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This paper is investigating if it possible to use vehicle log data to estimate vehicle independent road 

resistance parameters that can have large local variations and change rapidly, such as wind speed, 

wind direction and road surface conditions. The estimated parameters can be used to improve range 

estimation, route planning and vehicle energy management. The advantage with using vehicle 

independent parameters is that data from any vehicle can be used to improve the estimation and that 

all vehicles can benefit from the estimated data. An analytical solution previously presented for 

parameter estimation is verified on vehicle log data. Results show that the method works reasonably 

well for wind speed estimation and that changes in road conditions can be detected. Side wind affects 

need to be considered in future work.  
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1. INTRODUCTION 

       Battery electric vehicles (BEV) have many 

advantages compared to vehicles with conventional 

powertrains. Nevertheless, the limited range between 

charging is still a considerable disadvantage. Range 

estimation is needed to determine how far the vehicle can 

run before the battery is empty. However, range 

estimation suffers from a number of difficulties. One of 

them is uncertainties in the road resistance, i.e. the total 

braking force from the road and the environment 

affecting the vehicle. It contains three separate 

components; rolling resistance, air resistance and 

gravitational force from the road slope. The road 

resistance is depending on both internal vehicle 

parameters such as vehicle mass, tire- and aerodynamic 

properties, and environmental conditions such as wind, 

road slope and road surface. Improved information on the 

environmental conditions would simplify the range 

estimation of BEVs considerably.  

       Road resistance estimation is mainly used for 

predicting the vehicle energy consumption of a road 

segment. In [1], it is shown that the energy consumption 

of a vehicle is mainly depending on three factors apart 

from the vehicle itself. First, the driver has a large 

influence. An aggressive driver uses the brakes a lot and 

a considerable amount of energy is lost. Some of it may 

be recuperated in electric and hybrid vehicles but some 

parts are always lost, either as losses in the powertrain or 

due to power limitations in the recuperation. Second, the 

surrounding traffic affects the possibilities to drive in an 

energy optimal way. If the vehicle ahead is braking hard, 

there are no other options than to brake hard as well, i.e. 

there is no room to select an energy optimal speed 

trajectory. The traffic flow that sets the pace. Finally, the 

road resistance has a large influence on the energy 

consumption. The energy consumption is much larger on 

a muddy dirt road than it is on dry highway and head 

wind has a large negative effect on energy consumption 

especially at high speeds. To be able to accurately predict 

a vehicle’s energy consumption all these three factors 

need to be considered. Given the massive ongoing 

research in automated vehicles ([2],[3]) but also in driver 

behavior modelling ([4],[5]) and traffic simulations, it is 

motivated to complement that research with research 

around road resistance.  

       Road resistance estimation is nothing new, in fact, 

recursive algorithms like Kalman-filters have been 

implemented in vehicles for the purpose of estimating 

grade resistance and vehicle mass, see e.g. [6]. However, 

a major problem with using on-line data in a single 

vehicle for doing these estimates is that it can only be 

done on data from the road segments already passed. As 

road surfaces and wind conditions can change rapidly, for 

example when making a sharp turn a windy day, 

prediction of energy consumption based on past data 

might be very wrong. This is the main motivation for 

looking into the field of connected vehicles to improve 

the estimation. On roads with at least moderate traffic, 

other vehicles than the ego vehicle have travelled the 

road ahead. If the energy consumption of each vehicle is 

normalized into vehicle independent measures of the 

parameters affecting energy consumption, any vehicle 

passing the same road segment later on could use the 

information for estimating its own energy consumption 

and improving the possibility to predict the vehicle 

energy consumption more accurately. This is especially 
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important for BEVs that need good range estimation to 

be trusted by its driver.   

       This article focus on practical verification of a 

previously developed framework for vehicle independent 

road resistance estimation [7]. Measurements from a 

vehicle is used to verify the ability to estimate the correct 

average wind speed and rolling resistance coefficient on 

a segment of a public road. The sensitivity to errors in 

measurements and vehicle parameters is also 

investigated. 

       Chapter 2 describes the notation and the parameter 

values used in the examples all through the paper. 

Chapter 3 contains the problem formulation and chapter 

4 the estimation method used. Chapter 5 holds the results 

from estimation using vehicle measurements and chapter 

6 evaluates the sensitivity of the estimation to errors in 

the models, measurements and parameters used.  Chapter 

7 discusses the results and chapter 8 holds some final 

conclusions.  

 

2. PROBLEM FORMULATION 

       To describe the longitudinal vehicle speed, a simple 

vehicle dynamic model can be used: 

𝑚𝑎 = 𝐹𝑣 −
𝜌𝑎𝑖𝑟𝐴𝑓𝑐𝑑

2
𝑣2 − 𝑚𝑔𝑐𝑟 cos(𝛼) − 𝑚𝑔𝑠𝑖𝑛(𝛼) (1) 

where m is the vehicle mass, a the vehicle acceleration, 

𝐹𝑣  the propulsion force of the vehicle, 𝜌𝑎𝑖𝑟  the air 

density, 𝐴𝑓  the frontal area, 𝑐𝑑 the air resistance 

coefficient of the vehicle, v the relative air speed, g the 

gravitational constant, 𝑐𝑟  the rolling resistance 

coefficient and α the road slope. Equation (1) contains 

one vehicle independent parameter, namely the road 

slope α, and two parameters that are depending on both 

the vehicle itself and the surrounding conditions, namely 

the relative air speed v, and the rolling resistance 

coefficient 𝑐𝑟. The problem discussed in this paper is how 

to estimate two unknown parameters, namely the wind 

speed component of v and  𝑐𝑟  with only one equation. 

The idea of using vehicle log data to estimate static 

information such as road slope information has been 

investigated in previous research (e.g. [8]). Therefore, in 

this work the focus is on how to estimate the vehicle 

independent parts of the relative air speed and the rolling 

resistance.  

 

3. ESTIMATION METHOD  

       Wind speed can be fluctuating a lot and change quite 

rapidly and measurements of parameters like acceleration 

and slope can be very noisy. It is therefore motivated to 

use methods that estimate the average value of the 

parameters over a road section, using energies rather than 

forces, such as the vehicle estimation method developed 

in [7], instead of continuous estimation. Somewhat 

simplified, the algorithm can be described as: 

1) Measure total wheel energy over the segment 

ran in both directions 

2) Calculate sum of rolling resistance and air 

resistance by removing changes in potential and 

kinetic energy over the segment 

3) Calculate sum of rolling resistance and energy 

loss from wind by removing air resistance 

energy assuming zero wind.  

4) Assume same rolling resistance in both 

directions -> the difference in resulting energy 

using measurements from running the same 

segment in each direction is the effect from the 

wind Calculate wind speed estimate using this 

difference and aerodynamic properties of 

vehicle. 

5) Calculate rolling resistance coefficient using 

estimated wind speed in step 4.     

If the same vehicle is used to do all measurement, 

normalization is not needed. [7] gives an explanation 

how this can be done if multiple vehicles with different 

properties are used. The estimation method has been 

tested against real vehicle log data from a single vehicle. 

3.1 Vehicle measurements 

    The vehicle measurements were done on a segment on 

a public road with a truck equipped with a wind sensor 

that is able to measure the relative air speed and air 

direction. By subtracting the vehicle speed the actual 

wind speed and wind direction was calculated. The 

selected road segment that is shown in figure 2 is located 

south of Gothenburg, Sweden.  

 

Fig. 2 Measured Road Segment 

       It is 2060 meters long including both a downhill and 

an uphill as can be seen in figure 3 together with a typical 

vehicle speed profile. The measurements were collected 

by running the road segment several times in both 

directions.    

 

Fig. 3 Speed and Altitude Profile of Measured Road 

Segment 
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Table 1 summarizes the measured average wind speed, 

average wind direction and road surface conditions 

during the measurements. 

Table 1 Vehicle Measurements 

Date Wind 

speed 

Wind 

direction 

Surface 

20171123 2.7 100° Dry 

20171220 1.8 158° Moist 

20181504 2.0 194° Dry 

20180508 1.4 101° Dry 

Figure 4 illustrates the truck travelling in forward 

direction with average wind speeds and wind directions 

during measurements marked. 0° means direct tail wind 

(in forward direction) and 180° means direct head wind.  

 
Fig. 4 Average Wind Speed and Wind Direction during 

Measurements 

The reported wind speed from SMHI (Swedish 

Meteorological and Hydrological Institute) at the time 

and location for the measurements was between 4 and 9 

m/s and the wind direction either head or side wind (or a 

combination). However, the measured wind speed was 

much lower, < 3 m/s.  

7.1 Estimation Based on Vehicle Measurements 

Real vehicle data includes effects from the side wind. 

The method tested is assuming that there is no side wind 

and the results from this show that the method is capable 

of determining if there is head or tail wind but the 

magnitude of the wind speed is estimated somewhere in 

between the actual wind speed and the head wind 

component when the side wind is significant as shown in 

figure 5 and table 2. 

Table 2 Measured and Estimated Wind Speed 

Date Measured 

wind speed 

Estimated 

wind speed 

Measured  

head wind 

20171123 2.7 -1.4 -0.5 

20171220 1.8 -2.0 -1.7 

20181504 2.0 -1.9 -2.0 

20180508 1.4 -0.6 -0.3 

 

 

 
Fig. 5 Wind Speed Estimation on Measurements 

Figure 6 shows the estimated rolling resistance 

coefficient. The value is in general higher than expected. 

The measurements from 20171220 done on moisty 

asphalt shows the highest estimated road resistance 

coefficient.

 

Fig. 6 Rolling Resistance Coefficient Estimation  

4. SENSITIVITY ANALYSIS 

       The sensitivity of errors in different parameters 

with respect to wind speed and rolling resistance 

coefficient estimates is analyzed in this chapter. In 

section 4.1 errors in vehicle parameters and 

measurements are analyzed and in 4.2 errors from 

differences in vehicle collective and road conditions in 

the two directions are analyzed.                                                                                          

4.1 Sensitivity to Errors in Vehicle Parameters and 

Measurement 

       According to [7], if the same vehicle is ran in both 

directions on a road segment the wind speed (in 

head/tail direction) can be estimated by: 

𝑣𝑤 =
𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤−𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤

2𝜌𝐴𝐴𝑓𝐶𝑑𝑆𝑣𝑣_𝑎𝑣𝑒𝑟
  (2) 

and the rolling resistance coefficient by: 

𝑐𝑟 =
𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤+𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤−𝜌𝐴𝐴𝑓𝐶𝑑𝑆ℎ (𝑣𝑣𝑎𝑣𝑒𝑟

2+𝑣𝑤
2)

2𝑚𝑔𝑆ℎ
 (3) 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤  and 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤  denotes the measured 

energy consumption from rolling resistance and wind 
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resistance (assuming zero wind) in backward (_bw) and 

forward (_fw) direction of the road segment. The 

sensitivity in wind speed estimation and rolling 

resistance coefficient estimation from errors in these 

parameters can be calculated by taking the partial 

derivatives of the estimates with respect to the parameters 

according to: 

𝜕𝑉𝑤

𝜕(𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤−𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤)
=

1

2𝜌𝐴𝐴𝑓𝐶𝑑𝑆𝑣𝑣_𝑎𝑣𝑒𝑟
  (4) 

𝜕𝐶𝑟

𝜕(𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤+𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤)
=

1

2𝑚𝑔𝑆ℎ
   (5) 

Using typical values from the measurements ( 𝜌𝐴 =

1.2
𝑘𝑔

𝑚3 , 𝐴𝑓𝐶𝐷 = 5𝑚2, 𝑆 = 2060𝑚, 𝑣𝑣_𝑎𝑣𝑒𝑟 =
18𝑚

𝑠
, 𝑔 =

9.81
𝑚3

𝑘𝑔 𝑠2  , 𝑚 = 10000𝑘𝑔, 𝑆ℎ = 2059𝑚 ) gives: 

𝜕𝑉𝑤

𝜕(𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤−𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤)
= 2.2 ∗ 10−6 𝑚

𝑠𝐽
       (6) 

𝜕𝐶𝑟

𝜕(𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤+𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤)
= 2.5 ∗ 10−9 𝑚

𝑠𝐽
       (7) 

Apart from the effects in error in 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑  estimation, 

there are also direct effects from errors in parameters on 

𝑣𝑤  and 𝑐𝑟  estimates. The sensitivity in for example 𝜌𝐴 

can be calculated as: 

𝜕𝑉𝑤

𝜕𝜌𝐴
= −

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤−𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤

2𝐴𝑓𝐶𝑑𝑆𝑣𝑣𝑎𝑣𝑒𝑟𝜌𝐴
2       (8) 

𝜕𝐶𝑟

𝜕𝜌𝐴
=

−𝐴𝑓𝐶𝑑𝑆ℎ (𝑣𝑣𝑎𝑣𝑒𝑟
2+𝑣𝑤

2)

2𝑚𝑔𝑆ℎ
  (9) 

The sensitivities for the other parameters can be 

calculated in similar fashion. Table (2) summarizes how 

large error in each parameter that gives an error in the 

estimate 𝑣𝑤 of 1m/s. Once again using the same example 

parameters values as before and with 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤 =

4.0 ∗ 106J and 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤 = 5.0 ∗ 106𝐽 and 𝑣𝑤=-1m/s. 

Table 2 Wind Speed Estimation Sensitivity 

Parameter Sensitivity 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤 − 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤 440𝑘𝐽 

𝜌𝐴 0.53 
𝑘𝑔

𝑚3 

𝐴𝑓𝐶𝑑 2.2𝑚2
 

S 920 𝑚 

𝑣𝑣_𝑎𝑣𝑒𝑟  8
𝑚

𝑠
 

Table (3) summarizes how large error in each parameter 

that gives an error in the estimate 𝑐𝑟 of 0.001. Looking 

at the results in the tables, the estimations seem to be 

quite robust to most parameter errors. The only 

exception is errors in the estimated rolling resistance 

and air resistance energy consumption 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤 and 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤. 

 

Table 3 Roll. Resist. Coeff. Estimation Sensitivity 

Parameter Sensitivity 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑏𝑤 + 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑_𝑓𝑤 404𝑘𝐽 

𝜌𝐴 0.12 
𝑘𝑔

𝑚3 

𝐴𝑓𝐶𝑑 0.5𝑚2
 

𝑆ℎ 210 𝑚 

𝑣𝑣𝑎𝑣𝑒𝑟
2 + 𝑣𝑤

2 
33

𝑚2

𝑠2
 

m 810 kg 

Inaccurate parameters will also influence the accuracy of 

these estimations. The effects of this can be analyzed by 

calculating how sensitive the calculations of the sum of 

rolling resistance and air resistance energy consumption 

are to errors in different parameters. This consumption is 

calculated from: 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑 = 𝐽𝑤ℎ𝑒𝑒𝑙 − 𝑚
𝑣(𝑒𝑛𝑑)2−𝑣(0)2

2
− 𝑚𝑔(ℎ(𝑒𝑛𝑑) −

ℎ(0))                   (10) 

That is, the sum of the rolling resistance energy and the 

air resistance energy is the energy consumed at the 

wheels minus the increase in kinetic energy and potential 

energy. The sensitivity to errors in the estimation of 

𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑  with respect to measurements error in the 

different parameters can now be calculated through: 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(𝐽𝑤ℎ𝑒𝑒𝑙)
= 1                  (11) 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕𝑚
= −

𝑣(𝑒𝑛𝑑)2−𝑣(0)2

2
− 𝑔(ℎ(𝑒𝑛𝑑) − ℎ(0))    (12) 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(𝑣2(𝑒𝑛𝑑)−𝑣2(0)
= −

𝑚

2
                  (13) 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(ℎ(𝑒𝑛𝑑)−ℎ(0)
= −𝑚𝑔                  (14) 

Looking at equation (12), to limit the sensitivity to 

errors in vehicle mass, the altitude and the vehicle speed 

at the start of the segment should be close to the vehicle 

speed and altitude at the end of segment. For the test 

road segment, the altitude difference between starting 

point and end point is around 0.5 m, the speed at the 

starting point around 11 m/s and around 12 m/s at the 

end point. Using these numbers, the sensitives are 

calculated and presented table 4: 

Table 4 Roll and Wind Resistance Energy Sensitivity 

Parameter Sensitivity 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(𝐽𝑤ℎ𝑒𝑒𝑙)
 

1[−] 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕𝑚
 -16 

𝐽

𝑘𝑔
 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(𝑣2(𝑒𝑛𝑑) − 𝑣2(0))
 −5000 

𝐽

𝑚2

𝑠2⁄
 

𝜕𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑

𝜕(ℎ(𝑒𝑛𝑑) − ℎ(0)
 −98100 

𝐽

𝑚
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Worth noting is that some of the errors are likely to affect 

the estimate of 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑 with a perturbation with the 

same sign in both directions and some of them are likely 

to have opposites signs. For example, a model error 

resulting in too high estimated wheel torque in one 

direction is likely to result in a too high estimate in the 

other direction also. The same goes for the vehicle mass 

estimate. When it comes to altitude, it is reasonable to 

assume that errors will come for poor map data and in 

that case affect 𝐽𝑟𝑜𝑙𝑙_𝑤𝑖𝑛𝑑 with different signs in the two 

directions. The significance of this is that the errors that 

are likely to produce errors with the same sign in both 

directions will not affect the wind speed estimation very 

much since this estimate is based on the difference in 

energy consumption. While as the rolling resistance 

coefficient is based on the sum it will be doubly affected 

by these kinds of errors but not so much by errors with 

different signs. The opposite goes for errors with 

difference signs in the two directions, rolling resistance 

estimate will not be so much affected but the wind speed 

estimate will be doubled affected.  

       In our example, the precision of the altitude at the 

starting point and at the end point is the most sensitive 

factor to the precision of the wind speed estimate. An 

altitude difference between the starting point and the end 

point that is 3 meters wrong will result in a wind estimate 

that is more than 1 m/s wrong. For the precision of the 

rolling resistance coefficient, the ability to estimate the 

wheel power accurately seems to be most critical.  The 

error in this estimation will be directly propagated as an 

error in the estimation of the sum of air resistance and 

rolling resistance energy. If the same error is propagated 

in both direction, the error will turn up in the estimated 

rolling resistance coefficient. In our example, around 10 

percent error in wheel power estimation results in an 

error in the estimation of the rolling resistance coefficient 

of 0.001.  

4.2 Differences in road surface or vehicle collective 

       The method presented in [7] builds on two 

assumptions: 

1. The road surface is equal in both directions 

2. The vehicle collective is equal with regards to rolling 

resistance in both directions 

If either of these conditions are violated an error in the 

estimates will occur. The wind speed estimate is 

assuming that the average rolling resistance is equal in 

both directions. If it’s not, either because of different road 

surface or because of a different vehicle collective in the 

two directions, the difference in rolling resistance energy 

will be added as an offset in the wind speed estimate. The 

rolling resistance coefficient that is estimated will in this 

case be the average rolling resistance for the two 

directions. The magnitude of the error in wind speed 

estimate depend on how sensitive the energy 

consumption for the vehicles running on the road 

segment are to changes in road surface conditions 

compare to wind changes. In general, it depends a lot on 

the vehicle speed. In higher vehicle speeds, wind is more 

important and the error discussed here will not influence 

the wind speed estimate so much while in low speed 

conditions it will have a significant impact. In the 

example we used in the previous section, a difference in 

average rolling resistance coefficient of 0.001 

corresponds roughly to a wind speed estimate offset of 

0.5 m/s.  

5. DISCUSSION 

5.1 Application 

    Estimates of road resistance can be used for predicting 

the vehicle energy consumption. This can in turn be used 

for several things such as: 

1) Range estimation of battery electric vehicles 

2) Route planning (especially for battery electric 

vehicles) 

3) Energy management 

The idea for using the road resistance estimates for 

improved vehicle energy consumption is quite straight 

forward. If you have knowledge of the traffic situation 

and the driver behavior you can make a prediction of the 

speed profile on the upcoming speed segment. Using this 

speed profile and vehicle information together with the 

road resistance estimates a good prediction of the vehicle 

energy consumption at the wheels can be done using 

equation (1) for example, where v now is the predicted 

relative air speed rather than the predicted vehicle speed 

and 𝑐𝑟 a function of prevailing road surface conditions. 

To be able to do a good range estimation of battery 

electric vehicles, the energy consumption prediction need 

to be complemented with knowledge of the remaining 

battery energy as well as good powertrain efficiency 

information. 

       For route planning, accurate vehicle energy 

consumption prediction in combination with charging 

opportunities are vital to route battery electric vehicles 

energy and cost efficiently without risking running out of 

battery energy.  

       The main foreseen use for energy management is to 

be able to accurately calculate the optimal speed profile 

in hilly terrain. Without knowledge of the road resistance, 

the vehicle might roll faster or slower than predicted, 

wasting either energy in form of braking, or time when 

going slower than expected. 

      

5.2 Vehicle parameter’s estimation 

      Another more indirect usage of road resistance 

estimates is to improve estimation of vehicle parameters 

such as vehicle mass, air drag coefficient and rolling 

resistance coefficient. One possibility to improve the 

rolling resistance coefficient is that if the vehicle is 

passing a number of road segments on which the average 

rolling resistance coefficient is available, the vehicle 

could learn its relation to the vehicle average. If it always 
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been around x % lower in the past it is likely to be x % 

lower in the near future as well.  

       Vehicle mass estimation is still a challenge. Kalman 

filters have been suggested for example by [6]. One of 

the challenges is the disturbances from changing road 

conditions and inaccuracies in road slope information. 

GPS positioning have improved during the last decay and 

by using a precise positioning system in combination 

with accurate altitude data, the road slope information 

should be accurate. Combining this with road surface and 

wind information should enable improved accuracy of 

the mass estimation.  

Another problem area that can be improved using 

estimates of vehicle independent road resistance 

parameters is detecting changes in the air drag coefficient 

of the ego vehicle. The air drag coefficient of a vehicle is 

traditionally measured in a wind tunnel and is well 

known by the vehicle. However, if something changes, 

for example if you add a roof box, the aerodynamic 

properties change a lot. Without knowledge of the 

prevailing road conditions, it is difficult to distinguish 

head wind from aerodynamics making it difficult to 

predict energy consumption after a turn. If the wind 

conditions are known, the vehicle has a good chance to 

quickly detect the new air drag conditions and adapt its 

energy consumption prediction accordingly.  

5.3 Road weather information 

       Finally, road weather information can be improved 

from using information from connected vehicles. Today, 

most road weather information source rely on 

measurement from equipment at the roads. The main 

problems with this are that it is impossible to measure the 

road everywhere and that it might be difficult to measure 

how the vehicles are affected by the prevailing 

conditions. For example, when collecting the 

measurement data used in this paper, the wind speed 

reported in the area from the SMHI was between 4 m/s 

and 9 m/s. But when looking at the measured wind speed, 

the wind speed was much lower. A possible reason for 

this is that the reported wind speeds in the area is on 

locations where there is nothing limiting the wind. The 

selected road segment is in a small valley and is 

somewhat protected from wind. This shows that relying 

on more general data might not be such a good idea. The 

actual conditions are very local and therefore, the 

information need to be local as well. However, 

combining more general weather information with 

vehicle data might actually also improve the general 

weather predictions.        

6. CONCLUSIONS 

       The results show that the estimation method is able 

to estimate the wind speed with reasonable good 

accuracy, especially when there is more or less no side 

wind. The side wind contributes to additional energy 

consumption when going in both directions. The 

analytical method is determining wind speed from the 

difference in energy consumption in each direction and 

hence, the contribution from side wind will contribute to 

higher rolling resistance coefficient estimate rather than 

higher wind speed. To be of any real use, the analytical 

method must be extended to be able to also deal with side 

wind. This should be possible by adding knowledge to 

the estimation of how sensitive each vehicle is to side 

wind. Large trucks with large trailers are likely to be 

much more sensitive than small cars. 

       When it comes to the rolling resistance coefficient 

the true value is not known and it is difficult to assess the 

result. In general, the estimated rolling resistance was 

higher than expected. However, in reality the method is 

estimating all resistance that is equal in both direction 

(grade resistance excluded). Apart from the effect from 

side wind already mentioned, model errors will also turn 

up as an extra addition to the rolling resistance estimate 

which could be considerable. Interesting though is that 

the measurements that was done when the road surface 

was moist show higher rolling resistance than the 

measurements on dry surface, suggesting that the method 

might at least work to detect changes in rolling resistance 

on a road segment.    
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