0,·]×R W dµX and
∫

[0,·]×R W dν differ by a local martingale for all ‘good’ nonnegative
redictable processes W . Note that the underlying probability measure P comes in because
f the local martingale property. We refer to Jacod and Shiryaev [7, Section II.1] for all details
nd properties of these random measures. The weak solution process X to (1) turns out to be
semimartingale, hence it is endowed with the so-called triplet of characteristics, of which,

y absence of a continuous local martingale part and a ‘drift’, only the third component is
resent, that component being the compensated jump measure. This jump measure parallels
o a considerable extent the third characteristic of the triplet of a Lévy process, which is

special case of a semimartingale, although in the latter case the third characteristic is
onrandom and homogeneous in time. In fact, if X is a Lévy process with Lévy measure

´
, then ν(dt, dx) = v(x) dxdt in case there exists a Levy density v. And this ν is also the third

3
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characteristic of X considered as a semimartingale. See Jacod and Shiryaev [7, Section II.2]
or details on characteristics. Below we assume to work on the canonical space D[0, T ], on
hich the measures Pσ

T and P1
T are defined.

emma 2. Assume that (1) admits a weak solution for a given measurable function σ :

0, ∞) → [0, ∞) with σ (Xs−) > 0 a.s. for all s ≥ 0. Under the measure Pσ
T , the third

haracteristic of the semimartingale X, its compensated jump measure νσ (dx, dt), is given by
σ (dx, dt) = vσ (t, x) dxdt .

roof. Let f be a measurable function and let X be given by (1). For technical reasons,
ee Jacod and Shiryaev [7], Proposition II.1.28 and related results, we assume that f is such
hat

∑
s≤t f 2(∆Xs) defines a locally integrable process. Then (the summations are only for

hose s with ∆Xs > 0, and t ∈ [0, T ] is arbitrary) with µX being the jump measure of X and
L being the jump measure of L ,∫ t

0
f (x) µX (dx, ds) =

∑
s≤t

f (∆Xs)

=

∑
s≤t

f (σ (Xs−)∆Ls)

=

∫ t

0

∫
(0,∞)

f (σ (Xs−)z)µL (dz, ds),

hich is the sum of a local martingale M under P, adapted to F, and the predictable process
t

0

∫
(0,∞) f (σ (Xs−)z)v(z) dzds. As the latter expression only depends on the process X , the

ocal martingale M is also adapted to the filtration generated by X , FX
= {F X

t , t ≥ 0} with
X
t = σ (Xs, s ≤ t). By a simple change of variable, the double integral equals to∫ t

0

∫
(0,∞)

f (x)
1

σ (Xs−)
v
( x
σ (Xs−)

)
dxds.

ollowing the discussion on page 192 of Karatzas and Shreve [9], we can consider (with slight
buse of notation) Pσ

T , the law of X for X given by (1), also as a probability measure on F X
T .

his convention will be followed throughout the paper where needed.
As the expression in the display is depending on X only, this expression is also the

X -compensator under Pσ
T of

∑
s≤t f (∆Xs).

Indeed, the FX -compensator νσ of the jump measure of X , µX , satisfies for all relevant
unctions f the property that

Mt :=

∑
s≤t

f (∆Xs) −

∫ t

0

∫
(0,∞)

f (x)νσ (dx, ds)

efines a local martingale, adapted to FX and under the law Pσ
T . As, apart from the integrability

ssumptions, f is arbitrary, it follows that νσ is given by its density as in (3). □

Let

Y (t, x) :=
vσ (t, x)

=
1

v
( x )

/v(x).

v(x) σ (X t−) σ (X t−)

4
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Absolute continuity of Pσ
T w.r.t. P1

T is guaranteed, see Jacod and Shiryaev [7, Theorem III.5.34],
nder the condition

HT =

∫ T

0

∫
∞

0
(
√

Y (t, x) − 1)2v(x) dx dt < ∞, Pσ
T -a.s. (4)

Here HT has been derived from Equation (5.7) in Jacod and Shiryaev [7, Chapter III]. As
the driving process L is a gamma process with Lévy density v given by (2), one has in fact
Y (t, x) = exp

(
−βx

(
1

σ (X t−) − 1
))

. Hence, one obtains

HT = α

∫ T

0

∫
∞

0

(
exp

(
−

1
2
βx
( 1
σ (X t−)

− 1
))

− 1
)2

x−1 exp(−βx) dx dt

= α

∫ T

0

∫
∞

0

(
exp

(
−

1
2

βx
σ (X t−)

)
− exp

(
−

1
2
βx
))2

x−1 dx dt

=: α

∫ T

0
ht dt. (5)

learly, conditions on σ have to be imposed to have absolute continuity, or even equivalence.
hese are given now. Of course, we still have to assume that a weak solution to (1) exists. As
lready announced, sufficient conditions for this will be presented in Theorem 5. Below, the
ump measure of X is denoted µX .

roposition 3. Assume that σ is a positive locally bounded measurable function on [0, ∞)
uch that (1) admits a weak solution unique in law. It is furthermore assumed that σ is lower
ounded by a constant σ0 > 0. Then the laws Pσ

T and P1
T are equivalent, and one has

dPσ
T

dP1
T

= ET

(∫ ·

0

∫
(0,∞)

(Y (t, x) − 1)(µX (dx, dt) − v(x) dxdt)
)

, (6)

here ET is the Doléans exponent at time T of the process within the parentheses. In other
ords, ZT :=

dPσ
T

dP1
T

is the solution at time T to the SDE

dZ t = Z t−

∫
(0,∞)

(Y (t, x) − 1)(µX (dx, dt) − v(x) dx dt), Z0 = 1. (7)

roof. Split the integrand ht in (5) into two integrals, for x ∈ [0, 1] and x ∈ (1, ∞), call them
h<

t and h>
t respectively. For h<

t we use the elementary inequality (e−ax
− e−bx )2

≤ (b − a)2x2

or a, b, x ≥ 0 to obtain the bound h<
t ≤

β2

4 ( 1
σ (X t−) − 1)2 (here we also used x ≤ 1), which

s bounded by the finite constant β2

2 ( 1
σ 2

0
+ 1). To treat the integral h>

t we use the elementary

inequality (a − b)2
≤ 2(a2

+ b2), which leads us to study, also using x ≥ 1,∫
∞

1

(
exp

(
−β

x
σ (X t−)

)
+ exp(−βx)

)
dx = exp

(
−

β

σ (X t−)

)σ (X t−)
β

+
1
β

exp(−β).

Here the first term on the right-hand side is bounded by σ (X t−)/β. As X is increasing,
X t− is between zero and XT , which is finite Pσ

T -a.s. By the local boundedness of σ , also
upt≤T σ (X t−) ≤ supx≤XT

σ (x) is finite Pσ
T -a.s. From the obtained bounds on h<

t and h>
t it

ollows that HT is a.s. bounded under Pσ
T , so the condition (4) is satisfied. The expression for

he likelihood ratio as a Doléans exponential in (6) follows from Theorem III.5.19 in Jacod
nd Shiryaev [7]. □
5
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The next proposition gives an explicit expression for the Radon–Nikodym derivative in
roposition 3. This is useful when computations with this Radon–Nikodym derivative have

o be done, for instance for likelihood based inference in a statistical analysis.

roposition 4. Let the conditions of Proposition 3 hold. Then the solution Z to (7) has at
ny time T > 0 the explicit representation

ZT = exp
(∫ T

0

∫
∞

0
log Y (t, x) µX (dx, dt) −

∫ T

0

∫
∞

0
(Y (t, x) − 1)v(x) dx dt

)
, (8)

roof. It follows from Lemma 18.8 in Liptser and Shiryaev [13], under the condition that
he process F defined by F =

∫ ·

0

∫
(0,∞)(Y (t, x) − 1)(µX (dx, dt) − v(x) dx dt) is a process

f finite variation, that the explicit expression in (8) holds. We proceed by showing that F
as a.s. finite variation over any interval [0, T ]. Note first that the variation of F over [0, T ]
s ∥F∥T :=

∫
(0,T ]

∫
(0,∞) |Y (t, x) − 1|(µX (dx, dt) + v(x) dx dt). In view of Proposition II.1.28

n Jacod and Shiryaev [7], it is sufficient to check that
∫

(0,T ]

∫
(0,∞) |Y (t, x) − 1|v(x) dx dt is

nite. We consider the inner integral, split into two integrals, one for x ≥ 1, one for 0 < x < 1.
onsider first∫

x≥1
|Y (t, x) − 1|v(x) dx =

∫
∞

1

⏐⏐⏐ exp(−βx(
1

σ (X t−)
− 1)) − 1

⏐⏐⏐α
x

e−βx dx

≤ α

∫
∞

1

⏐⏐⏐⏐exp
(
−

βx
σ (X t−)

)
− exp(−βx)

⏐⏐⏐⏐ dx

=
α

β

⏐⏐⏐⏐σ (X t−) exp
(
−

β

σ (X t−)

)
− exp(−β)

⏐⏐⏐⏐ .
e find that

∫
(0,T ]

∫
x≥1 |Y (t, x) − 1|v(x) dx dt is finite a.s., as σ is assumed to be a locally

ounded function. For the other inner integral we need the elementary inequality for p, q > 0,

∫ 1

0

|e−px
− e−qx

|

x
dx ≤ |p − q|. (9)

o see that (9) holds true, we assume w.l.o.g. p > q. Then we have, using e−ux
≤ 1 below,∫ 1

0

|e−px
− e−qx

|

x
dx =

∫ 1

0

e−qx
− e−px

x
dx

=

∫ 1

0

∫ p

q
e−ux du dx

≤ p − q,

which shows (9). Using now (9) and that σ is lower bounded by σ0, we find∫
0<x<1

|Y (t, x) − 1|v(x) dx =

∫ 1

0

⏐⏐⏐ exp(−βx(
1

σ (X t−)
− 1)) − 1

⏐⏐⏐α
x

e−βx dx

=

∫ 1

0

⏐⏐⏐ exp
(
−

βx
σ (X t−)

)
− exp(−βx)

⏐⏐⏐α
x

dx

≤ αβ

⏐⏐⏐ 1
σ (X t−)

− 1
⏐⏐⏐ ≤ αβ

(
1
σ0

+ 1
)

.

ence also
∫ ∫

|Y (t, x) − 1|v(x) dx dt is finite. □
(0,T ] 0<x<1

6
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3. Weak solutions

We will use a variation of Proposition 3 to establish existence of a weak solution to (1)
nder a growth condition on σ . The precise result follows.

heorem 5. Assume that σ : [0, ∞) → [0, ∞) is measurable, lower bounded by a constant
0 > 0, and satisfies a linear growth condition, i.e. there exists K > 0 such that for all x ≥ 0

t holds that σ (x) ≤ K (1 + x). Then, on the interval [0, ∞), Eq. (1) admits a weak solution
hat is unique in law.

roof. This proof is inspired by Section 5.3B of Karatzas and Shreve [9] for a similar problem
n a Brownian setting. Fix T > 0 and consider a probability space (Ω ,F ,Q) on which X is
efined as the gamma process. We choose Ω to be the Skorohod space, F = F X

= σ (X t , t ≥

), and X the coordinate process. Furthermore we use the filtration FX
= {F X

t , t ≥ 0}. The
estriction of Q to F X

T is denoted QT . As a semimartingale, under Q, X has third characteristic
X,Q(dx, dt) = v(x)dxdt with v as in (2). Define L by dL t =

1
σ (X t−) dX t and L0 = 0. Since σ

s bounded from below and measurable, the process L is well-defined. We again take

Y (t, z) =
1

σ (X t−)

v( z
σ (X t−) )

v(z)
,

nd make a measure change on F X
T , parallel to Proposition 3,

dPT

dQT
= ZT := ET

(∫ ·

0

∫
(0,∞)

(Y (t, z) − 1)(µX (dz, dt) − νX,Q(dz, dt))
)

.

Provided that PT is a probability measure on F X
T , which happens if EQZT = 1, the third

haracteristic of X under PT is, similar to Lemma 2,

νX,P(dz, dt) = Y (t, z)νX,Q(dz, dt) = vX,P(t, z)dzdt,

here vX,P(t, z) =
1

σ (X t−)v( z
σ (X t−) ), so vX,P(t, z) = vσ with vσ as in (3). By the arguments

n the proof of Lemma 2, one obtains that under PT the process L has third characteristic
L ,P(dz, dt) = vL ,P(t, z)dzdt , with vL ,P(t, z) = vX,P(t, zσ (X t−))σ (X t−), which is nothing else
ut v(z), implying that under PT , L is a gamma process on [0, T ], and it also holds that
X t = σ (X t−) dL t . We conclude that under PT , X is a solution of the SDE, where L is
gamma process with Lévy density v. What remains to be shown for existence of a weak

olution is that PT is a probability measure on F X
T . We use Theorem IV.3 of Lépingle and

émin [12], this will be done via a detour as a direct application does not give the desired
esults. First we compute∫

∞

0
(y(σ (x), z) log y(σ (x), z) − y(σ (x), z) + 1)v(z) dz,

here

y(σ, z) =
1
σ

v(
z
σ

)/v(z) = exp(−βz/σ + βz).

onsider f (σ ) =
∫

∞

0 (y(σ, z) log y(σ, z) − y(σ, z) + 1)v(z) dz. As an intermezzo we now show
that
f (σ ) = α(σ − 1 − log σ ). (10)
7
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To see this we need the following computation for b, a > 0 with an application of Fubini’s
heorem,∫

∞

0

e−az
− e−bz

z
dz =

∫
∞

0

∫ b

a
e−uz du dz

=

∫ b

a

∫
∞

0
e−uz dz du = log

b
a

.

hen we get

f (σ ) =

∫
∞

0
(y(σ, z) log y(σ, z) − y(σ, z) + 1)v(z) dz

=

∫
∞

0

(
exp(−

βz
σ

+ βz)(−
βz
σ

+ βz) − exp(−
βz
σ

+ βz) + 1
)α

z
e−βz dz

= α

∫
∞

0

(
exp(−

βz
σ

)(−
β

σ
+ β) −

exp(− βz
σ

) − exp(−βz)
z

)
dz

= α
(σ
β

(−
β

σ
+ β) − log σ

)
= α

(
−1 + σ − log σ

)
.

aving established (10), we simply find∫
(0,∞)

(Y (t, z) log Y (t, z) − Y (t, z) + 1)v(z)dz = α(σ (X t−) − 1 − log σ (X t−)).

ix an integer N , to be judiciously chosen later, and δ = 1/N . Put Tn = nδT , for n = 0, . . . , N .
hen TN = T , and Tn − Tn−1 = δT for n = 1, . . . , N . Let Zn be the solution to

dZn
t = Zn

t−

(∫
(0,∞)

1(Tn−1,Tn ](t)(Y (t, x) − 1)(µX (dx, dt) − νX,Q(dx, dt))
)

, (11)

ith Zn
0 = 1, for n = 1, . . . , N . If the Zn are martingales, not just local martingales,

nder Q w.r.t. the filtration FX , then EQ[Zn
Tn

|F X
Tn−1

] = Zn
Tn−1

. Consider again the stochastic
ifferential equation for Zn , which can, in obvious notation, be abridged to dZn

t = Zn
t−dMn

t =

Zn
t−1(Tn−1,Tn ](t)dMt . Note that Mn

t = 0 for t ≤ Tn−1. It follows that Zn
t = 1 for t ≤ Tn−1, and

ence EQ[Zn
Tn

|F X
Tn−1

] = 1. Since ZT =
∏N

n=1 Zn
Tn

, one obtains

EQZT = EQ

N−1∏
n=1

Zn
Tn
EQ[Z N

TN
|FTN−1 ] = EQ

N−1∏
n=1

Zn
Tn

= EQZTN−1 ,

hich can be seen equal to one by an induction argument. To see that the Zn are martingales,
e use Theorem IV.3 of Lépingle and Mémin [12], i.e. the aim is to show

EQ exp
(∫ T

0

∫
[0,∞)

1(Tn−1,Tn ](t)(Y (t, z) log Y (t, z) − Y (t, z) + 1)v(z)dzdt
)

< ∞.

n view of the computations above this amounts to showing that

EQ exp

(∫ Tn

Tn−1

α(σ (X t−) − 1 − log σ (X t−))dt

)
< ∞.

sing that σ is lower bounded and satisfies the growth condition, and that X is an increasing
rocess under Q, we have that the integrand above is upper bounded by α(K (1 + X ) − 1 −
t

8
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log σ0) ≤ C + αK XT , for some C > 0. Hence,
∫ Tn

Tn−1
α(σ (X t−) − 1 − log σ (X t−))dt ≤

αK T XT + C ′, where C ′ is another positive constant, so it is sufficient to prove that
Q exp(δαK T XT ) < ∞.

At this point we note, as can be verified by a simple computation of an integral, that for
random variable X having a Gamma(a, b) distribution, it holds that E exp(cX ) = ( b

b−c )a for
< b. Using this property and recalling that, under Q, XT has a Gamma(αT, β) distribution,

he expectation EQ exp(δαK T XT ) is seen to be finite if δ < β/(αK T ), equivalently N >

K T/β. For such a choice of N , we obtain that the Zn are martingales and hence EQZT = 1.
s a consequence PT is a probability measure on (Ω ,F X

T ) for every T > 0. In fact the {PT }

form a consistent family of probability measures, and hence there exists a probability measure
P on F such that P|F X

T
= PT , see Lemma 18.18 in Kallenberg [8]. This shows that there exists

a weak solution on the entire time interval [0, ∞). Finally, we turn to uniqueness in law of a
weak solution. Consider two possible weak solutions X i , or rather (X i , L i ) for i = 1, 2, on
n interval [0, T ], defined on their own filtered probability spaces (Ω i ,F i ,Fi ,Pi ). Consider

changes of measures dP̃i
= Z i

T dPi . Here we take T = t in

Z i
t = Et

(∫ ·

0

∫
(0,∞)

(Ỹ i (s, z) − 1)(µX i
(dz, ds) − νX i ,Pi

(dz, ds))
)

,

where

Ỹ i (s, z) =
σ (X i

s−)v(z)
v(z/σ (X i

s−))
= ỹ(σ (X i

s−), z),

ith ỹ(σ, z) =
1

y(σ,z) = exp(βz/σ − βz). We assume for a while that the Z i
T have expectations

ne under Pi so that the P̃i are probability measures on F i
T , equivalent to the Pi . By the

rguments used earlier in this proof, under P̃i the processes X i are gamma processes with
arameters α, β. Hence the distributions, for i = 1, 2, of the X i are identical under the
robability measures P̃i . Consider then samples X i (n) = (X i

t1
, . . . , X i

tn ), 0 ≤ t1 ≤, . . . ,≤

n ≤ T , and Borel sets B of Rn . Then

Pi (X i (n) ∈ B) = EP̃i
1

Z i
T

1{X i (n)∈B}. (12)

n the right hand side of Eq. (12), all random quantities are defined in terms of X i , hence
he expectations in (12) are the same for i = 1, 2. This shows that the finite dimensional
istributions of X1 and X2 are identical and hence the laws of X1 and X2 are the same as
ell. It is left to show that the Z i

T have expectations one under Pi . We follow the same path
s above, we first compute F̃(x) :=

∫
(ỹ(σ (x), z) log ỹ(σ (x), z) − ỹ(σ (x), z) + 1) v(z/σ )

σ
dz. To

that end we consider f̃ (σ ) =
∫

(ỹ(σ, z) log ỹ(σ, z) − ỹ(σ, z) + 1) v(z/σ )
σ

dz. It turns out that
f̃ (σ ) = α( 1

σ
− 1 + log σ ), so f̃ (σ ) = f ( 1

σ
), and hence F̃(x) = α( 1

σ (x) − 1 + log σ (x)).
rom here we continue to solve the SDE for Z i on intervals (Tn−1, Tn], similar to (11), with

Tn = nδT , resulting in processes Z i,n that are martingales with Z i,n
Tn−1

= 1. To show the
artingale property for Z i,n , we use again Theorem IV.3 of Lépingle and Mémin [12], i.e. we

how

EPi exp

(∫ Tn

Tn−1

α
( 1
σ (X i

t−)
− 1 + log σ (X i

t−)
)

dt

)
< ∞.

ere the integrand is bounded by α( 1
σ0

− 1 + log K + log(1 + X i
T )). Hence for a constant C ,

epending on T , the exponent is less than or equal to C(1 + X i )δαT , and we have to show for
T

9
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a well chosen δ > 0 that EPi (1 + X i
T )δαT < ∞, equivalently EPi (X i

T )δαT < ∞. The conditions
n Proposition 4.1 of Klebaner and Liptser [10] (on their operator Ls(xs−)) are satisfied by
he linear growth condition on σ , and as a result one has EPi (X i

T )2 < ∞. Therefore we take
< 2/αT . □
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