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Abstract

One reason for the spectacular success of machine learning models is the
appearance of large datasets. These datasets are often generated by different
computational units or agents and cannot be processed on a single machine
due to memory and computing limitations. Moreover, the data may contain
sensitive information and hence should not be shared among different machines
Distributed systems can handle these problems by keeping the data locally
and leveraging the cooperation of agents over a communication graph. This
thesis is focused on a family of distributed systems, where the objective is to
minimize a sum of locally held functions subject to local constraints, called the
Decentralized Constrained Optimization Problem (DCOP). This problem is
of significant importance as it arises in various real-world applications such as
distributed sensor networks, decentralized control, and multi-agent systems.
Our main concern is to develop efficient first-order decentralized optimization
algorithms to solve the DCOP.

The first part of our contributions is the development of a generic algorithmic
framework for the DCOP, which we refer to as Double Averaging and Gradient
Projection (DAGP), where each local function and local constraint is only
accessible by a particular agent. This algorithm is presented in our first
paper, and we both theoretically and numerically demonstrate its competitive
convergence rate. Our work is the first to consider distributed constraints in
the DCOP. In the second paper, we revealed the importance of the DCOP and
the intuitions behind the update rules of the DAGP algorithm. Moreover, by
building upon the initial work and addressing its limitations, we developed a
more comprehensive and general methodology to provide a rate of convergence
for optimization algorithms. This methodology is called “Aggregate lower
bounding,” which foregoes the need for Lyapunov functions or decaying step-
sizes. This novel convergence analysis methodology is our second contribution.

Keywords

Constrained optimization, Convergence analysis, Convex optimization, Distrib-
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Chapter 1

Introduction

Supervised learning is one of the core techniques used in machine learning and
artificial intelligence applications. It provides models from labeled training data,
which are to make accurate predictions on new, unseen data. Empirical Risk
Minimization (ERM) is a highly popular framework for supervised learning,
which relies on a finite-sum optimization problem, associated with the training
data set, the set of candidate models, and the learning task. The success
of the ERM framework generally hinges on the complexity of the candidate
models and the size of the training dataset. The common wisdom in the
field of machine learning is that the larger the dataset and the more complex
the models are (large-scale supervised learning), the better performance on
unseen data becomes. However, resource limitations and privacy concerns
prevent processing large amounts of data on a single machine for large-scale
problems, making distributed optimization methods essential in addressing
these challenges.

In distributed optimization, two setups are considered based on the commu-
nication network. The first is the centralized setup, which includes a master
node that coordinates all other nodes. In this setup, issues such as master
bottleneck and master failure may arise since all nodes communicate with
the master node. The second setup is known as the decentralized setup, in
which there is no master node. In this configuration, connecting numerous
computational units together increases the overall computing capacity, resulting
in faster wall-clock convergence. In this thesis, our focus is on solving finite-sum
optimization problems in a decentralized setup.

Convex optimization is a framework to find the minimum of a convex
function over a convex set, which arises in various applications such as machine
learning, signal processing, and control theory. To solve such optimization
problems, a wide range of iterative algorithms have been proposed, each
addressing different challenges in the problem, such as handling constraints or
large-scale problems, improving convergence rate, and more. These methods
can be classified as either first-order or second-order methods, depending on
the information they use from the objective function. Moreover, they are
dual-based optimization methods that rely on the dual problem and utilize

3



4 CHAPTER 1. INTRODUCTION

iterative techniques, which may take advantage of any underlying structure in
the dual form, such as separability. In this thesis. we focus on convex finite-sum
optimization problems. We consider the general case, where each term in the
objective function is convex and the optimization is over a constraint set that
is the intersection of several convex sets. We explore both algorithmic solutions
based on first-order information and theoretical convergence guarantees in this
thesis. In the following, we will provide an overview of the upcoming chapters.

Organization of the thesis

In Chapter 2, we will review the fundamentals of convex optimization problems.
We will proceed by categorizing iterative optimization methods and briefly
explaining each category. Lastly, we take a brief look at the Lyapunov-based
analysis of optimization algorithms, the common practice of finding quadratic
Lyapunov functions, and the underlying challenges, motivating alternative
approaches. In Chapter 3, we will examine supervised learning and the empirical
risk minimization problem. We demonstrate that ERM exhibits a finite-sum
structure, and how a decentralized approach addresses issues related to the
scale of the problem as well as the privacy issues. In Chapter 4, we will conduct
an in-depth examination of decentralized optimization algorithms and delve
into the current challenges faced in this area. The purpose of this section is
to emphasize that there are still unexplored aspects and gaps that necessitate
additional research efforts. In Chapter 5, we will provide an overview of the
papers included in this thesis and outline our contributions to the field of
decentralized optimization. Finally, in Chapter 6, we will suggest several
potential future research directions for interested readers.



Chapter 2

Convex optimization

Convex optimization is a branch of mathematical optimization that deals with
the minimization of convex functions over convex sets. It is used in a variety
of fields, including machine learning, signal processing, finance, and control
systems. This chapter provides an overview of the convex optimization problem
formulation, various methods for solving this problem, and the convergence
guarantees associated with these methods. A more comprehensive treatment
of the subject can be found in [1]–[4].

2.1 Problem definition

We start by defining convex functions and convex sets.

Definition 1 (Convex set). A set S ⊆ Rn is called convex if the line segment
connecting any two points in the set is entirely contained within the set, i.e.
for all x,y ∈ S and any α ∈ [0, 1]

αx+ (1− α)y ∈ S.

Definition 2 (Convex function). A function f : Rn → R is called convex if
the line segment connecting any two points on the graph of the function lies
above or on the graph itself, i.e. for all x,y ∈ Rn and any α ∈ [0, 1]

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

A convex optimization problem can be mathematically represented by

x∗ = argmin
x∈S

f(x), (2.1)

where S is a convex set and f is a convex function. During this thesis, we
assume the optimization problems are solvable, which means there exists at
least one optimal solution x∗ ∈ S such that the above optimization problem
achieves its finite optimal value f∗ at this optimal point f∗ = f(x∗), that is
for all x ∈ S we have f(x∗) ≤ f(x).

5



6 CHAPTER 2. CONVEX OPTIMIZATION

The constraint set S in the optimization problem (2.1) is written as a
general convex set showing all possible values the optimization variable can
have. In standard optimization problems, the constraint set contains all points
which are in the intersection of several equality and inequality constraints as

hv(x) = 0, v = 1, . . . , ce

gv(x) ≤ 0, v = 1, . . . , ci

where ce and ci are the numbers of equality and inequality constraints.
The optimization problem in (2.1) is called primal problem. The dual

problem is formulated by introducing Lagrange multipliers for the constraints,
which are denoted as λ for inequality constraints and ν for equality constraints.
Then, the Lagrangian function is defined as

L(x,λ,ν) = f(x) +

ci∑

v=1

λvgv(x) +

ce∑

v=1

νvhv(x).

Given the Lagrangian, the dual optimization problem is defined as

max
λ≥0,ν

min
x

L(x,λ,ν). (2.2)

The relations between the optimal values of the primal minimization problem
in (2.1) and the dual maximization problem in (2.2) are governed by weak
and strong duality theorems. Weak duality indicates that the optimal value of
the dual problem serves as a lower bound for the optimal value of the primal
problem. On the other hand, strong duality establishes the conditions under
which the optimal values of both the primal and dual problems are equal.

Numerous iterative algorithms exist to determine the optimal solutions
and values for optimization problems in either equation (2.1) or (2.2). These
algorithms differ with respect to several factors, including the characteristics of
the objective functions (smooth/non-smooth, convex/non-convex), the nature
of the constraints (constrained/unconstrained, specific constraint structures),
the problem type (primal or dual), the optimization setup (single-machine,
centralized, or decentralized), and the rate at which they converge to the
optimal solution (linear or sub-linear).

The terms linear and sublinear rates of convergence are frequently used
throughout this thesis, making it beneficial to define them in Section 2.2
before discussing and comparing the convergence guarantees of various iterative
algorithms in Section 2.4. Furthermore, it is essential to include the definitions
of smooth and strongly convex functions in Section 2.3, as they are consistently
mentioned in this thesis.

2.2 Convergence rates

Convergence rate is a performance measure that quantifies how fast a sequence
{sk} converges to s∗. In the following, we will define different convergence
rates in the ascending order [5].
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• sublinear rate of convergence implies that the algorithm’s progress
slows down over time at a gradually pace. Therefore, the terms in the
sequence does not change for large values of k. i.e.

lim
k→∞

∥sk+1 − s∗∥
∥sk − s∗∥ = 1,

• linear rate of convergence: If ∥sk+1 − s∗∥ ≤ λ∥sk − s∗∥, for λ ∈ (0, 1),
the error ∥s− s∗∥ reduces at a constant proportion with each iteration,
leading to a steady and consistent progress towards the optimal solution.

• superlinear rate of convergence: A sequence sk convergences with a
superlinear rate of convergence if

lim
k→∞

∥sk+1 − s∗∥
∥sk − s∗∥ = 0.

• higher order convergence rates (quadratic, cubic, ...): In the
above definitions the order of ∥sk − s∗∥ is one. The p−order convergence
rate is defined as

lim
k→∞

∥sk+1 − s∗∥
∥sk − s∗∥p ≤ M,

for a positive constant M . For p = 2, and p = 3, the rate of convergence
is called Quadratic and Qubic, respectively.

In the realm of optimization algorithms, our goal is to demonstrate the
convergence of multiple sequences and establish their respective rates of conver-
gence. Firstly, we need to determine the rate of convergence for the objective
error sequence, known as the optimality gap and denoted by f(xk)− f(x∗), as
it converges to zero. When dealing with constrained algorithms, it is necessary
to establish a convergence rate for the sequence that measures the distance
between xk and the constraint set, which also should converge to zero and is
called feasibility gap. In cases where a unique global solution exists, such as
when the objective function is strongly convex, we can also demonstrate the
convergence of the optimization method’s iterates, xk, to the optimal solution,
x∗. Lastly, for non-convex objective functions with multiple local minima, it is
essential to prove the convergence of the objective function’s gradient, denoted
by ∇f(xk), to zero.

2.3 Smooth and strongly-convex functions

Smooth and strongly convex functions offer benefits in terms of faster con-
vergence, unique global minimum, better convergence guarantees, and ease of
implementation. They allow the derivation of tighter convergence bounds for
optimization algorithms. These bounds provide insights into the algorithm’s
performance and help choose appropriate hyperparameters such as the step size,
ensuring that the algorithm converges to the optimal solution with a specific
convergence rate.
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Figure 2.1: Smooth and strongly-convex functions.

Definition 3 (L−Smooth function). A differentiable function f is L−smooth if
its derivative is L−Lipschitz continuous. For a convex and L−smooth function
f , for all x,y in its domain, we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22.

Definition 4 (η−Strongly convex function). A function f is η−strongly-convex,
if for every x and y in its domain, we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥x− y∥22.

The condition of strong convexity does not need a function to be differentiable,
and for non-smooth functions, the sub-gradient takes the place of the gradient.

To provide a more tangible understanding of the above definitions, let us
examine Figure 2.1. This illustration demonstrates that when a function is
L−smooth, it can be upper bounded by a quadratic function with a positive
curvature L. In contrast, η−strong convexity indicates the existence of a
quadratic lower bound with curvature η. As a result, it is straightforward to
show that a strongly convex function over Rn has a unique global optimal
point [3].

2.4 Iterative algorithms

Iterative methods are widely used to solve convex optimization problems. The
most common iterative methods can be classified into three main categories
based on the nature of the information from the objective function they use
and whether they are solving the primal or dual problem: first-order methods,
second-order methods, and dual-based methods. We will discuss each category
in this section, including their definition, specific algorithms in that class, and
their convergence properties.
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2.4.1 First-order methods

First-order methods use the gradient (first-order information) of the objective
function. These methods are particularly well-suited for large-scale or high-
dimensional problems, as they generally have lower computational complexity
per iteration compared to second-order methods. First-order methods typically
exhibit a linear convergence rate for strongly convex problems and a sublinear
convergence rate for general differentiable convex problems. Gradient Descent
(GD) is a well-known instance of first-order methods, which updates the
optimization variables as

xk+1 = xk − µ∇f(xk), (2.3)

where µ is a design parameter known as step size. It should be selected
appropriately to ensure convergence of the sequence {xk}k∈N to the optimal
solution x∗. For L−smooth and η−strongly-convex functions, it has been

shown that the optimality gap will decay linearly with the order of
(

κf−1
κf+1

)k
,

where κf = L/η is the condition number of f , and the step size is chosen as
µ = 1/L . For general convex and smooth objective functions, this algorithm
enjoys sublinear rate of convergence O(1/k ).

There are numerous gradient descent-based optimization algorithms that
can be broadly categorized based on stochastic approaches, accelerated tech-
niques, and distributed setups. These categories include various techniques that
address specific challenges or improve the convergence rate and efficiency of the
optimization process. Below, we provide a brief description of each category
with one example, and we refer the reader to [1], [4] for further details.

Stochastic optimization algorithms

Stochastic Gradient Descent (SGD) is a popular optimization algorithm in this
category, which is widely used in practice, e.g. in training machine learning
models. Stochastic methods are often used when the objective function f in (2.1)
is the average of N terms, i.e. f(x) = EI [fI(x)], where I is a uniform discrete
random variable such that P(I = i) = 1/N for i = 1, 2, . . . , N . Consequently,
the optimization problem for this setup is called finite sum minimization ,
and it is the case in machine learning applications where each term in the
average is the loss function computed at a data point measuring the discrepancy
between a model and the data point.

In machine learning problems, computing the true/full gradient of the loss
function requires computing the gradient over the entire dataset, which can
be computationally inefficient when the dataset size, N , is large. In response,
stochastic methods estimate the true gradient by randomly selecting a small
group (minibatch) of terms from the average and updating the optimization
variables as

xk+1 = xk − µgk, (2.4)

where gk is the estimate of the true gradient based on the selected terms
and varies among different stochastic optimization algorithms. In the original
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SGD algorithm, one term is randomly selected and gk = ∇fik(xk), where
ik is distributed according to the distribution I. This estimate is unbiased.
i.e. E[gk] = ∇f(xk), but it has a variance E[∥gk −∇f(xk)∥22], leading to the
convergence of the algorithm to a neighborhood of the optimal solution with
a constant step size. The size of the neighborhood depends on the variance
of gradient estimates. In order to achieve convergence to the exact optimal
solution, several variance reduction techniques have been proposed. These
techniques introduce additional variables that act as memory to keep track of
the true gradient and reduce the variance, resulting in the possibility of using
fixed step sizes and linear convergence rates. Examples of these techniques
include SAG [6], SAGA [7], and SVRG [8].

Accelerated methods using momentum

Acceleration methods improve the speed of convergence by incorporating the
gradients calculated in past interactions. Nesterov’s Accelerated Gradient
Descent (AGD) is an example of an accelerated method that incorporates a
momentum term into the update rule. This algorithm updates the optimization
variables xk by introducing intermediary variables yk, with initialization x0 =
y0 ∈ Rn, as follows

yk+1 = xk − 1

L
∇f(xk)

xk+1 = (1 + β)yk+1 − βyk

. (2.5)

The first equation is the simple GD update with µ = 1/L . The second equation
is where the momentum introduced since xk+1 depends on the two past values
of xk and xk−1.

The additional term β(yk+1−yk) leads to faster convergence in comparison
to GD (β = 0) with the same assumptions on the objective function. To
be more concrete, the AGD convergence rate for L−smooth and η−strongly-

convex functions with β =
√
κf−1√
κf+1 matches the following lower bound up to

constants [4]

∥xk − x∗∥22 ≥
(√

κf − 1
√
κf + 1

)2k

∥x0 − x∗∥22. (2.6)

We observe that the momentum term improves the dependence of convergence
rate on condition number of function f from κf for GD to

√
κf for AGD.

Consequently, for ill-conditioned problems with large κf , such as statistical
learning problems with small regularization parameters, accelerated methods
are appropriate choices for an optimization algorithm. On the other hand,
for general convex and L−smooth functions, the convergence rate is O(1

/
k2 ).

Heavy ball acceleration [9] is another acceleration method with weaker con-
vergence guarantees. As a final remark, the acceleration idea can be applied
to many basic optimization algorithms for achieving faster convergence in
different settings, for example, the setting with a composite objective function
that includes a non-smooth term [10], or accelerated versions of stochastic
methods [11], [12].
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Figure 2.2: Distributed optimization setups: centralized versus decentralized.

Distributed optimization algorithms

All the above-mentioned algorithms run on a single computing machine. In some
practical applications such as large-scale machine learning, sensor networks,
and multi-agent systems, these single-machine methods become inefficient or
infeasible due to privacy concerns or computational limitations. In response,
distributed optimization algorithms are designed to solve optimization problems
in distributed and parallel computing environments, where multiple agents or
nodes work collaboratively to find a solution. For these algorithms, similar to
the stochastic methods, the objective function has a finite sum structure, and
the distributed unconstrained optimization problem can be written as

x∗ = argmin
x

1

N

N∑

v=1

fv(x). (2.7)

Distributed optimization algorithms can be classified according to the commu-
nication network topology that connects the agents. In the following, we will
present two common distributed setups, which are depicted in Figure 2.2.

• Centralized or Master-Worker setup: In this setup, there exists a
master node that coordinates all the workers and updates the optimization
variables. The communication network topology in this setup is a star-
shaped network. Gradient descent can be adapted for this setup, resulting
in an algorithm called distributed gradient descent. At iteration k + 1 of
this algorithm, the master node broadcasts the optimization variables
xk to the worker nodes. The worker nodes then compute their local
gradients ∇fv(xk) and send the local gradient information back to the
master node. Finally, the master node updates the optimization variables
by aggregating the local gradients received from the worker nodes as
follows

xk+1 = xk − µ

N

N∑

v=0

∇fv(xk). (2.8)

This algorithm distributes gradient computations across N worker nodes.
Consequently, it achieves linear scaling of convergence time to a specified
error. In a centralized setup, all nodes must communicate with the master
node, which can become a bottleneck. Furthermore, if the master node
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fails due to practical reasons such as system overheating, the algorithm
cannot proceed to the next iteration.

• Decentralized setup: The decentralized setup addresses the issues
of master bottleneck and failure. In this setup, no single master node
is responsible for coordinating the worker nodes. Instead, nodes com-
municate directly with one another in a peer-to-peer manner over a
general connected communication network. This approach eliminates
the single point of failure and reduces communication bottlenecks. In
decentralized optimization, each node maintains its own local copy of the
optimization variables and updates them based on local computations
and communications that depend on the specific optimization algorithms
employed.

Since each node has its own copy of the optimization variables, and the
goal is to find the unique optimal solution of the distributed optimization
problem in (2.7), the nodes must agree on one consensus solution at the
end of the algorithm. In this regard, the optimization problem in (2.7) can
be equivalently reformulated as the following Decentralized optimization
problem if the communication network, represented by a graph, is strongly
connected.

{xv,∗} = argmin
{xv}N

v=1

1

N

N∑

v=1

fv(xv)

s.t. xv = xu ∀(v, u) ∈ E
(2.9)

where E is the set of all graph edges. Decentralized Gradient Descent [13]
is the adapted version of gradient descent for the decentralized setup
using the so-called gossip matrices [14]. In this algorithm, each node
updates as

xv
k+1 = xv

k −
∑

u∈Nv
in∪{v}

wvux
u
k − µ∇fv(xv

k), (2.10)

where wvu is the weight associated to the communication link between
nodes v and u. If the weights are designed so that their collection, called
Gossip matrix, satisfies several assumptions, DGD will converge to the
consensus optimal solution of (2.9) using diminishing step sizes. With
constant step sizes, it will converge to a neighborhood of optimal solution,
where the size of this neighborhood depends on the distributed variance

1

N

N∑

v=1

∥∇fv(x∗)∥22.

There are multiple challenges involved in the decentralized setup, and
different algorithms are proposed in the literature to address these chal-
lenges. A more detailed discussion of decentralized optimization methods
will be provided in Chapter 4.
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2.4.2 Second-order methods

Second-order optimization methods are a class of algorithms that use second-
order derivatives or their approximations to solve the optimization problem in
(2.1). These methods include the Newton and Quasi-Newton methods [5]. New-
ton’s method is known for its fast convergence, typically exhibiting quadratic
convergence when the objective function is twice continuously differentiable
and strongly convex. However, Newton’s method requires computing and
inverting the Hessian matrix, which can be computationally expensive and
impractical for large-scale problems. Quasi-Newton methods are developed to
address the computational challenges of Newton’s method by approximating
the Hessian matrix or its inverse. Broyden–Fletcher–Goldfarb-Shanno (BFGS)
and Limited-memory BFGS algorithms [5] are popular Quasi-Newton methods.

Despite the convergence advantages of second-order methods, they have
some limitations, such as the need to compute or approximate the Hessian
matrix, which is a computationally expensive task. These methods may not be
suitable for problems with non-smooth or non-convex objective functions. On
the other hand, first-order methods only require gradient information, which
is generally easier to compute. These methods are more widely applicable
and can handle larger-scale problems, differentiable non-smooth functions,
and distributed settings. Although first-order methods typically have slower
convergence rates compared to second-order methods, their simplicity and
computational efficiency make them the preferred choice in many applications.

2.4.3 Dual-based methods

The aforementioned algorithms address the optimization problem within the
primal domain. However, alternative approaches exist that focus on the dual
Lagrangian form of the problem in (2.2). Various dual-based optimization
techniques are developed by employing existing methods for primal optimization
and applying them to the dual maximization problem. For example, by applying
gradient ascent or proximal point algorithm to the dual problem [2]. Similar to
their primal counterparts, dual-based optimization algorithms can be classified
as first-order or second-order, depending on the specific algorithm and the
information used from the Lagrangian dual function.

Dual-based techniques are primarily employed to achieve computational
benefits. For instance, by expressing the primal optimization problem in
its Lagrangian form, the dual problem becomes constraint-free and smooth.
Additionally, specific structures within the dual problem, such as separable op-
timization variables, can sometimes be exploited. However, dual-based methods
necessitate first-order or second-order information from the Lagrangian dual
function, which includes the conjugate of the objective function. Computing
this information may be infeasible in certain applications. To conclude, deciding
between primal-based or dual-based methods depends on the characteristics
of the problem, but primal methods are more simple to understand and more
robust to hyperparameters [15].
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2.5 Lyapunov-based convergence analysis

In this section, we derive the convergence rate of the GD algorithm for L-smooth
objective functions by employing the classical Lyapunov-based convergence
analysis technique. From convexity and L−smoothness, we have

f(xk) ≥ f(x∗), (2.11)

f(x∗) ≥ f(xk) + ⟨∇f(xk),x
∗ − xk⟩, (2.12)

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22. (2.13)

By combining the above inequalities and considering the GD update dynamics
presented in Equation (2.3), we have

f(xk+1)− f(x∗) +
1

µ
⟨xk+1 − xk,xk+1 − x∗⟩ − L

2
∥xk+1 − xk∥22 ≤ 0. (2.14)

Then, using algebraic equations and completing the squares, we can simplify
the above equation to

f(xk+1)− f(x∗) +
1

2µ

[
∥xk+1 − x∗∥22 − ∥xk − x∗∥22

]

+

(
1

2µ
− L

2

)
∥xk+1 − xk∥22 ≤ 0. (2.15)

By choosing the appropriate step size µ ≤ 1/L , the last term is always positive;
hence it can be removed from the inequality. For the GD algorithm, we can
prove that the first term f(xk+1) − f(x∗) is a positive decreasing sequence,
which shows the convergence of f(xk) to the optimal value f(x∗) if the sequence
converges to zero. To show convergence to the optimal value, we can sum the
inequality in (2.15) over iterations from k = 0 to K − 1. This sum is valuable
as it allows us to leverage the telescoping property of the difference between
the Lyapunov function L(x) = ∥x−x∗∥22 computed at two successive iterations.

By defining ȳ = 1
K

∑K−1
k=0 xk, and using Jenson’s inequality, we have

f(ȳ)− f(x∗) ≤ 1

K

K−1∑

k=0

f(xk)− f(x∗) ≤ ∥x0 − x∗∥22
2µK

,

which is the standard O(1/k ) rate of convergence. This analysis is based on
simplifying the given inequalities from assumptions and algorithm dynamics to
the point that only two composite terms remain in the inequality. The first
term is a positive-definite function Φ, which usually contains several positive
terms showing the convergence of the algorithm to the optimal solution. The
second composite term is in the form of the difference between a Lyapunov
function computed at two successive iterations. To make it more clear, in this
analysis, one seeks the functions Φ and L satisfying the following inequality

L(Ψk+1)− L(Ψk) + Φ(Ψk) ≤ 0, (2.16)
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where Ψ represents the state vectors (optimization variables and possible aux-
iliary variables) describing the dynamics of the algorithm. Then, by summing
over all iterations up to K − 1, and using Jenson’s inequality, the O(1/k )
rate of convergence will be achieved. Finding the Lyapunov function L, and
simplification of the inequalities to (2.16) is not a straightforward task for
many optimization algorithms. In this thesis, our second contribution is the
introduction of a new convergence analysis technique referred to as the “Ag-
gregate Lower Bounding” methodology. With this approach, the reliance on a
Lyapunov function in the analysis is removed.

2.6 Summary

This section provided an overview of optimization algorithms and classified
them based on their different characteristics. We clarified why we are interested
in the decentralized first-order optimization algorithms. In this chapter, we
showed finding Lyapunov functions is not straightforward for all optimization
algorithms and new methodologies will be of interest, which is the second part
of our contributions presented in Paper II. In the subsequent chapters, first, we
will introduce supervised learning as one of the most practical and significant
problems solved using decentralized first-order methods. Then, in Chapter 4,
we will review decentralized first-order optimization algorithms in detail.
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Chapter 3

Supervised learning

In this chapter, we briefly introduce supervised learning and discuss classifica-
tion and regression problems. Then, we review the concept of empirical risk
minimization, which demonstrates the role of optimization in machine learning.
For more details, we refer the reader to [16], [17].

3.1 Problem definition

Supervised learning is the procedure of training a predictive model, represented
by its parameters, using a labeled dataset, i.e. a set of input-output pairs.
After the training procedure, the trained model will be used for the prediction
of unseen data. In the following, the main aspects of supervised learning are
reviewed.

training set: A collection of N data points, where sample i is represented by
a feature vector xi and its corresponding target value or label yi. Accordingly,
the set {xi, yi}Ns

i=1 indicates the training set.

Classification or Regression: Classification deals with discrete possible
values for yi called labels or categories. Prediction of a handwritten digit is one
example of classification. On the other hand, regression deals with continuous
target values yi. House price prediction is one example of a regression problem.

Model: Model g(x,w) is a function that maps input features x to outputs,
and its parameters w are learned during the training process. Neural networks,
logistic regression, linear regression, decision trees, and support vector machines
are examples of machine learning models. These models can be adapted to
either classification or regression tasks by modifying the output layer, loss
function, or aggregation method, as needed.

loss function: Loss functions l(g(xi,w), yi) quantify the difference between
the predicted outputs of a model and the actual target values. By appropriately
selecting the loss function based on either classification or regression tasks and
minimizing the average loss computed for all training samples, the model para-
meters can be computed by solving the so-called Empirical Risk Minimization

17



18 CHAPTER 3. SUPERVISED LEARNING

(ERM) optimization problem. Binary cross-entropy, categorical cross-entropy,
and hinge loss are examples of loss functions commonly used in classification
tasks, whereas mean squared error, mean absolute error, and Huber loss are
frequently employed in regression tasks [16].

3.2 Empirical Risk Minimization

ERM is the problem of minimizing the average loss on the training dataset, with
the hope that the model will likely generalize well to unseen data. However, it is
essential to be cautious about overfitting, which occurs when the model becomes
too specialized to the training data and fails to perform well on new data. To
address overfitting, regularization techniques are often used in conjunction with
ERM, adding a penalty term to the loss function to encourage simpler models
that generalize better. Therefore, the general ERM with regularization term
r(w) can be written as

w∗ = argmin
w

1

N

N∑

i=1

l(g(xi,w), yi) + λr(w), (3.1)

where λ is the regularization parameter. In this thesis, our focus is not on
statistical machine learning problems and the design of the model, loss function,
or dataset. For instance, we are not concerned with determining the best model
and loss function for a specific dataset. We assume that the training dataset,
model, and loss function are already given. Our objective is to find the optimal
model parameters by solving the ERM problem. This problem has a finite-sum
structure, allowing us to leverage efficient, scalable stochastic, and distributed
optimization algorithms to find the optimal parameters effectively.

The optimization framework in Equation (3.1) encompasses different types
of optimization problems by various choices of the objective function. Binary
classification with logistic regression loss and ℓ2− regularization, i.e.

l(g(xi,w), yi) = log
(
1 + exp−yix

T
i w
)

r(w) = ∥w∥22,
is 2λ−strongly convex and L−smooth, where

L = 2λ+
1

4N
λmax

(
N∑

i=1

xix
T
i

)
.

Support vector machines with the following hinge loss are convex but non-
smooth [18].

l(g(xi,w), yi) = max
{
0, 1− yix

T
i w
}

r(w) = 0

ℓ1−regularized least squares regression, called Lasso, is smooth but not strongly
convex with the following loss and regularization functions.

l(g(xi,w), yi) = (xT
i w − yi)

2
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r(w) = ||w||1
Finally, when choosing neural networks as the training model, the optimization
problem becomes non-convex due to the compositional nature of the neural
networks and using non-linear activation functions.

3.3 Summary

In this section, we examined the supervised learning problem and investigated
the ERM as a central optimization problem for determining the optimal model
parameters. We noted that ERM possesses a finite-sum structure. Therefore, for
large-scale problems when the size of the training set or optimization variables
is large, stochastic optimization methods can be employed for faster wall-clock
convergence. Moreover, in situations where data samples are distributed or
generated across a network of nodes and raw data sharing is not allowed
due to privacy (e.g. private local training data) or resource constraints (e.g.
memory limitations because all training samples cannot fit into one big data
center), distributed optimization algorithms can be employed. The following
chapter will offer an overview of distributed optimization algorithms, focusing
specifically on decentralized approaches.
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Chapter 4

Decentralized optimization

Decentralized optimization algorithms are those that solve the finite-sum min-
imization problem in a decentralized manner without relying on a central
authority. In this chapter, we will provide an overview of decentralized optim-
ization algorithms. We will discuss the challenges in decentralized optimization
and how different optimization algorithms address these challenges.

4.1 Decentralized problem

Nowadays, the training data is generated on edge devices, for example, in
federated learning applications such as next word prediction [19]. When local
data is private or cannot be stored on a single machine due to communication
or computation limitations, the problem can be addressed by solving ERM
with a decentralized approach. ERM is an instance of the general Decentralized
Constrained Optimization Problem (DCOP), which can be mathematically
represented by

x∗ = argmin
x

1

M

M∑

v=1

fv(x) s.t. x ∈
N⋂

v=1

Sv. (4.1)

In this problem, each agent or node has its own local objective function fv(x)
and local constraint set Sv. Equation (4.1) presents the general constrained
problem, which is the case in applications such as the decentralized version of
support vector machines [20], [21].

To solve DCOP in a decentralized manner, the agents communicate along
a strongly-connected communication network G = (V, E). This thesis focuses
on first-order decentralized methods with directed communication networks
such that each agent v can send its local solution and gradient information to
its out-neighbors N v

out, the set of all nodes receiving information from node v.
Moreover, it can receive local solutions and gradient information from all its
in-neighbors N v

in and compute their weighted average. The weights serve as
design parameters, and the collection of these weights in a single matrix forms
the so-called gossip matrix. To clarify, assume there exists a communication

21
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link between node u and node v, indicated by the directed edge (v, u) ∈ E . A
weight, wvu, is assigned to this communication link (the process for designing
these weights will be discussed in the next paragraph). The gossip matrix
W comprises all of these assigned weights and is expressed as W = [wvu].
Hence, the non-zero elements of a gossip matrix exhibit the same sparsity
pattern as the adjacency matrix of the communication network. Using the
graph Laplacian matrix, a gossip matrix W can possess either a zero row sum
structure W1 = 0, a zero column sum structure 1TW = 0T , or both zero row
sum and zero column sum structures.

Gossip matrices are designed such that the algorithm converges to a con-
sensus solution, that is xv = xu = x, for all v, u ∈ V . Moreover, this consensus
point should be the optimal solution, i.e. x = x∗, and satisfy the optimality
condition:

0 ∈
N∑

v=1

(∂ISv (x∗) +∇fv(x∗)) , (4.2)

where ∂ISv (x∗) represents the normal cone to the set Sv at the point x∗, which
is defined as the subdifferential of the indicator function of Sv at x∗.1 In
summary, the design of a decentralized optimization algorithm necessitates the
selection of suitable hyperparameters and gossip matrices to ensure that all
nodes converge toward a consensus and optimal solution.

4.2 Decentralized algorithms

Decentralized optimization algorithms can be classified based on various char-
acteristics. One way to categorize them is by determining whether they solve
the general constrained optimization problem, as in Equation (4.1), or its
unconstrained counterpart, as in Equation (2.7). This feature is not specific
to decentralized setup, and it is general. Another distinguishing feature of
these algorithms is the communication links between nodes, which can be
either uni-directional or bi-directional. Uni-directional links are represented by
directed graphs, while bi-directional communication links are depicted using
undirected graphs. Given that some common optimization methods solving a
constrained problem involve an extra projection step onto the constraint set,
and that the challenges between constrained and unconstrained optimization
problems are fairly alike, we will first explore algorithms that do not address
constraints. Afterward, we will link these insights to the constrained problem.

4.2.1 Decentralized Unconstrained Optimization methods

In this subsection, we will initially examine the decentralized unconstrained
optimization algorithms over undirected graphs2 . The discussion will include

1The indicator function takes the value of 0 for elements that belong to the constraint
set S and +∞ for elements that do not belong to S. The subdifferential is the set of all
subgradients.

2When dealing with an undirected communication graph, it is relatively easy to construct
gossip matrices that fulfill both the zero row sum and zero column sum requirements by
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what we refer to as the distributed variance challenge and its resolution through
the gradient tracking approach. Following this argument, we will explore the
challenges associated with directed communication networks and the methods
employed to address them.

Decentralized Gradient Descent (DGD) [13]

DGD is the simplest possible decentralized algorithm in which the local optim-
ization variables in the kth iteration are updated as

xv
k+1 = xv

k −
∑

u∈Nv
in∪{v}

wvux
u
k − µ∇fv(xv

k)︸ ︷︷ ︸
greedy

, (4.3)

where wvu are the elements of the so-called gossip matrix W. The fixed-point
iterations of this algorithm, taking into account convergence to a consensus
solution, and assuming the gossip matrix W possesses a zero row sum structure,
can be simplified to

∇fv(x) = 0 ∀v ∈ V.
This condition shows that the algorithm will converge to optimal solution x∗

only if x∗ is the minimizer of all local objective functions. In heterogeneous
settings, this is not possible, and the algorithm converges to a neighborhood
of the optimal solution, where the size of the neighborhood depends on the
distributed variance calculated as [22]

1

N

N∑

v=1

∥∇fv(x∗)∥22.

This justifies referring to the last term in Equation (4.3) as greedy alignment
because each node is approximately minimizing its own local objective function
by aligning the average solution in the direction −∇fv(xv

k). Therefore, to
ensure the convergence of this algorithm to the optimal solution, a decaying
step size is necessary [13], [23].

Decaying step size consistently results in slower convergence rates. For
instance, in the context of DGD, the achievable rate concerning the optimality

gap, or objective error, is O(1
/√

K ) for general convex and smooth func-

tions [13]. When it comes to smooth and strongly convex functions, the rate
is O(1/K ). As such, employing a fixed step size is typically more appealing
since it enhances the convergence rate from sublinear to linear. Thus, in order
to employ a fixed step size to achieve faster convergence rates, we need to first
understand the primary cause of the distributed variance that results in the
utilization of decaying step sizes. Then, we can investigate potential solutions
to tackle this issue.

By examining the update rule in (4.3) and considering fixed point iteration
again, one can observe that if we replace ∇fv(xv

k) by its average over all local

using the graph Laplacian matrix. If a gossip matrix satisfies both structures, the analysis
becomes more straightforward in comparison to a gossip matrix with either zero row sum or
zero column sum structure.
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objective functions
∑N

v=1 ∇fv(xv
k), the resulting algorithm will converge to

an exact optimizer of DCOP using an appropriate fixed step size. For this
replacement, all nodes must have access to the gradient of all local objective
functions, which is not possible in decentralized setups. In response, several
decentralized optimization algorithms are proposed in the literature, tracking
the average of local gradients in a decentralized way. Many methods are based
on Dynamic Average Consensus (DAC) protocol [24], which tracks the average
of time-varying signals (local gradients in our case) over a communication
network.

DIGing [25], EXTRA [23], and NEXT [26]

These methods rely on gradient tracking techniques, which allow them to
employ fixed step sizes and attain linear convergence to the precise optimal
solution of the decentralized optimization problem. As an example, the DIGing
algorithm integrates the DAC protocol with DGD dynamics for the purpose
of tracking the average gradient. This algorithm updates the optimization
variables by

xv
k+1 = xv

k −
∑

u∈Nv
in∪{v}

wvux
u
k − µdv

k,

dv
k+1 = dv

k −
∑

u∈Nv
in∪{v}

wvud
u
k +∇fv(xv

k+1)−∇fv(xv
k),

(4.4)

where dv variables estimate the global average gradient, i.e.

lim
k→∞

∥dv
k − 1

N

N∑

v=1

∇fv(xv
k)∥22 = 0, (4.5)

if
lim
k→∞

∥∇fv(xv
k+1)−∇fv(xv

k)∥22 = 0,

which demonstrates that the change in the gradient of the local objective
functions should be small after a large number of iterations. This algorithm
is “approximately” equal to the single-machine GD in 2.3, which means the
trajectories for these two algorithms are close to each other. To show this,
by defining x̄k = 1

N

∑N
v=1 x

v
k, summing (4.4) over all nodes, considering (4.5),

adding and removing 1
N

N∑
v=1

∇fv(x̄k), we have

x̄k+1 = x̄k − 1

N

N∑

v=1

∇fv(x̄k) + 1
N

N∑
v=1

(∇fv(x̄k)−∇fv(xv
k))

︸ ︷︷ ︸
error

,

where the last term indicates the difference between the single-machine GD
and DIGing algorithms and makes it clear why DIGing is approximately equal
to the single-machine GD. If the algorithm converges to a consensus solution,
which happens due to the first weighted averaging, the error term will go to
zero [27].
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Push-sum DGD [28], [29]

In the aforementioned algorithms, we assumed an undirected communication
graph and a gossip matrix W with both zero row sum and zero column
sum structures. For directed communication networks, it is only possible to
construct gossip matrices with either a zero row sum structure, represented by
W, or a zero column sum structure, represented by Q, using input or output
Laplacian matrices. The challenge with directed communication graphs is the
convergence point of the gossip averaging iteration. To illustrate the challenge,
let us analyze the gossip averaging iterations, where the objective is to find the
average of initial values at each node by executing the following algorithm

xv
k+1 = xv

k −
∑

u∈Nv
in∪{v}

qvux
u
k .

In this algorithm, considering Q with zero column sum structure, the node
values will converge to the initial sum

∑N
v=1 x

0 multiplied by a constant πv.
In [27], by using the Perron-Frobenius theorem [30], it is shown that these
constants differ among the nodes and correspond to the elements of the so-called
Perron vector π of the gossip matrix Qπ = π. The push-sum idea [31] involves
iteratively estimating these constants by introducing auxiliary variables y,
which are updated similarly to the x variables and initialized by 1.

yvk+1 = yvk −
∑

u∈Nv
in∪{v}

qvuy
u
k .

Then, by using the Perron-Frobenius theorem [30] and considering one-dimensional
optimization variables xv ∈ R1 for simplicity of equations, we can write

lim
k→∞

xk = lim
k→∞

(I−Q)kx0 = π1Tx0 = 1Tx0π

lim
k→∞

yk = lim
k→∞

(I−Q)ky0 = π1Ty0 = 1Ty0π

lim
k→∞

zv =

(
1Tx0

)
πv

(1Ty0)πv
=

1

N

N∑

v=1

xv
0,

where xk and yk are the stack of xv and yv variables, for all v, in one vector.
The above equations show the convergence of the ratio zv = xv/yv to the
average of initial values by estimating the Perron vector elements πv through
the updates of y variables. Now, the push-sum protocol can be applied to the
DGD algorithm for solving the general decentralized optimization over directed
graphs:

uv
k+1 = uv

k −
∑

u∈Nv
in∪{v}

wvux
u
k ,

yvk+1 = yvk −
∑

u∈Nv
in∪{v}

wvuy
u
k ,

zvk+1 = xv
k/y

v
k ,

xv
k+1 = uv

k+1 − µk∇fv(zvk+1),
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where µk is a diminishing sequence of step sizes. The necessity for a diminishing
step size arises due to the algorithm’s similarity to the DGD algorithm, as
it lacks access to gradient information from other nodes. Consequently, to
address this issue, the ratio variables zv will converge to a neighborhood of the
optimal solution. Gradient tracking approaches have been introduced.

Push-DIGing [25], DEXTRA [32], and SONATA [33]

Without tracking the average gradient, it is not possible to use a fixed step
size and converge to the optimal solution of the finite sum minimization
problem in (2.7). Since the graph is directed, the push-sum protocol can be
incorporated into previously mentioned algorithms employing gradient tracking
over undirected graphs. Push-DIGing [25], DEXTRA [32], and SONATA [33]
have been developed in this vein, which converges to the precise solution of
(2.7) over directed graphs. To gain a better understanding, we examine the
variable updates equations for the Push-DIGing algorithm:

uv
k+1 = uv

k −
∑

u∈Nv
in∪{v}

qvu (u
u
k − µgu

k) ,

yvk+1 = yvk −
∑

u∈Nv
in∪{v}

qvuy
u
k ,

xv
k+1 = uv

k+1

/
yv ,

gv
k+1 = gv

k −
∑

u∈Nv
in∪{v}

qvug
u
k +∇fv(xv

k+1)−∇fv(xv
k).

The algorithm encompasses all the components mentioned earlier. It exclusively
employs the Q gossip matrix with a zero column sum structure, making it
suitable for directed graphs. It includes gv variables that are updated using
the DAC protocol to track the average of all nodes’ gradients. Furthermore, it
incorporates the yv variable at each node, which updates in a manner similar to
the uv variables. Therefore, based on the push-sum protocol, the ratio between
uv and yv, defined as xv in this algorithm, converges to a consensus solution.

Push-Pull [34], [35]

This algorithm employs both zero row sum and zero column sum gossip matrices,
denoted respectively by the W and Q matrices. This method leads to a more
straightforward implementation and more relaxed assumptions for communica-
tion graphs. It has been demonstrated that for this algorithm, a critical node
is necessary, for which there should be a directed path from this node to all
other nodes and, conversely, from all other nodes to this critical node [34]. The
algorithm updates the optimization variables by incorporating an additional
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term, gv, which tracks the average gradient as follows:

xv
k+1 = xv

k −
∑

u∈Nv
in∪{v}

wvux
u
k − µgv

k,

gv
k+1 = gv

k −
∑

u∈Nv
in∪{v}

qvug
u
k +∇fv(xv

k+1)−∇fv(xv
k).

To the best of our knowledge, this algorithm represents the state-of-the-art
in decentralized unconstrained optimization algorithms over directed graphs,
achieving a linear rate of convergence for smooth and strongly-convex func-
tions [34].

4.2.2 Decentralized Constrained Optimization methods

In this section, we will review the decentralized optimization methods address-
ing constraints and solving the problem presented in Equation (4.1). There are
not many papers addressing this problem. However, they can be categorized
not only based on whether they have considered undirected or directed com-
munication graphs but also on whether they have taken distributed constraints
into account or not. By distributed constraints, we refer to the situation in
which each node has access to its own local private constraint set, which is not
known to other agents.

As a note, our goal is to solve the constrained problem using first-order
information, specifically by calculating the gradient and applying the projection
operator. We prefer projection-based algorithms over dual-based or penalty-
based methods because the latter requires computing gradient of Lagrangian or
Augmented Lagrangian functions, which could be computationally expensive
depending on the objective function and constraints. Additionally, the Lag-
rangian function might become non-smooth due to constraints, which means
there is no guaranteed convergence rate when using first-order methods to
solve the dual problem. This situation can occur, for instance, in the case of
empirical risk minimization with ℓ1−regularization.

Distributed Projected Sub-gradient algorithm [36]

This paper considers undirected and distributed algorithms. In the proposed
algorithm, each node does one step of DGD, followed by projection onto its
constraint set because of the possibility of going outside the feasible reagion
after the first step. This algorithm can be written as

zvk+1 = xv
k −

∑

u∈Nv
in∪{v}

wvux
u
k − µ∇fv(xv

k),

xv
k+1 = PSv (zvk+1),

where PS indicates the projection operator. By following the same approach
as the DGD algorithm in Section 4.2.1, we can write the fixed-point iteration
of this algorithm and observe that

0 ∈ ∂ISv (x∗) +∇fv(x∗). ∀v
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Therefore, by using a fixed step size, the algorithm is not guaranteed to converge
to the exact optimal solution because the objective functions and constraints
differ among nodes. By using a fixed step size, the algorithm converges to a
neighborhood of the optimal solution and the size of this neighborhood is equal
to

1

N

N∑

v=1

∥∂ISv (x∗) +∇fv(x∗)∥22.

Therefore, a decaying step size or a tracking approach is needed for convergence
to the exact solution. To the best of our knowledge, there is not any paper
that tracks the average of gradients and feasible directions.

As a final note for this algorithm, the convergence rate presented in that
paper is established under restrictive assumptions regarding the communication
graphs (fully connected graph) or constraints (identical constraints). Con-
sequently, a general convergence rate for this algorithm has not been provided.

Directed-Distributed Projected Sub-gradient (DDPS) [37]

This paper has considered directed communication graphs but identical con-
straints among the nodes. The optimization variables are updated through the
following equations in this algorithm

zvk+1 = xv
k −

∑

u∈Nv
in∪{v}

wvux
u
k + ϵyv

k − µk∇fv(xv
k), (4.6)

xv
k+1 = PS(z

v
k+1), (4.7)

yv
k+1 = (1− ϵ)yv

k −
∑

u∈Nv
in∪{v}

qvuy
v
k +

∑

u∈Nv
in∪{v}

wvux
u
k , (4.8)

where ϵ is the algorithm design parameter, which is generally a small positive
value. As seen, this algorithm uses two row-stochastic and column-stochastic
matrices, but it needs a diminishing step size.

This algorithm is the only one designed for directed graphs, addressing the
setup considered in this thesis. However, it is tailored for identical constraints
among the nodes. To enable a fair comparison, we attempted to modify this
algorithm to accommodate distributed constraints. Accordingly, in the second
step of this algorithm, we adapted the DDPS algorithm so that each node
projects onto its individual constraint set in each iteration. It is important
to note that the modified algorithm has not been examined in any published
work, and thus, there are no guarantees regarding its convergence properties.

4.3 Summary

In this section, we provided an overview of decentralized optimization algorithms
for both unconstrained and constrained decentralized optimization problems.
We observed that there are not many papers addressing constraints, and among
the few that do exist, none offer a working algorithm for distributed constraints,
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even with undirected graphs. Therefore, in this thesis, we focused on distributed
constraints and the more general setup of directed graphs. In the following
chapter, we will briefly discuss the papers included in this thesis, along with
an overview of our contributions.
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Chapter 5

Summary of Included
Papers

This thesis is written in the compilation format. In this chapter, we will
provide an overview of the papers included. Each paper will be described
individually, and we will provide a brief summary of the contributions and
results. Accordingly, a clear understanding of the scope and significance of
each paper and the relation between these papers is provided.

5.1 Paper I

In previous chapters, we discussed the importance of decentralized constrained
optimization with distributed constraints. Furthermore, in Chapter 4, we
identified gaps in the literature regarding constraints, specifically distributed
constraints. In this thesis, we address this problem by proposing a novel
decentralized optimization algorithm that takes into account general directed
graphs and distributed constraints.

In Paper I, we introduce the Double Averaging and Gradient Projection
(DAGP) algorithm. This algorithm employs two gossip matrices, one with
a zero row-sum and another with a zero column sum structure, akin to the
Push-Pull algorithm proposed for the unconstrained setup, making it suitable
for directed graphs. DAGP implements a tracking approach, enabling the use
of a fixed step size and fast convergence to the exact optimal solution. To the
best of our knowledge, this is the first instance of addressing the problem of
distributed constraints over a general directed communication network, along
with basic assumptions on the objective function to provide a convergence rate.
In this paper, we present the fundamentals of a novel convergence analysis
methodology called “aggregate lower bounding,” which is one of the main
contributions of this thesis, further detailed in Paper II.

We conducted experiments on constrained decentralized optimization prob-
lems involving directed graphs, where DAGP demonstrates superior perform-
ance compared to the modified version of the existing algorithm DDPS. Ad-
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ditionally, we carried out experiments on unconstrained problems, in which
DAGP exhibits comparable performance to state-of-the-art decentralized op-
timization algorithms, namely Push-Pull and ADDOPT. This highlights the
versatility and effectiveness of DAGP in handling various types of optimization
problems in a decentralized setting.

5.2 Paper II

This paper builds upon Paper I, addressing the same setup and problem, but
delving deeper into the ideas and intuitions behind the DAGP algorithm. For
instance, it explains how the average of gradients and feasible directions are
tracked, and how the optimality condition is satisfied using the innovative
“distributed null projection” concept. Furthermore, the paper explores the
importance of the constrained setup more extensively in the literature. We
demonstrate that any unconstrained optimization, even with non-smooth ob-
jective functions, can be reformulated into an equivalent problem with a linear
objective function and epigraphs as constraints. We also introduce a fast
algorithm based on proximal backtracking for calculating projection onto the
epigraph of a function, thereby enhancing the efficacy of DAGP in solving
decentralized constrained optimization problems with non-smooth objectives.

In this paper, which contains the second main contribution of this thesis,
we introduce a novel, general methodology for the convergence analysis of
optimization methods. This methodology addresses the well-known challenges
associated with Lyapunov functions mentioned in Section 2.5. Utilizing this
framework, we demonstrate that the feasibility gap of the solution diminishes
at a rate of O(1/K), and the optimality gap decreases at a rate of O(1/

√
K),

where K represents the total number of iterations. Our framework allows
us to bypass restrictive assumptions, such as identical local constraints, a
decaying step size, and strong-convexity. To further highlight the efficacy
of this novel methodology, we provide an alternative convergence analysis of
(non-distributed) gradient descent within this new context.

Finally, we expand our experimental results to include the practical optimal
transport for the domain adaptation problem [38]. First, we reformulate
the optimal transport problem within the context of decentralized constrained
optimization with distributed constraints. Then, we provide numerical evidence
of how the exact solutions for optimal transport can be computed efficiently,
even for large problems, which is the case for the domain adaptation problem.



Chapter 6

Discussion and Future
Work

In recent years, federated learning has attracted significant attention. There is
a substantial overlap between federated learning and distributed optimization
studied in this thesis. Consequently, numerous challenges already discussed
in the literature of decentralized optimization or federated learning can be
regarded as potential future directions of this thesis. To elaborate, the following
are some possible directions:

• Asynchronous setup: There are some papers, such as [39], that have
addressed communication delays and asynchronous iterations. We can
explore this setup and adapt the DAGP algorithm and our convergence
analysis methodology to accommodate asynchrony.

• Decentralized stochastic optimization methods: There are several
papers, such as [40]–[42], that have considered local objective functions
with finite-sum structure and proposed that in each iteration of the de-
centralized algorithm, each node utilizes stochastic gradients for updates.
We can explore this setup, adapt the DAGP algorithm, and employ our
aggregate lower bounding methodology. By doing so, we may introduce
more efficient algorithms for large-scale machine learning problems.

• communication efficiency: Communication among agents can be
costly. To reduce the number of transmitted bits, message compression
can be employed, and the performance of decentralized algorithms can be
analyzed in conjunction with the error introduced by message compression.
It will be worthwhile to investigate the DAGP algorithm from this point
of view.

• communication network: Another unexplored research direction, to
the best of our knowledge, involves the design of communication networks.
The central question to address is: What is the optimal fixed or dynamic
communication network to achieve the fastest convergence rate? The
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importance of answering this question lies in the fact that by optimizing
the communication network, for instance, by reducing the number of edges
while maintaining reasonable connectivity, we can achieve an ϵ−optimal
solution with fewer communication rounds among the nodes. This would
result in a significant improvement concerning communication costs.
Another reason for studying communication networks is that in certain
environments, communication over specific links might be significantly
more expensive. Designing a dynamic communication graph takes these
costs into account and minimizes communication over these costly links.
As a result, more informative data can be transmitted within the network.

In conclusion, it is worth noting that decentralized optimization, particularly
with constraints, will gain increasing attention in the coming years due to the
growing number of large datasets and machine learning models, as well as
the demand for greater computational resources. As demonstrated, there
are numerous challenges to be addressed in the future, and this thesis will
contribute to addressing them.
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[12] Z. Allen-Zhu, Z. Qu, P. Richtárik and Y. Yuan, “Even faster acceler-
ated coordinate descent using non-uniform sampling,” in International
Conference on Machine Learning, PMLR, 2016, pp. 1110–1119 (cit. on
p. 10).

[13] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009 (cit. on pp. 12, 23).

[14] S. Boyd, A. Ghosh, B. Prabhakar and D. Shah, “Randomized gossip
algorithms,” IEEE transactions on information theory, vol. 52, no. 6,
pp. 2508–2530, 2006 (cit. on p. 12).

[15] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of mathematical
imaging and vision, vol. 40, pp. 120–145, 2011 (cit. on p. 13).

[16] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT press,
2016 (cit. on pp. 17, 18).

[17] C. M. Bishop, Pattern recognition and machine learning. springer, 2006
(cit. on p. 17).

[18] L. Bottou, F. E. Curtis and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM review, vol. 60, no. 2, pp. 223–311, 2018
(cit. on p. 18).

[19] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” Foundations and Trends® in Machine
Learning, vol. 14, no. 1–2, pp. 1–210, 2021 (cit. on p. 21).

[20] S. Lee and A. Nedic, “Distributed random projection algorithm for convex
optimization,” IEEE Journal of Selected Topics in Signal Processing,
vol. 7, no. 2, pp. 221–229, 2013 (cit. on p. 21).

[21] P. A. Forero, A. Cano and G. B. Giannakis, “Consensus-based distributed
support vector machines.,” Journal of Machine Learning Research, vol. 11,
no. 5, 2010 (cit. on p. 21).

[22] K. Yuan, Q. Ling and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–
1854, 2016 (cit. on p. 23).

[23] W. Shi, Q. Ling, G. Wu and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015 (cit. on pp. 23, 24).

[24] M. Zhu and S. Mart́ınez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010 (cit. on p. 24).

[25] A. Nedic, A. Olshevsky and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM Journal
on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017 (cit. on pp. 24, 26).

[26] P. D. Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,”
IEEE Transactions on Signal and Information Processing over Networks,
vol. 2, pp. 120–136, 2016 (cit. on p. 24).



BIBLIOGRAPHY 37
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