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Department of Mathematical Sciences
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Abstract

Deep learning has revolutionized industry and academic research. Over the
past decade, neural networks have been used to solve a multitude of previously
unsolved problems and to significantly improve the state of the art on other
tasks. However, training a neural network typically requires large amounts of
data and computational resources. This is not only costly, it also prevents deep
learning from being used for applications in which data is scarce. It is therefore
important to simplify the learning task by incorporating inductive biases - prior
knowledge and assumptions - into the neural network design.

Geometric deep learning aims to reduce the amount of information that neural
networks have to learn, by taking advantage of geometric properties in data. In
particular, equivariant neural networks use symmetries to reduce the complexity
of a learning task. Symmetries are properties that do not change under certain
transformations. For example, rotation-equivariant neural networks trained to
identify tumors in medical images are not sensitive to the orientation of a tumor
within an image. Another example is graph neural networks, i.e., permutation-
equivariant neural networks that operate on graphs, such as molecules or social
networks. Permuting the ordering of vertices and edges either transforms the
output of a graph neural network in a predictable way (equivariance), or has no
effect on the output (invariance).

In this thesis we study a fiber bundle theoretic framework for equivariant neural
networks. Fiber bundles are often used in mathematics and theoretical physics to
model nontrivial geometries, and offer a geometric approach to symmetry. This
framework connects to many different areas of mathematics, including Fourier
analysis, representation theory, and gauge theory, thus providing a large set of
tools for analyzing equivariant neural networks.

Keywords: geometric deep learning, equivariance, induced representations,
convolutional neural networks, fiber bundles, gauge theory, symmetry.
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1 Introduction

This thesis consists of three chapters of background material followed by three
papers, Papers I-III. The background material should be read as needed, it is
not necessary to read all three chapters before starting with the papers.

We begin with an introduction to deep learning that focuses on a supervised
learning problem and a particular class of neural networks known as multilayer
perceptrons. This introduction sets the stage for a more detailed discussion on
convolutional neural networks (CNNs) and their translation equivariance property
that has inspired much research under the term geometric deep learning.

Equivariant neural networks, including the group equivariant convolutional neural
networks and the gauge equivariant neural networks studied in Papers I-III, make
use of symmetries as an inductive bias that simplifies deep learning tasks. That
is, such networks are designed to deliver high performance while using fewer
parameters and less data than their non-equivariant counterparts.

This thesis centers around a mathematical framework for equivariant neural
networks that uses principal bundles and associated vector bundles. Not only
does this framework let us incorporate global symmetries (group-equivariance)
and local symmetries (gauge-equivariance) into neural networks, the bundle-
theoretic language allows it to capture relevant geometric information in a more
general sense. The drawback is that it requires an advanced set of mathematical
tools. For this reason, we also provide introductions to representation theory
and to mathematical gauge theory.

Notational remark: In this thesis and in Papers I-II, we follow the mathematics
convention of letting the word vector refer to an element of a vector space, or linear
space. We stress this point because the data in an equivariant neural network is
modeled as sections of associated vector bundles. This definition does include,
for example, scalar fields and tensor fields despite the name. Since Paper III is
aimed primarily at a physics audience, it follows the physics convention and
reserves the word vector to mean geometric vector; an object with magntiude
and direction and that transforms in a certain way.

1
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2 Deep Learning

In this chapter, we give mathematical introductions to essential aspects of deep
learning, convolutional neural networks, and geometric deep learning.

2.1 Essentials of deep learning

Consider the problem of estimating an unknown function F : X → Y between
two spaces X and Y , given a training data set

Strain = {(xi, yi) ∈ X × Y | i = 1, . . . , Ntrain} , (2.1)

with labels yi = F(xi) + ϵi that may contain random noise ϵi.

In a house price estimation task, for instance, X could be the set of all houses in
some geographical region, parameterized by numerical features such as square
meters, number of rooms, construction year, etc. In this example, the codomain
Y = [0,M ] would be the possible price range for some realistic upper bound
M > 0, and the unknown function F : X → Y would associate each house
with its, in some sense, true value. The training data set Strain would contain a
list of recently sold houses xi together with their final selling price yi, which
may differ from their true value F(xi) for one reason or another.

Another example is an image classification task in which X consists of medical
images and F : X → {0, 1} is a binary function that specifies whether a given
image x ∈ X depicts a tumor. In this case, the training set Strain would be a
relatively small set of manually labeled images and any noise ϵi ∈ {0, 1} would
be due to misclassification.

A natural approach for approximating the unknown function F is to consider
a space of parameterized functions Fθ : X → Y , and use the training data set

3



4 2. Deep Learning

to optimize the parameter θ so to minimize the discrepancy between Fθ and F .
This is what neural networks do.

Among the simplest and most basic neural networks are multilayer perceptrons.
These are functions Fθ : RN0 → RNL consisting of a sequence of layers

xl = σl
(
W lxl−1 + bl

)
, l = 1, . . . , L, (2.2)

where x0 ∈ RN0 is the input to the first layer. The components of the bias vector
bl ∈ RNl and of the weight matrix W l ∈ RNl×Nl−1 in each layer are trainable
parameters, and the activation functions σl : R → R are non-linear functions that
are applied component-wise toW lxl−1+bl. Common choices for the activation
functions include the rectified linear unit ReLU(x) = max{0, x} as well as the
sigmoid σ(x) = (1 + e−x)−1. The neural network is thus the function

Fθ : RN0 → RNL , Fθ(x
0) = xL, (2.3)

and θ consists of all trainable parameters, i.e., components of the bias vectors bl

and weight matrices W l. This means that the number of trainable parameters
can grow extremely large if the dimensions are large (Nℓ ≫ 0) and the network
is sufficiently deep (L≫ 0). It is not uncommon for a neural network to have
billions of trainable parameters.

We estimate the difference between the neural network Fθ and the unknown
function F : RN0 → RNL by comparing the output Fθ(xi) to the corresponding
label yi for each training data point xi. The comparison is made using a non-
negative distance function

d : RNL × RNL → [0,∞). (2.4)

Common choices include the Euclidean norm d(v, w) = ∥v − w∥ or its square
d(v, w) = ∥v−w∥2. The function F is estimated by minimizing the loss function

ℓ(θ) =
1

Ntrain

Ntrain∑
i=1

d(fθ(xi), yi). (2.5)

Minimizing the distance between Fθ(xi) and F(xi) would have provided a
better approximation, but we only know the labels yi = F(xi) + ϵi. This makes
it important to have accurate labels with little noise. If d(v, w) = ∥v − w∥, for
example, we obtain the upper bound

1

Ntrain

∑
i

∥Fθ(xi)−F(xi)∥ ≤ ℓ(θ) +
1

Ntrain

∑
i

∥ϵi∥, (2.6)

and the same bound (with different notation) holds for any distance function
d(v, w) that satisfies the triangle inequality. If the labels contain a lot of noise,
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then we cannot guarantee a good estimate of F regardless of how much we are
able to minimize the loss function ℓ(θ).

The trainable parameters constituting θ are often initialized randomly, meaning
that the network produces nonsense estimates before training. The network has
no predictive power in the initial stages. However, an iterative optimization
method such as gradient descent,

θ 7→ θ − α∇ℓ(θ), (2.7)

with learning rate α > 0, ensures that the training loss ℓ(θ) always decreases in
each iteration of training (called an epoch to distinguish it from other iterative
processes). There are many different optimization methods to choose between,
but most methods are based on gradient descent. One such example is stochastic
gradient descent, which effectively allows the loss function to increase in some
epochs; this helps prevent the loss function from getting stuck in a local minima.

Given a sufficiently large number of trainable parameters, and after training
for a sufficient number of epochs, a well-designed neural network eventually
reaches a small training loss. What this means is that the network accurately
predicts the correct label yi for inputs xi in the training data set. However, the
reason why we develop and train neural network is to apply them outside
of the training context. In the house price estimation task, for example, the
network is trained on historic data with the hopes of using it to estimate values
of houses that are not yet on the market. So it is crucial to investigate whether
the network has learned to solve the actual problem at hand; whether it extracts
relevant information from data and makes an educated guess, or if it has simply
learned the training data by heart. A network that performs well on training
data but fails to make accurate predictions outside of the training data set is
said to suffer from overfitting.

One example would be if there is only a single training data point, Ntrain = 1.
The network has little chance to learn general features of the data distribution if
it only sees a single instance, hence it is likely to overfit. So one way to prevent
overfitting is to increase the amount of training data. Another method is to add
regularization terms to (2.5) that prevent the training loss from becoming too
fine-tuned to the (noisy) training data.

The performance is also evaluated during each epoch by applying the network
to a separate test data set Stest and computing the test loss. This information
is not used to update the network parameters through gradient descent, it is
only used for evaluation. However, performance on test data is often used as a
stopping criteria: If the test loss has begun to increase while the training loss
is still decreasing, then the network is likely starting to overfit. Training may
thus be aborted at this point.
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Model parameter such as the number of layers L, the dimensions Nl, learning
rates, regularization parameters, etc., are known as hyperparameters. It is com-
mon to train a neural network multiple times with different combinations of
hyperparameters and then choose the best-performing combination. As the test
data has then indirectly influenced the training of all these network designs,
causing statistical bias, a third validation data set Svalidation is used to evaluate
the different combinations of hyperparameters. Hopefully, the resulting neural
network Fθ is a good approximation to the unknown function F .

In this introduction to deep learning, we have discussed one of the most basic
neural network designs - the multilayer perceptron. We have also focused on
the task of approximating an unknown function F : X → Y given a training
data set (2.1) of labeled data (xi, yi). This is known as a supervised learning task.
There exists an ocean of neural network designs and different kinds of tasks,
with different training procedures and evaluation methods [Goodfellow et al.,
2016]. Nevertheless, the material we have presented here summarizes some of
the core aspects that many deep learning methods have in common.

2.2 Convolutional neural networks

In this thesis, we are primarily interested in a particular type of neural network
called convolutional neural networks (CNNs). These networks are applied to data
points that have a 2D or 3D grid structure, which we represent mathematically
as finitely supported functions

f : Z2 → Rm, (2.8)

wherem is the number of channels. For example, a 3D array of size 10×20×5 is
modeled as a function f : Z2 → R5 supported on a 10× 20 grid in Z2 and with
m = 5 channels.

Digital images satisfy (2.8) if we view Z2 as the pixel grid: Digital images map
each pixel to either a grayscale value (m = 1) or an RGB array (m = 3). Finite
support is then analogous to finite image resolution. Equivalently, we can view
RGB images as being 3D arrays in which the red, green, and blue color channels
are stacked on top of each other (Figure 2.1).

The main building blocks of CNNs are called convolutional layers. The name is
inspired by convolutions of real-valued functions κ, f : R → R,

(κ ∗ f)(y) =
∫ ∞

−∞
κ(y − x)f(x) dx, (2.9)
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(a) Grayscale image (m = 1). (b) RGB image (m = 3).

Figure 2.1: Digital images have a 2D (grayscale) or 3D (RGB) grid structure. We can also
view them as functions f : Z2 → Rm with m = 1 (grayscale) or m = 3 (RGB) channels.

but have been generalized to allow vector-valued data points (2.8):

[κ ⋆ f ](y) =
∑
x∈Z2

κ(x− y)f(x). (2.10)

Here, κ : Z2 → Hom(Rm,Rn) is a matrix-valued kernel (or filter) for some natu-
ral number n ∈ N. Note that (2.10) differs from (2.9) not only in dimensionality
and the domain of integration/summation, we have also involuted the kernel:
κ(x− y) versus κ(y − x). This means that (2.10) is a cross-correlation operator
rather than a convolution operator, but it can easily be turned into the latter by
redefining the kernel. Papers I-III use the convention (2.10) as it makes some
proofs easier to formulate. Convolutional layers are actually implemented in
the form of cross-correlations in standard machine learning platforms such as
PyTorch and TensorFlow.

Convolutional layers are trained by optimizing the matrix elements in κ(x) for
each x ∈ Z2. This is possible because, in practice, κ is only supported on a small
number of points around the origin in Z2. When referring to a convolutional
layer with a “3× 3 kernel”, for instance, we mean that

supp(κ) =
{
(x1, x2) ∈ Z2

∣∣ x1, x2 = −1, 0, 1
}
. (2.11)

That is, the kernel size 3× 3 only refers to the support of κ, which is different
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y

y

Figure 2.2: A convolutional layer that maps a 4-channel data point f : Z2 → R4 into
a 2-channel data point κ ⋆ f : Z2 → R2. This convolutional layer uses a 3 × 3 kernel,
meaning that κ is supported on a 3× 3 grid. This should not be confused with the 4× 2
matrix dimension of κ(x).

from the matrix dimensions n×m of κ(x) ∈ Hom(Rm,Rn). The most common
kernel sizes are k × k where k is a small, odd integer.

To compute the output [κ ⋆ f ](y) of a convolutional layer at a point y ∈ Z2,
we first transform each m-channel input array f(x) into an n-channel output
array κ(x− y)f(x) for each point x ∈ Z2, and then sum over x. This procedure
can be visualized as placing the k × k kernel on top of the input data point f ,
with the kernel support centered at y, and computing pointwise inner products
between f and each row in the kernel κ (Figure 2.2). When computing [κ⋆f ](z)
at another point z ∈ Z2, we simply reposition the kernel and repeat the process.
Convolutional layers are thereby computed by “sliding” the kernel across the
input data point f .

The “sliding kernel” interpretation illustrates that convolutional layers employ
weight sharing, i.e., the same k2 ∗ n ∗m non-zero kernel matrix elements are
used to compute the output at each point. The very small number of weights
in convolutional layers makes CNNs relatively efficient to train.

There is another interesting consequence of the sliding kernel: Consider the
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translation operator on Z2 that translates each grid point by the same amount,

Lx0
: Z2 → Z2, Lx0

(x) = x+ x0, x0 ∈ Z2. (2.12)

This translation operator induces a translation operator on data points, moving
the argument in the opposite direction:

(Lx0
f)(x) = f(x− x0). (2.13)

Applying a convolutional layer to the translated data point gives the relation

[κ ⋆ Lx0
f ](y) =

∑
x∈Z2

κ(x− y)f(x− x0)

=
∑
x∈Z2

κ(x− (y − x0))f(x) = Lx0 [κ ⋆ f ](y).
(2.14)

Convolutional layers thus commute with the translation operator. Intuitively,
this means that convolutional layers preserve the global symmetry in Z2, which
is important for applications. As an example, consider using a CNN for a facial
recognition task, and suppose for argument’s sake that the kernel κ has learned
to recognize human eyes. Thanks to the translation equivariance (2.14), it does
not matter where the eyes are located in any particular image, the sliding kernel
will eventually find them.

We can add a bias vector b ∈ Rn after the convolutional layer and then apply a
non-linear activation function σ : R → R to each component. These operations
are independent of x ∈ Z2, hence the composition

σ (κ ⋆ f + b) (2.15)

is still translation equivariant; it still commutes with the translation operator.
We can therefore build arbitrarily long sequences of layers (2.15) that preserve
translation equivariance. That being said, there are also other layers that break
equivariance. One example is pooling layers which are used for downsampling;
essentially, throwing away (hopefully redundant) information in order to speed
up computations. To give an explicit example, max pooling layers split Z2 into
small components and computes the maximum value of data points f in each
component, which clearly breaks equivariance (Figure 2.3).

Translation equivariance is an important property of convolutional layers that
facilitates learning, but it is not the only aspect that determines the performance
of a CNN. Sometimes, achieving higher performance may require using pooling
layers or other layers that break equivariance. It is also common practice to use
a multilayer perceptron or some other neural network for the last layers in a
CNN, and these networks also break equivariance. However, the general idea
is that if equivariance aids in the extraction of useful features in the first layers,
it may not be needed later on.
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Figure 2.3: Max pooling layer.

2.3 Geometric deep learning

In many machine learning tasks, data is effectively treated as arrays of numbers
that have no useful geometric properties. It is common, for example, to reshape
2D arrays into 1D arrays by stacking columns on top of each other, even if this
destroys geometric information that may have been present.

Geometric deep learning is an umbrella term, introduced by Bronstein et al. [2017],
for deep learning methods that make direct use of geometric information in data.
CNNs are among the simplest examples of geometric deep learning methods, as
convolutional layers use the translation symmetry in Z2 to efficiently solve
learning tasks with relatively little data and few parameters. On the other hand,
CNNs still assume that data points are flat arrays of numbers.

Other types of data have natural curvature, one example being meteorological
data on intercontinental regions. Another example is spherical images, such as
those used in Google Street View. Furthermore, aerial photographs may
have a flat geometry and can be processed using ordinary CNNs, but there is
an orientation ambiguity in aerial photographs that CNNs do not understand.
When processing such images, it would be desirable to use convolutional layers
that commute not only with translations but also with rotations, i.e., layers that
are equivariant with respect to planar rototranslations.

Translations and rotations are global symmetry transformations. When people
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refer to symmetric objects, such as the mirror symmetry of a butterfly or the 120◦

rotational symmetry of an equilateral triangle, they are implicitly referring to
global symmetries. Translations, rotations, and (mirror) reflections move the
elements of the underlying space, such as the rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, θ ∈ R, (2.16)

which rotates elements of R2. If we model the circle as the set

S1 =

{[
x1
x2

]
∈ R2

∣∣∣∣ x21 + x22 = 1

}
, (2.17)

then applying the rotation matrixR(θ) to each point x ∈ S1 causes each point to
move, but the set itself is unaffected. Intuitively, the circle is globally symmetric
under rotations because it is rotationally invariant as a set.

Local symmetry refers to properties that are invariant to certain internal degrees
of freedom. Local symmetries are also known as gauge symmetries and were first
studied by physicists, since they arise naturally in electromagnetism, quantum
chromodynamics, and other areas. However, local symmetries are also relevant
in mathematics and in various applications. Anyone who has studied linear
algebra knows that vectors can be represented in different bases, and this affects
their numerical representation as column vectors. For example, the velocity of
a moving car is a well-defined geometric vector in classical mechanics. It has
direction and magnitude, but its representation as a column vectorab

c

 = ae1 + be2 + ce3 ∈ R3, (2.18)

depends on which basis elements e1, e2, e3 ∈ R3 have been chosen. The choice of
basis is an internal degree of freedom in mathematical models that affects how
vectors (and matrices and tensors) are represented in, say, a computer. This
choice can affect computations and conclusions drawn from the model, despite
being irrelevant for the underlying application. The freedom to choose a basis is
a superfluous degree of freedom internal to the model; it is a local symmetry.

Taking relevant symmetries into account when designing neural networks can
simplify the learning task, by making the symmetries built-in properties of the
network. Such networks can use symmetry, by means of equivariance, as a tool
for extracting relevant information from data. This also reduces the amount
of information that networks need to learn. Local and global symmetries are
geometric properties and equivariant neural networks are thus geometric deep
learning methods.
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LeCun et al. [1989] pioneered the use of convolutional layers in neural networks,
and Cohen and Welling [2016a] were among the first to extend CNNs beyond
translation equivariance. Their group-equivariant convolutional neural networks
(GCNNs) allow equivariance under a swathe of global symmetries. GCNNs use
convolutional layers of the form

[κ ⋆ f ](g) =

∫
G

κ(g−1g′)f(g′) dg′, g ∈ G, (2.19)

where G is the global symmetry group under consideration, dg′ is a left Haar
measure on the group, f is a vector-valued function representing input data,
and κ is a matrix-valued sliding kernel. The discrete convolutions (2.10) used in
ordinary CNNs correspond to the special case G = Z2 of discrete translation
symmetry in two dimensions. Note that the Haar measure on Z2 is the counting
measure, so the integral (2.19) does reduce to a discrete sum in this case. The
introduction of GCNNs was a breakthrough not only in terms of generalization,
GCNNs have a rich mathematical theory that builds upon representation theory
and the theory of fiber bundles [Cohen et al., 2018b]. This connection to highly
developed areas of mathematics has enabled rapid progress in the field.

Here are some of the most popular examples of GCNNs:

• Spherical CNNs (G = SO(3)) are powerful models for analyzing spherical
data and solving rotation symmetric tasks in R3, since their convolutional
layers commute with rotations [Cohen et al., 2018a, Gerken et al., 2022,
Toft et al., 2022].

• As mentioned above, tasks involving digital images sometimes benefit
from rotational equivariance in addition to the translation equivariance of
CNNs. Such networks have been successfully used, e.g., in medical image
analysis [Bekkers et al., 2018, Veeling et al., 2018, Lafarge et al., 2021].

• Graph neural networks are equivariant with respect to permutations, and
therefore commute with elements of a symmetric group G = Sn for some
natural number n. Elements of this group are bijections of the set {1, . . . , n}
and they act on any enumerated set of objects {x1, . . . , xn} by permuting
indices. This makes graph neural networks apt for applications involving
molecular data, social networks, or other types of graph data. The vertex
enumeration of a graph is often not intrinsically important information,
and graph neural networks produce consistent output for different vertex
enumerations. See [Zhou et al., 2020] for an extensive review.

There are many different kinds of graph neural networks and not all of
them are special cases of GCNNs. However, any permutation-equivariant
linear map can be expressed as a convolutional layer in a GCNN.
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While GCNNs are among the most well-known equivariant neural networks,
there are many other related models. These include, for instance, steerable CNNs
[Cohen and Welling, 2016b, Weiler et al., 2018, Cesa et al., 2021], B-spline CNNs
[Fey et al., 2018, Bekkers, 2019], and PDE-based GCNNs [Smets et al., 2023].

Local symmetry is arguably more niche and has therefore received less attention,
but there are some interesting applications nevertheless. The applications mainly
go in two directions:

1. We mentioned earlier that local symmetry originated in physics. Neural
networks that are equivariant with respect to local (gauge) symmetries
have been developed for applications primarily in lattice gauge theory
[Luo et al., 2021, Favoni et al., 2022]. Equivariant neural networks have
been shown to approximate various physical quantities and solve tasks
more effectively than ordinary CNNs [Favoni et al., 2022]. They have also
been suggested as alternatives to Monte Carlo methods in some situations
where the latter are relatively inefficient [Kanwar et al., 2020].

2. Learning on manifolds refers broadly to deep learning methods designed to
process data on curved spaces in geometrically consistent ways. Ordinary
neural networks can process such data by working in local coordinates
in different regions, but the network output can depend heavily on the
choice of coordinates and the induced frame of reference. There is also no
guarantee that overlapping regions produce comparable output. Equiv-
ariant networks solve this problem by imposing constraints that make
the layers transform in certain ways under change of coordinates [Cheng
et al., 2019, Weiler et al., 2021]. The choice of local coordinate system or,
more precisely, of the induced reference frame, is a local symmetry just
like the choice of basis discussed earlier.

The books by Bronstein et al. [2021] and Weiler et al. [2021] are two excellent
resources for learning more about geometric deep learning.

Paper I investigates whether equivariance to global symmetries can be achieved
by other means than through convolutional layers in a GCNNs. The framework
used in this paper also describes equivariance to local symmetries. In Paper II,
we review different variants of equivariant neural networks for local or global
symmetries. Finally, in Paper III we develop neural networks for applications
in lattice gauge theory. These networks are simultaneously equivariant with
respect to global lattice symmetry and local gauge symmetry.
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3 Representation theory

Assume that a given learning task is symmetric in some sense, for example
translation invariance in image classification, or rotational symmetry in radial
tasks such as depth estimation. The symmetry is encoded in a group G that
acts by linear transformations on vectors (or scalars or tensors). By extension,
these symmetry transformations also act on data points, which are modeled as
vector-valued functions. Neural network layers also act on data points and we
say, roughly speaking, that a neural network is equivariant if its layers commute
with the symmetry transformations.

The assignment of a linear transformation ρ(g) to each group element g ∈ G is
called a representation. Their induced action on data points make representations
central to the study of equivariant neural networks. In fact, the brief description
of equivariance given above can be sharpened: Layers in an equivariant neural
network intertwine representations on the relevant input and output spaces. We
will say more about this later.

Definition 1. Let G be a Lie group. A (strongly continuous) representation of G
on a topological vector space V is a group homomorphism

ρ : G→ GL(V ), (3.1)

such that the following map is continuous for all g ∈ G and all v ∈ V :

G× V → V, (g, v) 7→ ρ(g)v. (3.2)

Representations are denoted (ρ, V ) or simply ρ. A representation is unitary if V
is a complex Hilbert space and ρ(g) is unitary, ρ(g)−1 = ρ(g)†, for all g ∈ G.

Even though almost everything in this chapter holds for locally compact groups,
we restrict attention to Lie groups. This is because the theory introduced here is
intended to be used in the next chapter, in which all spaces (including groups)
are required to be manifolds.

15
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Theorem (Hilbert’s fifth problem). Assume that G is both a topological group and
a topological manifold. Then G is a Lie group.

Remark 1. Manifolds are assumed to be Hausdorff and second countable.

Remark 2. Any finite or countably infinite groupG is a 0-dimensional Lie group
when equipped with the discrete topology and the smooth structure defined by
the atlas

A = {(Ug, φg) | g ∈ G} . (3.3)

Here, the chart (Ug, φg) corresponding to each g ∈ G is given by Ug = {g} and

φg : {g} → R0, g 7→ 0. (3.4)

As such, the representation theory of Lie groups includes that of finite groups
and of countably infinite groups.

We will give some examples of real representations, and representations can be
studied for vector spaces over any field. Complex representations are especially
well-behaved, however, because the complex numbers are algebraically closed.
Most introductory texts focus on complex representations for this reason, and
so do we: Unless otherwise stated, vector spaces V are assumed to be complex.

Example 1. Let G be a topological group. For any topological vector space V ,
there is a trivial representation that sends each g ∈ G to the identity operator,

ρ : G→ GL(V ), ρ(g) = IdV . (3.5)

The special case V = C is known as the trivial representation. ■

Example 2. Consider the rotation group SO(2) and identify each element with
its angle of rotation θ. Then the map

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, (3.6)

defines a representation on R2 as well as on C2. Indeed, for all angles θ, ϕ,

R(θ)R(ϕ) =

[
cos θ − sin θ
sin θ cos θ

] [
cosϕ − sinϕ
sinϕ cosϕ

]
=

[
cos θ cosϕ− sin θ sinϕ − cos θ sinϕ− sin θ cosϕ
sin θ cosϕ+ cos θ sinϕ cos θ cosϕ− sin θ sinϕ

]
=

[
cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

]
= R(θ + ϕ),

where we have applied standard trigonometric identities for the sum of two
angles. In particular, R(θ)R(−θ) = R(0) = Id and so R(−θ) = R(θ)−1. ■
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Example 3. Let Sn be the symmetric group whose elements are permutations of
n objects, for n = 1, 2, 3, . . .. The elements g ∈ Sn can be modeled as bijections

g : {1, . . . , n} → {1, . . . , n}. (3.7)

The symmetric group can be used to relabel the vertices in a graph, for example,
and is thus relevant for graph neural networks. Given any basis e1, . . . , en ∈ V
in an n-dimensional vector space, and a permutation g ∈ Sn, there is a unique
linear operator ρ(g) that permutes the basis vectors:

ρ(g)ei = eg(i), i = 1, . . . , n. (3.8)

The mapping g 7→ ρ(g) is a representation of Sn. ■

The next definition shows how to build representations from simpler ones.

Definition 2. The direct sum of two G-representations (ρ, Vρ) and (σ, Vσ) is the
representation (ρ⊕ σ, Vρ ⊕ Vσ) defined by

(ρ⊕ σ)(g) : v ⊕ w 7→ ρ(g)v ⊕ σ(g)w. (3.9)

Similarly, their tensor product is the representation (ρ⊗ σ, Vρ ⊗ Vσ) defined by

(ρ⊗ σ)(g) : v ⊗ w 7→ ρ(g)v ⊗ σ(g)w. (3.10)

We can also deconstruct some representations into smaller ones:

Definition 3. Let (ρ, V ) be a G-representation and suppose that W ⊆ V is a
linear subspace that is closed under the representation,

ρ(g)w ∈W, w ∈W, g ∈ G. (3.11)

Then W is an invariant subspace, and (ρ,W ) is a subrepresentation of (ρ, V ).

All representations (ρ, V ) have two obvious subrepresentations, obtained by
letting W ⊆ V be either the full space W = V or the trivial subspace W = {0}.
These subrepresentations are not very interesting and are not considered proper,
because W is not a proper subspace.

Definition 4. A representation is reducible if it has a proper subrepresentation.
Representations that are not reducible are called irreducible.

Example 4. A trivial representation (IdV , V ) is irreducible iff dimV = 1. ■

The next lemma explains why unitary representations are especially interesting:
They can be decomposed into direct sums of subrepresentations.
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Lemma 1. Let (ρ, V ) be a unitary representation and suppose that W ⊆ V is a closed,
invariant subspace. Then the orthogonal complement W⊥ is also a closed invariant
subspace, and (ρ, V ) decomposes into a direct sum representation on W ⊕W⊥.

Proof. Recall the definition of the orthogonal complement,

W⊥ = {v ∈ V | ⟨w, v⟩ = 0 for all w ∈W} . (3.12)

According to a standard result in functional analysis, if V is a Hilbert space and
W ⊆ V is a closed subspace, then W⊥ is a closed subspace and V =W ⊕W⊥.
In particular, W and W⊥ are Hilbert spaces in their own right. It is therefore
sufficient to prove that W⊥ is an invariant subspace, i.e., that ρ(g)v ∈W⊥ for
each v ∈W⊥ and all g ∈ G. Because the representation ρ is unitary, it satisfies

ρ(g)† = ρ(g)−1 = ρ(g−1), (3.13)

and the lemma now follows from W being an invariant subspace:

⟨w, ρ(g)v⟩ = ⟨ρ(g)†w, v⟩ = ⟨ρ(g−1)w, v⟩ = 0, (3.14)

for all w ∈W . That is, ρ(g)v ∈W⊥.

It seems likely that unitary representations can be decomposed into direct sums
of irreducible subrepresentations, if we just keep decomposing a representation
into smaller and smaller subrepresentations until these cannot be decomposed
any further. This is certainly true for compact groups, which follows from the
famous Peter-Weyl theorem [Deitmar and Echterhoff, 2014, Theorem 7.2.4]. It is
also true for many other groups if we replace direct sums with direct integrals. In
this sense, irreducible representations are the prime numbers of representation
theory; the building blocks used to construct all other representations.

It is sometimes possible to translate one representation into another. An almost
trivial example is that the real SO(2)-representation (3.6) can be transformed
into the following real SO(2)-representation,

R̃(θ) =

cos θ 0 − sin θ
0 1

sin θ 0 cos θ

 , (3.15)

that performs rotations about the y-axis in R3. All we need to do is identify R2

with the xz-plane in R3 via the linear transformation T : R2 → R3 given by

T =

1 0
0 0
0 1

 , (3.16)
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in the standard bases. If we fix a vector v ∈ R2 and a rotation angle θ, it seems
likely that the following two procedures give the same result:

1. First use R(θ) to rotate v and then map the rotated vector to the xz-plane.

2. First map v to the xz-plane and then use R̃(θ) to rotate about the y-axis.

Indeed, a short calculation shows that T ◦R(θ) = R̃(θ) ◦T . In this example, the
relation between R(θ) and R̃(θ) was rather obvious, but this way of relating
two representations can be applied much more generally.

Definition 5. An intertwiner, or equivariant map, between twoG-representations
(ρ, Vρ), (σ, Vσ) is a bounded linear map T : Vρ → Vσ satisfying, for all g ∈ G,

T ◦ ρ(g) = σ(g) ◦ T. (3.17)

We let HomG(Vρ, Vσ) denote the space of all such intertwiners. Moreover, if an
intertwiner T ∈ HomG(Vρ, Vσ) is a (unitary) isomorphism, then (ρ, Vρ), (σ, Vσ)
are said to be (unitarily) equivalent.

Example 5. When viewed as a complex representation, the SO(2)-representation
(3.6) is unitarily equivalent to the direct sum representation ρ(θ) = eiθ ⊕ e−iθ:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
= T

[
eiθ 0
0 e−iθ

]
T †, (3.18)

where T = 1√
2

[
i −i
1 1

]
. ■

Irreducible representations have strict limitations on the possible intertwiners,
as the next lemma shows. This is a famous result known as Schur’s first lemma.

Lemma 2 [Deitmar and Echterhoff, 2014, Lemma 6.1.7]. Let (ρ, V ) be a unitary
representation of a topological group G. Then the following are equivalent:

(a) (ρ, V ) is irreducible.

(b) If T : V → V is an intertwiner, there is a constant λ ∈ C such that T = λ Id.

This lemma is motivated by the following observation: Let (ρ, V ) be a unitary
representation of G and suppose that T : V → V is an intertwiner. If λ is an
eigenvalue of T , then the corresponding eigenspaceEλ is an invariant subspace
of V since, for each v ∈ Eλ and all g ∈ G,

Tρ(g)v = ρ(g)Tv = λρ(g)v, (3.19)
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hence ρ(g)v ∈ Eλ. The unitary representation (ρ, V ) is thus reducible if Eλ is a
proper subspace. Equivalently, if (ρ, V ) is irreducible, we must have Eλ = V
which means that Tv = λv for all v ∈ V and so T = λ Id. This is not a complete
proof because it assumes the existence of an eigenvalue, but it provides some
intuition. The other direction is more straightforward.

The next result, Schur’s second lemma, is even more famous than the first. It is
proven by noting that for any intertwiner T : Vρ → Vσ , its adjoint T † is also an
intertwiner and the same is true of their composition T †T : Vρ → Vρ. Schur’s
first lemma can then be applied to the positive semi-definite map T †T , which
lets us extract information about T .

Corollary 3 [Deitmar and Echterhoff, 2014, Corollary 6.1.9]. Let (ρ, Vρ), (σ, Vσ)
be irreducible unitary representations and assume that T : Vρ → Vσ is an intertwiner.
Then T is either zero or invertible with continuous inverse. In the latter case there is a
scalar c > 0 such that cT is unitary. The space HomG(Vρ, Vσ) is zero unless ρ and σ
are unitarily equivalent, in which case the space has dimension 1.

Let us end by mentioning the regular representations of unimodular Lie groups.
For reasons explained in Papers I-II, these representations are closely connected
to convolutional layers in GCNNs as well as to Fourier analysis. This enables
the use of Fourier analytic methods when studying GCNNs.

Example 6. Let G be a unimodular Lie group. For each g ∈ G, define the map

Lg : L2(G) → L2(G), (Lgf)(g
′) = f(g−1g′), (3.20)

for f ∈ L2(G) and g′ ∈ G. The assignment g 7→ Lg is a unitary representation
of G called the left regular representation. It is unitary thanks to left-invariance
of the Haar measure on G:

⟨Lgf,Lgf
′⟩ =

∫
G

f(g−1g′)f ′(g−1g′) dg′ [g′ 7→ gg′]

=

∫
G

f(g′)f ′(g′) dg′ = ⟨f, f ′⟩.

Similarly, one can define a unitary right regular representation by

Rg : L2(G) → L2(G), (Rgf)(g
′) = f(g′g), (3.21)

for f ∈ L2(G) and g, g′ ∈ G. ■

The involution operator (Tf)(g) = f(g−1) intertwines the left and right regular
representations and leads to the following lemma.

Lemma 4. The left and right regular representations of a unimodular Lie group G are
unitarily equivalent.



4 Mathematical gauge theory

In this chapter we offer an introduction to mathematical gauge theory, starting
with fiber bundles. This is arguably the most important background section
in this thesis, as fiber bundles are foundational to the theory of equivariant
neural networks studied in Papers I-III. For example, the data points used as
inputs to equivariant neural networks are modeled as certain functions, called
sections, of vector bundles.

After introducing fiber bundles, we discuss connections and parallel transport
on principal bundles and associated bundles, and also Yang-Mills theory; these
topics are especially relevant for the lattice gauge equivariant neural networks
in Paper III. These sections are based on the expositions in Hamilton [2017],
Schuller [2016], and Sontz [2015].

One of the main takeaways from Paper I is that homogeneous vector bundles
form a natural setting for group equivariant convolutional neural networks. In
the final section of this chapter, we analyze how the elements of such bundles
transform under left-translation, and how left-translations are related to parallel
transport.

4.1 Fiber bundles

As mentioned above, fiber bundles are central to the mathematical framework
for equivariant neural networks studied in Papers I-III. Let us introduce the
subject with a few motivating examples. Much more detailed expositions of
fiber bundles can be found in Husemöller [1966] and Kolár et al. [2013].

Consider a smooth manifold M of dimension d and recall that, for each x ∈ M,
there is an associated tangent space TxM. Vector fields on M assign a tangent
vector Xx ∈ TxM to each point x of an open subset U ⊆ M and we would like

21
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to view vector fields as smooth functions. However, since the vectors Xx lie in
different tangent spaces for different points x ∈ U , the concept of smooth vector
fields makes little sense unless the spaces TxM themselves vary smoothly in x.
The tangent bundle TM solves this problem by defining a suitable topology and
smooth structure on the disjoint union of all tangent spaces,

TM :=
⋃̇

x∈M
TxM. (4.1)

The structure on TM is defined in such a way that the projection π : TM → M,
Xx 7→ x, that sends a tangent vector to the point it is attached to on the manifold,
is smooth. Vector fields are then defined as smooth maps

X : U → TM, satisfying π ◦X = IdU , (4.2)

ensuring that X(x) = Xx lies in the correct tangent space TxM for each x ∈ U .
We picture the tangent bundle as a copy of the manifold M with each tangent
space TxM attached at its corresponding point x ∈ M.

Now choose a local coordinate chart

(x1, . . . , xd) : U → Rd, U ⊆ M. (4.3)

For µ = 1 . . . , d and each point x ∈ U , the coordinate tangent vectors (∂µ)x are
functionals that act on smooth functions f : M → R by computing their partial
derivative with respect to xµ and evaluating at the point x:

(∂µ)x : f 7→ ∂f

∂xµ

∣∣∣∣
x

. (4.4)

For each x ∈ U , these coordinate tangent vectors form a basis in TxM called a
coordinate basis and, as suggested by our notation, the mapping

∂µ : U → TM, x 7→ (∂µ)x, (4.5)

is a smooth vector field for each µ = 1, . . . , d.

Remark 3. In order to reduce clutter, we often write ∂µ in lieu of (∂µ)x even
when referring to individual coordinate tangent vectors rather than the field.

The coordinate basis provides an isomorphism TxM ≃ Rd for each x ∈ U , so
the tangent bundle can locally be identified with the Cartesian product U ×Rd.
One may expect this idea to extend to the entire tangent bundle, making TM
isomorphic to M× Rd. If so, we would call TM a trivlal bundle. In general,
however, the lack of a global coordinate chart prevents this idea from coming
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to fruition; the tangent bundles TM of most manifolds M have more intricate
geometries and are not isomorphic to M× Rd.

Lie groups G have a similar geometric structure: If K ≤ G is a closed subgroup,
then G is the disjoint union of cosets

G =
⋃̇
g∈G

gK. (4.6)

Each coset is considered a subset gK ⊂ G when viewed as a collection of group
elements, and it is considered a point gK = x ∈ G/K when viewed as an object
(a set) in its own right. These two roles played by cosets are closely related, of
course, but may cause confusion nevertheless. The quotient map q : G→ G/K
sends each group element g ∈ G to its coset gK ∈ G/K.

If we first picture the quotient manifoldG/K as a collection of points gK ∈ G/K,
and we then change perspective by considering cosets as subsets gK ⊂ G, then
each subset gK ⊂ G is effectively attached or glued onto the point gK ∈ G/K.
This is analogous to tangent spaces TxM being attached at points x ∈ M.

One can also define analogues of vector fields as smooth maps

s : U → G, satisfying q ◦ s = IdU , (4.7)

where U ⊆ G/K is an open subset. It turns out that Lie groups G are locally
isomorphic to Cartesian products U ×K but again, this local property does not
hold globally: Most groups G are not isomorphic to G/K ×K.

In bot of these examples, we attached a fiber (TxM or gK) to each element of
a base space (M or G/K), thereby obtaining a larger total space (TM or G). A
surjective projection (π or q) mapped each element of the total space to the point
on the base space where the corresponding fiber was attached. Furthermore, the
total space could locally be viewed as a Cartesian product (U × Rd or U ×K)
involving a characteristric fiber (Rd or K), but this local property did not always
extend globally. Together, these properties define a fiber bundle.

Definition 6. A (smooth) fiber bundle is a structure (E, π,X, F ), where E, X , F
are smooth manifolds and where π : E → X is a smooth surjective map with
the following property: For each x ∈ X , there exists a neighbourhood U ⊆ X
containing x and a diffeomorphism

ϕ : π−1(U) → U × F, (4.8)
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called a local trivialization, such that the following diagram commutes:

π−1(U) U × F

U

π

ϕ

π1

Here, π1 : U × F → U is the projection onto the first coordinate. The smooth
manifolds E, X , and F are respectively called the total space, the base space, and
the characteristic fiber of the bundle.

Remark 4. It is common to denote fiber bundles by their projection π : E → X ,
or simply by the total space E, leaving the other ingredients implicit.

There are many different kinds of fiber bundles, depending on the characteristic
fiber F and its properties.

Definition 7. Suppose that the fibersEx = π−1({x}) of a fiber bundle π : E → X
are finite-dimensional vector spaces. If the mappings F → Ex given by

v 7→ ϕ−1(x, v), (4.9)

are linear isomorphisms for all local trivializations ϕ : π−1(U) → U × F and
each x ∈ U , then E is called a (smooth) vector bundle.

Example 7. The tangent bundle is a smooth vector bundle. Its fibers π−1({x}) =
TxM are d-dimensional vector spaces and the local trivializations are obtained
from local coordinate charts, hence (4.9) becomes

ϕ : Rd → TxM,
(
v1, . . . , vd

)
7→

d∑
µ=1

vµ∂µ. (4.10)

which is an isomorphism of vector spaces. ■

Remark 5. We henceforth use Einstein notation for implied summation over
pairs of matching indices. For example, the sum in (4.10) is simply written as

vµ∂µ. (4.11)

Definition 8. Let π : E → X and π′ : E′ → X ′ be fiber bundles. A smooth map
φ : E → E′ is called a bundle map (bundle morphism) if there is a smooth map
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f : X → X ′ such that the following diagram commutes:

E E′

X X ′

π

φ

π′

f

If both φ and f are diffeomorphisms, the bundle map is called an isomorphism
of bundles, or a bundle isomorphim.

Remark 6. The notion of isomorphism introduced in Definition 8 depends on
the type of bundle. An isomorphism of vector bundles, for example, must be linear
on each fiber.

We mentioned earlier that the tangent bundle TM can be isomorpic to M×Rd,
even though this is rarely the case. Cartesian products such as M× F trivially
satisfy the definition of a fiber bundle

π : M× F → M, π(x, f) = x. (4.12)

Definition 9. A fiber bundle π : E → M is trivial if it is isomorphic to M× F .

Definition 10. Let π : E → M be a fiber bundle and let U ⊆ M be an open set.
A (local) section is a smooth map s : U → E satisfying

π ◦ s = IdU . (4.13)

That is, sections map each point x ∈ U to an element of its fiber Ex.

In the equivariant neural networks studied in Papers I-III, each data point is
modeled as a section of a vector bundle. Data points therefore include vector
fields, which are sections of the tangent bundle TM, but they also include other
types of fields such as scalar fields, tensor fields and other types of sections.

The word gauge in mathematical gauge theory refers to sections σ : U → P of
principal bundles. Principal bundles and their gauges are thus of fundamental
importance, as we shall see.

Definition 11. Let K be a Lie group. A (smooth) principal bundle with structure
groupK is a fiber bundle π : P → M equipped with a free, smooth, right action

P ×K → P, (p, k) 7→ p ◁ k, (4.14)

with the following properties for each x ∈ M.
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(i) Let Px = π−1({x}) be the fiber at x. Then

p ∈ Px, k ∈ K ⇒ p ◁ k ∈ Px. (4.15)

That is, the K-action preserves fibers.

(ii) For each p ∈ Px, the mapping k 7→ p ◁ k is a diffeomorphism K → Px.

Principal bundles with structure group K are also called principal K-bundles.

GCNNs are concerned with the following principal bundle, which we touched
upon in the introduction to this part.

Proposition 5. Let G be a Lie group and let K ≤ G be a closed subgroup. Then the
quotient map

q : G→ G/K, g 7→ gK, (4.16)

defines a principal bundle over M = G/K with structure group K.

Proof. It is known [Steenrod, 1960, pp. 31-33] that for any Lie group G and any
closed subgroup K, there exists a local gauge σ : U → G on some open subset
U ⊂ G/K. Use this gauge to define a mapping ϕ : q−1(U) → U ×K by

ϕ(g) =
(
q(g), σ(q(g))−1g

)
= (gK, k−1), (4.17)

where k = g−1σ(q(g)) ∈ K. Then ϕ is smooth, and so is its inverse

ϕ−1(gK, k) = σ(gK)k, (4.18)

hence ϕ is a diffeomorphism. Moreover, it is evident from (4.17) that q = π1 ◦ ϕ,
and ϕ is therefore a local trivialization around any point gK ∈ U . As for points
gK ̸∈ U , fix an arbitrary g̃ ∈ G and define the map

σ̃ : g̃U → G, σ̃(gK) = g̃σ(gK). (4.19)

This map is also a gauge and thereby induces a local trivialization ϕg̃ in the same
manner as above. Since any point gK ∈ G/K lies in some neighbourhood g̃U
and thus admits a local trivialization ϕg̃, we find that q : G → G/K is a fiber
bundle. Finally, observe that right-multiplication

G×K → G, (g, k) 7→ gk, (4.20)

is a free, smooth, right K-action that satisfies both conditions in Definition 11,
implying that q : G→ G/K is a principal bundle with structure group K.
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Definition 12. Consider a principal K-bundle π : P → M and suppose that
ρ : K → GL(Vρ) is a finite-dimensional representation of the structure group.
Now define the following equivalence relation ∼ on the product P × Vρ,

(p, v) ∼ (p ◁ k, ρ(k)−1v), p ∈ P, v ∈ Vρ, k ∈ K. (4.21)

Then the quotient space

P ×ρ Vρ = {equivalence classes [p, v] | p ∈ P, v ∈ Vρ} , (4.22)

is called an associated (vector) bundle.

In Paper I, we give an example that shows explicitly how the tangent bundle
TM is an associated bundle. More importantly, we demonstrate that GCNNs
are naturally formulated in terms of homogeneous vector bundles, which are also
associated bundles. In other words, this concept is very useful.

Of course, one cannot simply claim that associated bundles P ×ρVρ are bundles
by virtue of their name, it must be proven. One proof uses a gauge σ : U → P to
pick representatives (σ(x), v) ∈ P×Vρ of equivalence classes [σ(x), v] ∈ P×ρVρ,
and these representatives are then used to construct the local trivializations. A
complete proof can be found in [Kolár et al., 2013, §10.7]

Proposition 6. Let P be a principal K-bundle and let (ρ, Vρ) be a finite-dimensional
representation of the structure group K. Then P ×ρ Vρ is a vector bundle.

The next proposition explains the aforementioned problem of choosing bases in
tangent spaces. The family of all bases in all tangent spaces TxM is a principal
bundle called the frame bundle FM. If it would be possible to smoothly assign a
basis to each tangent space, then that assignment would define a global gauge
σ : M → FM. For most manifolds, however, the frame bundle is nontrivial
and does not admit a global gauge.

Proposition 7. A principal K-bundle P is trivial iff it admits a global gauge.

Proof. First assume that P is trivial and let φ : M×K → P be an isomorphism
of bundles. Then the following map is global gauge for any fixed k ∈ K:

σ : M → P, σ(x) = φ(x, k). (4.23)

For the other direction, let σ : M → P be a global gauge and define the map

ϕ : M×K → P, (x, k) 7→ σ(x) ◁ k, (4.24)



28 4. Mathematical gauge theory

which is smooth, as the K-action and σ are both smooth. If we now fix x ∈ M,
then the restriction ϕx : K → Px given by k 7→ ϕ(x, k) is a diffeomorphism by
Definition 11(ii), hence (4.24) has a smooth inverse

ϕ−1 : P → M×K, p 7→
(
π(p), ϕ−1

π(p)(p)
)
. (4.25)

Furthermore, (4.24) preserves basepoints and satisfies

ϕ(x, kk′) = ω(x) ◁ k ◁ k′ = ϕ(x, k) ◁ k′, (4.26)

and is therefore an isomorphism of principal bundles. That is, P is trivial.

4.2 Connections and parallel transport

As discussed in the previous part, the theory of equivariant neural networks
models the input data as sections s : U → E of vector bundles. The argument
is that sections contain geometric information that equivariant neural networks
can extract and learn from, thereby reducing the amount of data and/or model
parameters needed to solve a given task. One difficulty arising from this way
of modeling data is that we cannot compute linear combinations

αs(x) + βs(y), (4.27)

for x, y ∈ U and scalars α, β, nor can we compute integrals such as∫
U

s(x) dx. (4.28)

In particular, we cannot naively use sections of vector bundles as input to a
run-of-the-mill neural network. The reason is that s(x) ∈ Ex and s(y) ∈ Ey are
elements of different vector spaces when x ̸= y, so their sum and their integral
are undefined.

Trivial bundles have a way around this problem: Given a global trivialization

ϕ : E → M× V, (4.29)

and a local section s : U → E with domain U ⊆ M, there is a unique function
v : U → V with the same level of regularity as the section s and which satisfies

ϕ(s(x)) = (x, v(x)), x ∈ U. (4.30)

Indeed, v(x) is simply the projection of ϕ(s(x)) onto the second component.
We may thus replace any section s with its induced function v, which can be
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summed and integrated without issue. The same method can also be used for
nontrivial bundles thanks to the existence of local trivializations

ϕŨ : E → Ũ × V, Ũ ⊂ M, (4.31)

but it only works for sufficiently local sections s : U → E because it requires
that U ⊆ Ũ for some local trivialization ϕŨ . Let us discuss two alternatives to
this method that do not have the same drawback.

First suppose that π : P → M is a principal bundle and that E = P ×ρ V is an
associated vector bundle. For any local section s : U → E, there exists a unique
feature map

f : π−1(U) → V, (4.32)

with the same regularity as the section s and which satisfies

f(p ◁ k) = ρ(k)−1f(p), p ∈ π−1(U), k ∈ K. (4.33)

The relationship between sections s and feature maps f is summarized by

s(x) = [p, f(p)], for any p ∈ Px. (4.34)

This equation is well-defined thanks to (4.33). Indeed, a short calculation shows
that [p ◁ k, f(p ◁ k)] = [p, f(p)] for all k ∈ K, so the equivalence class depends
only on the basepoint x = π(p) and not on any specific element p ∈ Px.

So the problem with adding or integrating sections vanishes if we replace them
with feature maps. This is a common approach forG-equivariant convolutional
neural networks, which correspond to the special case when the base manifold
M ≃ G/K is a homogeneous space with symmetry group G, and the principal
bundle is given by the quotient map q : G→ G/K. See Cohen et al. [2018b] for
an introduction and Paper I for a formal treatment. Homogeneous spaces and
homogeneous vector bundles are also discussed in Section 4.4.

The second method is to connect different fibers to each other and then use
the connection to transport elements between fibers. This method makes it
possible to define, for instance, integrals of the form∫

U

Tx→x0
(s(x)) dx, (4.35)

where
Tx→x0 : Ex → Ex0 , (4.36)

is a linear operator transporting elements of the fiber at x ∈ U to the fiber at a
fixed basepoint x0 ∈ M. The transport operator (4.36) should ideally perform
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transportation, along a curve from x to x0, while modifying the transported
object as little as possible. This rough idea is made precise by the concept of
parallel transport, the details of which depend on how fibers are connected.

Connections and parallel transport can be defined on any smooth fiber bundle
but we will restrict attention to principal (Ehresmann) connections on principal
bundles π : P → M. These will allow us to perform parallel transport on the
principal bundle as well as on any associated vector bundle.

One can visualize curves inP as moving in two orthogonal directions: vertically
and horizontally. The vertical direction is defined by the projection π : P → M
down to the base manifold. A curve γ : [0, 1] → P is thus considered vertical if
its projection π ◦ γ is constant - an idea that extends to vertical tangent vectors.

Definition 13. Let π : P → M be a principal bundle over M and consider the
differential of the projection at a point p ∈ P :

dπp : TpP → Tπ(p)M. (4.37)

A vertical tangent vector at p is a tangent vector Xp ∈ TpP such that

dπp(Xp) = 0. (4.38)

The vertical tangent vectors at p form a linear subspace VpP := ker dπp ⊂ TpP
known as the vertical tangent space.

In contrast, the horizontal direction is thought of as moving between different
fibers. Parallel transport maps transport objects along horizontal curves or,
more precisely, in the direction of horizontal tangent vectors. Whereas the vertical
direction is uniquely defined by the projection π, however, there are many
different choices when it comes to the horizontal direction.

Definition 14. A horizontal tangent space is any subspace HpP ⊂ TpP such that

TpP = VpP ⊕HpP. (4.39)

An Ehresmann connection is a smooth assignment p 7→ HpP of horizontal tangent
spaces and can be defined for any smooth fiber bundle. Since we are focusing on
principal bundles, however, we would ideally want an Ehresmann connection
that is compatible with the right-action

Rk : P → P, p 7→ p ◁ k, (4.40)

of the structure group K. Compatibility with this action will be important for
parallel transport on associated bundles to be well-defined.
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Definition 15. Let π : P → M be a principal bundle with structure group K.
A principal (Ehresmann) connection on P is a smooth assignment p 7→ HpP of
horizontal tangent spaces such that

(dRk)p
(
HpP

)
= Hp◁kP, (4.41)

for all p ∈ P , k ∈ K.

Example 8. Any principal bundle π : P → M satisfies

(dπ)p◁k(Tp◁kP ) = d(π ◦Rk)p (TpP ) = (dπ)p(TpP ), (4.42)

as moving within a fiber does not affect the projection (π◦Rk = π). In particular,
a tangent vector Xp ∈ TpP vanishes under the projection (dπ)p if and only if
(dRk)p(Xp) ∈ Tp◁kP vanishes under (dπ)p◁k. This proves that

(dRk)p(VpP ) = Vp◁kP. (4.43)

Now suppose that P is equipped with a Riemannian metric g that is compatible
with the fiberwise action p 7→ p ◁ k, in the sense that the isomorphism

(dRk)p : TpP → Tp◁kP, (4.44)

is unitary. Then (dRk)p preserves orthogonality between tangent vectors and
we can therefore obtain a principal connection on P by defining the horizontal
tangent spaces to be the orthogonal complements

HpP := (VpP )
⊥, (4.45)

with respect to the metric g. ■

Example 9. Let G be a connected matrix Lie group and K a compact subgroup.
If we identify the Lie algebra g with the tangent space TeG at the identity, then
the tangent spaces on G are given by left-translations

TgG = (dLg)e(g), g ∈ G. (4.46)

The subgroup K is the characteristic fiber of the principal bundle q : G→ G/K
and thereby determines the vertical direction. It is not surprising, then, that
the vertical tangent spaces are given by left-translations

VgG = (dLg)e(k), g ∈ G, (4.47)

of its Lie algebra k. See Theorem 14 for details. Theorem 15 and the preceding
discussion identifies a canonical principal connection on q : G→ G/K induced
by left-translations. ■
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Parallel transport in principal bundles always follows a curve γ : [0, 1] → M in
the base maifold. Elements p ∈ Pγ(0) move in the direction of horizontal tangent
vectors between the fibers Pγ(t) above the curve γ until they reach Pγ(1). That
is, p is transported along a horizontal curve in P that lies vertically above γ.

Definition 16. Let π : P → M be a principal bundle equipped with a principal
connection. A curve γ↑ : [0, 1] → P is a horizontal lift of a curve γ : [0, 1] → M if

1. The horizontal lift γ↑ projects down to γ, that is, π ◦ γ↑ = γ.

2. The velocity vector γ̇↑(t) is a horizontal tangent vector for each t ∈ [0, 1].

Seeing as we want to use horizontally lifted curves to perform parallel transport
in P , it is important to know whether any curve in M can be horizontally lifted.

Theorem 8 [Hamilton, 2017, Theorem 5.8.2]. Let γ : [0, 1] → M be a curve such
that γ(0) = x and let p ∈ Px. Then there exists a unique horizontal lift γ↑p : [0, 1] → P

such that γ↑p(0) = p.

We now have everyting needed to define parallel transport in principal bundles.

Definition 17. Let π : P → M be a principal bundle equipped with a principal
connection, and let γ : [0, 1] → M be a curve in M with γ(0) = x and γ(1) = y.
Then the map

Πγ : Px → Py, p 7→ γ↑p(1), (4.48)

is called the parallel transport map in P along the curve γ.

To summarize, parallel transport in principal bundles uses horizontally lifted
curves to transport elements p between fibers. Different choices of principal
connection result in different notions of horizontality, so the parallel transport
of an element p along a curve γ is not uniquely defined. Moreover, parallel
transport is path dependent. A different curve γ̃ : [0, 1] → M with the same
endpoints γ̃(0) = x and γ̃(1) = y does not, in general, give rise to the same
parallel transport map as γ.

What about associated bundles? After all, our reason for discussing principal
connections and parallel transport is because we want the ability to sum and
integrate data points in neural network layers. Fortunately, most of the legwork
has already been completed.

Definition 18. Let π : P → M be a principal bundle equipped with a principal
connection and let E = P ×ρVρ be an associated bundle with fibers Ex. Further
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let γ : [0, 1] → M be a curve in M with endpoints γ(0) = x and γ(1) = y. Then
the map

Tγ : Ex → Ey, [p, v] 7→ [Πγ(p), v], (4.49)

is called the parallel transport map in E along the curve γ.

Parallel transport maps Tγ in an associated bundle are well-defined if and only
if the parallel transport maps Πγ in the principal bundle are gauge equivariant:

Πγ(p ◁ k) = Πγ(p) ◁ k, (4.50)

for all p ∈ P , k ∈ K. This is because gauge equivariance implies that

Tγ([p, v]) = [Πγ(p), v] = [Πγ(p) ◁ k, ρ(k)
−1v]

= [Πγ(p ◁ k), ρ(k)
−1v] = Tγ([p ◁ k, ρ(k)

−1v]).
(4.51)

Gauge equivariance of Πγ follows from the compatibility criteria (4.41) between
horizontal subspaces and the right-action p 7→ p ◁ k of the structure group. See
for example [Hamilton, 2017, Theorem 5.8.4].

4.3 Yang-Mills theory

A discussion on Yang-Mills theory serves two purposes: It offers a more explicit
picture of the parallel transport maps discussed above, and it provides the link
between neural networks and physical gauge theory in Paper III.

Connection 1-forms and Yang-Mills fields

Principal connections are well-motivated on an abstract level but their global
and coordinate-free nature is not always practical to work with. Fortunately, any
principal connection defines a global connection 1-form that can be combined
with local gauges to form Yang-Mills fields.

Yang-Mills fields are inherently local and gauge-dependent objects that not only
allow for connections to be constructed from the bottom up, they also make it
possible to compute parallel transport maps by solving a differential equation.
In this part, we summarize the main ideas of connection 1-forms and Yang-Mills
fields.

Because the structure groupK of any (smooth) principal bundle is a Lie group, it
has an associated Lie algebra k. The two are linked, e.g., through an exponential
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function
exp : k → K, (4.52)

which for matrix Lie groups coincides with the matrix exponential. Hamilton
[2017] gives an excellent account of Lie algebras and of the exponential function,
which are used extensively throughout the rest of this thesis.

Definition 19. For each A ∈ k, the vector field XA : P → TP given by

XA
p =

d

dt

(
p ◁ exp(tA)

)∣∣∣
t=0

, p ∈ P, (4.53)

is called the fundamental vector field associated to A.

Observe that the curve p ◁ exp(tA) lives inside a single fiber Pπ(p) for all times t
and its projection under π is therefore constant. It follows that (dπ)p(XA

p ) = 0,
hence XA

p is a vertical tangent vector.

Fundamental vector fields are important objects in differential geometry but in
this thesis, they only have instrumental value through the functions

ip : k → VpP

A 7→ XA
p

, (4.54)

that map any given element A ∈ k to the vertical tangent vector XA
p at p ∈ P .

This function is a bijection with inverse i−1
p : VpP → k. Consequently, if the

principal bundle is equipped with a principal connection that decomposes each
tangent space into a direct sum

TpP = VpP ⊕HpP, (4.55)

then we can define a function ωp : TpP → k that decomposes tangent vectors
Xp ∈ TpP into a sum of vertical and horizontal tangent vectors,

Xp = ver(Xp) + hor(Xp), (4.56)

and applies the inverse i−1
p to the vertical term. That is,

ωp(Xp) = i−1
p (ver(Xp)). (4.57)

The function ωp : TpP → k is called a Lie-algebra-valued connection 1-form.

Definition 20. Let π : P → M be a principal bundle equipped with a principal
connection. Let ωp be the induced Lie-algebra-valued connection 1-forms (4.57).
Then the mapping

ω : p 7→ ωp, (4.58)

is called the connection 1-form of the principal connection.
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Example 10. Recall from Example 9 that when G is a connected matrix Lie
group andK is a compact subgroup, the vertical tangent spaces of the principal
bundle q : G→ G/K are the left-translations of the Lie algebra k,

VgG = (dLg)e(k). (4.59)

The fundamental vector field (4.53) associated to A ∈ k is given by

XA
g =

d

dt

(
g exp(tA)

)∣∣∣
t=0

= (dLg)e (A) , (4.60)

hence ig = (dLg)e. Now consider the special caseK = G in which the principal
bundle q : G → G/G consists of a fiber G attached at a single point x = q(G).
Since any curve γ in G projects down to the constant curve (q ◦ γ)(t) = x, the
tangent vector γ̇(0) vanishes under the differential dq and all tangent vectors
on G are therefore vertical. Indeed, K = G implies that k = g and so

VgG = (dLg)e(k) = (dLg)e(g) = TgG. (4.61)

In particular, the decomposition (4.56) of Xg ∈ TgG into a sum of vertical and
horizontal terms is uniquely defined as ver(Xg) = Xg and hor(Xg) = 0. This
defines the unique principal connection on the principal bundle q : G→ G/G.
The resulting connection 1-form ω given by

ωg(Xg) = i−1
g (ver(Xg)) = (dLg−1)g(Xg), (4.62)

is called the Maurer-Cartan form on G. ■

Remark 7. The connection 1-form on a principal bundle depends on the choice
of principal connection, via the decompositionX = ver(X)+hor(X) of tangent
vectors into vertical and horizontal terms. Conversely, it is possible to define
connection 1-forms ω first and then obtain a principal connection through the
relation HpP = kerωp. See [Hamilton, 2017, §5.2] for details.

Everything we have discussed so far regarding connections, parallel transport,
and connection 1-forms has been presented without the use of local coordinates.
The coordinate-free approach is powerful but does not give a complete picture.
For example, the parallel transport maps (4.48) and (4.49) are highly abstract
and difficult to work with in practice, without more detailed information of
how horizontal lifts are constructed. Neither have we utilized the gauge aspect
of mathematical gauge theory. This is about to change.

Let xµ : U → R, for µ = 1, . . . , d, be local coordinates on an open subset U ⊆ M
of the d-dimensional base manifold. Further assume that σ : U → P is a gauge;
a local section of the principal bundle.



36 4. Mathematical gauge theory

Definition 21. Let π : P → M be a principal bundle equipped with a principal
connection and let ω be the resulting connection 1-form. Then the pullback σ∗ω
of ω along a local gauge σ : U → P ,

(σ∗ω)x : TxM → k, x ∈ U, (4.63)

is known as a Yang-Mills field.

It should be noted that the Lie-algebra-valued connection 1-forms ωp : TpP → k
are linear, and the pullback preserves linearity. Consequently, if we use local
coordinates xµ to write tangent vectors on M in the coordinate basis,

Xx = Xµ
x ∂µ ∈ TxM, x ∈ U, (4.64)

then the Yang-Mills field satisfies

(σ∗ω)x(Xx) = (σ∗ω)x (X
µ
x ∂µ)

= Xµ
x (σ

∗ω)x (∂µ) = Aµ(x) dx
µ(Xx).

(4.65)

Here, we have used that Xµ
x = dxµ(Xx), and defined Aµ(x) = (σ∗ω)x (∂µ).

Theorem 9. In local coordinates, the Yang-Mills field σ∗ω is of the form

σ∗ω = Aµ dx
µ, (4.66)

for a set of functions Aµ : U → k known as gauge fields.

Yang-Mills fields and connection 1-forms can therefore be constructed locally
by specifying a set of gauge fields Aµ. Given a basis for the Lie algebra, it even
suffices to specify the component functions

Ai
µ : U → R,

i = 1, . . . ,dim k

µ = 1, . . . ,dimM
. (4.67)

In summary, every principal connection on π : P → M determines a unique
connection 1-form ω and vice versa. The connection 1-form is globally defined,
gauge independent, and coordinate free. In contrast, the Yang-Mills field σ∗ω
is inherently gauge-dependent and its expansion (4.66) in terms of gauge fields
also depends on the choice of local coordinates.

Path-ordered exponentials and parallel transport

In this part, we discuss an explicit formula for parallel transport on principal
bundles, under the additional assumption that K is a matrix Lie group.
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Let γ : [0, 1] → M be a curve in the base space and recall how elements p of the
initial fiber Pγ(0) are parallel transported: by lifting γ to the unique horizontal
curve γ↑p : [0, 1] → P satisfying γ↑p(0) = p and following this curve to the end,

Πγ : Pγ(0) → Pγ(1), p 7→ γ↑p(1). (4.68)

Instead of constructing the horizontal lift from scratch, suppose that we know
how to find a curve γ∗ : [0, 1] → P such that γ = π◦γ∗ but that is not horizontal.
This is often much easier than finding γ↑p specifically. Not only because γ∗ has
to satisfy one less constraint than the horizontal lift, but because of the nature
of that constraint: γ∗ need not depend on the principal connection.

Any such curve γ∗ can be modified to obtain the horizontal lift. This is due to
the existence of a unique element k(t) ∈ K for each t ∈ [0, 1] such that

γ↑p(t) = γ∗(t) ◁ k(t). (4.69)

As γ↑p(t) depends on the principal connection, so does k(t). In fact, this function
can be shown to satisfy the initial value problem1{

k̇(t) = −ωγ∗(t)(γ̇
∗(t))k(t)

k(0) = k0
, (4.70)

see for example [Schuller, 2016, Corollary 23.3]. One way to arrive at this initial
value problem is to observe that γ∗ would have coincided with the horizontal
lift γ↑p if its velocity γ̇∗(t) had been a horizontal tangent vector for each t ∈ [0, 1].
This is due to the uniqueness of horizontal lifts. So why not modify the curve
γ∗ by decomposing its velocities into vertical and horizontal terms,

γ̇∗(t) = ver(γ̇∗(t)) + hor(γ̇∗(t)), (4.71)

and subtracting the vertical term? This is what the factor

−ωγ∗(t)(γ̇
∗(t)) = i−1

γ∗(t)(−ver(γ̇∗(t))) ∈ k, (4.72)

in (4.70) does. Because it also maps −ver(γ̇∗(t)) to the Lie algebra, this factor
can be exponentiated to produce an element of K, which is more or less how
the function k(t) is constructed. Indeed, (4.70) is the differential equation for
exponential growth and so we would expect its solution to be of the form

k(t) = exp

(
−
∫ t

0

ωγ∗(s)(γ̇
∗(s)) ds

)
k0. (4.73)

1Here, k0 is the unique element of K satisfying p = γ↑
p(0) = γ∗(0) ◁ k0.
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This is nearly the correct solution, and it would have been correct if the elements
of k had commuted with each other. They generally do not, however, so the
actual solution is an infinite series that is reminiscent of an exponential operator
similar to (4.73) but without actually being one. This infinite series can be found
in [Hamilton, 2017, §5.10] but because it looks rather messy, it is almost always
written in shorthand notation as a path-ordered exponential

k(t) = P exp

(
−
∫ t

0

ωγ∗(s)(γ̇
∗(s)) ds

)
k0. (4.74)

Let us see what this function looks like in terms of the gauge fields. To this end,
choose local coordinates xµ : U → R for µ = 1, . . . , d and a gauge σ : U → P .
If the entire curve γ is contained in U , setting γ∗ = σ ◦ γ yields the formula

k(t) = P exp

(
−
∫ t

0

Aµ(γ(s))γ̇
µ(s) ds

)
k0, (4.75)

where γ̇µ(t) for µ = 1, . . . , d are the components of γ̇(t) in the coordinate basis.
The parallel transport map along γ is therefore given by

Πγ(p) = (σ ◦ γ)(1) ◁ P
(
−
∫ 1

0

Aµ(γ(s))γ̇
µ(s) ds

)
k0. (4.76)

The Yang-Mills action functional

By this point we are well aware that parallel transport depends on the principal
connection. This is sometimes considered a degree of freedom, a flexibility, but
other times it raises the question how to identify an appropriate connection,
e.g. when the parallel transport maps are determined by other arguments. This
is the case in physical gauge theories such as quantum electrodynamics and
quantum chromodynamics.

Any principal connection gives rise to curvature, and this curvature can be used
to define a Lagrangian on the set of all connections. Integrating the Lagrangian
defines an action functional. Thus, one option is to follow the principle of least
action and choose the connection that minimizes the action.

Throughout this part, let π : P → M be a principal K-bundle equipped with a
principal connection and associated connection 1-form ω. Furthermore, [ , ]k
refers to the Lie bracket in k.

Definition 22 [Sontz, 2015, Theorem 11.2]. The curvature, or the field strength, of
a principal connection is the 2-form acting on vector fields X,Y : P → TP by

F (X,Y ) = dω(X,Y ) + [ω(X), ω(Y )]k. (4.77)
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In contrast to the previous sections, we will primarily work in local coordinates
here in order to simplify the comparison with Paper III. To this end, choose
local coordinates xµ : U → R for µ = 1, . . . , d and a gauge σ : U → P on an
open set U ⊆ M. Recall that the connection 1-form ω defines a Yang-Mills field
σ∗ω given by

(σ∗ω)x =
∑
µ

Aµ(x) dx
µ, x ∈ U, (4.78)

where we defined the gauge fieldsAµ(x) by the action of the Yang-Mills field on
the coordinate basis vectors in TxM. By precisely the same token, the pullback
(σ∗F )x acts on pairs of tangent vectors in TxM and a similar argument as for
Yang-Mills fields shows that

(σ∗F )x = Fµν(x) dx
µ ∧ dxν , (4.79)

where Fµν(x) = (σ∗F )x (∂µ, ∂ν).

Proposition 10 [Hamilton, 2017, Proposition 5.6.2]. The components Fµν satisfy

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]k. (4.80)

Now suppose that the base manifold M is a pseudo-Riemannian manifold with
respect to a metric g, and consider the d× d matrix function with components

gµν = g(∂µ, ∂ν). (4.81)

The matrix inverse gµν of gµν is used to raise the indices of Fµν ,

Fµν = gµρgνσFρσ. (4.82)

In the next definition, A = (A1, . . . , Ad) is shorthand notation for a connection,
in terms of the gauge fields Aµ that determine the local curvature Fµν .

Definition 23. Let (M, g) be a pseudo-Riemannian manifold and let dvolg be
the induced volume measure on M. The Yang-Mills Lagrangian with respect to
the connection A is the scalar function

LYM[A] = −1

4
tr

(∑
µ,ν

FµνF
µν

)
. (4.83)

The integral

SYM[A] =

∫
M

LYM[A] dvolg (4.84)

is called the Yang-Mills action functional with respect to A.
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Whereas the gauge fields Aµ and the local curvature Fµν are inherently gauge
dependent, the Yang-Mills action functional does not depend on the chosen
gauge; it is gauge invariant. This is an important property, particularly so in the
context of physics because gauge dependent objects cannot be observable. Not
that the action functional can be experimentally measured in a laboratory, but
it determines the equations of motion for certain physical systems. These are
called the Yang-Mills equations and give a necessary and sufficient criteria for A
to be a critical point of SYM[A], in the sense that the directional derivative

d

dt

∣∣∣∣
t=0

SYM[A+ tα], (4.85)

vanishes for each so-called variation α. This is a somewhat technical matter that
we will not go into further detail on, partly because this thesis has a maximum
page limit and there are other things to discuss. More to the point, the Yang-
Mills equations are not needed for a full understanding of Paper III. We instead
refer the curious reader to Hamilton [2017].

4.4 Homogeneous vector bundles

We have previously discussed the problem that sections s : M → E of vector
bundles take values in different fibers Ex at different points x, which makes
them difficult to integrate in convolutional layers. The reason this is a problem
is because we use sections to model data points in equivariant neural networks,
and convolutional layers are central to equivariance.

As we have discussed, parallel transport offers one solution, another solution
being to isomorphically replace data points with feature maps. For GCNNs
there exists what at first glance seems like a third solution: Homogeneous vector
bundles are equipped with a G-action that transports vectors linearly between
different fibers. Homogeneous vector bundles are claimed in Paper I to form
the natural setting for GCNNs, but the bundles themselves are not given much
attention. Paper I only presents a coordinate-free approach and few concrete
examples. Here we explore homogeneous vector bundles in more detail.

Definition 24. Let G be a Lie group and suppose that M is a smooth manifold
equipped with a smooth, transitive2 left-action

G×M → M, (g, x) 7→ gx. (4.86)

We then say that M is a homogeneous (G-)space with (global) symmetry group G.
2A group action is transitive if, for each pair of points x, y ∈ M, there exists at least one group

element g ∈ G such that y = gx.
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Homogeneous spaces M with symmetry groupG are always diffeomorphic to a
quotient spaceG/K for some closed subgroupK. This can be seen by arbitrarily
choosing an origin o ∈ M and defining Ko as its set of stabilizers

Ko = {k ∈ G | ko = o} . (4.87)

The homogeneous space characterization theorem [Lee, 2013] states that Ko is a
closed subgroup of G and that the mapping

F : G/Ko → M, F (gKo) = go, (4.88)

is a diffeomorphism for any choice of origin o ∈ M. For this reason, we make no
distinction between homogeneous spaces M and quotient spaces G/K.

Remark 8. We restrict attention to homogeneous spaces G/K with compact K.

Definition 25. Let M be a homogeneous space with global symmetry group G.
A homogeneous vector bundle over M is a smooth vector bundle π : E → M that
is equipped with a smooth left G-action

G× E → E, (g, v) 7→ g · v, (4.89)

satisfying g · Ex = Egx and such that the induced map

Lg,x : Ex → Egx, (4.90)

is linear for all x ∈ M, g ∈ G.

Example 11. LetG be a Lie group and letK be a compact subgroup. If (ρ, V ) is a
representation of the subgroup, then the associated bundle πρ : G×ρ V → G/K
is a homogeneous vector bundle with respect to the action

g · [g′, v] = [gg′, v], (4.91)

for all g, g′ ∈ G, v ∈ V . ■

Example 12. Let M be a homogeneous space and let Lg : M → M denote the
left-translation operator Lg(x) = gx for each g ∈ G. Because the group action
on M is smooth and transitive, the left-translation operator is a diffeomorphism
with inverse Lg−1 . It follows that its differential

(dLg)x : TxM → TgxM, (4.92)

is a linear isomorphism for each x ∈ M and each g ∈ G. The tangent bundle is
thus a homogeneous vector bundle with respect to the action

G× TM → TM, (g,Xx) 7→ (dLg)x(Xx). (4.93)
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The cotangent bundle T ∗M is dual to the tangent bundle, in the sense that each
fiber T ∗

xM is the dual space of TxM for each x ∈ M. In particular, any local
coordinate chart yields a dual coordinate basis

(dx1)x, . . . , (dx
d)x ∈ T ∗

xM (4.94)

of dual vectors (dxµ)x : TxM → R defined by

(dxµ)x

(
(∂ν)x

)
= δµν , µ, ν = 1, . . . , d, (4.95)

where δµν is the Kronecker delta. We mention this because taking the adjoint
of each linear isomorphism (dLg)x defines an action on T ∗M that makes the
cotangent bundle into homogeneous vector bundle when M is a homogeneous
space. By extension, the same is true of any type (m,n) tensor bundle

Tm,n(M) = TM⊗ · · · ⊗ TM︸ ︷︷ ︸
m

⊗T ∗M⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
n

. (4.96)

■

Homogeneous vector bundles for M ≃ G/Ko are in one-to-one correspondence
with bundles G×ρ V associated to the principal bundle q : G→ G/Ko. To see
this, choose any origin o ∈ M and any homogeneous vector bundle π : E → M.
Observe that (4.90) restricts to a linear operator Lk,o : Eo → Eo satisfying

Lk,o ◦ Lk′,o = Lkk′,o. (4.97)

for all k, k′ ∈ Ko. In particular, Lk,o is invertible with inverse

L−1
k,o = Lk−1,o, (4.98)

which lets us conclude that Lk,o is a representation ofKo on the vector spaceEo.
If we simplify the notation by writing the representation as ρ(k) = Lk,o, then
we have the following lemma.

Lemma 11. Let E be a homogeneous vector bundle. Then the well-defined mapping

ξ : G×ρ Eo → E, [g, v] 7→ Lg,o(v), (4.99)

is an isomorphism of homogeneous vector bundles.

A proof of this lemma can be found in Wallach [2018].
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Transformation properties of tensors

In this part we explore how elements of homogeneous vector bundles transform
under left-translations. Recall that we use the word vector to mean an element
of a vector space, and this definition includes tensors of all types.

Definition 26. Let π : E → M be a homogeneous vector bundle and denote by
L2(E) the space of square-integrable3 sections s : M → E. For g ∈ G, the map

Lg : L2(E) → L2(E), (Lgs)(x) = g · s(g−1x), (4.100)

is a unitary representation of G known as the induced representation on L2(E).

Remark 9. The induced representation is denoted indGKρ(g) in Papers I-II and in
most standard texts. We have opted for the notation Lg here to reduce clutter.

Given two homogeneous vector bundles E1, E2 over a homogeneous space M,
Papers I-II define G-equivariant layers as bounded linear maps

Φ : L2(E1) → L2(E2), (4.101)

that intertwine the induced representations:

Lg ◦ Φ = Φ ◦ Lg. (4.102)

Of course, our mission here is not to reiterate the contents of Papers I-II. Rather,
we aim to complement these papers by writing down transformation properties
of tensors and tensor fields.

As a first step, choose local coordinates xµ : U → R for µ = 1, . . . , d on an open
subset U ⊆ M. Taking tensor products of the coordinate vector fields

∂µ : U → TM, (4.103)

and of the covector fields (or differential 1-forms)

dxµ : U → T ∗M, (4.104)

defined by (4.95), produces sections

∂µ1
⊗ · · · ⊗ ∂µm

⊗ dxν1 ⊗ · · ·dxνn︸ ︷︷ ︸
eν
µ

: U → Tm,n(M), (4.105)

3See Paper I for details.
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of the tensor bundle Tm,n(M). Letting the multi-indices µ = (µ1, . . . , µm) and
ν = (ν1, . . . , νn) run over all possible combinations of values µi, νj = 1, . . . , d,
the tensors eνµ(x) form a basis in Tm,n

x (M) for each x ∈ U .

Any type (m,n) tensor field

s : M → Tm,n(M), (4.106)

can thus be written locally in terms of component functions sµν : U → R as4

s = sµνe
ν
µ

= sµ1,...,µm
ν1,...,νn

∂µ1
⊗ · · · ⊗ ∂µm

⊗ dxν1 ⊗ · · · ⊗ dxνn .
(4.107)

The tensor bundles Tm,n(M) are homogeneous vector bundles whenever M
is a homogeneous space, as discussed in Example 12. The linear map

Lg,x : Tm,n
x (M) → Tm,n

gx (M), (4.108)

can be constructed for each g ∈ G and every x ∈ M as the tensor product of m
copies of the differential (dLg)x and n copies of its adjoint. Alternatively, one
can turn a tensor bundle into an associated bundle and use the left-translation
specified by (4.91). Using the notation ρ(k) = (dLk)o for the representation

(dLk)o : ToM → ToM, k ∈ Ko, (4.109)

its dual representation on T ∗
oM is defined by ρ∗(k) = ρ(k−1)T . Direct application

of Lemma 11 yields the following result.

Corollary 12. Let M be a homogeneous G-space with any choice of origin o ∈ M.
Then the tensor bundle Tm,n(M) is isomorphic to the associated bundle

G×ρm⊗(ρ∗)n T
m,n
o (M), (4.110)

where ρm = ρ⊗ . . .⊗ ρ︸ ︷︷ ︸
m times

and analogously for (ρ∗)n.

Now set E = Tm,n(M). The induced representation Lg : L2(E) → L2(E) acts
on (square-integrable) tensor fields according to (4.100), hence

(Lgs)(gx) = g · s(x) = Lg,x

(
s(x)

)
. (4.111)

4Recall that we use the Einstein summation convention whereby the expression Tµ
ν eνµ is

summed over all possible combinations of µ,ν.
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Suppose that both x ∈ U and gx ∈ U , in which case we may expand both s(x)
and (Lgs)(gx) in components according to (4.107). Then,

(Lgs)
µ
ν (gx) e

ν
µ(gx) = (Lgs)(gx) = Lg,x(s(x))

= Lg,x

(
sµ

′

ν′ (x)e
ν′

µ′(x)
)

= sµ
′

ν′ (x)Lg,x

(
eν

′

µ′(x)
)
.

(4.112)

The differential (dLg)x acts on coordinate basis vectors in TxM by

(dLg)x : (∂µ)x 7→ Rν
µ(∂ν)gx (4.113)

where Rν
µ are the components of (dLg)x

(
(∂µ)x

)
in the coordinate basis (∂ν)gx.

These components form the standard matrix R = R(g, x) for Lg,x with respect
to the coordinate bases in TxM and TgxM. Similarly, the adjoint of (dLg)x acts
on dual basis vectors in T ∗

xM by

(dxµ)x 7→ (R−1)µν (dx
ν)gx. (4.114)

It follows that left-translations act on the tensors eν
′

µ′(x) ∈ Tm,n
x (M) by

Lg,x

(
eν

′

µ′(x)
)
= Rµν′

µ′ν(g, x)e
ν
µ(gx), (4.115)

where
Rµν′

µ′ν = Rµ1

µ′
1
⊗ · · · ⊗Rµm

µ′
m
⊗ (R−1)

ν′
1

ν1 ⊗ · · · ⊗ (R−1)
ν′
n

νn . (4.116)

Combining this with (4.112) yields the relation

(Lgs)
ν
µ(gx)e

µ
ν (gx) = sµ

′

ν′ (x)R
µν′

µ′ν(g, x)e
µ
ν (x). (4.117)

In particular, stabilizers k ∈ Ko cause tensors at the origin to rotate in place:

(Lks)(o) = (Lks)
ν
µ(o)e

µ
ν (o). = sµ

′

ν′ (o)R
µν′

µ′ν(k, o)e
µ
ν (o). (4.118)

The canonical connection

In this part we investigate the relationship between left-translations in groups G
and parallel transport in principal bundles q : G → G/K. For simplicity, we
restrict attention to connected matrix Lie groups G and, as always in this thesis,
the subgroup K is assumed compact. The following lemma is standard.
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Lemma 13. The Lie algebra of a matrix Lie group G is given by

g = {matrices A such that exp(At) ∈ G for all times t ∈ R} , (4.119)

and the exponential map exp : g → G coincides with the matrix exponential

exp(A) =

∞∑
n=0

An

n!
. (4.120)

Remark 10. Seeing as K is a subgroup of G, its Lie algebra can be identi-
fied with the closed subspace k ⊂ g of matrices A ∈ g such that exp(At) ∈ K
for all times.

Left-translations
Lg : G→ G, Lg(g

′) = gg′, (4.121)

move elements between different fibers of the principal bundle q : G→ G/K.
It is therefore not surprising that there exists a canonical principal connection
relating left-translations to parallel transport. This is not to say, however, that
left-translations generally coincide with parallel transport under the canonical
connection. Parallel transport makes direct use of the bundle structure and,
in particular, depends on the choice of subgroup K. It is also path-dependent
in general. Left-translations (4.121), on the other hand, only use the Lie group
structure in G and do not require a path. The exact relationship between these
two concepts is evidently rather subtle. Nevertheless, the concepts do coincide
in some cases as this discussion will show.

A first step towards identifying the canonical connection on q : G→ G/K is to
determine its vertical tangent spaces. Differentiating (4.121) at g′ = e yields an
isomorphism

(dLg)e : g → TgG, (4.122)

that, in particular, maps the Lie algebra k to a closed subspace (dLg)e(k) ⊂ TgG.

Theorem 14. LetG be a connected matrix Lie group and let K be a compact subgroup.
The vertical tangent spaces of the principal bundle q : G→ G/K are given by

VgG = ker (dq)g = (dLg)e(k). (4.123)

Proof. Fix g ∈ G and select an arbitrary A ∈ g to define the curve

γA(t) = g exp(At), t ∈ R. (4.124)

Then γA(0) = g and, because γA(t) is the left-translation of an exponential map,
the chain rule states that γ̇A(0) = (dLg)e(A). The isomorphism (4.122) thereby
implies that all tangent vectors in TgG are given as the velocity

XA = (dLg)e(A) = γ̇A(0), (4.125)
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at time t = 0 of a curve γA for some A ∈ g.

The differential dq is defined by its action

(dq)g(XA)f =
d

dt
(f ◦ q ◦ γA)

∣∣
t=0

, (4.126)

on any smooth function f : G/K → R. For a tangent vector XA ∈ TgG to lie
in the kernel of this differential, (4.126) must vanish for all such functions and
this can only happen if q ◦ γA is constant for small times t ≈ 0. As

(q ◦ γA)(t) = q(g exp(At)) = gq(exp(At)), (4.127)

it follows that q(exp(At)) is constant for small times and exp(At) therefore lives
inside the coset q(exp(0)) = q(e) = K for t ≈ 0. But then exp(At) ∈ K for all
times, since K is a subgroup and closed under multiplication. To be precise,
let t ∈ R be arbitrary and choose a sufficiently large n so that exp(A(t/n)) ∈ K.
Then

exp(At) = exp(A(t/n))
n ∈ K. (4.128)

To summarize, ifXA = (dLg)e(A) lies in the vertical tangent space VgG = ker dqg
then exp(At) ∈ K for all times and so A ∈ k. The converse direction is proven
in [Schuller, 2016, Lemma 21.1] and we therefore conclude that

VgG = ker dqg = (dLg)e(k), (4.129)

which was to be proven.

It is very interesting that the vertical tangent spaces of q : G→ G/K are simply
left-translations of the Lie algebra k. It indicates that if we can find a suitable
subspace m ⊂ g such that

g = k⊕m, (4.130)

then we can define the horizontal subspaces as left-translations

HgG = (dLg)e(m). (4.131)

This definition would automatically form an Ehresmann connection since the
assignment g 7→ HgG is smooth, but it would not necessarily be a principal
connection. This is because not all possible choices of m are compatible with
right-translations in the sense of (4.41). Left- and right-translations commute,
so on the one hand we have

(dRk)g(HgG) = (dRk)g ◦ (dLg)e(m)

= d (Rk ◦ Lg)e (m)

= d (Lg ◦Rk)e (m)

= (dLg)k ◦ (dRk)e(m),

(4.132)
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but this is generally not the same thing as

HgkG = (dLgk)e(m) = (dLg)k ◦ (dLk)e(m). (4.133)

For (4.131) to define a principal connection we evidently need that

m = (dRk−1)k ◦ (dLk)e(m) = d(Rk−1 ◦ Lk)e (m). (4.134)

This can be seen by comparing the right-hand sides of (4.132) and (4.133), and
using that all differentials involved are isomorphisms. The function

Rk−1 ◦ Lk : G→ G, h 7→ khk−1, (4.135)

is nothing but the conjugation function

ψg : G→ G, h 7→ ghg−1, (4.136)

restricted to elements g = k of the subgroup. Its differential

(dψg)e : g → g, A 7→ gAg−1, (4.137)

defines the Adjoint representation AdG(g) = (dψg)e of G on its Lie algebra, and
the restriction (4.135) to conjugation with respect to elements k ∈ K produces
a representation AdG(K) of the subgroup.

The subgrup K also has an Adjoint representation AdK on its Lie algebra k and
because this is a closed subspace, k ⊂ g, and both representations are defined
by conjugation, we find that AdK is a subrepresentation of AdG(K). Now, K
is assumed compact, so there exists an inner product on g such that AdG(K) is
unitary. The subrepresentation AdK is also unitary with this inner product and
AdG(K) therefore decomposes into a direct sum of subrepresentations,

g = k⊕ k⊥, (4.138)

on k and its orthogonal complement k⊥ with respect to the inner product. The
orthogonal complement m = k⊥ is then an AdG(K)-invariant subspace of g.
That is,

m = AdG(k)(m) = (dψk)e(m) = d(Rk−1 ◦ Lk)e (m). (4.139)

for all k ∈ K. This is precisely the criterion (4.134) needed for (4.131) to define a
principal connection on the bundle q : G→ G/K.

Remark 11. A homogeneous space G/K is reductive if g can be decomposed
into a direct sum g = k ⊕ m such that m is AdG(K)-invariant. We have thus
proven that G/K is reductive whenever K is compact.

We summarize our conclusions in the form of a theorem.
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Theorem 15. LetG be a connected matrix Lie group and let K be a compact subgroup.
Further let g = k ⊕ m be the reductive decomposition of the Lie algebra g. Then the
horizontal tangent spaces

HgG = (dLg)e(m), (4.140)

define a principal connection on q : G→ G/K known as its canonical connection.

The following example illustrates how parallel transport under the canonical
connection is related to left-translation.

Example 13. Consider the left-invariant vector field

XA : G→ TG, XA(g) = (dLg)e(A), (4.141)

generated by an element A ∈ g. Let γ↑ : R → G be the maximal integral curve of
this vector field starting at γ↑(0) = e. This means that γ↑ moves in the direction
γ̇↑(t) = XA(γ

↑(t)) of the vector field at all times. The exponential map on Lie
groups is defined using maximal integral curves [Hamilton, 2017, §1.7] so it is
almost by definition that

γ↑(t) = exp(At), t ∈ R. (4.142)

According to the canonical connection, ifA ∈ m, the velocities γ̇↑(t) = (dLg)e(A)
are horizontal tangent vectors for all times and γ↑ is then a horizontal lift of its
projection q ◦ γ↑ : R → G/K.

More generally, each exponential curve

γ↑g0(t) = exp(At)g0, A ∈ m, g0 ∈ G, t ∈ R, (4.143)

is the unique horizontal lift starting at γ↑g0(0) = g0 of its projection γ = q ◦ γ↑g0 .
To clarify, γ↑g0 is always a lift of its projection but it is only a horizontal lift with
respect to the canonical connection. It follows that exponential curves (4.143)
perform parallel transport inG if and only if the principal bundle q : G→ G/K
is equipped with its canonical connection. Moreover, any two elements g0, g′0
of the same fiber

Gγ(0) = q−1({g0}) = q−1({g′0}), (4.144)

yield the same projected curve γ = q ◦ γ↑g0 = q ◦ γ↑g′
0

in the homogeneous space.
Parallel transport along this projected curve,

Πγ : Gγ(0) → Gγ(1), g0 7→ γ↑g0(1), (4.145)

coincides with left-translation by exp(A),

Πγ(g0) = exp(A)g0 = Lexp(A)(g0). (4.146)

■
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Let us now consider the consequences of this relation between parallel transport
and left-translation for homogeneous vector bundles. Definition 18 states that
for any curve γ : R → G/K, the mapping

Tγ : [g, v] 7→ [Πγ(g), v], (4.147)

performs parallel transport along γ in associated bundlesG×ρV . We also know
from Lemma 11 that any homogeneous vector bundle π : E → M is isomorphic
to an associated bundle G×ρ Eo, where o is an arbitrarily chosen origin in M
and ρ(k) = Lk,o is defined through the linear maps Lg,x between fibers in E.
The inverse of the isomorphism

ξ : G×ρ Eo → E, [g, v] 7→ Lg,o(v), (4.148)

is given by
ξ−1 : E → G×ρ Eo, v 7→ [g, Lg−1,π(v)(v)], (4.149)

where g ∈ G is any group element such that π(v) = go ∈ M. We can use this
isomorphism to define parallel transport Tγ : Eγ(0) → Eγ(1) in homogeneous
vector bundles as maps Tγ = ξ ◦ Tγ ◦ ξ−1, see the diagram below.

Eγ(0) Eγ(1)

G×ρ Eo G×ρ Eo

Tγ

ξ−1

Tγ

ξ

For any curve γ, this map acts on elements v ∈ Eγ(0) by

Tγ(v) =
(
ξ ◦ Tγ ◦ ξ−1

)
(v) =

(
ξ ◦ Tγ

)(
[g, Lg−1,π(v)(v)]

)
= ξ
(
[Πγ(g), Lg−1,π(v)(v)]

)
= LΠγ(g),o

(
Lg−1,π(v)(v)

)
.

(4.150)

The subscripts make the final expression look more complicated than it actually
is. Any v ∈ Eγ(0) is first mapped to the fiber Eo through left-translation by g−1,
and is then mapped to the fiber Eγ(1) through left-translation by Πγ(g). Indeed,
as Lg,x is induced from the action (4.89), we can write (4.150) in a more compact
way as

Tγ(v) = Πγ(g) · g−1 · v =
(
Πγ(g)g

−1
)
· v. (4.151)

This definition of parallel transport in homogeneous vector bundles works for
any principal connection. It depends on the connection through Πγ .
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Returning to the canonical connection in the setting of Example 13, the parallel
transport maps Tγ induced from (4.146) reduce to

Tγ(v) =
(
Πγ(g0)g

−1
0

)
· v =

(
exp(A)g0g

−1
0

)
· v = exp(A) · v, (4.152)

or in terms of the linear maps Lg,x,

Tγ(v) = Lexp(A),γ(0)(v) = Lexp(A),π(v)(v). (4.153)

The curve γ(t) = (q ◦ γ↑g0)(t) = q(exp(At)g0) used in (4.146) was not chosen
beforehand, it was defined through a choice of horizontal tangent vector A ∈ m
and the starting point g0 for its horizontal lift γ↑g0 . Furthermore, the absence
of g0 on the right-hand side of (4.152) means that the starting point is relevant
only because it determines the fiber Eγ(0) = Eq(g0) on which Tγ is defined.

Consequently, the domain of the parallel transport map (4.152) can be extended
from the fiber Eγ(0) to the entire bundle E by varying the starting point g0. This
can also be seen from the right-hand side of (4.153), which is a well-defined
linear operator on any fiber Ex and thus also on the entire bundle E.

Theorem 16. LetG be a connected matrix Lie group and let K be a compact subgroup.
Further let g = k⊕m be the reductive decomposition of the Lie algebra g. Given any
homogeneous vector bundle π : E → G/K and any horizontal tangent vector A ∈ m,
the mapping

TA : E → E, v 7→ exp(A) · v, (4.154)

performs parallel transport in E with respect to the canonical connection.

It is well-known that the exponential map is surjective for compact, connected
Lie groups G. Choosing the trivial subgroup K = {e} effectively allows us to
identify G with the trivial bundle q : G→ G/{e} and its canonical connection
can then be considered a connection on G itself. The reductive decomposition
reduces to g = k⊕m = m since k = 0, implying that any tangent vector on G is
a horizontal tangent vector under the canonical connection. The map

exp : m → G, A 7→ exp(A), (4.155)

is therefore surjective. When combining this fact with Theorem 16 and (4.146),
we obtain the following corollary with which we conclude.

Corollary 17. LetG be a compact, connected matrix Lie group. Then, left-translations

Lg : G→ G, g′ 7→ gg′, (4.156)

perform parallel transport in G under the canonical connection, and so does the action

Tg : E → E, v 7→ g · v, (4.157)

in any homogeneous vector bundle π : E → G.
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