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Human Body Model Morphing for Assessment of Crash Rib Fracture Risk for the 
Population of Car Occupants 
KARL-JOHAN M. LARSSON  

Abstract 

Fractured ribs are prevalent injury outcomes for vehicle occupants involved in crashes. 
Sex, age, and anthropometry of an occupant influences the risk to sustain rib fractures.  
The SAFER human body model (SHBM) represents an average sized male and includes 
a detailed ribcage model that has been validated for prediction of rib fracture risk in 
virtual crash simulations. Developments in parametric morphing of human body 
models have enabled re-shaping the SHBM to represent a wide range of body sizes for 
both adult males and females which can influence kinematic and injury risk predictions. 
The aim for this thesis was to enable the assessment of crash kinematics and rib fracture 
risk for the population of occupants by morphing the SHBM. Research was performed 
within objectives that included: providing a definition of the occupant population, 
creating morphed versions of the SHBM (MHBMs) and validating MHBM crash 
kinematic and rib fracture risk predictions within the defined population, develop a 
method to efficiently compute rib fracture risk across the population, and investigate 
factors beyond morphing that influences MHBM rib fracture risk predictions. 
The population definition includes 90 % of the U.S.-population in terms of male and 
female height and weight variability. For validation, parametric morphing was used to 
create MHBMs geometrically matching age, sex, height, and weight of 22 human 
subjects in previous crash tests. Rib fracture risk and kinematic predictions from 
MHBMs were validated by comparison to test results and MHBMs showed good 
correlation for kinematics and had acceptable utility to predict rib fracture outcomes. 
However, the rib fracture risk for the most vulnerable, predominantly older, occupants 
was underestimated. One reason can be rib cortical bone microstructural defects, that 
are not represented by current SHBM rib material modeling.  
To compute population rib fracture risk in crashes, a metamodeling method based on 
25 differently sized MHBMs of each sex was recommended. Using this metamodeling, 
method it was also identified that seven selected MHBMs of each sex can be used to 
predict the population risk across two specific crash scenarios. This indicates a 
possibility to identify a small family of MHBMs that are generally representative of 
population rib fracture risk in future work. 
For further improving rib fracture risk predictions, a new rib fracture risk function was 
developed based on human rib test results. The new function is more sensitive to age 
compared to previous risk functions. Additionally, it was identified that the individual 
variability in rib cross-sectional width, as well as cortical bone thickness and material 
properties all substantially influence rib fracture risk predictions. Including the 
individual variability in these influential parameters in MHBM models will improve 
the capability of MHBMs to predict the rib fracture risk variability that exists in the 
population of occupants independently of sex, height, and weight. 
It is concluded that MHBMs representing geometrical shape trends due to height, 
weight and sex, and individual rib local variability can be used to assess kinematics and 
rib fracture risk for wide range of males and females of different sizes. However, more 
research is needed to accurately predict the risk for the most vulnerable, predominantly 
older occupants. 
Keywords: human body model, SAFER HBM, rib fracture risk, morphing, vehicle 
safety, crash 
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1 Introduction 

Vehicle occupants represent nearly a third of the 1.35 million yearly deaths from road 
traffic crashes (World Health Organization 2018). Among severe occupant injuries, 
fractured ribs is one of the most common (Welsh and Lenard 2001; Forman et al., 
2019). As the ribcage forms a protective shell around the vital organs of the thorax, rib 
fractures are associated with an increased risk of fatality, especially for older 
occupants (>64 years) (Kent et al., 2008), and as few as three (or more) rib fractures 
has been identified as an independent and significant risk factor for mortality (Battle et 
al., 2012). 
 
Moreover, analysis of crash injury databases has indicated that the risk to sustain rib 
fractures and thoracic injuries, as well as other injuries, is not the same for all 
occupants in the population. Increasing body mass index (BMI, weight/height2 
[kg/m2]) has been associated with increasing thoracic injury risk (Carter et al., 2014; 
Pal et al., 2014; Forman et al., 2019). Specifically, a non-linear trend of rib fracture 
risk with BMI has been reported, with both low and high BMI occupants showing 
increased rib fracture risk (Forman and McMurry 2018). When comparing males to 
females, several studies have reported an increased thoracic and rib fracture injury risk 
for females (Welsh and Lenard 2001; Bose et al., 2011; Carter et al., 2014; Forman et 
al., 2019; Ryan and Knodler 2022). If the increased female injury risks are due to 
physiological differences between males and females or due to that females tend to 
drive different cars and therefore tend to crash differently has been questioned 
(Brumbelow and Jermakian 2022). Additionally, occupant age influences rib fracture 
risk. Increasing occupant age increases rib fracture and thoracic injury risk 
(Brumbelow 2019; Forman et al., 2019) and age has been described as a greater driver 
for injury risk than both BMI and sex (Carter et al., 2014). 
 
Traditionally, the population of adult vehicle occupants has been represented by three 
standard sizes of anthropomorphic test devices (ATDs, i.e., crash test dummies) in 
most crash safety evaluations. Three fixed sizes have a limited ability to explore the 
effects of male and female body size variations on crash injury outcome. Newer cars, 
mainly developed using ATD-based crash testing, have reduced risks for many 
occupant injuries (Forman et al., 2019; Kullgren et al., 2020). However, rib fracture 
risk remains high in newer cars (model year > 2009), is still increasing with age and 
BMI, and remains increased for females (Forman et al., 2019). A possibly contributing 
factor for the remaining rib fracture risk can be that ATD-estimated chest injury risks 
from crash testing correlates poorly with real-world crash thoracic injury outcomes 
(Brumbelow 2020; Brumbelow et al., 2022). 
 
The variation in rib fracture injury risks for different occupants, the limited capability 
of ATD-based chest injury evaluation, and the high rib fracture risk for occupants even 
in newer cars demonstrates a need for improved rib fracture risk assessment for the 
population of occupants, which is the motivation behind the research performed for 
this thesis. Improved rib fracture risk assessments for the population of occupants can 
enable development of improved safety systems, with a reduced injury and fatality risk 
for all occupants. 

1.1 Occupant Safety Evaluation 

During development, vehicle crash safety is evaluated by crash testing, both 
physically and virtually, using mathematical modeling. To estimate the occupant 
injury risk in crash tests, occupant substitutes are used. While manufacturers can 
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choose crash scenarios to evaluate, there are also specific physical crash tests 
mandated in regulations, such as the United Nations Economic Commission for 
Europe regulation (European Union), China National Standards (China), and Federal 
Motor Vehicle Safety Standards (United States). Additionally, organizations that 
provide publicly available crash safety ratings to promote a high level of safety, such 
as New Car Assessment Programs (NCAPs) use specific physical test scenarios for 
occupant safety evaluations. Test specifications includes specific crash scenarios and 
which ATDs to use as occupant substitute. Common scenarios include frontal and 
side crashes, impacting the front and the side of the car, respectively. 

1.1.1 Anthropomorphic Test Devices 

ATDs are mechanical representations of humans that can measure forces, moments, 
accelerations, and deformations in different body regions. The measurements are 
related to injuries by injury risk functions, mathematically linking physical 
measurements to a statistical risk of injury, such as chest injury risk. As ATDs are 
measurement equipment that should be able to reproduce the same measurements in 
repeated crash tests, they have a mechanically robust construction representing a 
simplified anatomy that can withstand the forces and wear of repeated crash testing.  
Common simplifications include representing the ribcage with a few metal ribs and a 
simplified spine model with a reduced number of joints. ATDs are constructed, 
instrumented, and validated for estimating injury risks in specific impact directions, 
which means that different ATDs are used for different impact scenarios, such as the 
Hybrid III and THOR ATDs for frontal impacts, and the EuroSID-2 and WorldSID 
ATDs for side impacts. 
 
ATDs used to represent the adult occupant population in regulatory and rating crash 
tests exists in three standard sizes. They represent a 5th percentile (small size) female, a 
50th percentile (average size) male, and a 95th percentile (large size) male. 
Additionally, a 50th percentile female ATD size was suggested, but was removed from 
the final selection due to lack of funding (Schneider et al., 1983). The percentiles refer 
to specific heights and weights in distributions measured from the 1970s U.S. 
population, which were available at the time the ATD anthropometric specifications 
were set (Schneider et al., 1983). Since then, population weight has increased in the 
U.S. and around the world (NCD Risk Factor Collaboration et al., 2016). When 
compared to 2005-2008 U.S. population data, the male 50th and 95th weights 
corresponded to the 33rd and 81st percentiles of male weights, respectively, while the 
female 5th corresponded to the 3rd percentile of female weights (Reed and Rupp 2013). 
This means that 97 % of U.S. females have higher body weights than what is specified 
for female ATDs and that two-thirds of adult U.S. males are heavier than the average 
male specification. Too low body weights of ATDs means that the overall kinetic 
energy represented by the ATDs in crash tests is too low, due to a lack of overall mass. 
The U.S. population height distributions have not changed as substantially as weight 
and the ATD sizes represent the 6th (small female ATD), 45th (average male ATD) and 
91st (large male ATD) percentiles of their respective U.S. height distributions (Reed 
and Rupp 2013). The low weights of the average and large male ATDs therefore 
corresponds to representing lower BMIs, than their counterparts in the contemporary 
U.S. population, which influences the representation of seatbelt fit (Reed et al., 2013). 
Increasing BMI is related to an increased layer of soft tissues between the lap-portion 
of the belt and the pelvis, which allows for more forward excursion of the pelvis 
before substantial restraint forces can be applied, changing overall excursion 
kinematics (body displacements relative to the car) of the occupants (Kent et al., 2010; 
Reed et al., 2013). 



3 

1.1.2 Virtual Crash Testing 

Virtual crash testing is commonly used during the vehicle and safety system 
development phase, as it reduces the need for physical prototypes, and thus speeds up 
the development process. Further, it enables studying variations in design parameters 
and crash conditions in a controlled manner. The car safety rating organization Euro 
NCAP has communicated its intentions to complement its physical crash testing 
program for occupant safety with virtual crash testing to include variations in crash 
conditions, seat position, and occupant substitutes (Euro NCAP 2022). 

In virtual crash tests, the vehicle structures, safety systems, occupant substitutes, and 
crash boundary conditions are represented by mathematical models based on physics. 
The modelling results in systems of differential equations for which analytical 
solutions exists only for a very limited number of cases, and therefore numerical 
methods are used. Typically, commercially available software are used to develop 
models and to set up and solve the equations using computers. Common modeling 
strategies in virtual crash testing can broadly be divided into multi-body and finite 
element (FE) modeling. In multi-body modeling, rigid and flexible bodies, connected 
by various joint types, are used to construct the models (Wismans et al., 2005). In FE, 
geometrical bodies are discretized into a finite number of elements interconnected at 
nodes. The collection of elements and nodes is referred to as a mesh. Appropriate 
constitutive properties and masses are assigned to the elements to represent different 
materials, and the relative motions of the nodes are used to calculate strain and stress 
in the elements. The advantage of the multi-body method is that it often results in 
much shorter computational times. On the other hand, while being more time-
consuming, the FE method facilitates the calculation of detailed deformations of parts 
of arbitrary shapes and material failure due to e.g., stress or strain-based criteria. 
Hybrid approaches, i.e., both FE and multi-body modelling present in the virtual crash 
simulation, are possible. 

1.1.3 Virtual Human Body Models 

In virtual crash testing ATD models, as well as human body models (HBMs) are used. 
A distinction between ATD models and HBMs is that an ATD model represents a 
corresponding physical ATD, while HBMs aim to represent humans. 

Mathematical models for evaluating the human response in crash loading, including 
models of specific body parts and the whole human body, have been used since the 
1960s, and the level of detail has increased over time (Wismans et al., 2005; Yang et 
al., 2006). HBMs can model the human anatomy at a greater level of detail than 
ATDs, for example by including anatomical joints and all ribs of the ribcage and can 
represent differently sized occupants (Wismans et al., 2005). FE-HBMs with detailed 
representation of human anatomy and materials have the potential to evaluate injury at 
the tissue level by calculating physical quantities related to material failure, such as 
stress, strain, and pressure. Representing the human anatomy and evaluating the injury 
at the tissue level can allow for a more detailed understanding of the injury 
mechanism, when compared to an overall body region risk as estimated by ATDs. 

Difficulties related to the design of detailed FE-HBMs includes acquiring detailed 
three-dimensional geometric descriptions of both external and internal geometry of the 
human body, creating high quality FE-meshes of the part geometries, obtaining and 
assigning constitutive and material properties, and defining boundary conditions such 
as contacts and connections between the various parts.  
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Contemporary FE-HBMs used as adult occupant substitutes in virtual crash testing 
include the Total Human Model for Safety (THUMS) (Shigeta et al., 2009), Global 
Human Body Models Consortium (GHBMC) (Gayzik et al., 2012), VIVA+ (John et 
al., 2022) and SAFER HBM (SHBM) (Pipkorn et al., 2021). These HBMs have 
detailed ribcage models representing all individual ribs. The thoracic and ribcage 
geometry of THUMS v.4 (Shigeta et al., 2009) and the GHBMC M50 (Gayzik et al., 
2012) are based on medical scanning of individual male subjects that matched the 
average male ATD size. The VIVA+ and SHBM ribcage geometries are based on 
statistical shape models for the ribs and sternum (Shi et al., 2014; Weaver, Schoell, 
Nguyen, et al., 2014; Iraeus et al., 2020; John et al., 2022). The SHBM (v.9) was 
validated for rib strain (Iraeus and Pipkorn 2019) and strain-based rib fracture risk 
predictions in various impact scenarios (Pipkorn et al., 2019) and thus has the potential 
to provide insights into rib fracture injury mechanisms in virtual occupant safety 
evaluations. 
 
The THUMS and GHBMC HBMs exist in versions representing the small female, as 
well as the average and large male ATD sizes. The VIVA+ HBMs represent the 
proposed 50th percentile female ATD and the average male ATD sizes. The SHBM 
represents the average male ATD size. As such, these HBMs cannot be used directly 
to predict how variations in height, weight, and age for both sexes influence the injury 
outcome beyond the pre-specified sizes. 

1.1.4 Representing occupant variability through HBM morphing 

An approach used to modify the anthropometry of FE-HBMs is mesh morphing, 
where the FE-mesh of an HBM is re-shaped by adjusting the nodal coordinates, such 
that the morphed HBM (MHBM) represents another body shape. As an example, the 
large male GHBMC was created by morphing the average male model (Vavalle et al., 
2014). In this process, the external and internal geometry from an individual matching 
the large male specifications were collected. On this geometry, target landmarks were 
defined. Corresponding source landmarks, each at corresponding (homologous) 
anatomical locations were defined on the GHBMC average male HBM. The node 
coordinates describing the average male model were then interpolated to new locations 
describing the large male geometry using a mapping defined by the source and target 
landmarks (Vavalle et al., 2014). By utilizing mesh morphing, only new geometrical 
data and landmarking were needed to define the large male GHBMC. Thus, much of 
the work required to create the initial GHBMC average male model, such as meshing, 
assigning material properties, and creating contact and boundary conditions between 
parts, was avoided, reducing development time needed to obtain an HBM representing 
an alternative anthropometry.  
 
The University of Michigan Transportation Research Institute (UMTRI) developed a 
parametric HBM morphing method that utilizes statistical human shape models to 
describe the morphing target landmarks for a population (Hwang, Hallman, et al., 
2016; Hwang, Hu, et al., 2016). This circumvents the need to obtain new geometrical 
data for every target size. The statistical shape models used in parametric HBM 
morphing describe the geometry of the body surface, pelvis, femurs, tibiae, and 
ribcage as functions of input parameters defining targeted age, sex, height, and weight. 
Once homologous landmarks on the statistical shape models and corresponding parts 
in an HBM have been defined, mesh morphing can be used to create HBMs 
geometrically representing a wide range of male and female occupant sizes of different 
ages. 
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The ribcage shape model used in the parametric HBM morphing method represents 
trends in rib cross-sections as well as overall ribcage geometry due to sex, age, height 
and weight (Wang et al., 2016). Therefore, parametric HBM morphing of the SHBM 
appears to be a promising method to provide rib fracture risk predictions for the 
population of occupants. 

1.2 Aim and Objectives 

The overall aim of this thesis is to enable time efficient assessment of kinematics and 
rib fracture risk in crashes for the population of adult car occupants in virtual crash 
testing through parametric HBM morphing. 
 
To fulfill the aim, three main objectives have been defined: 
 
Objective I. Define the target population 
Determine ranges for parametric HBM morphing targets that are representative of the 
population of car occupants. 
 
Objective II. MHBM validation 
Using the parametric HBM morphing method, develop and validate MHBMs 
representing the population for prediction of crash kinematics (Paper I) and rib 
fracture risk.  
 
Objective III.  Population rib fracture risk 
Develop a method to predict population rib fracture risk and provide recommendations 
of how many and which MHBMs to use to represent the population variability in rib 
fracture risk due to sex, height, and weight variability (Paper II). 
 
Objective IV. Additional parameters  
Determine factors, beyond those considered in the parametric HBM morphing method, 
that influence the rib fracture risk predictions for the population (Papers III and IV). 
 

1.3 Outline of Thesis 

Chapter 2, Background and Methods, provides additional background information 
about thoracic anatomy and injuries, and the rib modelling in the SHBM. Further, 
methods used for the thesis work are introduced and described.  
 
Chapters 3 to 6 describes research and results and summarizes papers for each of 
Objectives I-IV.  
 
A discussion, including recommendations for future work is given in Chapter 7, and 
conclusions are presented in Chapter 8. 
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2 Background and Methods 

This chapter covers information on thoracic anatomy, thoracic injuries, and SHBM rib 
modelling. This is followed by introducing and describing methods used within the 
thesis, which includes brief descriptions of statistical methods used, the SHBM 
validation, SHBM rib fracture risk prediction, the parametric HBM morphing, and 
variance-based sensitivity analysis. 

2.1 Thoracic Anatomy, Variability, and Injuries 

The thorax is the region between abdomen and the neck and broadly consists of its 
superficial structures, the thoracic wall, and the thoracic cavity. Superficial structures 
include skin, breasts, adipose (fat) tissue, and muscles (Kudzinskas and Callahan 
2022). The thoracic wall consists of the thoracic spine (twelve thoracic vertebrae and 
intervertebral discs), twelve pairs of ribs, costal cartilage, sternum (breastbone) and 
muscles used for respiration (breathing). The thoracic wall provides attachment points 
for muscles of the abdomen, back, shoulders and upper arms and protects the thoracic 
cavity (Hussain and Burns 2022). The thoracic cavity is bounded by the thoracic wall, 
the root of the neck and the diaphragm and contains as major organs the lungs, the 
heart, and the great blood vessels. The thoracic cavity consists of three compartments: 
the left and right pleura containing the lungs and the mediastinum containing the heart 
and great blood vessels (Kudzinskas and Callahan 2022). 
 
The ribs are consecutively numbered by levels between one and twelve, with the first 
rib level being the most superior, closest to the neck. The ribs are flat bones that 
articulate with the thoracic spine and curves around the thoracic cavity. Ribs one 
through seven connects directly to the sternum via their own costal cartilages. Ribs 
eight to ten connects to the cartilage of the ribs above them, and ribs eleven and 
twelve are floating, shorter ribs, that do not connect to the sternum. The ribs are 
additionally interconnected through three layers of intercostal muscles between each 
rib level, Figure 1. 
 

 

Figure 1. Thoracic spine, ribs, sternum, costal cartilage, and intercostal muscles (only shown 

on left-hand side) from the SHBM model. 

The overall cross-sectional shape of the ribs varies between rib levels and along the 
length of each rib. Each rib consists of two types of bone: a hard, dense outer layer 
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called cortical bone, and an inner core of softer trabecular, or cancellous, bone, 
containing the bone marrow. The thickness of the cortical bone varies along and 
around the ribs, and it is generally greater at the pleural side (inside, towards the 
thoracic cavity) than on the cutaneous side (outside, towards the skin), and thinner at 
the superior and inferior edges, with an overall reduced thickness towards the sternal 
end of the ribs (Mohr et al., 2007; Choi and Kwak 2011; Holcombe and Derstine 
2022). 

2.1.1 Thoracic Variability 

In terms of overall ribcage and rib geometry, several studies have identified a 
substantial individual variability in geometry. However, some statistically significant 
trends have been identified. One such trend is that the ribs tend to become 
increasingly more horizontally angled with ageing (Kent et al., 2005; Gayzik et al., 
2008; Shi et al., 2014; Weaver, Schoell, and Stitzel 2014; Holcombe et al., 2017). 
Additionally, a strong trend of increasing rib angles have been identified for 
increasing body weight and BMI (Kent et al., 2005; Shi et al., 2014; Holcombe et al., 
2017). Male ribcages, overall, are wider and deeper than female ribcages (Weaver, 
Schoell, and Stitzel 2014) and also after accounting for height, weight and age, the rib 
end-to-end span length is greater in males (Holcombe et al., 2017). Overall, increasing 
height increases the rib span length for both males and females (Holcombe et al., 
2017). 
 
For rib cross-sectional dimensions, males, on average, have overall larger rib cross-
sectional areas than females (Shi et al., 2014) and larger area moment of inertia 
(Holcombe et al., 2019). The thickness of the rib cortical bone has been identified to 
be similar for young adult males and females, but due to a larger rate of age related 
bone thinning for females, they have, on average, thinner rib cortical bone than males, 
from 55 years and older (Holcombe and Derstine 2022). 
 
Substantial individual variability has been identified also in material mechanical 
properties, which is typical for biological tissues (Cook et al., 2014). Variability in 
material properties have been identified in the rib cortical and trabecular bone, and in 
the costal cartilage (Forman et al., 2010; Katzenberger et al., 2020; Kemper et al., 
2020; Velázquez-Ameijide et al., 2021). For the rib cortical bone, material properties, 
such as Young’s modulus, yield stress and failure strain, tend to decrease with 
increasing age (Katzenberger et al., 2020; Velázquez-Ameijide et al., 2021). 

2.1.2 Thoracic Injuries 

Traumatic thoracic injuries are generally divided into blunt and penetrating, based on 
the cause of the injury. Penetrating injures pierces the tissue, and common 
mechanisms are for example cuts and gunshots (Dogrul et al., 2020; Edgecombe et 
al., 2022). They are rare among car crash injuries and are therefore not considered 
further in the thesis. Blunt chest trauma is most commonly caused by traffic crashes 
(Sirmali et al., 2003; Edgecombe et al., 2022), but also by falls and workplace 
accidents. Mortality from blunt chest trauma is due to the disruption of respiration or 
blood circulation or both. It is common that blunt chest trauma cause multiple 
simultaneous injuries (Edgecombe et al., 2022), and that patients initially diagnosed 
with only rib fractures develop later complications due to associated lung and pleural 
injuries (Sirmali et al., 2003; Karadayi et al., 2011). 
 
The most common blunt chest trauma from traffic crashes involve chest wall injury, 
followed by lung injuries, pleural and mediastinal injuries, and cardiac or vascular 
injuries (Benhamed et al., 2022). Among chest wall injuries, rib fractures are the most 
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frequent, followed by sternal fracture (Benhamed et al., 2022). A type of severe rib 
fracture injury is called flail chest, in which three or more consecutive ribs are broken 
in two parts, causing a segment of the chest wall to become disconnected (Dogrul et 
al., 2020). This causes reduced respiratory function, and is associated with pulmonary 
contusion and pneumo-/hemothorax (Dogrul et al., 2020). The most common lung 
injury is pulmonary contusion, which is bruising of the lung tissue, that can be caused 
by compression or by shockwaves in the tissue. Lung contusion can be present 
without any apparent chest wall injuries. The most common pleural injuries are 
pneumothorax and hemothorax, in which air (pneumo) or blood (hemo) are present in 
the pleural space, compromising lung function. 
Pneumo-/hemothorax and lung contusion has been associated with the number of rib 
fractures, as in Liman et al., (2003) where 7 % of trauma patients without rib 
fractures, 25 % with one to two, and 82 % with more than two rib fractures were 
diagnosed with pneumo-/hemothorax. Karadayi et al., (2011) identified pneumo-
/hemothorax or lung contusion in 30% of patients with one rib fracture, in 25 % with 
two, and in 76 % of trauma patients with three or more rib fractures. 

2.2 SHBM Rib Modeling 

The SHBM has a ribcage model representing all 24 ribs, sternum, costal cartilage, 
intercostal muscle, and the thoracic spine, Figure 1. The development of the ribs is 
presented in (Iraeus et al., 2020). Briefly, the ribs are modelled with solid elements 
representing the trabecular bone and shell elements representing the cortical bone, 
with an average element side length of 2.5 mm. All rib levels have varying cross-
sectional shape and varying cortical bone thickness to match averaged measurements 
in male ribs (Choi and Kwak 2011), Figure 2 left. The rib cross-sections are defined 
as elliptical, with height and width dimensions varying along the ribs, Figure 2 right. 
Both trabecular and cortical bone materials are modelled as isotropic with bilinear 
material responses (elastic-plastic), with average material parameters based on 
literature. 

 

Figure 2. Left: SHBM rib cortical bone elements, color corresponds to element thickness [mm]. 

Right: view of the height (H) and width (W) definitions in the elliptical cross-sections of SHBM 

ribs at level 4 and 5, connected by three layers of solid elements representing intercostal 

muscle. Here, cortical bone element (gray) thickness is artificially drawn around the shell mid 

surfaces. 



9 
 

2.3 Statistical Methods 

The following subsections introduces statistical methods and definitions used within 
the thesis.  

2.3.1 Principal Component Analysis 

Principal component analysis (PCA) is a statistical method commonly used to reduce 
the dimensionality of datasets while keeping as much as possible of the variance 
(Jolliffe 2002). In this thesis, PCA was used to identify ribcage shape variations 
among a set of average males under Objective IV. Another application of PCA is the 
statistical human shape models used for parametric HBM morphing. These models are 
based on 3D descriptions of individual geometry, which consists of hundreds to 
thousands of 3D points. With a dataset consisting of several sets of homologous 3D 
points, together describing geometry from several individuals, PCA can be used to 
identify the trends of variability within this high dimensional data. This is 
accomplished by principal components (PCs) aligned with the directions of maximum 
variance in the data. In many cases, a comparatively small number of PCs (i.e., small 
in comparison to the original number of data points) can be used to describe most of 
the variance. 
 
PCA is a linear transformation of the data into new, uncorrelated, variables called PCs, 
and the dimensionality reduction consists in using only the first few PCs to describe 
the dataset. While PCA is mostly used for high dimensional datasets, a two-
dimensional example can demonstrate key features of PCA, Figure 3. In the example 
dataset the two variables are correlated (i.e., increasing x1 mainly corresponds to 
increasing x2), Figure 3, left. The PCs of this dataset are indicated by red arrows. The 
first PC (PC 1) is, by definition, aligned with the direction of maximum variance in the 
dataset. The second PC (PC 2) is orthogonal to PC 1 and aligned with the direction of 
second-to-most variance. For higher dimensional datasets, PC 3 would be orthogonal 
to PCs 1 and 2 and be oriented in the direction of third-to-most variance, and so on for 
higher order PCs. 

 

Figure 3. Left: A dataset of samples in two coordinates. PCs of dataset indicated with red 

arrows. Middle: The dataset linearly transformed to PC basis. Right: dataset reconstructed 

using only PC 1. 

In Figure 3, middle panel, the same dataset is plotted using the corresponding PC 
scores, which are the coordinates in the PC basis. In this view, it is evident that most 
of the variance is along PC 1. To reduce the dimensionality of this dataset, while 
keeping as much variance as possible, PC 2 is dropped and only PC 1 is used to 
describe the dataset. The reduced dimensionality lies in the dropping of higher PCs, 
which corresponds to directions of less variance. The loss of information becomes 
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visible if the data is transformed back to the original coordinates using only PC 1 (and 
the original mean of the dataset), Figure 3, right. 
 
Computation of PCs for a dataset of � samples, each described by � variables, 
involves subtracting the sample means from the data (centering), and standardizing the 
samples (important if variables are measured using different units). Next, a centered 
sample matrix �, with � columns and � rows of observations, is created and a sample 
covariance matrix, �, is calculated:  

� =  1� − 1 �	� 

The PC directions are then the eigenvectors of �, with the first PC corresponding to 
the eigenvector with the largest magnitude eigenvalue, the second PC to the second 
largest magnitude eigenvalue, and so on (Jolliffe 2002). Routines for performing PCA 
is commonly available in most software with basic statistics capabilities.  

2.3.2 Regression modelling 

Regression modelling can be used to create a relationship between observed data 
points and some descriptive predictor variables. For example, regression modelling 
was used in the construction of the statistical human shape models, where it describes 
how PC scores relate to e.g., age, sex, height, and BMI. In this thesis it has been used 
in Objective III to create metamodels (as in models of a model), describing how 
MHBM rib fracture risk predictions depend on height and weight. 
 
Regression modelling is used to estimate an assumed relationship, 
 = ��
�, between 
a dependent variable, 
, and one or several predictor variables: 
 =  ���, ��, … , ���. 
Typically, the dependent variable and the predictors are only known at set of observed 
points. For a set of � observed points, we then have: �
�, 
��, �
�, 
��, … , �
�, 
��  
There exists a plethora of regression models, i.e., methods to build the estimating 
function (Hastie et al., 2009; Gramacy 2020), but one of the most widely used is linear 
regression where the function is assumed to take the form (James et al., 2013): 
 = ��
� =  �� +  ���� + ���� + ⋯ + ���� +  � 

where it is assumed that the true function has a certain amount of random noise, �, that 
is independent of the predictor variables. The noise can correspond to measurement 
error or hidden (not measured or included) predictor variables. The linear regression 
estimate of the function is then: 
� = ���
� = ��� + ����� + ����� + ⋯ + ����� 

where the ��� coefficients are commonly found by maximum likelihood estimation 
(Hastie et al., 2009), or least squares which minimizes the residual sum of squares 
(RSS) (James et al., 2013): 

 !! = "�
� − 
����
�

= " #
� − ���
��$�
�

 

The difference 
� − 
�� is called a residual, which is the difference between model 
prediction and the observed value in the %th point. As some noise is expected in the 
observed data, it is generally not expected that all residuals of a regression model are 
zero, since this can indicate that the regression model follows the noise, rather than the 
underlying trends in the data. 
 
Note that linear regression is linear in terms of the coefficients, but non-linear 
predictor combinations can be used, e.g., by choosing �� = ���, as demonstrated by the 
example using example data in Figure 4. 
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Figure 4. Examples of linear regression models fitted to the same observations (circles) using 

polynomial combinations of the predictor variable ��.  

The RSS is an aggregate error measure of how well the regression model fits the 
observed data. Another common error measure for model fit is the root mean square 
error (RMSE): 

 &!' =  (∑ �
�– 
������+� �  

An additional metric that is commonly used to describe how well a model fits 
observations is the  � (r-squared) metric, which measures the proportion of variance 
in the observations of the dependent variable that is explained by the model: 

 � =  1 − ∑ �
� −  
������+�∑ �
� −  
,����+�  

where 
, is the mean of all 
�. A model making predictions that perfectly match all 
observations will thus have  � = 1. A model that predicts 
, in all points will have  � = 0, and models making worse predictions compared to 
, can have  � < 0. 
 

 

Figure 5. Three example datasets with corresponding linear regression models fitted, 

illustrating how R2 relates to variance explained. 

As demonstrated in Figure 5, a high  �-value close to 1, or 100 %, indicates that the 
model represents the observed data well. As  � decreases, variance about the model 
prediction, that is, the residual variance, increases. Thus, models with lower  � values 
generally have less predictive accuracy. Common reasons for low  � values are large 
measurement noise magnitudes, that too few predictor variables are used, and that the 
predictor variables are only weakly related to the output variable. 
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Linear regression is an example of a parametric method. Parametric methods assumes 
that the function to be estimated follows some functional form or distribution. Non-
parametric regression methods, such as e.g., regression forests or Gaussian process 
regression (Hastie et al., 2009; Gramacy 2020), does not require the form of the 
estimated function to be pre-specified. 

2.3.3 Classification and risk functions 

Modelling a dependent variable that only can take on a fixed number of values is often 
referred to as a classification problem. For classification problems, estimated functions 
predicts the probability that the dependent variable takes on a certain value. A relevant 
classification problem is creating a risk function, that can be used to predict the 
probability of injury. In Objective IV, a rib fracture risk function was developed to 
predict rib fracture risk based on age and rib strain.  
 
A risk function can for example be modelled by logistic regression by assuming the 
logistic function (one predictor) (James et al., 2013): 

���� = /012034
1 +  /012034 

Regression coefficient estimates are then obtained through maximum likelihood. 
Another common way to construct risk functions is to use survival analysis, which 
models the probability of survival (i.e. not failing) at a certain point in time, or e.g., at 
a certain force (Kleinbaum and Klein 2012), and the risk is then the probability 
complement to survival.  
 
To use predictions from a classification or risk function to assign e.g., failure, a 
threshold level must be chosen, e.g., � > 0.5. As the risk function usually includes 
some uncertainty, there is a risk of misclassification, e.g., predicting failure when there 
was none (false positive). The proportion of true positives and false positives predicted 
for a given dataset depends both on the risk function and the chosen threshold value. A 
common measurement of how well a classifier, or risk function, can classify outcomes 
correctly is the area under the receiver operator characteristics (ROC) curve 
(Mandrekar 2010).  

 

Figure 6. ROC curves plotted for a perfect classifier, two different example risk functions and 

50/50 random guessing. 

To construct the ROC curve, the rate of true positives is plotted against the rate of 
false positives for all possible threshold values within a dataset containing known 
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outcomes, see Figure 6. A perfect classifier can obtain a true positive rate of 1 for 
some ideal threshold value, but also produce false positives for threshold values lower 
than the ideal. Therefore, the area under the ROC (AUC) for a perfect classifier is 1. 
For random guessing, the AUC would be 0.5, and a greater area indicates a classifier 
with improved capability of predicting outcomes. In Objective II, AUC was used to 
measure the capability of MHBM rib fracture risk predictions to predict rib fracture 
outcomes. 

2.4 HBM Validation 

As HBM crash simulations are virtual models aiming to represent physical 
phenomena, it is important that the models are correlated and validated to understand 
predictive capabilities and correspondence to real-world outcomes before model 
predictions can be used to make design decisions. In Objective II, MHBM validation 
was performed by comparison to physical test results. 
 
Validation of an HBM is the process of assessing the model prediction accuracy in 
comparison to results from one or more reference tests with human subjects (Wismans 
et al., 2005). For models of humans under potentially injurious conditions, such as 
high severity crash tests, testing with volunteers is not possible due to ethical 
considerations. Instead, post mortem human subjects (PMHS), or human cadavers, are 
commonly used in crash testing to gather kinematic, kinetic and injury outcomes in 
controlled impact experiments (Yoganandan et al., 2011). Tissue samples, body parts, 
as well as complete bodies are used, depending on the research question. 
 
In this thesis, MHBM validation was done by comparing MHBM predictions to 
individual PMHS test results from physical complete body PMHS tests reconstructing 
occupant impact scenarios. To obtain an objective rating of correlation between 
MHBM predictions and corresponding subject results, CORA cross correlation rating 
(Gehre et al., 2009), from the CORA software tool, was used as an objective rating 
method, using standard CORA control parameters. The CORA cross correlation rating 
compares the phase, magnitude and shape between a reference test signal and the 
corresponding model prediction. The correlation rating for a signal ranges from 0 to 1, 
where 0 corresponds to no correlation and 1 is a perfect correlation.  

2.5 SHBM Rib Fracture Risk Prediction 

A probabilistic strain- and age-based rib fracture risk prediction method (Forman et 
al., 2012) is used to calculate fracture risk from the SHBM rib strain. This method 
evaluates the risk of rib fractures in a post-processing step, i.e., rib fracture risk is 
evaluated after the HBM simulation has terminated. Thus, rib fractures are not 
explicitly modelled in the SHBM.  
 
There are two parts to the Forman et al. method: an age-adjusted strain-based rib 
fracture risk function and a probabilistic step where the fracture risks from all 24 ribs 
are combined into a total risk for the ribcage. The risk function, based on tensile 
testing with human rib cortical bone, is used to calculate multiple age-specific fracture 
risks, e.g., one fracture risk per rib given a peak strain value from each rib. With the 
fracture risks calculated for a specific age, the second part is to combine all fracture 
risks in a generalized binomial probability model to calculate the combined risk of N 
total fractures. The risk of N or more fractures is calculated as the probability 
compliment to the summed risk of obtaining zero to N-1 fractures (Forman et al., 
2012). 
 



14 
 

With SHBM, the maximum value of 1st principal membrane strain from every rib, is 
used to calculate a risk of two or more fractured ribs (NFR2+) using the Forman et al. 
(2012) method. The SHBM (v.9) NFR2+ predictions have been validated in PMHS 
chest impact and sled testing conditions, in accident reconstructions, as well as by 
comparison to accident database risk from real-world crashes by using stochastic 
simulations (Pipkorn et al., 2019). Generally, good agreement between the predicted 
rib fracture risk and the fractures sustained by the PMHS and the occupants in the 
vehicles in the real-world crashes was obtained. 
 
There are two reasons for targeting prediction of NFR2+ risk. The first is the major 
risk of severe thoracic trauma and increased mortality risk associated with three or 
more fractured ribs. Thus, a high NFR2+ risk already represents a crash condition that 
is not safe which means that measures should be taken to reduce the NFR2+ risk. The 
second reason is that the probabilistic fracture risk calculation assumes that the rib 
fracture risks for all 24 ribs are independent. This is generally not true for human 
ribcages subjected to loading. If a rib fractures during chest loading, its capability to 
withstand load is reduced, meaning that neighboring ribs need to resist an increased 
share of the loading, which can lead to an increased risk of subsequent fractured ribs. 
As rib fracture is not explicitly modelled using the probabilistic method, an increased 
risk of subsequent rib fractures is not represented. However, in comparison with 
representing the loss of structural integrity by eroding rib elements exceeding a strain 
threshold, the probabilistic rib fracture method has even predicted more fractured ribs 
compared to using element erosion (Guleyupoglu et al., 2018). This indicates that the 
error from not representing the fracture is likely small for NFR2+ predictions. 

2.6 Parametric HBM Morphing 

This subsection provides a general description of how the statistical shape models are 
created, how source and target landmarks are used to create interpolating functions 
performing the morphing, and details in the parametric HBM morphing for SHBM. 
  
Broadly, the statistical shape models for different body parts are created using a 
similar process (Klein 2015; Klein et al., 2015; Wang et al., 2016; Brynskog et al., 
2021; Park et al., 2021) according to; 1) obtain 3D geometry from human subjects. 2) 
identify homologous landmarks on each individual 3D geometry. 3) fit a template 
mesh to all individual 3D geometries using the landmarks and a surface alignment 
algorithm. 4) align fitted template meshes to a common reference position. 5) perform 
PCA for the nodal coordinates in all fitted template meshes and keep enough PCs to 
describe a large majority of variance (approx. 90–99 %). 6) build regression models 
that predicts PC scores based on subject factors. Exceptions for the ribcage shape 
model are that extra positioning steps, accounting for laterally curved thoracic spines 
were performed before template mesh fitting, and that two regression models are used 
to predict ribcage geometry: one for overall ribcage size and one for PCs describing 
shape variation (Wang et al., 2016). Computed tomography (CT-scan) data were used 
to obtain individual geometry of bones, and body surface geometry was obtained using 
external laser scanning. The number of subjects used to obtain landmarks for the 
different statistical models are shown in Table 1. 
 
The ribcage shape model has landmarks along and around all ribs from the scanned 
subjects, which means that it can represent both overall shape trends in gross ribcage 
geometry as well as trends in cross-sectional dimensions as a function of age, sex, 
height, and BMI. Using these predictors, the ribcage shape model has an R2 of 0.51 
(Wang et al., 2016). 
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Table 1. Number of females and males used to obtain statistical shape model 

landmarks. 

Shape model Reference Females Males 

Pelvis (Brynskog et al., 2021) 75 57 

Femur (Klein et al., 2015) 36 62 

Tibia (Klein 2015) 28 48 

Ribcage (Wang et al., 2016) 47 54 

Body surface (Park et al., 2021) 73 82 

 
To morph an HBM to geometrically match targeted age, sex, height, and weight, the 
corresponding shapes are predicted by the statistical shape models. Node coordinates 
of corresponding parts in the HBM are morphed to align with their respective 
statistical shape predictions and are then positioned inside the morphed body surface 
using known landmarks on bone and body surface geometries (Hwang, Hallman, et al., 
2016). The remaining parts of the HBM, not described by a corresponding shape 
model, are morphed using the shape changes of the nodes in the morphed parts, where 
their original and morphed configurations provide source and target landmarks, 
respectively. 
 
The morphing is performed using radial basis function interpolation (Carr et al., 1997; 
Hwang, Hallman, et al., 2016): Given a set of � known 3D source, 89� = : �9�  
9� ;9�<, 
and corresponding target landmarks, 8=� = : �=�  
=�  ;=�<, three interpolation functions 
of the form: 

>?�8� = �?�8� +  " @?�A�‖8 − 8C‖��
�+�

, D ∈ F�, 
, ;G 

satisfying interpolation conditions: 
  >4�89�� = �=�,  >H�89�� = 
=�,  >I�89�� = ;=�   
 
are sought, i.e., one interpolation for each of the x, y, and z components of the 3D 
node coordinates. 
Here, �?�8� are low order polynomials, chosen to be: �?�8� = J?� + J?�� + J?�
 +J?K;, L8C − 8ML = N�? is the Euclidean distance between 8C and 8M, and the thin plate 

spline function is chosen as the radial basis function A�N� = N�OPQ�N� (Hwang, 
Hallman, et al., 2016). Further, orthogonality conditions are applied: 

" @?�
�
�

= 0, " @?�8� = R�
�

  
The above can be assembled to matrix form (Hwang, Hu, et al., 2016): 
 ST + UV WW	 RX SYZX = S[RX 
 
where T is an �-by-� matrix with \�? = A]N�?^, U is a smoothing constant, V is the 

identity matrix, W =  _1  �9� 
9� ;9�⋮    ⋮     ⋮     ⋮1  �9� 
9� ;9�
a is n-by-4, [ = _  �=� 
=� ;=�    ⋮     ⋮     ⋮  �=� 
=� ;=�

a is �-by-3, and R 

are appropriately dimensioned zero matrices. 
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Figure 7. 2D thin plate spline interpolation used to morph the gray grid into the red grid. Black 

dots indicate source landmarks, blue circles indicate target landmarks. The arrows indicate the 

movement from source to target location for displaced target landmarks. 

By solving for the �-by-3 weight matrix Y and the 4-by-3 coefficient matrix Z, the 
three interpolation functions are known. The interpolation functions determined by the 
source and target landmarks are then used to interpolate new coordinates for other 
nodes with 8 as original coordinates. For the parametric HBM morphing, no 
smoothing (U = 0) is used (Hwang, Hallman, et al., 2016). Figure 7 demonstrates a 2D 
example using two interpolation functions to morph the x and y coordinates of each 
vertex of the gray grid, into the red grid, based on source and target landmarks. 

 

Figure 8. SHBM as parametrically morphed to (left) male, 189 cm, 127 kg, 35 years, (right) 

female 151 cm, 52 kg, 35 years. Skin parts hidden to show skeleton. 

For morphing of the SHBM, the parametric morphing method is applied to modify the 
original nodal coordinates. Additionally, the densities of soft tissues in the torso, arms 
and legs are uniformly scaled such that the resulting MHBM obtains the target weight. 
Figure 8 shows the SHBM as morphed to two different morphing targets, representing 
a large male and a small female. Note that the morphing only adjusts the overall 
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geometry and mass of the HBM. The parametric HBM morphing method does not 
adjust material mechanical properties of bone based on e.g., age or sex. 

2.7 Model Sensitivity Analysis 

In Objective IV, the influence on NFR2+ risk from other parameters than those 
considered in the parametric HBM morphing was investigated. This was done using a 
variance-based sensitivity analysis, which considers the parameter distributions when 
calculating parameter sensitivity indices. The resulting sensitivity indices for each 
parameter corresponds to the average effect on the variance of the output of varying a 
parameter, for all possible combinations of the other parameters (Sobol’ 1990; Saltelli 
et al., 2008).  
 
Generally, a model output, b, depends on model parameters, 8 = :��, ��, . . . , ��<, 
through some function, b = ℎ�8�. Variance-based sensitivity analysis uses the 
variance decomposition (Sobol’ 1990; Saltelli et al., 2008):  

d\ �b� = de = " d�
�
�

 + " " d�?
�

?f�
�
�

 +  … +  d�?...� 

where d� is the partial variance of b due to varying parameter ��, d�?, is due to the 

interaction of �� and �? etc. The primary, or first-order, sensitivity index, !�  =  ghgi, 

represents the main average effect contribution (disregarding interactions) of varying ��, for all possible combinations of the other parameters. The second-order index is, !�?  =  ghjgi , and higher order sensitivity indices are defined in the same manner. The 

total sensitivity index, !	�, accounts for the total contribution to de due to ��, 
including all higher-order interactions involving ��. 
 
While it is possible to calculate the sensitivity indices analytically for suitable 
functions, they are generally computed through approximative methods, such as 
Monte Carlo methods randomly sampling the input parameters many times. However, 
for crash simulations with FE-HBMs, where a single function evaluation takes hours 
to compute, Monte Carlo methods are impractical. Therefore an alternative 
approximative method presented by Zhang and Pandey (2014), based on a 
multiplicative dimensional reduction method (M-DRM) was used. Here, it is assumed 
that the model output around a selected input point, called the cut-point:  8 = k = :l�, l�, . . . , l�<, with b� = ℎ�l�, can be decomposed into a set of one-
dimensional functions: 

ℎ�8� ≈  b��n� o ℎ���� , k~��
�

�+�
 

where ℎ����, k~�� is a function of ��, and k~� is k with �� excluded. From this 
assumption it follows that computing � one-dimensional integrals, by e.g., Gaussian 
quadrature, is sufficient to calculate the sensitivity indices. Thus, for a function of � 
input parameters and a quadrature rule of qrs integration points, at most �qrs 
function evaluations are needed (Zhang and Pandey 2014). 
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3 Objective I: Define the Target Population 

Objective I. Determine ranges for parametric HBM morphing targets that are 

representative of the population of car occupants. 

 
The approach originally used for specifying the ATD sizes, i.e. they should bracket 
90 % of the U.S. population height and weight, was used (Schneider et al., 1983). 
Therefore, height and weight ranges containing 90 % of the U.S. population, in terms 
of probability regions respecting the correlation of height and weight were calculated 
(Brolin et al., 2012). National Health and Nutrition Examination Survey (NHANES) 
2013–2016 data was used to calculate 90 % probability regions, using NHANES 
sample weights. The logarithm of weight was used in the calculations as U.S. 
NHANES weight distributions have been shown to be right-skewed (Brolin et al., 
2020). 
 

 

Figure 9. MHBM population target ranges enclosed in thin lines for females (pink) and males 

(blue). Small pale dots correspond to individual (weighted) samples in NHANES 2013–2016.  

Male and female height and weight ranges of the population to be represented by 
MHBMs are enclosed by thin lines in Figure 9. For this target population, height 
ranges are between 146–177 cm (females) and 159–192 cm (males), and weight 
ranges are 43–130 kg (females) and 54-141 kg (males). These height and weight 
ranges are for all adult ages.  
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4 Objective II: MHBM Validation 

Objective II. Using the parametric HBM morphing method, develop and validate 

MHBMs representing the population for prediction of crash kinematics (Paper I) and 

rib fracture risk.  

 
The parametric HBM morphing method appears to be a promising method to enable 
representation of occupant variability in crash safety evaluations with the SHBM. 
However, before results of such evaluations can be used to guide the design of 
vehicles and safety systems with reduced injury risk for the population of occupants, 
it is important that MHBMs are validated to ensure an acceptable level of biofidelity.  

4.1 Summary of Paper I: Validation of MHBM crash 

Kinematics 

Results in Paper I was obtained using SHBM v.9, later updated to v.10. Updated 
MHBM validation results, using methods from Paper I for MHBMs based on SHBM 
v.10 (v.10-MHBMs) follows this summary. 

Table 2. A short test description, Test ID, delta-velocity, and characteristics of PMHS included 

in each test.  

Description Test ID 
ΔV 

[km/h] 
Sex 

[M/F] 
Age 
[Yr] 

Ht. 
[cm] 

Wt. 
[kg] 

BMI 
[kg/m2] 

Oblique near-side 
30°, belt only 

1441 35 M 60 171 65 22 

Frontal, belt only 

1262 49 M 51 175 55 18 

1263 47 F 57 165 109 40 

1333 49 M 54 189 124 35 

Frontal, belt + 
airbag 

1761 35 M 74 167 66 24 

Frontal, belt only, 
constrained legs 

s0211 30 F 57 162 40 15 

s0213 30 F 65 152 47 20 

Oblique far-side 
60°, belt only 

s0124 34 M 44 182 86 26 

s0135 34 M 61 178 79 25 

Side impact, thick 
padding 

NBA1004A 11 M 66 173 79 26 
NBA1005A 11 M 51 183 98 29 
NBA1006A 11 M 34 188 102 29 
NBA1006B 29 M 34 188 102 29 
NBA1007A 11 M 87 175 72 24 
NBA1108A 11 M 85 178 56 18 

Side impact, thin 
padding 

NBA1109A 11 F 51 157 68 28 
NBA1110A 11 F 80 167 39 14 
NBA1110B 22 F 80 167 39 14 
NBA1213A 11 M 73 160 53 21 
NBA1213B 22 M 73 160 53 21 

Side impact, belt + 
seat airbag 

1701 501 F 61 166 56 20 

1702 501 F 83 155 44 18 
1Sled test simulates door intrusion and lateral acceleration from a 50 km/h moving 
deformable barrier to vehicle impact test 

 
For MHBM validation data, PMHS tests performed using male and female subjects of 
a wide range of anthropometries were gathered from the published literature. In total, 
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results from 22 tests performed with 19 (7 female) PMHS’ were used as reference data 
for MHBM validation, Table 2. Test configurations included near-side lateral impact, 
near-side oblique (30°), frontal, and far-side oblique (60°). 
 
For each PMHS, a corresponding MHBM was created by morphing the SHBM (v.9) 
to geometrically match subject parameters of height, weight, age, and sex using the 
parametric HBM morphing method. The MHBMs were positioned in models of the 
test environments using separate positioning simulations, targeted to match the 
corresponding subject’s initial posture. For test cases where a seatbelt was used, a 
nominal seatbelt webbing model was created, and its initial position followed the 
seatbelt in the test as close as possible. This nominal seatbelt model, as well as three 
alternative shoulder belt routings, crossing the sternum at the level of 1st, 3rd, and 6th 
rib levels were used to study the influence of shoulder belt routing differences between 
MHBM and PMHS. 
 
The baseline 50th percentile male SHBM v.9 (B-HBM) was also used to replicate each 
test with nominal and the additional alternative shoulder belt routings. Targets for B-
HBM positioning were obtained by scaling the MHBM positioning targets using the 
height ratio between B-HBM and respective MHBM. 
 
CORA cross-correlation rating was used to evaluate correlation between HBM 
(MHBMs and B-HBM) predictions and corresponding, subject specific, test results. 
For each test, averaged correlation ratings between the set of results from each PMHS 
test and the corresponding HBM predictions were calculated. The CORA rating and 
averaging was performed separately for HBM predictions (excursion kinematics, chest 
deflections) and boundary conditions (seatbelt or impactor forces). The averaging was 
weighted for each test, with weighting assigned based on peak magnitudes of test 
results.  
 
To classify goodness of fit between HBM simulations and corresponding test results 
based on CORA rating, an adapted version of the ISO/TR 9790:1999 biofidelity scale 
was used: 0 ≤ unacceptable < 0.26 ≤ marginal < 0.44 ≤ fair < 0.65 ≤ good < 0.86 ≤ 
excellent. 
 
Across frontal, oblique near- and far-side impact tests, CORA ratings ranged from 
0.55-0.92 (fair to excellent) for prediction of seatbelt forces and 0.61-0.86 for 
kinematics. In many cases, correlation ratings were similar for MHBMs and the B-
HBM. Exceptions were two frontal impact tests with obese (BMI ≥ 30 (World Health 
Organization 2005)) subjects where correlation to the PMHS kinematics was higher 
for the obese MHBMs. The obese MHBMs predicted greater magnitude excursions, 
closer to PMHS levels, than the B-HBM, but still predicted less pelvis excursions than 
the obese PMHS. Further, for small female PMHS in frontal impact, the MHBMs 
tended to predict too small forward excursions, while the B-HBM predicted excursion 
magnitudes greater than the small female PMHS results.  
 
In most cases where shoulder belt routing was varied, MHBM and B-HBM 
kinematics, seatbelt forces, and resulting CORA ratings were only marginally 
influenced by initial shoulder belt routing. The exception was one of two 60° far-side 
impact tests, s0135 Table 2. In this test, all HBMs slipped out of the shoulder belt 
restraint, except for the MHBM with high initial shoulder belt routing, which resulted 
in reduced excursion magnitudes for this case. 
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In lateral impacts, CORA ratings were 0.57–0.88 for impact forces, and kinematic 
CORA ratings were 0.63–0.89 for lateral spine velocity and 0.18–0.82 for chest 
deflections. A general trend for all HBMs in the lateral impacts was that greater chest 
impact forces and smaller chest deflections, compared to corresponding test results, 
were predicted. 

4.2 Re-validation of MHBMs based on SHBM v.10 

Since Paper I, SHBM was updated to v.10 (Pipkorn et al., 2021; Pipkorn et al., 2023). 
The parametric HBM morphing method was implemented also for this version. The 
SHBM updates included a new thoracic soft tissue mesh, including separate modeling 
of subcutaneous skeletal muscle and adipose tissue, a new average male pelvis 
geometry and updated modeling of the shoulder joints. The ribcage model from 
SHBM v.9 was kept. 
 
Kinematic predictions of v.10-MHBMs using nominal seatbelt models were validated 
using PMHS tests in Table 2, following methods described in Paper I, with one 
exception. This was an update regarding anterior-posterior chest deflection 
measurements in tests 1701 and 1702, that were changed to measure chest deflection 
relative to the spine for PMHS, v.9- and v.10-MHBMs. This was measured as half-
depth deflections in Paper I, relative to a reference line spanned between left and right 
side of PMHS chestbands (lateral nodes at skin of HBM chest). For v.10-MHBMs 
with updated soft tissues, the reference line was displaced independently of anterior 
chest deformation. Resulting CORA ratings for v.9- and v.10-MHBMs are shown in 
Table 3 for frontal and oblique impact scenarios and Table 4 for lateral impacts. 

Table 3. CORA ratings for SHBM v.9- and v.10-based MHBM predictions in frontal and 

oblique impact scenarios.  

  
Excursion 

Kinematics  
  Seatbelt Forces 

Test 
ID 

v.9-
MHBM 

v.10-
MHBM 

  
v.9-

MHBM 
v.10-

MHBM 

1441 0.83 0.80   0.87 0.87 

1262 0.68 0.80  0.70 0.75 

1263 0.72 0.72  0.55 0.59 

1333 0.75 0.75   0.76 0.81 

1761 0.77 0.81   0.84 0.76 
s0211 0.66 0.73  0.88 0.82 
s0213 0.67 0.77   0.81 0.88 

s0124 0.81 0.83  0.82 0.84 

s0135 0.78 0.81   0.89 0.77 

 
In the frontal and oblique impacts, v.10-MHBM kinematic predictions obtained 
improved CORA ratings for excursion kinematics in tests 1262, s0211 and s0213, 
Table 3. In test 1262, the v.9-MHBM slipped out of the shoulder belt (for all 
alternative initial seatbelt routings) and predicted too large forward excursions of the 
head. The PMHS in this test, as well as the v.10-MHBM did not slip out of the 
shoulder belt. The resulting v.10-MHBM head excursion prediction was therefore 
closer to the PMHS result. Tests s0211 and s0213 had small female PMHS’ as test 
subjects, Table 2, and v.9-MHBMs predicted too small forward excursions in these 
tests. The v.10-MHBMs predicted increased forward excursions, closer to the test 
results and obtained improved kinematic CORA ratings. For tests 1263 and 1333 with 
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obese subjects, v.9- and v.10-MHBM kinematic predictions were similar, and the 
CORA ratings were the same for both versions of MHBMs. 
 

Table 4. CORA ratings for SHBM v.9- and v.10-based MHBM predictions in lateral impact 

scenarios. 

  
Lat. Vel. 

Kinematics 
Deflections Impactor Forces 

Test ID 
v.9-

MHBM 
v.10-

MHBM 
v.9-

MHBM 
v.10-

MHBM 
v.9-

MHBM 
v.10-

MHBM 
NBA1004A 0.65 0.73 0.61 0.75 0.70 0.79 
NBA1005A 0.72 0.79 0.63 0.94 0.82 0.85 
NBA1006A 0.65 0.82 0.56 0.87 0.84 0.85 
NBA1006B 0.70 0.69 0.55 0.90 0.81 0.78 
NBA1007A 0.72 0.79 0.47 0.71 0.76 0.87 
NBA1108A 0.76 0.73 0.65 0.89 0.74 0.85 
NBA1109A 0.75 0.74 0.36 0.65 0.61 0.68 
NBA1110A 0.76 0.84 0.42 0.59 0.62 0.72 
NBA1110B 0.74 0.73 0.38 0.58 0.59 0.71 
NBA1213A 0.73 0.79 0.73 0.89 0.67 0.73 
NBA1213B 0.89 0.82 0.61 0.76 0.77 0.82 

     Seatbelt forces 
1701 0.88 0.78 0.24* 0.43* 0.85 0.74 
1702 0.83 0.77 0.31* 0.36* 0.73 0.75 

*Normalized anterior-posterior chest deflection measurements updated to be 
relative to spine for PMHS and v.9- as well as v.10-MHBMs 

 

 

Figure 10. Left column: Lateral chest deflections measured at the thorax and abdomen levels 

in test NBA1006A (black), v.9 (red) and v.10-MHBMs (blue). Right column: Force vs. 

deflection. 

For the lateral impacts, the major difference between v.9- and v.10-MHBMs was 
improved CORA ratings for chest deflections for v.10-MHBMs, Table 4. Overall, 
v.10-MHBMs predicted greater deflection and lower impact force magnitudes in the 
chest region compared to v.9-MHBMs, as demonstrated by deflection and force 
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results from test NBA1006A in Figure 10. In this test setup, PMHS lateral chest 
deflection results were reported as percent of half of the initial thoracic lateral width 
from chestbands at two levels. Impact force results were reported from force 
transducers mounted behind impactors, each impacting the PMHS in different target 
regions. In the MHBM simulations, the same measurements, relative to initial MHBM 
thoracic half-width, were calculated from relative node displacements in locations 
corresponding to chestband positions on the PMHS. The contact force between each 
impactor and the MHBM was used for the force results. 
 
For tests 1701 and 1702, v.10-MHBM CORA rating was improved when compared to 
v.9-MHBM results, but the v.10-MHBM CORA ratings still only received a marginal 
biofidelity rating, Table 4. The low average chest deflection CORA ratings were 
mainly due to differences in anterior-posterior deflections between test results and 
MHBM predictions, see Figure 11 showing chest deflection results from test 1701. In 
the tests, the chest expanded anteriorly at the xiphoid level (lower end of sternum), 
seen as negative deflection results in Figure 11, while the v.10-MHBMs predicted a 
compression of the chest. The reason for this difference in chest deformation behavior 
is not known. A possible contributing factor can be differences in overall ribcage and 
torso geometry between the individual test subject and the MHBM torso geometry 
predicted by statistical body and ribcage shape models in the morphing. In Larsson et 
al. (2019), a personalized model, created by further morphing the parametrically 
morphed v.9-MHBM to geometrically match the 1701 subject ribcage (from CT-scan) 
and torso geometry (chestband shapes) predicted an expansion at the xiphoid 
chestband, but of smaller magnitude than the test result. 
 

 

Figure 11. Normalized chest deflections measured at the axilla (armpit) and xiphoid process 

(lower end of sternum) levels in test 1701 (black), v.9 (red) and v.10-MHBMs (blue). Left: 

anterior-posterior deflections. Right: lateral deflections. 

4.3 Validation of MHBM Rib Fracture Risk Predictions 

For each test replicated using v.9-MHBMs in Paper I, an age-adjusted strain-based 
NFR2+ risk was calculated using the probabilistic method (Forman et al., 2012). For 
v.10-MHBMs, NFR2+ risk was calculated using the probabilistic method with the 
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updated age- and strain-based fracture risk function presented in Objective IV, Paper 
III. The age of each corresponding PMHS was used in the NFR2+ calculations.  
 
Compared to v.9-MHBM, the v.10-MHBM predicted increased NFR2+ risks in most 
frontal and oblique tests (i.e., tests ID’s in Table 3) and tended to produce slightly 
lower risk predictions most lateral impacts, Table 5. Overall, both v.9- and v10-
MHBM NFR2+ risk predictions appear low when compared to the test outcomes, that 
often had a substantial number of fractured ribs. Exceptions are v.10-MHBM 
predictions in tests 1262 and 1263 that were saturated at 100 %, with test outcomes of 
10 and 17 fractured ribs, respectively (Table 5). 

Table 5. Test ID, subject height, weight and age, number of fractured ribs (NFR) in the test, 

v.9- and v.10-MHBM NFR2+ risk predictions for Nominal seatbelts. 

Test ID 
Ht. 

[cm] 
Wt. 
[kg] 

Age 
[Yr] 

Test 
NFR 

v.9-MHBM 
NFR2+ [%] 

v.10-MHBM 
NFR2+ [%] 

1441 171 65 60 10 2.0 85.4 

1262 175 55 51 10 92.1 100.0 

1263 165 109 57 17 62.5 100.0 

1333 189 124 54 7 10.9 99.4 

1761 167 66 74 9 0.2 18.6 

s0211 162 40 57 10 0.0 0.0 

s0213 152 47 65 4 0.0 0.3 

s0124 182 86 44 16* 5.0 64.8 

s0135 178 79 61 10* 15.8 85.8 

NBA1004A 173 79 66 0 0.1 0.0 
NBA1005A 183 98 51 0 0.0 0.0 
NBA1006A 188 102 34 0 0.0 0.0 
NBA1006B 188 102 34 1 9.6 0.0 
NBA1007A 175 72 87 2 0.1 0.0 
NBA1108A 178 56 85 3 0.1 0.0 
NBA1109A 157 68 51 4 1.4 0.0 
NBA1110A 167 39 80 1 0.5 1.7 
NBA1110B 167 39 80 7 95.8 99.7 
NBA1213A 160 53 73 2 1.2 0.4 
NBA1213B 160 53 73 4 62.3 83.4 

1701 166 56 61 5 0.0 0.0 

1702 155 44 83 10 0.4 0.0 

*Number of rib fractures, assumed to be more than two fractured ribs in AUC 
calculation 

 
To evaluate the utility of v.9- and v.10-MHBM NFR2+ predictions to classify the 
presence of two or more fractured ribs in the set of PMHS tests, ROC curves were 
created, and AUC was calculated. Guidelines for AUC utility by Mandrekar (2010) 
were used: 0.5 ≤ no utility < 0.7 ≤ acceptable < 0.8 ≤ excellent < 0.9 ≤ outstanding.  
 
Resulting AUC was 0.71 and 0.76 for v.9- and v.10-MHBM NFR2+ predictions, 
respectively, indicating acceptable utility for both HBM versions, Figure 12. 
 
Overall, based on comparison to PMHS test results, it is concluded that v.10-MHBMs 
have good biofidelity for excursion kinematics, fair to good biofidelity for chest 
deflections, and that v.10-MHBM NFR2+ predictions have acceptable utility for 
predicting two or more fractured ribs. 
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Figure 12. ROC curves for NFR2+ risk predictions from v.9- (red) and v.10-MHBMs (blue). 
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5 Objective III: Population Rib Fracture Risk 

Objective III: Develop a method to predict population rib fracture risk, and provide 

recommendations of how many and which MHBMs to use to represent the population 

variability in rib fracture risk due to sex, height, and weight variability (Paper II). 

 
Evaluating the rib fracture risk for the population of occupants through direct 
computation with MHBMs can become prohibitively time consuming, since a single 
crash simulation with a detailed FE-HBM can take hours to days to compute. For 
prediction of MHBM results over the population, a trained metamodel can be used. 
How many and which MHBM anthropometries that are needed to represent the 
population variability in rib fracture risk by means of a metamodel were investigated 
in Paper II. 

5.1 Summary of Paper II 

 

Figure 13. MHBMs in frontal impact (top row) and near-side impact (bottom row) using 

generic vehicle interior models. Left column: females. Right column: males 

The method consisted of three main steps. First, metamodel training data representing 
NFR2+ rib fracture risk outcomes for a population of occupants in frontal and near-
side impacts was generated. The occupant population was sampled within the ranges 
(Objective I, Figure 9) to obtain 200 male and 200 female MHBM height and weight 
morphing targets. MHBMs were generated by parametric HBM morphing of SHBM 
v.10, using a fixed age parameter of 45 years. The occupant crash scenarios were 
modelled using generic vehicle interior models, Figure 13. Resulting frontal impact 
NFR2+ results ranged from 1 % to 100 %. In the side impact NFR2+ ranged from 
0 % to 70 %, Figure 14. Generally, for similar heights and weights, male and female 
MHBM NFR2+ predictions were different. 
 
Secondly, two regression methods were evaluated for their capability of 
metamodeling NFR2+ in both accident scenarios: linear regression with second order 
polynomial terms regularized with least absolute shrinkage and selection operator 
(LASSO) (Tibshirani 1996) and Gaussian process regression (GPR) (Gramacy 2016). 
The evaluation consisted of repeatedly measuring metamodel RMSE and R2 for 
predicting NFR2+ in left-out test points, for metamodels constructed using varying 
amounts of training data. Here, the resulting RMSE tended to decrease at a high rate 
with increasing training set sizes, up until approximately 25 randomly selected 
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MHBMs of each sex. Beyond 25 MHBMs of each sex, the rate of error reduction was 
reduced. Overall, separate metamodels for each sex constructed using GPR performed 
best in terms of test set RMSE and R2. 

 

Figure 14. Contour plots of NFR2+ versus height and weight. The color corresponds to NFR2+ 

risk in percentage. Top Row: Females. Bottom Row: Males. Left column: Frontal impact. Right 

column: Near-side impact. 

Third, with separate GPR models for each sex, it was investigated how many, and 
which MHBMs within the training sample that can be used to represent population 
NFR2+. Here, “to represent population NFR2+” meant that the metamodel that was 
constructed using only results from the selected MHBMs had the lowest RMSE error 
across the entire population sample, averaged over both impact conditions. This was 
investigated for different subpopulation sizes (up to n=28), starting from three males 
and three females. For each subpopulation size, individuals were selected by an 
optimization that minimized an averaged normalized RMSE error, ANRMSE: 

Where  &!'�,tuu was the metamodel RMSE calculated for all available NFR2+ 

results in the population, and 
�vw4, 
�v�� were the largest and smallest outputs among 
the currently evaluated training points.  
 
Resulting GPR models constructed from seven or more selected individuals had 
population R2 > 0.80 for both males and females in both crashes.  
Overall, the results indicate that GPR models constructed using 25 MHBMs of each 
sex, evenly sampled across their corresponding height and weight regions, can be 
used to predict NFR2+ for the population in a crash scenario. Further reducing the 
number of HBMs requires leveraging known effects of height, weight, and sex on 
NFR2+, which was done in the optimization. The optimization objective, Eq. 2, can 
be extended to include NFR2+ outcomes from more cars and crashes, which will be 
needed to identify a family of MHBMs representative of population NFR2+ for all 
crashes. 

q &!'� =  &!'�,tuu
�vw4 −  
�v�� 
(Eq. 1) 

\q &!' = 0.5 ∗ q &!'yz{�= + q &!'|�}~  (Eq. 2) 
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6 Objective IV: Additional Parameters 

Objective IV: Determine factors, beyond those considered in the parametric HBM 

morphing method, that influence the rib fracture risk predictions for the population 

(Papers III and IV). 

 
While parametric HBM morphing of the SHBM enables the study of how geometrical 
shape trends, due to height, weight, age, and sex, influence occupant rib fracture risk, 
there are additional factors that potentially can influence the resulting rib fracture risk 
predictions.  
 
One such factor is the rib fracture risk function. The Forman et al., (2012) age and 
strain-based rib fracture risk function was created based on rib failure strain data from 
twelve, predominantly older, subjects and used age scaling based on age-trends from 
femoral cortical bone. In Paper III, a new age- and strain-based fracture risk function 
was developed using recent rib cortical bone experimental results.  
 
Beyond the risk evaluation itself, individual factors, such as rib and ribcage geometry, 
as well as material properties vary across the population and are often only weakly 
related to age, height, weight, and sex. With possibly influential variability in several 
dimensions, there is a need to prioritize which factors to include when population rib 
fracture risk should be evaluated through HBM simulations. In Paper IV, the SHBM 
v.10 was parametrized to represent individual variability in 15 factors, and a 
parametric sensitivity analysis was performed in frontal and near-side lateral impacts 
to identify the most influential factors. 

6.1 Summary of Paper III 

Rib cortical bone failure strain data from tensile testing performed with samples 
extracted from 58 PMHS’ (31 males 27 females) (Katzenberger et al., 2020) was used 
to create an age and strain-based rib fracture risk function. Ages of subjects were 17–
99 years. It was investigated if age, sex and the interaction of age and sex influenced 
failure strain. Parametric survival analysis with accelerated failure time was used to 
create the risk function. Risk was taken as 1-Survival.  
 

 

Figure 15. Newly developed risk function (red) together with Forman et al., 2012, and Forman 

smoothed for ages (left to right) 25, 45 and 75 years 

Only age influenced failure strain. Thus, age was used as a co-variate in the 
parametric survival analysis. The log-normal distribution was used to model rib 
fracture risk as a function of strain and age. The new risk function is plotted vs. strain 
for three different ages together with the original Forman et al. (2012) and a smooth 
version of the Forman et al. function (Iraeus and Lindquist 2020) in Figure 15. 
Compared to previous risk functions, for a given level of rib strain, the new function 
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predicts lower fracture risk for younger subjects (25 years), similar risk for middle-
aged (45 years) and slightly increased risks for older subjects (75 years). 
 
The influence of the new rib fracture risk function on SHBM (v.9) probabilistic 
NFR2+ rib fracture risk predictions was evaluated by first replacing the original risk 
function in the Forman et al. (2012) probabilistic calculations. Next, new NFR2+ 
predictions were calculated using previously generated SHBM (v.9) stochastic 
simulation results. The stochastic simulations, previously presented in Pipkorn et al. 
(2019), represented variations of vehicle interior geometry and restraint system design 
parameters in frontal and near-side crashes of varying delta-velocity. The resulting 
risk predictions were compared to NFR2+ predictions calculated using the previous 
risk function and field data estimated risk of NFR2+. 
 

 

Figure 16. Near side impact NFR2+ risk versus delta-velocity from stochastic SHBM 

simulations using the newly developed risk function (red-dashed), smoothed version of Forman 

et al. 2012 (black-dashed) and field data estimate (NASS/CDS, black solid). 

This resulted in a reduced risk prediction for a given delta-velocity, closer to the field 
data estimate, for young (30 years) occupants and a slightly increased risk prediction 
for older occupants (70 years), Figure 16. 
 
In the new rib fracture risk function, the age adjustment corresponds to reducing rib 
failure strain by 12 % for every 10 years of ageing. This age effect was estimated 
from experimentally obtained human rib cortical bone failure strain results, and is 
greater than the 5 % assumed in Forman et al. (2012). As noticed in Figure 16, the 
main effect of this increased age sensitivity is a reduced risk prediction for younger 
occupants. 

6.2 Summary of Paper IV 

The SHBM (v.10) was parametrized to represent variability in 15 different factors 
potentially influencing rib fracture risk. The parameters and parameter ranges were 
sourced from published literature. As the SHBM represents an average male, male 
data was used where applicable.  
 
Overall ribcage geometry was varied according to six ribcage shape PCs (Figure 17) 
identified from a sample of 89 average male subjects in a preliminary study (Larsson 
et al., 2022). These six PCs together described more than 90 % of variance in ribcage 
shape geometry in the sample. Also rib cross-sectional height and width was varied. 
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Variation in these geometrical parameters were achieved by morphing the SHBM 
using a custom script. Further, the rib cortical bone thickness, assigned as nodal 
thickness in the rib cortical bone shell elements, was varied. 
 

 

Figure 17 Ribcage shape variations described by PCs, demonstrated by morphing SHBM 

ribcage to ± 2 SDs of score of (left to right) PC 1–6. 

Material parameters for material models representing rib cortical and trabecular bone, 
costal cartilage, intercostal muscle, skeletal muscle, and subcutaneous adipose tissue 
were varied. For rib cortical bone, rib trabecular bone, and subcutaneous adipose 
tissue, several material model parameters were co-varied as a function of a single 
scaling parameter, to represent overall softer and stiffer material responses. This 
scaling is demonstrated for rib cortical bone in Figure 18, where Young’s modulus, 
yield stress and plastic modulus were scaled simultaneously. 
 

 

Figure 18. Ranges of rib cortical bone elasto-plastic isotropic material model parameters 

illustrated for the parameterized SHBM. Average (black) corresponds to original SHBM 

material properties, Lower (red) and Upper (blue) denotes the scaling ranges. Thin lines 

represent tensile test results of human rib cortical bone from younger (30 ± 5 years, yellow) 

and older (70 ± 5 years, black) (Katzenberger et al.,, 2020). 

Using the parametrized SHBM, variance-based parameter sensitivity analyses for 
NFR2+ predictions were performed in two occupant impact scenarios, representing a 
frontal and a near-side lateral impact, respectively. For both impact scenarios the 
parametrized SHBM was seated as a driver in generic vehicle interior models 
representing averaged vehicle geometry and generic restraint systems. The variance-
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based sensitivity analysis was conducted using an approximative method (Zhang and 
Pandey 2014), and three parameter sensitivity indices: !�, !�?, and !	� were calculated.  

 

Figure 19. Frontal impact NFR2+ first-order sensitivity indices !� , (black dots) and total 

sensitivity indices, !	�, (red diamonds) calculated for each parameter.  

Resulting frontal impact sensitivity indices, !� and !	�, as well as names for all 15 
varied parameters are shown in Figure 19. Based on first order and total sensitivity 
indices, the same three parameters were identified as being the most influential in 
both impact conditions. These parameters were rib cortical bone thickness, rib cross-
sectional width, and rib cortical bone material parameters, see Figure 19. Based on the 
total sensitivity index for rib cortical bone thickness, 40 % of the total variability in 
NFR2+ risk can be attributed to the population variability in cortical bone thickness, 
due to its first order effect and its interaction effects with other parameters. The 
second order indices, !�?, showed similar interaction effect magnitudes for all 
parameters in both impacts, and the most substantial interaction effects were, in order: 
cortical bone thickness and cortical bone material, cortical bone thickness and rib 
cross-sectional width, and rib cross-sectional width and cortical bone material 
stiffness. For all remaining parameters, each parameters top three interaction effects  
were with rib cortical bone thickness, rib cortical bone material stiffness, and rib 
cross-sectional width. 
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7 Discussion and Future Work 

With the overall aim of enabling the assessment of kinematics and rib fracture risk 
predictions for the population of occupants, the research performed for this thesis has 
focused on four main objectives. These objectives are: define the target population, 
MHBM validation, population rib fracture risk prediction, and additional parameters. 

7.1 Definition of target population 

Within the first objective a definition of a population was determined. This population 
definition includes 90 % of U.S. males and females in terms of height and weight 
ranges. A population definition consisting of male and female height and weight 
ranges is suitable to be used in conjunction with the parametric HBM morphing 
method that uses sex, height, weight, and age as input parameters to create MHBM 
versions to represent various adult occupants of all ages. 
 
The U.S. population was chosen both because that population has previously been 
used as the standard population for crash safety evaluation, through the ATD sizes, 
but also for the open availability of detailed population data through the NHANES 
program. While similar data from the general population in other countries is, as far as 
the author is aware, not publicly available, hindering a direct comparison, the ranges 
obtained from the U.S. population are likely to accommodate a majority of occupants 
also from other countries. In Table 6, the limits of heights and weights in the MHBM 
population definition are shown with adult 5th – 95th percentiles of Swedish (Hanson 
et al., 2009) and Malaysian (Abd Rahman et al., 2018) heights and weights, as 
northern European and Asian population examples, respectively. Generally, the 
MHBM population ranges cover, or are close to the 5th and 95th percentiles of also 
these populations. Provided with the corresponding male and female height and 
weight distribution data, a similar population definition with updated ranges can be 
determined for a specific country or region. 

Table 6. Adult male and female 5th and 95th percentiles of height and weight in Sweden and 

Malaysia. Maximums and minimums of male and female MHBM population ranges. 

 Male ht. [cm] Female ht. [cm] Male wt. [kg] Female wt. [kg] 

Percentile 5th 95th 5th 95th 5th 95th 5th 95th 

Sweden 167 190 156 179 57 103 50 80 

Malaysia 158 172 144 166 53 95 43 81 

Limits min max min max min max min max 

MHBM 
population  

159 192 146 177 54 141 43 130 

 
All vehicle occupants should, as far as possible, have an equal level of protection. 
Individuals near the edges of the defined height and weight ranges can be considered 
statistically rare. However, those individuals present a challenge to vehicle safety 
systems, by representing various extreme combinations of height and weight that can 
be encountered in the occupant population. It is likely that safety systems that can 
provide a high level of protection for these occupants will be able to also protect the 
occupants closer to the centers, representing more common height and weight 
combinations. Thus, targeting to achieve a high level of safety for all occupants 
within these defined ranges has the potential to result in safety systems that are robust 
to most of the variability in height and weight existing among the population of 
occupants. Limitations with this population definition are, first, that people can differ 
in many more dimensions than just sex and overall body height and weight. Some of 



33 
 

these differences affects rib fracture injury tolerance and were further explored under 
Objective IV. Other differences, such as for example sitting height to stature ratio, 
percent body fat for a given weight, and variations in self-selected seating posture can 
potentially influence the resulting injury outcome. Exploring such factors in future 
research may reveal additional important factors to consider in the definition of a 
population of occupants. Another limitation is the 90 % target itself, which means that 
one in ten individuals from the U.S. population will be outside the ranges. However, 
representing occupants beyond the considered ranges will likely require other 
methods than parametric HBM morphing, which is beyond the scope of this thesis, as 
such sizes can potentially mean both substantial extrapolation for the statistical shape 
models, and extreme shape changes for MHBM FE meshes. 

7.2 Validation of MHBM Kinematic Predictions 

MHBMs were compared to subject specific PMHS results representing various ages, 
heights and weights for both males and females. This way of validating MHBMs has 
been applied in previous validations of morphed THUMS, GHBMC and SAFER 
HBMs (Zhang et al., 2017; Larsson et al., 2019; Hwang et al., 2020). A difficulty with 
validating MHBM models over a large height and weight range is the limited 
availability of reference test data. Among the tests included for MHBM validation in 
Paper I, several of the PMHS’ tended to have weights close to the lower weight 
ranges, and only two PMHS’ were obese, Figure 20. The reason is that there is a lack 
of PMHS tests performed with heavier subjects. Thus, more PMHS tests performed 
using male and female subjects of a wide range of heights and weights are needed to 
validate HBMs that are representative of the height and weight variability of today’s 
population. The defined population ranges can aid in selection criteria for future 
PMHS tests where individuals close to the upper edges of weight should be prioritized 
for inclusion. 

 

Figure 20. Height and weight of female (red) and male (black) subjects used for MHBM 

validation relative to the defined population ranges. 

In addition to sex, height, weight, and age variability, the PMHS tests included for 
validation data represented variations in impact scenarios and restraint system 
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settings. A mix of impact configurations adds robustness to the biofidelity evaluation 
of MHBMs. However, a drawback with using a mix of impact configurations and 
restraint systems is that it becomes difficult to identify general trends in MHBM 
predictions with respect to the morphing parameters across the impact configurations, 
because both boundary conditions and MHBM morphing target parameters change. 
Therefore, MHBM predictions are influenced both by the morphing as well as by the 
boundary conditions. Several repeated PMHS tests, representing a wide range of 
subject sizes within a single test configuration will facilitate correlation analysis as a 
function of morphing parameters, which can reveal potential limitations of MHBMs. 
 
Additionally, among the included reference tests, different test setups recorded 
different sets of test results, which further hindered comparison across test 
configurations. To overcome this issue, a test average CORA rating was used as an 
overall measure of MHBM correlation. The averaging was weighted towards the test 
signals with the largest magnitude. This was a way of adjusting for boundary 
conditions and differences in recorded results across configurations, in that the major 
force and kinematic PMHS results in each test, irrespective of boundary conditions, 
had the greatest influence in the final correlation rating.  
 
In most of the evaluated cases, both SHBM v.9-MHBMs (Paper I) and v.10-MHBMs 
obtained good biofidelity correlation ratings for kinematics. However, some 
limitations in MHBM predictions were identified. For lateral chest deflections in side 
impacts, v.9-MHBMs consistently predicted too small deflection magnitudes, whereas 
v.10-MHBMs predicted larger chest deflections, closer to PMHS results and obtained 
improved CORA ratings in these cases. As the overall geometry, as well as ribcage 
models were the same in both versions, this improvement is likely due to the updated 
material modelling of adipose and muscle tissue in SHBM v.10. For two obese 
subjects in frontal impact, v.9-MHBMs obtained improved correlation ratings when 
compared to the, non-morphed baseline SHBM v.9, due to predicting increased 
forward excursions, closer to the PMHS results. However, the obese v.9-MHBMs still 
predicted smaller forward excursions of the pelvis than what was obtained in the 
PMHS tests. Also v.10-MHBMs predicted too small pelvis forward excursions for the 
obese subjects, even though soft tissue materials around the hip and abdominal 
regions were updated, Figure 21.  

 

Figure 21. Pelvis forward excursions in test 1333. Test results (black), v.9- (red) and v.10-

MHBM predictions 

For all obese MHBMs it was noted that the lap belt did not penetrate as deep into the 
abdomen of the MHBMs, as it did for the obese PHMS’. The lack of belt penetration 
into the abdomen has also been observed for an obese parametrically morphed 
GHBMC in the same test setup (Gepner et al., 2018). The authors of that study 
hypothesized that the GHBMC adipose tissue material was too stiff, which is likely 
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true also for v.9-MHBM material. For v.10-MHBMs the material modelling was 
improved, as judged by improved chest deflection predictions, but lap belt to 
abdomen interaction was not influenced when compared to v.9-MHBMs. Another 
potential reason for poor prediction of lap-belt interaction with obese MHBMs can be 
that the element quality is reduced when the baseline HBM abdominal mesh is 
stretched, through morphing, to represent a large volume of adipose tissue. The obese 
v.9-MHBMs had two solid elements through the thickness of the abdomen, whereas 
the v.10-MHBMs had three, representing improved element aspect ratios, but this did 
not influence the results. A third, and likely influential reason is that the parametric 
morphing method has limited capability to accurately represent the geometry around 
the hip of higher weight subjects, discussed in the following.  
 
The statistical body shape model used in the morphing is based on laser scanning of 
seated subject external body geometry (Park et al., 2021). However, for seated 
subjects of higher weights, the lower abdomen tends to fold over (Janak 2020). The 
region in the intersection between abdomen and legs, inside the folded abdomen, was 
not captured by the external laser scans and this region is replaced with a scaled 
template geometry in the statistical shape model (Park et al., 2021). Resulting 
parametric MHBMs of higher weights, morphed to fit the statistical body shape 
model, thus lack the abdominal fold. Janak (2020) developed methods to morph the 
50th male GHBMC to geometrically match obese PMHS, including the abdominal 
fold, and found that models with the abdominal fold predicted more realistic 
interactions with the lap belt. This indicates that representing the abdominal fold can 
improve MHBM predictions of seat belt interaction and associated pelvis excursions. 
However, folding over the baseline GHBMC abdominal mesh through morphing 
alone created negative volume elements and local re-meshing was required (Janak 
2020). Therefore, a potential improvement of the modeling of individuals of higher 
weights in future work can be to create an additional, baseline HBM mesh 
representing a higher-weight subject with an already existing fold in the abdominal 
soft tissue. Such a model can potentially be morphed in a simplified way using the 
statistical body shape model by omitting some landmarks that would correspond to 
the interior of the fold. Alternatively, detailed morphing can be achieved by obtaining 
landmarks from medical scanning of seated subjects (Janak 2020), and given a 
sufficient number of such scans, the abdominal fold geometry can be included in a 
statistical shape model.  
 
Even though the obese v.10-MHBMs predicted less pelvis forward excursion than the 
corresponding PMHS, the test condition did not include any instrument panel or 
similar structure. In a vehicle environment, it is likely that interaction forces between 
occupant knees or legs and the vehicle interior would reduce the large pelvis 
excursions observed in the test conditions. Therefore, in a vehicle environment, where 
excursion is limited, it is likely that obese MHBM kinematic predictions, including 
pelvis forward excursion, will be more similar to that of a corresponding obese 
occupant, although the overall force balance between lap belt force and compressive 
forces through the femurs will differ. 

7.3 Validation of MHBM Rib Fracture Risk Predictions 

For the NFR2+ rib fracture risk validations performed in Objective II, the predicted 
risk levels from v.9-MHBMs and most v.10-MHBMs appeared low when compared 
to the number of fractured ribs in each PMHS test, Table 5. As identified under 
Objective IV, Paper IV, the rib cortical bone thickness, material properties and rib 
cross-sectional widths have a substantial influence on HBM NFR2+ predictions. 
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Among these influential factors, only the rib cross-sections are modified to population 
trends by the parametric morphing, due to the statistical ribcage shape model 
modifying the overall rib geometry (Wang et al., 2016). While there are statistically 
significant age trends indicating that both the thickness and material properties of 
cortical bone are reduced with increasing age, there is also a substantial variability 
between individuals of similar age, which means that these trends have low predictive 
capabilities. For example, age and sex can explain (R2) 22–37 % of overall rib cortical 
bone thickness (Holcombe and Derstine 2022), and age explains 24 % of the material 
properties Young’s modulus and yield stress (Katzenberger et al., 2020). Rib cross-
sectional dimensions also varies between individuals (Mohr et al., 2007; Kindig 2009; 
Holcombe et al., 2019). The large variability means that HBMs representing averaged 
properties, even if adjusted for age and sex trends, are unlikely to match a particular 
individual subject, and can therefore predict a mismatching rib fracture risk. 
 
Analysis of frontal impact test results with physical human ribs has identified that 
individual level parameters, such as age, sex, height and weight are poor predictors 
for rib stiffness and fracture force in frontal impact experiments with physical human 
ribs (Agnew et al., 2018). Rib level predictors, utilizing actual rib length and cross-
sectional measures performs better and can explain 57 % of stiffness results and, 
when combined with age, up to 73 % of peak force before rib fracture (Agnew et al., 
2018). In the context of validating MHBM rib fracture risk by comparison to 
individual PMHS rib fracture outcomes, it appears that it would be beneficial for 
predictive accuracy to not only match overall body size of the MHBM, but also 
cortical bone thickness distributions, material properties and cross-sectional 
dimensions of the ribs to the corresponding values in each individual subject. 
 
Such an approach has previously been applied at the rib level, in detailed subject 
specific modelling of single ribs. Iraeus et al. (2019) modelled mid-level ribs tested in 
single rib frontal impact experiments. Overall rib geometry and cortical bone 
thickness distributions of the ribs were obtained from high resolution clinical CT 
scans (0.164 mm in-plane * 0.625 mm slice thickness). Cortical bone thickness 
throughout the ribs was obtained with a thickness accuracy of -0.013±0.17 mm, and 
cortical bone material properties were obtained from tensile testing. The FE mesh size 
used three hexahedral elements through the cortical bone thickness, resulting in 0.61–
1.53 million elements per rib (cf. 3.1–3.4 thousand elements in SHBM mid-level 
ribs). Generally, the rib model predictions in that study could be divided in two 
groups: one with good correlations to test results, that predicted experimental forces 
and high cortical bone strains at the corresponding fracture location, and one with 
poor correlations. In the poor correlation group, common features were that the 
subjects had weaker material properties, thinner cortical bone, and higher age (Iraeus 
et al., 2019). Considering the Iraeus et al. (2019) results, it is indicated that MHBMs 
would still not be able to predict the rib fracture risk for some of the individuals in the 
validation reference data, even if subject-specific rib cross-sections, cortical bone 
thickness, and material properties were implemented in MHBM ribcages.  
 
Rib cortical bone has an inhomogeneous structure. Individuals can for example have 
varying degrees of intra-cortical porosity (Agnew and Stout 2012), with a trend of 
increasing porosity with age (Dominguez and Agnew 2016). Pores, or other 
imperfections, such as microcracks (Agnew et al., 2017), in the cortical bone 
microstructure, can cause stress concentrations during loading. Iraeus et al. (2019) 
hypothesized that the ribs in the poor correlation group had greater levels of 
intracortical porosity. Such microstructural features are too small to be registered, 
even with the detailed CT-scanning method used to define the rib cortical bone in 



37 
 

Iraeus et al. (2019), and the cortical bone was therefore modelled as a homogenous 
continuum. It is likely that the continuum modeling assumption for rib cortical bone, 
applied both in the SHBM ribs and by Iraeus et al. (2019), breaks down as the amount 
of local imperfections, and associated stress concentrations, increase. Further 
research, investigating how microstructural features in rib cortical bone affects overall 
structural properties and fracture risk, as well as modelling strategies incorporating 
important effects at the level of detail possible in full-body HBMs are needed. This 
can result in improved rib fracture risk predictions for the part of the population where 
such effects influence the fracture risk, predominantly older individuals. 
 
For the NFR2+ validations in the current work, is it likely that applying subject 
specific rib cortical bone material properties, thickness and cross-sectional properties 
would result in NFR2+ predictions more in line with the observed PMHS rib fracture 
numbers for some subjects, provided that cortical bone microstructural imperfections 
are not dominating the fracture mechanisms in the PMHS ribs. As such subject 
specific data requires a detailed medical imaging protocol and material testing, as well 
as methods to represent subject specific rib cross-sectional properties and cortical 
bone thickness distributions along and around the HBM ribs, this is not possible for 
the current reference set of PMHS tests. Alternatively, as most subjects were 60 years 
or older, representing known age trends for rib cortical bone material properties and 
thickness in the SHBM ribs can result in increased NFR2+ predictions that, on 
average, are more in line with the test outcomes for older subjects (von Kleeck et al., 
2022). 
 
Nevertheless, as based on AUC values, both v.9- and v.10-MHBM NFR2+ 
predictions had acceptable utility for classifying the presence of two or more fractured 
ribs among the PMHS tests, Figure 12, even though the number of rib fractures in the 
most vulnerable subjects cannot be predicted. For improved prediction of the most 
vulnerable subjects, an updated rib cortical bone modeling method, or fracture risk 
criteria, or both is needed. An improved understanding of rib cortical bone 
microstructural composition and its effects on material failure on the macroscopic 
scale is needed to inform future modeling efforts. 

7.4 Population Rib Fracture Risk 

With the capability to evaluate occupant kinematics and rib fracture risk using 
MHBMs representing a wide range of heights and weights for both males and 
females, a natural next question is how to assess the rib fracture risk across the 
defined occupant population. The intention of this assessment is that it enables the 
development of cars and safety systems with a reduced risk of rib fractures for all 
occupants. As industrial development of cars and safety systems is performed within 
time and resource constraints, there is a benefit if such assessments are as time 
efficient as possible, which can be achieved by reducing the number of different 
MHBMs used to represent the population, while still maintaining sufficient prediction 
accuracy. 
 
Within Objective III, Paper II, metamodeling was applied to construct response 
surfaces of male and female NFR2+ as functions of height and weight in two accident 
scenarios, to be able to provide recommendations of how many and which MHBMs to 
use. However, there are some aspects that makes it difficult to provide definitive and 
general answers.  
 



38 
 

One aspect is that the crash boundary conditions that the population of MHBMs are 
subjected to are likely to influence the answer. Examples of boundary conditions that 
can influence the effects of sex, height, and weight on NFR2+ outcomes include the 
specifics of each car, such as interior geometry and structural properties, safety 
systems and their settings, as well as the crash conditions and severity. This was 
demonstrated by the results from Paper II, where the NFR2+ population outcomes, 
Figure 14, were different between the frontal and near side impact cases. This means, 
if the population outcome in each of these crashes should be represented separately, 
different sets of MHBM sizes would be more suitable for each respective set of 
boundary conditions, provided a limited number of MHBMs are to be used. 
Therefore, to enable selecting a set of individuals that are representative beyond a 
single set of boundary conditions, the optimization in Paper II selected individual 
MHBMs based on a criterion of average predictive accuracy in both crashes 
(ANRMSE, Eq. 2). While only representing two boundary conditions is a limited 
evaluation compared to the number of possible boundary conditions represented by 
different cars and crash scenarios, the optimization criteria can be expanded to include 
more boundary conditions. Performing the selection of individuals that minimizes 
ANRMSE across a broad set of boundary conditions appears to be a promising 
method to identify a set of individuals that are generally representative of population 
NFR2+, or other outcomes of interest, due to sex, height and weight variations across 
the population in future work.  
 
Another aspect is the presence of numerical noise in HBM injury predictions. While 
HBM crash simulations are deterministic in the sense that re-running the same 
simulation on the same computer will produce the same results, the numerical 
calculations involved in the solutions means that small parameter changes spuriously 
result in larger than expected, i.e., noisy, output changes. One factor that influences 
the numerical noise is the decomposition performed for multi-core calculations which 
distributes different parts of the total crash simulation to different computing cores 
(Östh et al., 2021). As this decomposition depends on which parts are included in the 
crash simulation, the numerical noise magnitude does not only depend on the specific 
HBM but can also be different for different boundary conditions. Due to the noise, it 
is difficult to use simple aggregated model metrics such as RMSE and R2 to define 
general thresholds for acceptable metamodel accuracy, as such metrics depend on the 
unknown noise magnitude.  
 
In Paper II, to determine how many HBMs were needed, it was identified at which 
metamodel training set size the metrics showed diminished improvements with 
increasing number of training points. The reasoning for this is that substantial 
reductions in metamodel prediction errors for test points, i.e., points not part of the 
training data, with increasing training data indicate that the model does not have the 
capability to predict important trends in the targeted output surface. When increasing 
the training data instead only yields gradual improvements to the model predictive 
capabilities, this is an indication that important trends in the output surface are 
accounted for, and additional training data only serves to locally refine metamodel 
predictions. One pitfall with this approach is that it is possible to add training data 
within an already well predicted region, while missing a region that is not yet known 
to be poorly predicted. In such cases, model error and accuracy measures would 
remain largely unaffected as training data increase, even though adding points in 
another region could substantially improve them. In this context, regression methods 
with capabilities to provide confidence regions about its predictions, such as GPR, can 
inform about input regions with high predictive uncertainty. Future work with 
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metamodeling of population injury outputs can provide necessary experience to 
determine general metric thresholds defining an acceptable metamodel accuracy.  
 
Based on the population NFR2+ outputs and metamodel error trends with increasing 
training set sizes in Paper II, it was identified that it was possible to construct GPR 
metamodels representative of the population outcomes with as few as five to ten 
individuals of each sex. As the individuals were selected through optimization for 
known outcomes, further studies including variations in vehicle interiors and crash 
conditions are needed to identify individuals that are generally representative of 
population NFR2+. To identify the population NFR2+ outcome in other vehicles and 
crashes it is recommended that at least 25 male and 25 female MHBMs, evenly spread 
out across the height and weight ranges are used to create a GPR metamodel. 

7.5 Additional Influential Parameters 

Within Objective III, only sex, height, and weight variability were included when 
modeling the population rib fracture outcomes. However, as investigated in Objective 
IV, several other parameters can influence NFR2+ predictions. 
 
The reason for not including these parameters in Objective III is that variability in 
their values is largely independent of the height and weight of an individual. That is, 
to the best of the knowledge of the author, variability in rib fracture risk caused by the 
population variability in these parameters exists for both males and females of all 
heights and weights within the population. This means that for every combination of 
sex, height, and weight evaluated within the MHBM population, a distribution of 
NFR2+ outcomes can be computed by repeatedly sampling other parameter values 
that influence NFR2+ predictions. In doing this, the existing age trends in rib cortical 
bone thickness and material properties can also be represented. Currently, the NFR2+ 
risk predicted by MHBMs representing averages of these parameters does not 
necessarily represent the average of the NFR2+ distribution that would be obtained if 
the parameter variability was represented. This is because under non-linear 
circumstances, such as calculating rib fracture risk based on rib strain, Figure 15, 
models using average parameters does not always predict the average population 
result (Cook and Robertson 2016). 
 
Therefore, to be able to predict the variable rib fracture risk within the population of 
occupants though MHBM simulations, it is important that the human variability that 
influence rib fracture risk predictions, beyond sex, height and weight is represented. 
The main contribution of Paper IV was to identify that three parameters can represent 
most of the influence on NFR2+ variability, which greatly simplifies such 
calculations in future work. 
 
Another way of accounting for the effect of the population variability in the three 
most influential parameters for NFR2+ without necessarily computing it through 
repeated crash simulations with an MHBM has been investigated in master thesis 
work (Solhed 2022). Here, the aim was to create a regression model that uses the rib 
strains from a HBM simulation with baseline values for the three most influential 
parameters, and additionally new values for the influential parameters as predictors. 
This regression model then predicts as output what the resulting rib strains would be, 
had the new parameter values been represented in the HBM in the crash simulation. 
The general motivation for such a complementary regression model for rib strain 
variability is that: while variations in rib cross-sectional width, cortical bone thickness 
and material properties are highly influential for the strain levels predicted locally in 
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the ribs, and thus NFR2+ risk, these rib-local variations have little influence on the 
global HBM response, such as overall kinematics. In Solhed (2022), such a regression 
model was created for the SHBM v.10 that predicted new rib strain histories across 
the entire ribcage model. However, remaining tasks for future work lies in generating 
training data also for MHBMs across the population of occupants. Here, it is 
important to include a broad range of impact scenarios such that the resulting 
regression model generalizes well to any impact condition. The benefit of developing 
such a method is that only baseline MHBM predictions, representing the overall 
effects of sex, height, and weight to overall chest loading and rib strains in a particular 
crash, are needed to calculate the distributions of NFR2+ outcomes that are expected 
due to the population variability. 

7.6 Applications 

With the demonstrated kinematic biofidelity and rib fracture risk prediction 
capabilities (Objective II), MHBMs based on SHBM can be used as occupant 
substitutes in the development of vehicles and safety systems. For a particular car and 
crash scenario, a baseline of population (Objective I) rib fracture risk outcomes due to 
male and female height and weight variations can be efficiently established using 25 
MHBMs of each sex and metamodeling (Objective III). Based on the resulting trends 
in NFR2+ due to sex, height and weight, alternative safety systems, potentially with 
features adaptive to occupant characteristics (e.g., reduced seatbelt force limiting 
levels for lower weight occupants), can be designed and rib fracture risk can be re-
evaluated. Reducing the MHBM NFR2+ predictions across the population will likely 
result in vehicles with a reduced rib fracture risk for all occupants.  
 
In addition to vehicle and safety system manufacturers, crash safety rating and 
regulatory organizations can use the population of validated MHBMs to define virtual 
crash test scenarios that motivates development of vehicles with an increased level of 
safety for all occupants. E.g., Euro NCAP intends to complement its occupant crash 
protection evaluation with virtual rating tests with HBMs (Euro NCAP 2022). 
Validated MHBMs along with the population definition and the metamodeling 
approach, can aid in the selection of challenging virtual vehicle safety evaluation 
scenarios representing occupant characteristics beyond the traditional ATD sizes. 
 
The findings from Objective IV can be used to improve rib fracture risk prediction 
from HBMs in several ways. First, the new rib fracture risk function (Paper III) can be 
used for rib fracture risk predictions with an improved age-sensitivity using any HBM 
capable of predicting rib cortical bone strain. Examples of applications with THUMS, 
GHBMC and VIVA+ HBMs exists (Forman et al., 2022; Johansson Sundblad and 
Wassenius 2022; Ressi et al., 2022). Secondly, the most important factors for HBM 
rib fracture risk predictions (Paper IV) can be used to prioritize areas of HBM 
development, such as improving ribcage models, in terms of representing accurate rib 
geometry and material properties. Additionally, the findings can motivate further 
research into detailed characterization of rib geometry, rib cortical bone thickness, 
and material properties, which is crucial input for HBM modelling with an enhanced 
level of detail. For example, it is not yet established if and how these factors correlate 
within individuals, which should be considered when the population variability shall 
be represented in parameterized HBM simulations.  

7.7 Limitations 

Some limitations come from the parametric HBM morphing method used. Beyond 
limitations in its representation of heavier occupant hip region geometry, it is also 
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limited in its capability to realistically represent geometry of those skeletal parts that 
are not described by a statistical shape model, such as the lumbar and cervical spines, 
the clavicle, and bones of the upper extremities. Similarly, the thickness distribution 
of muscle and adipose tissue layers is not controlled during morphing. All parts not 
controlled by a statistical shape model obtain their final morphed shape by 
interpolation based on how nodes in surrounding parts, that do have a statistical shape 
model, are deformed. Including statistical shape models for these parts and in 
particular for the lumbar and cervical spine, whose deformations are involved in 
overall body kinematic displacements may further improve biofidelity of MHBM 
kinematic predictions.  
 
For MHBM validations, few PMHS with higher weights were included in the 
reference tests for MHBM validation, which means that the upper weight ranges in 
the population definitions are not represented in the validation data. Additional 
reference PMHS tests performed with higher weight subjects can improve confidence, 
or identify important limitations, in MHBM predictive capabilities. Furthermore, the 
validation cases are limited front to side impact cases with subjects in an upright 
seating posture. No validation of e.g., reclined occupant postures, or rear impact 
scenarios have been performed. 
 
Additionally, morphing deforms the elements of the baseline HBM mesh, often 
resulting in degrading element quality, most notably in the skin and subcutaneous soft 
tissues around the hip and abdomen when modeling obese subjects. While care has 
been taken to assure that MHBMs are free from major errors, such as initial contact 
surface intersections, the only strict element quality criteria that has been enforced is 
Jacobian > 0.2 for solid and shell elements throughout the MHBMs. Even though 
elements with such low quality have mainly been identified in limited regions, around 
armpits and the hip for high weight occupants, low quality elements can still influence 
the overall results. As degraded element quality can reduce the ability of elements to 
accurately represent deformations, and thus stress and strain, due to external forces, 
the resulting HBM kinematic and rib fracture risk predictions can be influenced, 
although the effect of element quality on the predictions in the current work is not 
known. Further method development towards assuring a high element quality 
throughout all MHBMs can reduce the uncertainties following uncontrolled element 
quality. 
 
Further, the rib fracture risk for the most vulnerable, predominantly older, occupants 
was underestimated. One reason can be that that modelling the rib cortical bone as a 
homogenous continuum underestimates stress concentrations, or other phenomena 
from microstructural effects in the cortical bone. Further research utilizing detailed 
modelling of the cortical bone microstructure can potentially provide guidance into 
modelling rib fracture risk from such effects at the level of detail possible in full body 
HBMs. 
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8 Conclusions 

With the overall aim to enable the assessment of kinematics and rib fracture risk in 
crashes for the population of car occupants in virtual crash testing with parametric 
HBM morphing, this PhD research projects has 
 

• Defined a population target to be represented by MHBMs 
 

• Validated SAFER HBM-based MHBM predictions of kinematics and NFR2+ 
rib fracture risk across the population of adult vehicle occupants 
 

• Developed a method to predict population NFR2+ risk and provided 
recommendations of how many and which MHBMs to use to construct GPR-
based metamodels that can predict population NFR2+ risk variability due to 
sex, height, and weight variations within the population 

 
• Constructed a new age and strain-based rib fracture risk function, with the age 

effect estimated directly from human rib cortical bone testing. This risk 
function can be used by any HBM capable of predicting strain in the rib 
cortical bone 
 

• Identified that beyond sex, age, height and weight, the individual variability in 
rib cortical bone thickness, rib cross-sectional width and rib cortical bone 
material properties influences NFR2+ risk predictions across the population of 
occupants 
 

It is concluded that parametric MHBMs based on SAFER HBM, representing 
geometrical shape trends due to sex, age, height and weight, and rib local individual 
variability influential for rib fracture risk predictions, can be used to assess kinematics 
and rib fracture risk for the population of car occupants. Rib fracture risk predictions 
from parametrically morphed SAFER HBMs have acceptable utility for the population 
of occupants, but the risk for the most vulnerable, predominantly older occupants, is 
underestimated. 
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