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We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum
systems by learning a process representation using Kraus operators. The Kraus form ensures that the
reconstructed process is completely positive. To make the process trace preserving, we use a constrained
gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus
operators. Our ansatz uses a few Kraus operators to avoid direct estimation of large process matrices, e.g.,
the Choi matrix, for low-rank quantum processes. The GD-QPT matches the performance of both
compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random
processes, but shines by combining the best features of these two methods. Similar to CS (but unlike PLS),
GD-QPT can reconstruct a process from just a small number of random measurements, and similar to PLS
(but unlike CS) it also works for larger system sizes, up to at least five qubits. We envisage that the data-
driven approach of GD-QPT can become a practical tool that greatly reduces the cost and computational
effort for QPT in intermediate-scale quantum systems.

DOI: 10.1103/PhysRevLett.130.150402

Introduction.—The characterization of noisy quantum
operations is of broad interest in emerging quantum
technologies [1–27]. Examples include sampling compli-
cated quantum circuits [18,25] and creating interesting
quantum states [28–30] and gates [31,32]. Efficient char-
acterization of such operations would help understanding
and tackling noise in current quantum devices.
A quantum operation can be represented as a completely

positive (CP) and trace-preserving (TP) linear map E
mapping a state ρ to another state ρ0 in a (possibly)
different Hilbert space, i.e., ρ0 ¼ EðρÞ. Quantum process
tomography (QPT) [33–36] estimates E from experimental
data. Examples of QPT techniques are maximum-like-
lihood estimation [37–40], Bayesian estimation [41], pro-
jected gradient descent (GD) [42], projected least-squares
(PLS) [43], compressed-sensing (CS) methods using con-
vex optimization [44–47], and variational QPT [48].
A challenge in QPT is the exponentially growing size of

the process representation, e.g., the Choi representation
[49], a complex-valued 4n × 4n matrix for n qubits. This
makes it difficult both to estimate a quantum process from
noisy data, and to interpret the results [50]. However, for
realistic cases, low-rank approximations require much less
data for QPT [45]. In quantum state tomography (QST),

such approximations are sufficient to guide toward action-
able and interpretable information [51,52]. Inspired by
machine-learning techniques like neural-network QST [53–
64], efficiently representing a process and learning it from
data has recently shown promise for QPT [58]. Other
approaches, e.g., shadow tomography [65,66], avoid any
process representation to circumvent the dimensionality
issue, but come with their own limitations for realistic
problems [67,68].
In this Letter, we tackle QPT using a simple GD-based

optimization to learn Kraus operators, which can represent
any quantum process as a CP linear map [49,69]. The
number of Kraus terms can be flexibly adapted for a low-
rank reconstruction. We formulate QPT as a learning task
similar to the training of neural networks from data. The
CP condition is ensured by construction [69]; an efficient
gradient-based optimization using retraction [70–73]
implements orthonormality constraints to always satisfy
the TP condition during optimization.
Our GD-QPT is an example of Riemannian optimization

on the Stiefel manifold [74,75], which is also of interest in
machine learning [72], and has been applied to problems in
quantum physics [73,76,77]. Similar ideas led to the
quantum-inspired partial-trace-regression technique [78].
We show how the simple GD approach can reconstruct both
continuous- and discrete-variable (CV and DV) quantum
processes with different measurement schemes, large
Hilbert-space dimensions, and limited data.
We benchmark GD-QPT against CS and PLS. In CS,

QPT is formulated as a convex optimization problem
using the Choi representation [44,45,47]. Using convex
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programming, CS handles CPTP constraints easily, guar-
antees a global optimum, and shines in the regime of
limited data, where standard QPT would have an under-
determined system of equations for a general full-rank
process [45,79]. However, CS can be computationally
expensive in practice, limiting its applicability for even
three-qubit processes, which may require several hours of
computation [45]. A five-qubit process, or a CV process
with a larger Hilbert-space cutoff than used in existing
methods [39,40], may thus become impractical.
Projection-based methods [42] like PLS [43] obtain a

process estimate and then project it to the nearest CPTP
estimate. The PLS method is fast: it can reconstruct pro-
cesses for 5–7 qubits in reasonable time [43]. However,
projection-based techniques may require an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection steps
involving eigendecompositions of large Choi matrices or
iterative subroutines. Our approach avoids these problems,
but can still handle relatively largeHilbert-space dimensions.
We show that the simple GD-QPT technique yields

similar performances as CS and PLS on benchmarks using
random processes with Gaussian noise in the data. We
assess the performance of GD-QPT and CS against the
amount of data, showing that GD-QPT combines the best
of two worlds. Like CS, GD-QPT can work without
informationally complete data, but it can still, like PLS,
tackle larger problems.
Extending GD-QPT, we also construct neural-network

QPT (NN-QPT) [80], where the Kraus operators are the
output of a neural network, similar to previous works
[83,84] for QST. We find no advantage of this approach
over GD-QPT. Our GD approach thus introduces a flexible
QPT technique, demonstrating that simple gradient-based
optimization combined with appropriate regularization and
efficient process representation is an effective tool for
quantum process characterization.
Process representations.—The Kraus-operator repre-

sentation of E is k complex-valued matrices fKlg of
dimension N × N, acting on a density matrix ρ as EðρÞ ¼P

k
l¼1KlρKl

† ¼ ρ0. Here N is the Hilbert-space dimension;
for n qubits N ¼ 2n. The Kraus representation guarantees
that the process is CP [69,78,85]. The TP condition
translates to satisfying

P
k
l¼1 K

†
l Kl ¼ I.

The Choi representation [49,86] of E is an N2 × N2

complex-valued matrix Φ that can be written using
Kraus operators as Φ ¼ P

k
l¼1 jKlihKlj with jKli ¼

ðI ⊗ KlÞ
P

i jii ⊗ jii. The Choi matrix is thus a linear
operator acting on the tensor product of the input and
output Hilbert spaces Hin ⊗ Hout. The action of Φ on ρ is
given by the partial trace ρ0 ¼ TrHin

½ðρT ⊗ IÞΦ�. For Φ to
be CPTP, it should be positive semidefinite [42,49] and
satisfy TrHout

ðΦÞ ¼ I.
We consider the Kraus operator form because it allows us

to control the size of the process representation. The Choi

rank r of a process is the minimum number of Kraus
operators necessary to represent the process. The maximum
rank is r ¼ N2, but in realistic cases, process matrices can
have low ranks r ≪ N2 (for a unitary process, r ¼ 1). Our
approach gives the flexibility to choose the rank r ¼ k (the
number of Kraus operators) of the process ansatz, allowing
us to obtain low-rank approximations without constructing
the full Choi matrix. Most previous QPT methods preferred
the Choi-matrix representation because it made CPTP
constraints easier to handle [42] and the problem could
be cast in a linear form [45].
Learning processes.—We illustrate the GD-QPT idea in

Fig. 1. In QPT experiments, data dij are estimates (com-
puted by averaging single-shot outcomes) of expectation
values of measurementsMj on output states ρ0i ¼ EðρiÞ for
probe (input) states ρi. Noise sampled from a zero-mean
Gaussian distribution N ð0; ϵÞ with standard deviation ϵ
represents statistical errors. The process-reconstruction
problem can be cast as a learning task: minimizing a loss
functionL quantifying the discrepancy between the data dij
and our process estimate. We use

LðKÞ ¼
X

ij

�
dij − Tr

�
Mj

�X

k

KkρiKk
†
���

2

þ λkKk1;

ð1Þ

combining least-squares-error loss with L1 regularization;
K ¼ ½K1;…; Kk� is a kN × N matrix constructed by
stacking the k Kraus operators representing the process,
and the matrix norm kAk1 ¼ maxj

P
i jAijj is induced by

the L1 norm [87,88], with λ ≥ 0 the strength of the
regularization. We fix λ ¼ 10−3 in this Letter, but it can
be optimized further as a hyperparameter.
We can use any other objective function, e.g., the

likelihood function, which, assuming Gaussian noise,
becomes equivalent to minimizing the least-squares loss
[89]. We choose the latter for its simplicity and wide
applicability beyond data representing probabilities (e.g.,
Wigner functions that can have negative values).

FIG. 1. We estimate a quantum process E from data dij
(outcomes of measurements Mj on states given by E acting
on probes ρi). Gradient-based optimization of a loss function L
yields K, a set of Kraus operators representing E. The Kraus form
enforces complete positivity; a gradient-retraction technique
restricts K to the Stiefel manifold, enforcing trace preservation.
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The loss function is minimized with GD by updating K
along the negative (conjugate, since the Kraus operators are
complex [90]) gradient ∇KLðKÞ. However, simple GD
might lead to estimates that violate the TP constraint
(equivalently, the orthonormality condition K†K ¼ I). To
counter such violations, one could add a loss term that
penalizes them, e.g., kPl K

†
l Kl − Ik1. However, this pen-

alty does not strictly enforce the TP condition.
In the Choi representation, we can linearize the problem

to implement CS-QPT as

ΦCS ¼ arg min kΦ0k1 s:t:Φ0 ≥ 0; kSΦ⃗0 − d⃗k2 ≤ δ;

ð2Þ

where δ is the noise level set as a threshold. The matrix S,
constructed using the probes and measurement operators
fρi;Mjg [42], is similar to the sensing matrix in QST [91].

The data is a vector d⃗ with an appropriate flattening Φ⃗0 of
the Choi matrix. The TP condition is implemented by the
constraint TrHout

ðΦ0Þ − I ¼ 0. We use the splitting conic
solver [92] to solve the convex optimization task for CS in
Python with CVXPY [93,94] following Qiskit [95] to
implement the CPTP constraints.
Gradient descent on the Stiefel manifold.—The ortho-

normal condition on K defines the so-called Stiefel mani-
fold [70,72,74]. It is possible to restrict the gradients such
that we never leave this manifold during the optimization
[70–72,74,75]; this is an example of Riemannian optimi-
zation on a manifold [75]. Several works have addressed
this problem using a retraction technique that is an
approximation to the exponential map [96]. The retraction
restricts the updated K to the Stiefel manifold while
minimizing the loss (see Fig. 1).
Let G0 ¼ ∇KLðKÞ. In each update step, we normalize

the gradients with the L2 norm: G ¼ G0=kG0k2. With
stacked matrices A ¼ ½G K � and B ¼ ½K −G �, the
TP condition is implemented by a retraction updating
the gradients as [80]

∇�
KLðKÞ ¼ A

�
I þ η

2
B†A

�
−1
B†K; ð3Þ

where η is the learning rate. We iteratively minimize the loss
LðKÞ with gradient-based updates K0 ¼ K − η∇�

KLðKÞ
keeping K in the Stiefel manifold. The retraction formula
is based on the Cayley transform and the Sherman-
Morrison-Woodbury formula [74].
Gradient-based optimization is quite successful as a

heuristic with convergence guarantees in specific cases
[97], but our optimization contains nonconvex constraints,
making it difficult to guarantee finding a global minimum.
We use stochastic gradient descent, where iterative updates
are noisy due to batching data for gradient computation;
this enables avoiding local minima in some cases [98,99].

Actually, saddle points are a bigger issue than local minima
in high-dimensional nonconvex optimization [100], but
gradient-based optimization is effective in finding global
minima for such problems [101] with provable guarantees
for, e.g., overparametrized neural networks [102].
The starting estimate for K is random unitary matrices

with appropriate normalization guaranteeing that they
describe a CPTP process. Our learning rate decays by a
factor 0.999 in each step with ηð0Þ ¼ 0.1, fixed throughout
the Letter for consistent benchmarking. Better results may
be possible by hyperparameter search or choosing η from
the Armijo-Wolfe conditions, guaranteeing that each update
step decreases the objective function [70,80,103,104].
Results and benchmarking.—We first consider QPT for a

CV quantum operation—a selective number-dependent
arbitrary phase (SNAP) gate [80,105,106] and a displace-
ment operation—using coherent states as probes [39].
SNAP gates have recently been used experimentally to
create interesting CV quantum states such as Gottesman-
Kitaev-Preskill states and the cubic phase state [30]. The
parameters of the SNAPþ displacement operation are
given in the Supplemental Material [80]. In such CV
problems, choosing an appropriate Hilbert-space cutoff
to correctly describe the state at hand is fundamental
[39,40]. Here, we consider a cutoff of 32, which, to the
best of our knowledge, is the largest dimension explored for
single-mode CV QPT [36,39,107,108].
In Fig. 2, we show the Wigner functions for one instance

of a coherent probe state ρi ¼ jαiihαij, target state ρ0i ¼
EðρiÞ after the process, and sampled data dij. The data
correspond to measurements of the displaced parity oper-
ator ΠðβÞ on ρ0i. Both αi and β are continuous, but sampled
in a grid. We deliberately choose a coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, probes and
measurements have to be appropriately chosen depending
on the process and the limitations of the experimental setup.

FIG. 2. Reconstruction of a CV quantum process using GD-
QPT with a Hilbert-space cutoff of 32. The probes are coherent
states jαii in a 10 × 10 grid with Re½αi�, Im½αi� ∈ ½−2.5; 2.5�.
The data are measured values of the displaced parity ΠðβjÞ in a
10 × 10 grid with Re½βj�, Im½βj� ∈ ½−3; 3�. The grid is coarse,
demonstrating that we only need few measurements per probe
in our reconstruction. We sample data d0ij from our process
estimate in a finer grid to show the agreement with the true
process.
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We calculate the reconstruction fidelity FðΦ;Φ0Þ ¼
trð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ

p
Φ0 ffiffiffiffi

Φ
pp

Þ [109], one of several distance measures
for processes [110,111], using the Choi form with the
appropriate normalization, ΦGD-QPT=N. The average value
of F for 30 random choices of the Kraus operators with a
noise ϵ ¼ 10−2 is > 0.97. Each reconstruction converges
within 50 iterations, taking tens of seconds on a laptop with
32 GBmemory and 2.9 GHz 6-core Intel Core i9 processor.
We used k ¼ 3Kraus terms, but actually only needed k ¼ 1
since SNAP and displacement operations are unitary.
To study the effects of the number of Kraus operators in

our ansatz, noise, and amount of data, we turn to recon-
structing random DV quantum processes (processes acting
on n qubits). First, in Fig. 3(a), we quantify the impact of
Gaussian measurement noise (related to the number of
measurement samples [43]) and the number of Kraus
operators. We follow the direct QPT approach of
Ref. [43], where the 6n probes and 6n measurements are
tensor products of the eigenstates to the Pauli matrices
fσx; σy; σzg. We compare our results against a hyperplane-
intersection projection method [43] and a CS implementa-
tion using convex programming [45].
We find that all three methods perform similarly as a

function of the measurement noise ϵ, assuming the full set
of k ¼ 4n Kraus operators for a full-rank process. Reducing
the number of Kraus terms in our ansatz, the fidelity
saturates at lower values for lower k’s, which is expected as
our approximation then is not expressive enough to
represent the full-rank process. In a practical setting, we
may only be able to reach a certain fidelity with a finite
number of measurement shots (nonzero ϵ). Interestingly,
using more Kraus terms in such situations may not help.
In most realistic cases, where we might be interested in

implementing quantum gates which are unitary or near-
unitary processes, CS-QPT methods can work with very
little data [45]. Nevertheless, we benchmark for full-rank
processes in a two-qubit system to demonstrate the general
applicability of our approach (Ref. [80] contains results for
low-rank processes). In Fig. 3(b), we compare GD-QPTand

CS performance using a random subset of probes and
measurements (a fraction γ of the total). For two-qubit
processes in this informationally incomplete regime, GD-
QPT achieves similar fidelity as CS. However, the advan-
tage of GD-QPT is that by using few Kraus operators, we
can reconstruct processes in a larger Hilbert space (5-qubit
DV systems and CV processes with a Hilbert-space cutoff
of 32).
The PLS method was omitted from Fig. 3(b) since it was

not clear how to adapt it to noninformationally complete
data. However, PLS can be used to reconstruct processes
with more qubits, where CS struggles. The dimension of
the matrix S in CS is 62n × 42n for the probabilities and the
flattened Choi matrix. Therefore, running convex optimi-
zation programs even for reconstructing three-qubit proc-
esses with CS is challenging, requiring several hours of
computational time [45]. In contrast, GD-QPT can easily
tackle five-qubit processes, similar to PLS. Further, due to
the restricted number of Kraus operators, GD-QPT iter-
ations are faster than PLS for larger Hilbert spaces.
In Fig. 4, we compare the number of iterations for the

convergence of GD-QPT and PLS for random 5-qubit
processes. While GD-QPT converges in a similar number
of iterations as PLS, it is faster per iteration due to the
smaller number of Kraus terms considered. The most
expensive step in the PLS technique, the CP projection,
requires a diagonalization involving the eigendecomposi-
tion of the 4n × 4n-dimensional Choi-matrix estimate. The
time taken for each step is limited by the complexity (cubic)
of this eigendecomposition. In comparison, the most
expensive step in GD-QPT is the retraction, which involves
inverting smaller matrices of dimensions k2n × 2n, where
the number of Kraus terms k ≪ 4n. We provide the data and
code for all results along with our implementation of GD-
QPT, PLS, and CS in Ref. [112].
Conclusion and outlook.—In this Letter, we introduced a

simple yet powerful technique for QPTusing gradient-based
learning of Kraus operators—GD-QPT. Our approach can

(a) (b)

FIG. 3. Benchmarking GD-QPT (red) against PLS (blue) and
CS (gold) for random two-qubit (n ¼ 2) full-rank (r ¼ 16)
processes. Mean infidelities (a) as the noise ϵ is decreased for
30 random processes; (b) for reconstructions of these processes
using a fraction γ of the data used in (a) for ϵ ¼ 10−2 (randomly
selecting a

ffiffiffi
γ

p
6n ×

ffiffiffi
γ

p
6n subset of the total 6n × 6n Pauli probes

and measurements). Shading shows 1 standard deviation.

(a) (b)

FIG. 4. Comparing computational time for GD-QPT and PLS
(blue). (a) Loss in GD-QPT after each update step for random
5-qubit processes of rank r ¼ 3. One step for GD-QPT takes a
batch of 256 data points from 65 × 65 measurements, computes
the loss and its gradient, and performs an update on the Stiefel
manifold. In Ref. [43], convergence of the CP projection required
∼300 iterations when n ¼ 5. (b) Time taken per GD-QPT iteration
and the most expensive step in PLS, the CP projection, as a
function of Hilbert-space dimension with random processes [80].
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reconstruct both CVand DV processes for Hilbert spaces of
dimension at least 32. We benchmarked GD-QPT against
both the recently proposed PLS algorithm and CS. Using
randomly generated processes, we showed that for low-rank
processes, estimatingKraus operators directly gives fidelities
similar to PLS andCS for the same amount ofGaussian noise
in the data.
Further, we showed that our approach performs similarly

to CS in the regime of informationally incomplete data, yet
works for a larger number of qubits than CS. In this regard,
we achieve the goal outlined in Ref. [45], where the
convex-programming-based CS-QPT technique suffered
from numerical time and memory complexity issues.
Our simple approach alleviates some of the numerical
issues by considering QPT as a learning problem with a
limited number of Kraus operators as a model. Using data,
we learn the Kraus operators through gradient-based
optimization on the Stiefel manifold.
Future work could replace the Kraus representation with

other efficient (approximate) representations, e.g., tensor
networks [58,113]. A more expressive ansatz does not
necessarily perform better under noisy data [cf. Fig. 3(a)];
the relation between sample complexity of measurements
and ansatz expressivity should be explored. Also, bench-
marking against techniques such as shadow tomography
[65,66] could reveal if GD-QPT can strike a balance
between tackling QPT for larger quantum systems and
having an explicit, interpretable process representation.
Other issues to explore are fast uncertainty estimation
techniques [114,115], aleatoric (statistical) and epistemic
(lack of data) uncertainties [116] for error bars [117–119],
analysis of convergence and sample efficiency of the
optimization, and hyperparameter optimization (learning
rate and regularization strength) for reliable results.

The Python-based packages JAX [120] and OPTAX [121]
were used for automatic gradient calculation and optimi-
zation. QUTIP [122,123] was used for visualization and
generating data. The CS algorithm was implemented using
CVXPY [93,94]. We acknowledge useful discussions with
Ingrid Strandberg, Christopher Warren, Axel Eriksson,
Mikael Kervinen, Roeland Wiersema, Juan Carrasquilla,
and Nathan Killoran. We acknowledge support from the
Knut and Alice Wallenberg Foundation through the
Wallenberg Centre for Quantum Technology (WACQT).
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