
thesis for the degree of licentiate of engineering

On motion resistance estimation and modeling
for heterogeneous road vehicles

Mikael Askerdal

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2023

thesis for the degree of licentiate of engineering

On motion resistance estimation and modeling
for heterogeneous road vehicles

Mikael Askerdal

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2023



On motion resistance estimation and modeling for heterogeneous
road vehicles

Mikael Askerdal

Copyright © 2023 Mikael Askerdal
All rights reserved.

This thesis has been prepared using LATEX.

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, January 2023



To my beloved children Hugo and Lova.





Abstract
Climate change is driving the development of CO2 reducing technologies
within the transportation industry. One of the most promising technologies
is battery electric vehicles. However, the combination of limited battery ca-
pacity, relatively long charging times and few charging stations makes them
more vulnerable to conditions when energy consumption is higher than usual
compared to vehicles driven by fossil fuel. This thesis focuses on vehicle and
environment attributes that create energy-consuming forces resisting the ve-
hicle motion, i.e. the motion resistance and how to model and estimate them.

The method developed in the thesis is based on a separation principle where
attributes affecting the motion resistance are separated into vehicle, road and
weather characteristics. This enables using vehicle data from heterogeneous
vehicles to estimate local road weather conditions. The method is validated
using simulations and real vehicle experiments.

The results show that the road and weather conditions can be estimated
using data from connected vehicles and energy consumption of heavy-duty ve-
hicle combinations is largely affected by crosswinds. Furthermore, the motion
resistance from crosswinds can be characterized by simple models with only
a few tuning parameters.

The main conclusions from this work are that road weather conditions in-
cluding crosswinds need to be accounted for in range estimation algorithms,
road weather estimates based on connected vehicle data is a promising tech-
nique, and windy days need to be anticipated in advance to avoid potential
charging chaos.

Keywords: Range estimation, motion resistance, state estimation, rolling re-
sistance, air resistance, road vehicles, commercial heavy vehicle combinations,
passenger cars.
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CHAPTER 1

Introduction

1.1 Background

One of the challenges yet to be solved for battery electric vehicles (BEV) is how
to deal with the limitation in driving distance before a recharge is needed [1].
This combined with the limited number of public charging stations, and the
relatively long battery charging time makes accurate range estimation essential
for reducing range anxiety and earning the public’s trust. In principle, range
estimation is simple, calculate the vehicle power consumption on the presumed
road and integrate this power until the resulting energy equals the remaining
battery energy. However even though simple in principle, range estimation is
a complex task that involves many uncertainties.

First of all, what route to take needs to be determined. This is dependent on
the travel distance, the traffic situation and the charging station availability
of each route. In a city environment, the number of feasible routes could be
huge, it is hence desirable to find a fast method to estimate the vehicle energy
consumption on each route. Once the route is known, vehicle range can be
estimated on that particular route. With the route given, range estimation
is about knowing how much energy is available and predicting how long that
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Chapter 1 Introduction

energy will last. The next step is determining the energy conversion rate
that depends on both auxiliary systems and propulsion. Propulsion energy
conversion can be broken down further into dependency on the vehicle speed
profile, powertrain efficiency and resistance forces. The vehicle speed profile
is normally not well known and can vary a lot depending on both driver and
the traffic conditions [2], [3]. The powertrain efficiency is dependent on the
efficiencies of the powertrain components such as the battery, electric machine,
transmission, etc., and how the powertrain is controlled.

Assuming that both the vehicle speed profile and the powertrain efficiency
are well known, it is still difficult to accurately predict the propulsion energy
consumption due to the variations in forces from the road and the environ-
ment that resists the vehicle motion. The sum of all these forces is what is
called motion resistance1 in this thesis. Motion resistance can be divided into
three main components, rolling resistance, air drag and grade resistance and
is dependent on the road itself, the weather and the vehicle. How it affects
vehicle energy consumption can be derived from the standard equation for
longitudinal vehicle dynamics (force balance),

mav = Fprop − ρCdA

2 v2
ax − mgCrcos (α) − mg sin(α), (1.1)

where m is the vehicle mass, av the vehicle acceleration, Fprop the propulsion
force, ρ the air density, Cd the air drag coefficient, A the frontal area, vax the
longitudinal airspeed (i.e. the sum of vehicle speed and the headwind speed),
g the gravitational constant, Cr the rolling resistance coefficient and α the
longitudinal road gradient. Integrating the force balance, equation 1.1, over a
road segment from start position 0 to end position S gives the corresponding
energy balance equation:

m
(v2

v (S) − v2
v (0))

2 = Wwheel − ρCdAS

2 v2
ax − mgCrSh − mg(hr (S) − hr (0))

(1.2)
where vv is the vehicle speed, Wwheel the total wheel energy for the vehicle
combination over the road segment, vax the root mean square of the longi-

1In the papers in part II of the thesis, the term road resistance is used frequently. It has
the same meaning as motion resistance. The terminology was changed in order to avoid
misunderstandings since the term road resistance sometimes is used for denoting rolling
resistance as well.

4



1.1 Background

tudinal airspeed on the road section, and hr(S) and hr(0) the altitude at
position S and position 0 respectively. The motion resistance energy is the
sum of the negative terms of the right side of equation 1.2, where ρCdAS

2 v2
ax

is denoting the air drag energy, mgCrSh the rolling resistance energy and
mg(hr (S) − hr (0)) the grade resistance energy. The relative importance of
different motion resistance factors is presented in Appendix A.1. For the car,
the relative sensitivity on air drag from headwind speed is roughly three times
higher than the relative sensitivity from crosswind speed. For a rigid truck
without a trailer, the relative importance is similar for the head- and cross-
wind speed while the relative sensitivity from crosswind speed is almost three
times higher than the relative sensitivity from headwind speed on a tractor-
semitrailer combination. The relative importance of different environmental
factors is clearly not the same for all types of road vehicles.

Estimating motion resistance for road vehicles
Estimating motion resistance is difficult due to uncertainties in road and
weather conditions as well as in the vehicle’s parameters as seen in equation
1.2. For example, grade resistance is affected both by the road and the vehi-
cle since road slope and vehicle mass interacts to create grade resistance. Air
drag can be measured in a wind tunnel and air drag coefficients determined
from those measurements. Still, if the exterior of the vehicle is modified in
some way, for example by mounting a roof box on a car or attaching a trailer
to a truck, the actual air drag coefficient can be very different from the calcu-
lated value from the wind tunnel tests. Energy losses due to rolling resistance
come from the complex interaction between the road surface and the vehicle.
Rolling resistance can be measured in rigs and a rolling resistance coefficient
can be computed from these measurements. However, that coefficient is not
generally applicable. If the tires or the operation conditions, like the weather,
are changed so will the rolling resistance coefficient. How to model rolling
resistance so that rolling resistance can accurately be computed for different
combinations of vehicles in different driving and road weather conditions is
still an open research question, [4], [5].

Road weather can be divided into ambient conditions, wind conditions and
road surface conditions (here referring to the road weather aspects like dry
or humid surface, amount of water or snow on the road, and road surface
temperature). Road weather estimation is, a bit surprising considering the
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Chapter 1 Introduction

vast amount of research papers dealing with range estimation, e.g. [6]–[8],
sort of a white spot when it comes to research. Air drag and rolling resistance
estimation have been investigated in several papers, e.g. [9]–[11], but it is
often the estimation of the total effect from the resistances or the estimation
in specific conditions, i.e. no wind (or at least no crosswinds) and dry asphalt
road, rather than estimation of the road weather itself separated from the
vehicle attributes that is investigated. This might partly be explained by
difficulties in exciting the system enough to be able to do a separation into
several different quantities, partly by difficulties in accurately measuring the
road section wind speed and perhaps by an assumption that the effect of
energy consumption from the wind on average is zero. It should be noted
though that the separation may only be meaningful for applications that both
can access road weather information and benefit from it. For example, for an
algorithm that uses data of the anticipated weather conditions on the chosen
route to calculate the remaining vehicle range, this separation is vital, while
if such information is not available or if the interest is only to estimate the
total instantaneous effect from the motion resistance, estimation of lumped
parameters/effects may work equally good or better.

Ambient conditions are including air density, air temperature, sun intensity
and precipitation. Air density has a direct effect on air drag (as seen in equa-
tion 1.2). Air temperature has an indirect effect on motion resistance since it
is affecting both air density [12] and rolling resistance through the tire temper-
ature [13]. Sun intensity is indirectly affecting the rolling resistance through
heating and drying of the road surface and heating the tires. Precipitation
is indirectly affecting rolling resistance through water and snow build-up on
the road surface and cooling of both tires and road surface [14]. It also has
a minor effect on air drag due to changes in vehicle surface roughness and
acceleration of raindrops [15].

Wind conditions in the form of headwind speed have a direct effect on air
drag as can be seen in equation 1.1, since the airspeed depends on both the
vehicle’s speed and the wind speed vax = vv + vwx. [16] also reports that,
"Adverse wind effect occurs for substantially more than half the possible wind
angles relative to the road", which suggests that there is also a hidden indirect
effect from crosswinds.

There are several different indirect effects on rolling resistance from road
surface conditions. For example, [14] gives an overview of research papers
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1.2 Problem Statement

on how different road conditions affect rolling resistance for different types
of vehicles. Poor road conditions, like a snowy road, can have at least as
high influence on energy consumption as strong wind. From this, it can be
concluded that road weather really does have a strong influence on vehicle
energy conversion losses.

1.2 Problem Statement

The problem to be addressed through this thesis is the error in vehicle range
estimation that is inflicted by prevailing road weather conditions. Remain-
ing vehicle range estimation is crucial for BEVs due to the combination of
the limited number of charging stations, long charging times and the limited
amount of energy they carry. The energy consumption rate is affected by
motion resistance which in turn is highly dependent on the road weather and
road surface conditions [14], [17]. Strong winds and water or snow on the
road are examples of known factors limiting the vehicle range [14], [18], [19].
This in combination with uncertainties in vehicle attributes and actual road
weather conditions creates errors in vehicle range estimation.

Failing in taking road weather properly into account when doing range
estimation may in the worst-case scenario cause an unwanted stop for a BEV
where charging possibilities may be limited. Even if there is a charging station
available, an unplanned stop for charging may be required resulting in a time
loss that may be very costly for a time-critical mission. On a fleet level,
this problem becomes even more severe since bad weather conditions tend to
affect all vehicles in the same region at the same time potentially resulting in
charging chaos unless carefully planned for.

To be able to estimate the influence on motion resistance from weather
conditions, the road weather attributes and vehicle attributes impacting mo-
tion resistance need to be identified and estimated. Wind conditions at road
level, road surface temperature, and water and snow levels on the road are all
examples of relevant road weather data that are difficult to access for a com-
plete route. Also, crosswinds’ effects on air drag after an exterior change in a
vehicle and how tire temperatures can be modeled in different road weather
conditions are examples of important factors affecting motion resistance that
may need to be investigated further.
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Chapter 1 Introduction

Figure 1.1: Range estimation overview

1.3 Limitations

Range estimation is a wide area and it is difficult to focus on everything at
once and therefore this thesis is limited to effects from motion resistance in
general and the effects affected by road weather in particular. The items in
scope for this thesis have been highlighted with red, bold, italic text in
Figure 1.1.

Battery State-Of-Energy (SOE) estimation, which is another topic for a
vast amount of research [20]–[23] is out of scope for this thesis since it is not
related to motion resistance. The same goes for the auxiliary systems’ impact.
They are for sure affected by weather but are not part of the motion resistance
and are very much dependent on the application and hence difficult to treat
in a general framework.

When it comes to powertrain efficiency, it is depending on both powertrain
components and the energy management system. To be able to deal with
that, detailed information about the system is needed. Since high powertrain
efficiency contributes very much to the competitiveness of a vehicle, the de-
velopment of efficient powertrains are left to the OEMs (original equipment
manufacturer, i.e. the car (truck) maker) to do.

Research around driver modeling [24], [25], automated longitudinal control
[26], [27], vehicle speed prediction and optimization in traffic [28]–[30], are
all examples of research dealing with the vehicle speed profile. Apart from
being already investigated, there is an additional reason for keeping the vehicle
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speed profile out of the scope; it can to some extent be controlled by the driver
or by an intelligent cruise controller. Hence, if a simple method to calculate
the impact on energy consumption from different vehicle speed profiles is
developed, the vehicle speed profile can be tailored to optimize the energy
consumption or, even better, to optimize the overall transport mission target.

Road attributes are in general either more or less stationary over time, such
as the curvature, road banking and road slope, or changing very slowly as the
road surface. They can hence be measured once (in the former case) or with
rather long intervals (as in the latter case) and stored in a database. The
Swedish National Road and Transport Research Institute (VTI) has done so
and stored measurements in a public database, Long Term Pavement Perfor-
mance, [31]. Road slope as well as other road attributes can also be found in
several maps services e.g. [32], [33]. Road attributes are therefore considered
to be possible to find using known methods and are out of the scope of this
research.

The same goes for some of the ambient conditions such as temperature,
pressure and density. Many vehicles measure at least ambient temperature
and pressure using standard sensors and some vehicles also measure ambient
humidity. Using data from these sensors is considered to be enough to be able
to compute for example a reasonably accurate air density estimate [12].

Precipitation is omitted due to lack of data. Results from [15] show that rain
may have a significant impact on the air drag coefficient though. Also, when
turning the attention to rolling resistance, the effects from ambient conditions
such as precipitation and sun intensity are likely to be considered through
their indirect effect on the road surface conditions.

Estimation of relevant vehicle parameters describing how sensitive the mo-
tion resistance is to different kinds of environmental factors is out of the scope
of this thesis and they are instead assumed to be known. This is of course not
always the case and it would for sure be interesting to investigate how vehicle
parameters’ estimates can be improved using road weather information going
forward.

The scope of this thesis is also limited to simplified models with a limited
number of parameters. The underlying motivation for this is that the intended
usage of the developed models is range estimation which is a complex function
including many different factors. If each of these factors is to be modeled in
detail, the computational power needed is likely to be vast. The intention is
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Chapter 1 Introduction

to produce models that are computationally light so that energy consumption
for different routes with different vehicle speed profiles can be computed fast.
For example, this rules out using Computational Fluid Dynamics (CFD) as a
method for modeling air drag.

1.4 Thesis focus and contributions
The focus of this thesis is to investigate how road weather affects propulsion
energy consumption and how road weather conditions can be estimated.

The idea utilized in this thesis is that of using data from connected vehi-
cles running on the same road segment at roughly the same time to estimate
road weather conditions. The initially developed road weather estimation al-
gorithm was based on eight assumptions stated in Paper A, one being that
there is no effect from side wind (crosswinds). It is shown that under these
assumptions, the defined road weather conditions’ parameters; the rolling re-
sistance coefficient and the headwind speed, can analytically be calculated
from the connected vehicle data. In Paper B this estimation method was vali-
dated through real vehicle tests. However, it shows that the assumption of no
effect from crosswinds is far from true. Without the influence of crosswinds,
the conclusion is that the method seems to work well though and is capable of
picking up changes in both headwind speed as well as road surface conditions.

Paper C complements Paper A and B with the development of simplified
air drag models that include the effect of crosswinds. In Chapter 2 it is
shown how a model from Paper C can be incorporated and used in a road
weather estimation algorithm using vehicle energy consumption data from
heterogenous vehicles as input.

The main findings presented in this thesis are:

• In absence of crosswinds and if road surface conditions are the same in
both driving directions, headwind speed and road surface conditions can
be estimated from connected vehicle data using an analytical approach.

• Crosswinds have a significant effect on air drag and therefore also on
vehicle energy consumption.

• An air drag model including only two or three parameters can describe
the influence from crosswinds with fairly good accuracy.

10



1.5 Thesis outline

1.5 Thesis outline
The thesis is divided into two main parts where the first part gives the con-
text and application of the findings in the scientific papers appended in the
second part. Chapter 2 shortly describes the modeling and estimation meth-
ods developed in appended papers in part II and results from those papers
are presented in Chapter 3. Chapter 4 shortly summarizes the appended pa-
pers and Chapter 5 discusses and concludes the results and provides ideas for
future work.

1.6 Notation
The following notation has been used all through part I of the thesis.

Symbol Explanation
A frontal area
Ap frontal area projection
av vehicle acceleration
α longitudinal road gradient
αp vehicle energy consumption parameter
β vehicle energy consumption parameter

Cd air drag coefficient
Cr rolling resistance coefficient

CdA product of air drag coefficient and frontal area projection
c1 (nominal) air drag coefficient
c2 (cross sensitive) air drag coefficient
c3 (direct crosswind) air drag coefficient

crnom rolling resistance coefficient in nominal conditions
crroad

rolling resistance road condition coefficient
γ vehicle energy consumption parameter
g gravitational constant
hr altitude
i vehicle index in forward direction
j vehicle index in backward direction
m vehicle mass
N1 number of vehicles in forward direction

11



Chapter 1 Introduction

N2 number of vehicles in backward direction
ρ air density
S road segment length
Sh road segment horizontal length
t time
θ air attack angle

vax longitudinal air speed
vax root mean square of the longitudinal air speed
vv vehicle speed

vwx longitudinal (or head) wind speed
vwy lateral (or cross-) wind speed

|vwy| root mean square of lateral wind speed
v2

wy mean square of lateral wind speed
Wroll−air calculated sum of rolling resistance and air resistance energy
Wwheel total wheel energy

Table 1.1: Notation.

12



CHAPTER 2

Methodology

This chapter is summarizing the method for estimating road weather condi-
tions presented in the attached papers Paper A and Paper B. A further de-
velopment including effects from crosswinds using a simplified air drag model
from Paper C is also presented.

2.1 Road weather estimation
The wheel energy consumption model used is based on the standard equation
for longitudinal vehicle dynamics (force balance), i.e. equation 1.1 and the
energy balance equation given in equation 1.2. The basic idea is to divide a
road into segments and let the vehicles passing each segment measure their
energy consumption. This data can then be used to estimate the prevailing
road weather on the road segments. The idea is illustrated in Figure 2.1. The
yellow lines mark the start and the end of a road segment. The vehicles in
the figure can be divided into three groups:

1. vehicles running on the road segment, illustrated by the truck,

2. vehicles that have passed the road segment, illustrated by the bus, and
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Chapter 2 Methodology

3. vehicles that will pass through the road segment, illustrated by the two
cars.

While running on the segment, the truck is measuring its energy consumption.
The bus that has passed the segment subtracts the weather-independent wheel
energy consumption, i.e., the change in potential and kinetic energy that has
occurred over the segment, from the measured wheel energy and sends this in-
formation to a cloud-based parameter estimation algorithm. That information
is complemented with data describing how sensitive that particular vehicle is
to different kinds of road weather effects like headwinds, crosswinds and road
surface conditions. The estimation algorithm uses this information to improve
the estimates of the prevailing road segment weather conditions and sends it
to the two cars that will pass the road segment. The cars can then use the
updated road segment weather information to make a more accurate range
prediction.

Figure 2.1: Road weather estimation using heterogeneous vehicles as measurement
probes.

More formally, the energy at the wheels that a vehicle i has consumed for
driving the segment is measured in the vehicle and denoted Wwheel,i. Sub-
tracting the kinetic and potential energy from Wwheel,i gives the i:th vehicle’s
weather-dependent wheel energy consumption. This is the sum of the rolling
resistance and air resistance energy, Wroll−air,i:

Wroll−air,i = Wwheel,i − mig (hr (S) − hr (0)) − mi

(v2
v,i (S) − v2

v,i (0))
2 , (2.1)

14



2.1 Road weather estimation

where mi is the mass of the vehicle, and v2
v,i(S) and v2

v,i(0) the speed of
the vehicle in point S and in point 0 respectively. Wroll−air,i is the weather-
dependent wheel energy consumption that is sent from the vehicle to the cloud-
based parameter estimation algorithm. Now further assuming that crosswinds
have an insignificant effect on energy consumption, the motion resistance can
be determined as:

Wroll−air,i = ρCd,iAi

2

∫ S

0
v2

ax,ids + migCr,iSh, (2.2)

where Sh is the horizontal length of the road segment. If the head-wind speed,
vwx and the vehicle speed vv are assumed to be independent, the integral of
v2

ax,i becomes: ∫ S

0
v2

ax,ids = S(vv,i + vwx)2, (2.3)

where vv,i is the root mean square of the vehicle speed over the segment, and
vwx is the root mean square of the headwind speed. Now, Wroll−air,i can be
rewritten as:

Wroll−air,i = ρCd,iAiS

2 (vv,i + vwx)2 + migCr,iSh. (2.4)

By rearranging equation 2.4, completing the squares and normalize with
vehicle mass, the normalized rolling resistance energy, gCr,iSh can be written
as:

gCr,iSh = Wroll−air,i

mi
−

ρCd,iAiSv2
v,i

2mi
− ρCd,iAiSvv,i

mi
vwx − ρCd,iAiS

2mi
v2

wx

(2.5)
The normalized rolling resistance is in other words described by a second-order
polynomial in wind speed and could be described as:

gCr,iSh = αp,i − βi ∗ vwx − γi ∗ v2
wx (2.6)

where αp,i = Wroll−air,i

mi
− ρCd,iAiSv2

v,i

2mi
, βi = ρCd,iAiSvv,i

mi
and γi = ρCd,iAiS

2mi
are

the parameters sent to the cloud algorithm (i.e. the blue cloud in Figure 2.1).
Now consider the case where N1 vehicles are passing the same road segment

in the same direction in a reasonable short time so that the wind and road
surface can be considered to be constant over this period and that N2 vehicles
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are passing in the opposite direction in the same time period. If each of
the vehicles contributes with the αp, β and γ coefficients after running on
the selected road segment, the collective sum of normalized rolling resistance
becomes:

gSh

N1∑
i=1

Cr,i =
N1∑
i=1

αp,i − vwx

N1∑
i=1

βi − v2
wx

N1∑
i=1

γi. (2.7)

and

gSh

N2∑
j=1

Cr,j =
N2∑
j=1

αp,j + vwx

N2∑
j=1

βj − v2
wx

N2∑
j=1

γj . (2.8)

where i indicates data from vehicles traveling in one direction and j indicates
data from vehicles traveling in the opposite direction.

If assuming that the mix of vehicles running in both directions are similar so
that they on average have the same rolling resistance coefficient, the left-hand
sides of equation (2.7) and equation (2.8) become equal if they are normalized
with the respective number of vehicles that have passed in each direction, i.e.
N1 and N2. Dividing equation (2.7) and (2.8) with N1 and N2 respectively,
and putting them together gives:∑N1

i=1 αp,i − vwx

∑N1
i=1 βi − v2

wx

∑N1
i=1 γi

N1
=

=
∑N2

j=1 αp,j + vwx

∑N2
j=1 βj − v2

wx

∑N2
j=1 γj

N2

(2.9)

or

v2
wx(

∑N1
i=1 γi

N1
−
∑N2

j=1 γj

N2
) + vwx

(∑N1
i=1 βi

N1
+
∑N2

j=1 βj

N2

)
+

+
(∑N2

j=1 αp,j

N2
−
∑N1

i=1 αp,i

N1

)
= 0.

(2.10)

This is clearly a second-order equation in wind speed and can be solved ana-
lytically.

Once the wind speed is determined, the average Cr can be calculated using
either equation (2.7), (2.8) or the sum of both. The latter holds information
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from all vehicles and is therefore used in this thesis:

Cr = 1
2gSh

(
∑N1

i=1 αp,i − vwx

∑N1
i=1 βi − v2

wx

∑N1
i=1 γi

N1
+

+
∑N2

j=1 αp,j + vwx

∑N2
j=1 βj − v2

wx

∑N2
j=1 γj

N2
).

(2.11)

The formulations in equation (2.1) and equation (2.2) are the basis of the
framework for estimating wind speed and road surface conditions developed
in Paper A and validated in Paper B.

Road weather estimation including crosswinds

The method presented in the previous section relies on several assumptions,
one of them being that crosswinds either are not present or can be neglected.
The validation through vehicle measurements in Paper B shows that the
method works well when crosswind components are small but fails for higher
crosswind speeds. Paper C investigates different simplified air drag models
that include an explicit dependency on the crosswind speed which can be
used in road weather estimation algorithms. Those models are based on some
general definitions related to wind and airspeed. For a vehicle running with
the speed vv, the wind speed is divided into a headwind (longitudinal) speed
component, vwx, acting opposed to the vehicle’s motion direction and a cross-
wind (lateral) component, vwy, acting perpendicular to the vehicle motion
direction, see Figure 2.2. The relative longitudinal airspeed then becomes the
sum of the headwind speed and the vehicle speed, i.e.

vax = vv + vwx (2.12)

while the relative lateral airspeed is the crosswind component vwy. The total
relative airspeed va can be determined from the two components as:

va =
√

v2
ax + v2

wy, (2.13)
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Figure 2.2: Definitions and notation of airspeeds, area projection, wind speeds and
air attack angle.

and the angle between the total relative airspeed and the vehicle motion,
commonly denoted as the so-called air attack angle becomes:

θ = arctan |vwy|
vax

. (2.14)

Now using these definitions, equation 1.2 is still valid even in the presence
of crosswinds if only letting CdA be dependent on θ. Paper C investigates
simplified models for describing CdA(θ). Those models can (with some minor
adjustments 1) all be written in either of two different forms,

CdA(θ) ≈ (c1 cos2(θ) + c2 cos(θ)sin(θ) + c3 sin2(θ))Ap(θ), (2.15a)

or,
CdA(θ) ≈ (c1 + c2θ)Af cos2(θ) + c3As sin2(θ), (2.15b)

where c1, c2 and c3 are aerodynamic coefficients, Ap(θ) the area projection
in the motion direction, Af the frontal area and As the side area. If the
air attack angle θ is 0, i.e. there are no crosswinds present, both variants

1For a full model of variant 2.15a where all three parameters c1, c2 and c3 are used, it is
argued in Paper C that the term Ap(θ) should be omitted. The change in area projection
will instead appear in c1, c2 and c3.
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2.1 Road weather estimation

of equation 2.15 will collapse into the original model of equation 1.2. Now
note that this approximation of CdA is based on a convention that the square
of the airspeed, v2

a is used for calculating the air drag. In the framework of
Paper A and Paper B, the convention is to use the square of the longitudinal
air speed, v2

ax instead. Therefore before the models of equation 2.15 can be
used for the estimations, they need to be adjusted to the convention of using
the longitudinal airspeed. By doing that, equation 2.15 becomes:

CdA(θ) ≈ (c1 + c2 tan(θ) + c3 tan2(θ))Ap(θ), (2.16a)

or,
CdA(θ) ≈ (c1 + c2θ)Af + c3As tan2(θ). (2.16b)

Now, using equation (2.16), equation (2.4) can be rewritten into

Wroll−air,i ≈ ρS

2 (c1,i + c2,i tan (θ) + c3,itan2 (θ))Ap(θ)v2
ax,i + migCr,iSh

(2.17a)
or

Wroll−air,i ≈ ρS

2 ((c1,i + c2,iθ)Af + c3,iAstan2(θ))v2
ax,i + migCr,iSh. (2.17b)

As tan (θ) vax,i = |vwy|
vax,i

vax,i = |vwy|, where vwy is the crosswind speed, equa-
tion (2.17) can be simplified into

Wroll−air,i ≈ ρS

2 (c1,iv
2
ax,i+c2,i|vwy|vax,i+c3,iv

2
wy)Ap(θ)+migCr,iSh (2.18a)

or

Wroll−air,i ≈ ρS

2 ((c1,i + c2,iθ)Af v2
ax,i + c3,iAsv2

wy) + migCr,iSh. (2.18b)

Now even though equation 2.18 is in a similar format as equation 2.4, there
is a fundamental difference. It now contains three unknown environmental
parameters, i.e., vwx (since vax,i = vv,i + vwx), vwy and Cr,i, instead of two.
Since there are still only two measurement equations, one for each driving
direction, c.f. equations 2.7 and 2.8, the analytical method will no longer
work. Instead, it is recommended to use a standard state estimation method,
for example, a Kalman Filter (KF) or Recursive Least Squares (RLS) for the
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road weather estimation when crosswind speed is included.

20



CHAPTER 3

Results

The basic idea pursued for the estimation process in this thesis is to divide
the effect of motion resistance into vehicle parameters, such as vehicle mass,
aerodynamic coefficients, and tire coefficients and environmental parameters
such as air density, wind speed, wind direction and road surface conditions
that can be estimated in a cloud solution based on data from many vehicles
running on the same road segment at approximately the same time.

The first section of this chapter presents some of the results from Paper
A on road weather estimates from simulation data based on the assumption
that crosswind has little or no effect on air drag. Then results of road weather
estimates from vehicle measurements from Paper B are presented. The section
thereafter presents different models from Paper C that can be used to include
the effect from crosswinds before everything is put into context in the last
section when the effect on vehicle energy consumption from different wind
conditions is presented in a real-world example.
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3.1 Estimation based on simulation data
In this section results from estimations using the analytical method presented
in Paper A and summarized in Section 2.1 are presented. 27 different vehicles
were simulated running in random order and random direction on a road seg-
ment. The data from these vehicles were then used as input to the estimation
process that produced estimates of wind speed and average rolling resistance.
Figure 3.1a shows the estimated wind speed against the total number of ve-
hicles driven during constant conditions in both directions. The estimated
wind speed converges to a somewhat higher wind speed than the actual wind
speed. The reason is that in this estimation, the average vehicle speed over
the segment has been used as vv rather than the root mean square of the
vehicle speed and this produces a bias in the wind speed estimate.

Figure 3.1b shows the corresponding estimated rolling resistance using the
estimated wind speeds, as shown in Figure 3.1a. Note that the estimation
seems to converge to a value very close to the actual average rolling resistance.
The wind speed estimation is more sensitive to the errors in the constant speed
assumption than the rolling resistance coefficient. Note also that as soon as
at least one vehicle has been driven in each direction, the estimated average
rolling resistance coefficient will be equal in both directions. This follows
directly from the assumption that the average rolling resistance is equal in
both directions.
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3.2 Estimation based on measurements

(a) Headwind speed estimation

(b) Road surface estimation

Figure 3.1: Road weather estimation from multiple vehicles

3.2 Estimation based on measurements
To validate the estimation method, real vehicle measurements were conducted
on a public road segment located south of Gothenburg, Sweden, with a truck
equipped with a wind sensor that is able to measure the relative air speed
and air direction. The road segment is 2060 meters long including both a
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downhill and an uphill. The measurements were collected by running this road
segment several times in both directions. Table 3.1 summarizes the measured
average wind speed, average wind direction and road surface conditions during
the measurements. Figure 3.2 illustrates the truck traveling in the forward

Date Wind speed Wind direction Surface
2017-11-23 2.7 100◦ Dry
2017-12-20 1.8 158◦ Moist
2018-05-04 2.0 194◦ Dry
2018-05-08 1.4 101◦ Dry

Table 3.1: Road and Weather Measurements

direction with average wind speeds and wind directions during measurements
marked. 0◦ means tailwind (in forward direction) and 180◦ means headwind.

Figure 3.2: Average wind speed and wind direction during measurements

The reported wind speed from SMHI (Swedish Meteorological and Hydro-
logical Institute) at the time and location for the measurements was between
4 and 9 m/s and the wind direction was either head or side wind (or a com-
bination). However, the measured wind speed was much lower, < 3 m/s.

24



3.3 Air drag models including crosswinds

Table 3.2 presents the estimation results. As can be seen in Table 3.2, when
there is a significant crosswind component, the estimated wind speed is neither
close to the measured wind speed, nor the measured headwind speed vector
component. Clearly, the crosswind speeds disturb the analytical estimation
method.

Date Measured
wind speed

Estimated
wind speed

Measured headwind speed
vector component

2017-11-23 2.7 1.4 0.5
2017-12-20 1.8 2.0 1.7
2018-05-04 2.0 1.9 2.0
2018-05-08 1.4 0.6 0.3

Table 3.2: Measured and Estimated Wind Speed

3.3 Air drag models including crosswinds
The results in the last section suggest that the crosswind needs to be ac-
counted for when estimating motion resistance. Simplified air drag models
that include the crosswinds are addressed in Paper C and some of the results
are summarized here.

The common way to include crosswind dependency in the air drag equation
is to let the product of the air drag coefficient Cd and the frontal area A be
a function of the air attack angle θ, i.e. CdA(θ). Even though CdA(θ) for
a specific vehicle combination can be found with good accuracy from CFD
calculations and wind tunnel tests, the result is in a tabulated form that
complicates the wind conditions estimation process. Paper C investigates ways
to get around this problem by representing CdA(θ) with simplified analytical
functions that have explicit dependencies on the wind conditions.

A requirement of the developed models is that the models should contain
as few tuning parameters as possible. The reason for this is that the air
drag properties change when the exterior of a vehicle combination changes.
Air drag properties described by only a few tuning parameters enable online
estimation of these parameters. Table 3.3 summarizes the model structures
of CdA(θ) developed in Paper C and Figure 3.3 compares these models with
CFD data for three vehicle combinations for which the simplified models were
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tuned to imitate. Model parameters, ci, are found using least squares. Note
that the CdA(θ) values of the timber truck have been down-scaled by a factor
of two in order to give it a similar magnitude as the other vehicle combinations
and that the plotted CdA(θ) are all values relative CdA(0) for the tractor with
semitrailer combination. From a visual inspection, all models seem to perform
reasonably well.

Table 3.3: Model structure overview.

Model CdA(θ)
1 c1 cos2(θ)Ap(θ)
2 (c1 cos2(θ) + c2 cos(θ) sin(θ))Ap(θ)
3 (c1Af + c2Asθ) cos2(θ)
4 (c1Af + c2Asθ) cos2(θ) + c3As sin2(θ)

5 c1Af cos2(θ) + c2
√

Af As cos(θ) sin(θ) + c3As sin2(θ)
6 (c1 + c2 sin(3θ))Af
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3.3 Air drag models including crosswinds

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

Figure 3.3: CdA(θ) approximations as function of air attack angle θ for different
types of vehicle combinations and model structures.

Table 3.4 compares the developed models using Root Mean Square (RMS)
error as objective criteria. As a comparison Model 0 represents CdA, i.e.
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only the headwind component. As expected the models with more tuning
parameters show better accuracy.

Table 3.4: RMS error for model fit.

Model 0 1 2 3 4 5 6
Rigid truck 2.55 0.58 0.57 0.65 0.19 0.26 0.60
Tractor/Semitrailer 3.23 1.19 0.51 1.04 0.14 0.38 0.51
Timber 6.83 1.71 1.18 0.79 0.64 0.53 2.58

3.4 Motion resistance effects on vehicle range
To illustrate the effect of the headwind and crosswind on vehicle energy and
range estimation, a simple example is used. Consider a 34 tonnes tractor-
semitrailer combination running on the well-known ACEA long-haul cycle
promoted by the European Commission for CO2 emission evaluation [34]. As
the cycle starts and ends at the same altitude, the grade resistance energy is
zero in the example. The analysis is done using the energy balance equation
(1.2) and models presented in Paper C.

Figure 3.4 is showing how the energy at the driven wheels is distributed
between braking, air drag and rolling resistance. The nominal air drag is the
energy loss induced by the vehicle speed if no wind is present. The headwind
drag shows how much extra energy that is lost if the cycle is run with a
constant headwind component of 5 m/s. The crosswind drag is the additional
drag loss if a crosswind component of 5 m/s is added to the no-wind conditions
and the Head/Crosswind drag component is the additional drag losses from
the interaction between the head- and the crosswind components that add
upon the sum of the nominal and the individual head and crosswinds drag
components. As a comparison, the maximum vehicle speed in the ACEA
long-haul cycle is around 24 m/s, the average speed around 22 m/s and the
minimum speed 0 m/s.

If effects from wind are neglected, then rolling resistance is the largest en-
ergy loss while if adding a 5 m/s headwind component, air drag and rolling
resistance become similar in size. If also a crosswind component of the same
magnitude is added, the total air drag becomes the largest energy loss by far.
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3.4 Motion resistance effects on vehicle range

Figure 3.4: Energy loss distribution for 34 tonnes tractor with semitrailer on the
ACEA long-haul drive cycle.

For comparison, the energy loss when braking (assuming that 30 % of the
total brake energy are losses in battery, transmission, electric machines and
service brake usage when electric machine braking capability is not sufficient)
is also illustrated.

To study the effect of road weather conditions in a more realistic scenario,
an energy consumption analysis is performed on the road between Malmö and
Göteborg. Hourly wind data from SMHI’s weather stations at several different
positions on the route, i.e. Malmö, Helsingborg, Ängelholm, Halmstad, and
Göteborg, in the time frame from 2000-01-01 to 2022-03-01 together with
vehicle data for three different vehicle types are used in this analysis. Air
drag data for the given vehicle combinations are visualized in Figure 3.5. Data
shows that the air drag energy consumption of the car is much less influenced
by crosswinds than the two truck combinations. The vehicle speed has been
assumed to be constant all the way from Malmö to Göteborg.

Figure 3.6 is illustrating the air drag energy loss distributions for the car, the
rigid truck without a trailer and the tractor with a semitrailer combination.
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Figure 3.5: CdA data

The figure shows the energy consumption distributions for running at nominal

(a) Car, 120 km/h (b) Rigid truck, 90 km/h (c) Tractor - semitrailer,
80 km/h

Figure 3.6: Air drag energy consumption distributions for driving with constant
speed between Malmö - Göteborg from 2000-01-01 to 2022-03-01

speeds for each combination (120 km/h for the car, 90 km/h for the rigid truck
and 80 km/h for the tractor with semitrailer). The blue line shows the air
drag energy consumption in nominal conditions which are defined as no wind
and nominal vehicle speed. The air drag energy consumption spread grows
with the size of the side area.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Mikael Askerdal, Jonas Fredriksson
Vehicle Independent Road Section Resistance Estimation
Published in Proceedings of EVS30, vol. 1, pp. 88–99, ©(2017) by The
European Association for Electromobility (AVERE) ISBN: 978-1-5108-
6370-5.

This paper addresses how to estimate motion (road) resistance parameters
using vehicle log data. Motion resistance is commonly divided into three dif-
ferent components; rolling resistance, wind resistance and resistance from road
gradient (hills). The total sum of motion resistance is the force that must be
delivered by the powertrain to the wheels of the vehicle to maintain speed. The
idea pursued in this paper is that it is possible to find models for each of the dif-
ferent components of the motion resistance where the input parameters used
are separated into purely vehicle-dependent and purely vehicle-independent
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parameters and that it is possible to estimate vehicle independent parameters
from log data from a large population of vehicles (big data). The advantages
of this approach are that data from any vehicle can be used to improve the
estimation and that all vehicles can benefit from the estimated data. In the
long run, this can lead to a system that dynamically calculates the surround-
ing parameters of the motion resistances and that adapts rapidly to changing
conditions such as wind and wet road surface. The main benefit of using the
results is improved range estimation of battery electric vehicles but it can also
be used for less computational route planning and improved vehicle energy
management. It is shown that road surface conditions and prevailing wind
conditions can be determined only using vehicle log data if the effect from
crosswinds is neglected.

4.2 Paper B

Mikael Askerdal, Jonas Fredriksson
Vehicle Independent Road Resistance Estimation Using Connected Ve-
hicle Data
Published in Proceedings of AVEC’18, 14th International Symposium on
Advanced Vehicle Control, Beijing, July 16-20, 2018.

This paper is investigating if it is possible to use vehicle log data to esti-
mate vehicle independent motion (road) resistance parameters that can have
large local variations and change rapidly, such as wind speed, wind direction
and road surface conditions. The estimated parameters can be used to im-
prove range estimation, route planning and vehicle energy management. The
advantage with using vehicle independent parameters is that data from any
vehicle can be used to improve the estimation and that all vehicles can ben-
efit from the estimated data. An analytical solution previously presented for
parameter estimation in Paper A is verified on vehicle log data. Results show
that the method works reasonably well for wind speed estimation and that
changes in road conditions can be detected. It is also pointed out that side
wind affects need to be considered in future work. The sensitivity on vehicle
energy consumption from errors in different road weather parameters is also
investigated.
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4.3 Paper C
Mikael Askerdal, Jonas Fredriksson and Leo Laine
A Comparison of Simplified Air Drag Models Including Crosswinds for
Commercial Heavy Vehicle Combinations
In review for Vehicle Systems Dynamics Journal, 2023.

This paper addresses how to incorporate effects from crosswinds in a motion
(road) resistance model similar to the model framework presented in Paper
A and Paper B. Accurate range prediction requires good knowledge of the
prevailing wind conditions and how they affect the energy consumption of the
ego vehicle. A few different simplified vehicle air drag models that explic-
itly include the effect from crosswinds are presented and compared through
some objective criteria. The models are developed from the normal air drag
equation where the effect from wind is implicit and therefore often forgotten
or neglected. The purpose is to find a low complexity model complementing
CFD models and wind tunnel tests, that can be used for range estimation
and predictive energy management algorithms. To simplify online estimation,
a requirement is that the air drag models only contain a few tuning param-
eters. The models are validated against CFD calculations for a few vehicle
combinations and the best models show good accuracy for air attack angles
up to at least 60 degrees. It is shown that the parameters of the simplified
models can loosely be connected to some basic geometrical attributes of a
vehicle combination so it should be possible to give at least a rough estimate
of the parameters of a simplified model based on these geometrical attributes.
This is useful for making a first estimate of the aerodynamic properties of a
vehicle combination after major changes in the exterior, e.g., when adding a
trailer. It also highlights that the size and the shape of the vehicle side may be
mainly responsible for the high longitudinal air drag sensitivity to crosswinds
for large vehicle combinations.
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CHAPTER 5

Concluding Remarks

Conclusions of the most important results are summarized in the section Con-
clusions followed by a discussion around the results and ideas of possible future
research topics in the Discussion and future work section.

5.1 Conclusions
Connected vehicles is a promising technique for determining local weather
conditions. The methods developed in this thesis are based on a separa-
tion principle where attributes affecting the motion resistance are separated
into vehicle and road and weather characteristics. This enables using vehicle
data from heterogeneous vehicles for estimating road and weather conditions.
The method presented in this thesis has been validated using both simulation
studies and real vehicle tests. The real experimental validations show that
crosswind has a huge impact on the accuracy of the road and weather con-
ditions estimation. The estimated conditions could be used by any vehicle
for improving energy consumption predictions. Furthermore, road weather
conditions need to be accounted for in range estimation algorithms as it has
a considerable impact on energy consumption.
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The thesis has also developed simplified air drag models including cross-
winds suitable for use in energy consumption calculations. The models are ver-
ified using CFD calculations. The developed models can be used in range esti-
mation algorithms and also included in the road weather estimations method
presented.

5.2 Discussion and future work
The research behind this thesis started a few years back. At the time being,
services using connected vehicle data were more or less non-existing but the
development in this area has exploded since then, resulting in several services
provided by companies such as HERE, Google, etc.

An advantage of using data from several vehicles for road weather conditions
estimates compared to trying to do these estimates in a single vehicle is that
the system can get excited from the differences in the vehicles and how they
are affected by the road weather rather than from how the vehicle is driven.
This enables individual estimation of road weather parameters, e.g. the wind
speed, wind direction and road surface conditions even on flat road segments
on which vehicles are keeping a constant speed. Hence the importance of
getting data from heterogeneous vehicles.

By combining the idea of using connected vehicle measurements from Paper
A with the air drag models of Paper C, it should be possible to estimate envi-
ronmental characteristics. As mentioned in Section 2, the analytical method
from Paper A will not work though since now there will be three unknown
parameters to estimate, i.e. rolling resistance coefficient, headwind speed and
crosswind speed, and only two equations, one for each driving direction. In-
stead standard estimation methods such as recursive least squares (RLS) or
some kind of Kalman filter (KF) could be used. This is left as future work to
show.

Another possible extension to this could be to complement the information
from the connected vehicles with external information from weather institutes,
and/or road weather measurement stations.

The air drag contribution to motion resistance is investigated in Paper C.
Here examples of several different models are developed. It is interesting to see
that simple models using only a few air drag coefficients seem to be capable
of including the influence from crosswinds quite well. However, most of the
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work presented in this thesis is based on data from simulations. To be really
reliable, the developed models need to be validated. Collecting data from
vehicle measurements and comparing the motion resistance calculated from
those measurements with the developed models could be another topic for
future research.

The relative importance of different environmental factors based on the
models developed in paper C is presented in Appendix A.1. A still open
research question is if the road weather effects on rolling resistance can be
described using models of similar complexity as for the air drag. The impor-
tance of being able to predict the rolling resistance in different road surface
conditions may increase in the future due to the anticipated more dramatic
weather phenomena that follows upon climate change.

In a scenario with a high degree of electrification, the high wind sensitivity
for large vehicle combinations that can be seen in Figure 3.6 may result in
a dramatic increase in the number of vehicles require charging at the same
time only due to the increase in air drag energy on windy days. If being
able to predict this extra energy need in advance based on weather forecasts,
the drivers and/or logistic companies can avoid the potential waiting time
that follows from a deficit in charging opportunities by, for example, reducing
the vehicle speed, rerouting to avoid the bad weather conditions altogether,
reducing the payload, forming vehicle platoons, adding a temporary range
extender on exposed vehicles or rescheduling the transport to another day.
This underlines the importance of taking the weather effects into account
already in the planning stages.

When looking at the air drag energy distributions in Figure 3.6 it should
be noted though that the wind information is taken directly from the weather
stations. That wind data represents the wind speeds ten meters up in the air.
The wind speed at the vehicle level is most likely lower and hence, the variance
in air drag conversion losses should in reality be a bit lower than the presented
figures. However, it should also be noted that variance in air density and road
surface conditions has been omitted. Adding the effect from the variances in
those conditions would increase the energy consumption variance again to a
level possibly close to or even higher than the presented.

Finally, with knowledge of what factors affect the spread of energy con-
sumption and how they affect energy consumption together with an accurate
road weather information source, each transportation company and/or driver
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have the possibility to make accurate vehicle energy consumption predictions
and take the necessary actions to minimize the impact of unfavorable energy
consumption conditions. The available charging points can then be used by
the vehicles with the dearest need. This may enable a sustainable transport
solution that can be accepted both by the transportation companies as well
as society.

38



References

[1] J. Dong, X. Wu, C. Liu, Z. Lin, and L. Hu, “The impact of reliable range
estimation on battery electric vehicle feasibility,” International Journal
of Sustainable Transportation, vol. 14, no. 11, pp. 833–842, Sep. 2020,
issn: 15568334.

[2] C. Fiori, V. Arcidiacono, G. Fontaras, et al., “The effect of electrified
mobility on the relationship between traffic conditions and energy con-
sumption,” Transportation Research Part D: Transport and Environ-
ment, vol. 67, pp. 275–290, Feb. 2019, issn: 13619209.

[3] S. Gupta, S. R. Deshpande, P. Tulpule, M. Canova, and G. Rizzoni, “An
Enhanced Driver Model for Evaluating Fuel Economy on Real-World
Routes,” in IFAC-PapersOnLine, vol. 52, Elsevier B.V., 2019, pp. 574–
579.

[4] H. Jansson and M. Åsenius, “The relation between rolling resistance
and tyre temperature in real driving scenarios,” Ph.D. dissertation,
Linköping University, Linköping, Jun. 2021.

[5] L. Ydrefors, The relationship between rolling resistance and tyre operat-
ing conditions, with a focus on tyre temperature, isbn: 9789180402668.

[6] H. Rahimi-Eichi and M. Y. Chow, “Big-data framework for electric ve-
hicle range estimation,” in IECON Proceedings (Industrial Electronics
Conference), Institute of Electrical and Electronics Engineers Inc., Feb.
2014, pp. 5628–5634, isbn: 9781479940325.

39



References

[7] S. Sautermeister, M. Falk, B. Baker, F. Gauterin, and M. Vaillant, “In-
fluence of measurement and prediction uncertainties on range estimation
for electric vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 8, pp. 2615–2626, Aug. 2018, issn: 15249050.

[8] Y. Zhang, W. Wang, Y. Kobayashi, and K. Shirai, “Remaining driving
range estimation of electric vehicle,” in 2012 IEEE International Electric
Vehicle Conference, IEVC 2012, 2012, isbn: 9781467315623.

[9] R. Andersson, “Online Estimation of Rolling Resistance and Air Drag
for Heavy Duty Vehicles,” Ph.D. dissertation, KTH, Stockholm, 2012.

[10] H. S. Bae, J. Ryu, and J. C. Gerdes, “Road Grade and Vehicle Param-
eter Estimation for Longitudinal Control Using GPS,” in IEEE Intel-
ligent Transportation Systems Conference Proceedings, Oakland (CA),
US, Aug. 2001, pp. 166–171.

[11] D. Zhang, A. Ivanco, and Z. Filipi, “Model-Based Estimation of Vehicle
Aerodynamic Drag and Rolling Resistance,” SAE International Journal
of Commercial Vehicles, vol. 8, no. 2, pp. 433–439, Sep. 2015, issn:
19463928.

[12] F. E. Jones, “The Air Density Equation and the Transfer of the Mass
Unit,” Tech. Rep. 5.

[13] S. K. Srirangam, K. Anupam, C. Kasbergen, A. Scarpas, and V. Cerezo,
“Study of Influence of Operating Parameters on Braking Friction and
Rolling Resistance,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2525, no. 1, pp. 79–90, Jan. 2015,
issn: 0361-1981.

[14] A. Carlson and T. Vieira, “The effect of water and snow on the road
surface on rolling resistance,” Tech. Rep.

[15] H. Fatahian, H. Salarian, M. Eshagh Nimvari, and J. Khaleghinia, “Nu-
merical simulation of the effect of rain on aerodynamic performance and
aeroacoustic mechanism of an airfoil via a two-phase flow approach,” SN
Applied Sciences, vol. 2, no. 5, May 2020, issn: 25233971.

[16] G. Sovran, “The Effect of Ambient Wind on a Road Vehicle’s Aerody-
namic Work Requirement and Fuel Consumption,” Tech. Rep., 1984,
pp. 449–472. [Online]. Available: https://about.jstor.org/terms.

40

https://about.jstor.org/terms


References

[17] J. Wang, I. Besselink, and H. Nijmeijer, “Electric vehicle energy con-
sumption modelling and prediction based on road information,” World
Electric Vehicle Journa, vol. 7, no. 3, pp. 447–458, Sep. 2017.

[18] Z. Yi and P. H. Bauer, “Sensitivity Analysis of Environmental Factors
for Electric Vehicles Energy Consumption,” in 2015 IEEE Vehicle Power
and Propulsion Conference, VPPC 2015 - Proceedings, Institute of Elec-
trical and Electronics Engineers Inc., Dec. 2015, isbn: 9781467376372.

[19] Smuts Martin, Scholtz Brenda, and Wesson Janet, “A Critical Review
of Factors Influencing the Remaining Driving Range of Electric Vehi-
cles,” in 1st International Conference on Next Generation Computing
Applications (NextComp), 2017, pp. 196–201, isbn: 9781538638316.

[20] Q. Wang, J. Wang, P. Zhao, J. Kang, F. Yan, and C. Du, “Correla-
tion between the model accuracy and model-based SOC estimation,”
Electrochimica Acta, vol. 228, pp. 146–159, Feb. 2017, issn: 00134686.

[21] J. Meng, M. Ricco, G. Luo, et al., “An Overview and Comparison of On-
line Implementable SOC Estimation Methods for Lithium-Ion Battery,”
IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1583–
1591, Jan. 2018, issn: 00939994.

[22] J. Lee, O. Nam, and B. H. Cho, “Li-ion battery SOC estimation method
based on the reduced order extended Kalman filtering,” Journal of
Power Sources, vol. 174, no. 1, pp. 9–15, Nov. 2007, issn: 03787753.

[23] J. P. Rivera-Barrera, N. Muñoz-Galeano, and H. O. Sarmiento-Maldonado,
Soc estimation for lithium-ion batteries: Review and future challenges,
Dec. 2017.

[24] A. Y. Ungoren and H. Peng, “An adaptive lateral preview driver model,”
Vehicle System Dynamics, vol. 43, no. 4, pp. 245–259, Apr. 2005, issn:
00423114.

[25] S. Kharrazi, M. Almen, E. Frisk, and L. Nielsen, “Extending behavioral
models to generate mission-based driving cycles for data-driven vehi-
cle development,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 2, pp. 1222–1230, Feb. 2019, issn: 00189545.

41



References

[26] C. Lu, J. Dong, and L. Hu, “Energy-Efficient Adaptive Cruise Con-
trol for Electric Connected and Autonomous Vehicles,” IEEE Intelligent
Transportation Systems Magazine, vol. 11, no. 3, pp. 42–55, Sep. 2019,
issn: 19411197.

[27] C. Huang, R. Salehi, and A. G. Stefanopoulou, “Intelligent Cruise Con-
trol of Diesel Powered Vehicles Addressing the Fuel Consumption Versus
Emissions Trade-off,” in Annual American Control Conference (ACC),
2018, pp. 840–845, isbn: 9781538654279.

[28] S. Lefèvre, C. Sun, R. Bajcsy, and C. Laugier, “Comparison of paramet-
ric and non-parametric approaches for vehicle speed prediction,” in Pro-
ceedings of the American Control Conference, Institute of Electrical and
Electronics Engineers Inc., 2014, pp. 3494–3499, isbn: 9781479932726.

[29] J. Shin and M. Sunwoo, “Vehicle Speed Prediction Using a Markov
Chain with Speed Constraints,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 9, pp. 3201–3211, 2019, issn: 15580016.

[30] M. Yan, M. Li, H. He, and J. Peng, “Deep learning for vehicle speed
prediction,” in Energy Procedia, vol. 152, Elsevier Ltd, 2018, pp. 618–
623.

[31] VTI, Long Term Pavement Performance DataBase, 2022. [Online]. Avail-
able: https://www.vti.se/tjanster/vag--och-geoteknik/ltpp-
databas.

[32] HERE, HERE maps elevation profile, May 2022. [Online]. Available:
https://developer.here.com/documentation/routing-api/dev_
guide/topics/use-cases/elevation-profile.html.

[33] A. Schneider, GPS Visualizer, May 2022. [Online]. Available: https:
//www.gpsvisualizer.com/.

[34] European Commision, Vehicle Energy Consumption calculation TOol
– VECTO. [Online]. Available: https://ec.europa.eu/clima/eu-
action / transport - emissions / road - transport - reducing - co2 -
emissions-vehicles/vehicle-energy-consumption-calculation-
tool-vecto_en#ecl-inpage-537..

42

https://www.vti.se/tjanster/vag--och-geoteknik/ltpp-databas
https://www.vti.se/tjanster/vag--och-geoteknik/ltpp-databas
https://developer.here.com/documentation/routing-api/dev_guide/topics/use-cases/elevation-profile.html
https://developer.here.com/documentation/routing-api/dev_guide/topics/use-cases/elevation-profile.html
https://www.gpsvisualizer.com/
https://www.gpsvisualizer.com/
https://ec.europa.eu/clima/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/vehicle-energy-consumption-calculation-tool-vecto_en#ecl-inpage-537.
https://ec.europa.eu/clima/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/vehicle-energy-consumption-calculation-tool-vecto_en#ecl-inpage-537.
https://ec.europa.eu/clima/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/vehicle-energy-consumption-calculation-tool-vecto_en#ecl-inpage-537.
https://ec.europa.eu/clima/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/vehicle-energy-consumption-calculation-tool-vecto_en#ecl-inpage-537.


APPENDIX A

Appendix

A.1 Sensitivity analysis

In this appendix, how sensitive the energy loss calculations are to accuracy in
vehicle and road weather parameters is analyzed.

Vehicle energy conversion losses sensitivity on road weather
and vehicle parameters

Both vehicle characteristics as well as road weather have a strong impact on
the vehicle energy conversion losses such as rolling resistance and air drag.
Here, the loss sensitivity for different parameters are investigated and com-
pared.
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From equations 1.2 and 2.18a, Wwheel(i) can be approximated to

Wwheel(i) ≈

≈ ρS(i)
2 (c1v2

ax(i) + c2|vwy(i)|vax(i) + c3v2
wy(i)) + mgcrnom

crroad
(i)Sh(i)+

+mg(hr(de(i)) − hr(d0(i))) + m
(v2

v(de(i)) − v2
v(d0(i)))

2 ,

(A.1)
where S(i) is the length of road segment i, Sh(i) the horizontal length of road
segment i, x denotes the root mean square of variable x over the road segment
and de(i) and d0(i) being the road segment end and start positions respec-
tively. The rolling resistance coefficient, Cr has been divided into the product
of a tire-dependent factor, crnom

, and a road surface dependent factor crroad

to complete the separation between vehicle and environment parameters. In
equation A.1 there are both vehicle parameters and environmental parame-
ters that need to be estimated. Some of them are easier to estimate than
others. This section evaluates how sensitive the energy conversion losses at
the wheels are to changes in different parameters. The purpose of this is to
highlight what parameters that require good accuracy in their estimates and
which that do not have such high requirements.

By differentiating equation A.1 with respect to each parameter, the overall
sensitivity for errors in each parameter that needs estimation can be calcu-
lated. The sensitivity for errors in the vehicle parameters become

∂Wwheel

∂c1
= ρS

2 v2
ax [ J

m2 ], (A.2)

∂Wwheel

∂c2
= ρS

2 |vwy|vax [ J

m2 ], (A.3)

∂Wwheel

∂c3
= ρS

2 v2
wy [ J

m2 ], (A.4)

∂Wwheel

∂m
= g (crnomcrroad

Sh + hr (S) − hr (0)) [ J

kg
], (A.5)

∂Wwheel

∂crnom

= mgcrroad
Sh [N

−
]. (A.6)
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A.1 Sensitivity analysis

The sensitivity for errors in the road weather parameters become

∂Wwheel

∂vwx
= ∂Wwheel

∂vax

∂vax

∂vwx
= ρS

(
c1vax + c2|vwy|

2

)
∗D [ J

m/s
], (A.7)

∂Wwheel

∂vwy
= ρS

(
c3|vwy| + c2vax

2

)
[ J

m/s
], (A.8)

∂Wwheel

ρ
= S

2 (c1v2
ax+c2|vwy|vax+c3v2

wy) [ J
kg
m3

], (A.9)

∂Wwheel

crroad

= mgcrnom
Sh [ J

−
]. (A.10)

The sensitivities are apparently dependent on both vehicle and environmen-
tal parameters. To be able to compare the relative parameters sensitivities
three vehicles, a car, a rigid truck without a trailer, and a tractor with a semi-
trailer combination are used as example vehicles. The sensitivity calculations
are exemplified in road weather conditions according to:

ρ = 1.21
[

kg
m3

]
, vwx = 0

[
m
s

]
, vwy = 2

[
m
s

]
, vax = vax (0) = vax (S) =

25 [ m
s ] hr (S) = hr (0) , S = Sh = 1, crroad

= 1, D = 1.
Evaluation of the formulas in equation A.2-A.10 gives the relative estima-

tion for the three different vehicles in some typical environmental conditions
according to Tables A.1-A.6.

Parameter Nominal
Value

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

m 1800 [kg] 0.093 [J/(m*kg)] 1.68 [J/(m*%)]
c1 0.79 [m2] 378 [J/m3] 2.97 [J/(m*%)]
c2 0.62 [m2] 30.2 [J/m3] 0.19 [J/(m*%)]
crnom

0.0095 [-] 17700 [J/m] 1.68 [J/(m*%)]

Table A.1: Energy conversion losses sensitivity for car parameters.

Table A.1 shows that a car has three parameters that affect energy conver-
sion losses a lot, i.e. the vehicle mass, m, the nominal air drag coefficient, c1
and the nominal rolling resistance coefficient, crnom . In a similar way, Table
A.2 shows that the important environmental parameters are the headwind
speed, vwx, the air density, ρ and the road surface conditions, crroad

. Cross-
winds only have a minor effect on cars. Note that even though air density is
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Parameter Nominal
Value

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

vwx 0 [m/s] 24.6 [J/(m*m/s)] 1.23 [J/(m*%)]
(base = 5 [m/s])

vwy 2 [m/s] 9.38 [J/(m*m/s)] 0.47 [J/(m*%)]
(base = 5 [m/s])

ρ 1.21 kg/m3 262 [J/(kg/m3)] 3.17 [J/(m*%)]
crroad

1 [-] 168 [J/m] 1.68 [J/(m*%)]

Table A.2: Energy conversion losses sensitivity for environmental parameters for a
car.

the most sensitive environment parameter, it is less volatile than for exam-
ple the wind speeds which makes its effect on vehicle range somewhat more
predictable.

Parameter Nominal
Value

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

m 10000 [kg] 0.055 [J/(m*kg)] 5.49 [J/(m*%)]
c1 6.63 [m2] 378 [J/m3] 25.1 [J/(m*%)]
c2 12.24 [m2] 30.2 [J/m3] 3.70 [J/(m*%)]
c3 -4.59 [m2] 2.42 [J/m3] 0.11 [J/(m*%)]
crnom

0.0056 [-] 98100 [J/m] 5.49 [J/(m*%)]

Table A.3: Energy conversion losses sensitivity for rigid truck parameters.

Parameter Nominal
Value

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

vwx 0 [m/s] 215 [J/(m*m/s)] 10.8 [J/(m*%)]
(base = 5 m/s)

vwy 2 [m/s] 174 [J/m] 9.81 [J/(m*%)]
(base = 5 m/s)

ρ 1.21 [kg/m3] 2369 [J/kg/m3] 28.7 [J/(m*%)]
crroad

1 [-] 549 [J/m] 5.49 [J/(m*%)]

Table A.4: Energy conversion losses sensitivity for environmental parameters for a
rigid truck.
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A.1 Sensitivity analysis

Comparing the rigid truck parameter’s sensitivities in Table A.3 and Table
A.4 with the corresponding values for a car, Table A.1 and Table A.2, show
that a rigid truck is much more sensitive to crosswinds and hence also to the c2
parameter describing the cross-sensitive air drag. The direct crosswind param-
eter c3 has little influence on the energy conversion losses and may therefore
be difficult to estimate based only on energy consumption measurements.

Parameter Nominal
Values

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

m 34000 [kg] 0.052 [J/(m*kg)] 17.68 [J/(m*%)]
c1 5.06 [m2] 378 [J/m3] 19.1 [J/(m*%)]
c2 34.04 [m2] 30.2 [J/m3] 10.3 [J/(m*%)]
c3 -7.64 [m2] 2.42 [J/m3] 0.18 [J/(m*%)]
crnom

0.0053 [-] 333540 [J/m] 17.68 [J/(m*%)]

Table A.5: Energy conversion losses sensitivity for tractor with semitrailer combi-
nation parameters.

Parameter Nominal
Values

Parameter sensitiv-
ity value

Parameter relative
sensitivity value

vwx 0 [m/s] 194 [J/(m*m/s)] 9.71 [J/(m*%)]
(base = 5 m/s, not
0 here)

vwy 2 [m/s] 496 [J/(m*m/s)] 26.67 [J/(m*%)]
(base = 5 m/s, not
0 here)

ρ 1.21 [kg/m3] 2417 [J/(kg/m3)] 29.25 [J/(m*%)]
crroad

1 [-] 1770 [J/m] 17.68 [J/(m*%)]

Table A.6: Energy conversion losses sensitivity for environmental parameters for a
tractor with semitrailer combination.

Due to its large body and high vehicle mass, the figures in Table A.5 and
Table A.6 reveal that the tractor-semitrailer combination is highly sensitive
to most of the included parameters. Only the direct crosswind sensitivity
parameter c3 has low sensitivity. Note also that the sensitivity on crosswind
speed is significantly higher than the sensitivity on headwind speed.
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