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Abstract—Reconfigurable intelligent surfaces (RISs) have
tremendous potential to boost communication performance, es-
pecially when the line-of-sight (LOS) path between the user
equipment (UE) and base station (BS) is blocked. To control
the RIS, channel state information (CSI) is needed, which entails
significant pilot overhead. To reduce this overhead and the need
for frequent RIS reconfiguration, we propose a novel frame-
work for integrated localization and communications, where
RIS configurations are fixed during location coherence intervals,
while BS precoders are optimized every channel coherence
interval. This framework leverages accurate location information
obtained with the aid of several RISs as well as novel RIS
optimization and channel estimation methods. Performance in
terms of localization accuracy, channel estimation error, and
achievable rate demonstrates the effectiveness of the proposed
approach.

I. INTRODUCTION

As the fifth-generation (5G) cellular network is being de-
ployed worldwide, the research community is investigating
key technologies towards the sixth-generation (6G), which is
expected to be standardized in the late 2020s [1]–[3]. Among
the key enablers, we count the introduction of reconfigurable
intelligent surfaces (RISs), which are large planar arrays of
configurable small meta-atoms [4]–[6]. Such RISs can be
placed on regular surfaces and through their configuration
enable the modification of the radio propagation channel far
beyond what was previously possible. An important canonical
use case is to overcome the line-of-sight (LOS) blockage
between a base station (BS) and a user equipment (UE), which
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is especially relevant in millimeter wave (mmWave) and sub-
terahertz (THz) frequency bands (30 GHz - 300 GHz) [6]–[8].

In parallel to this technology-driven development, another
key enabler towards 6G is the convergence of communication,
localization and sensing, often referred to as integrated sensing
and communication (ISAC) [9] or even integrated sensing,
localization, and communication (ISLAC) [10], [11]. Driven
largely by the increased available bandwidth and larger arrays
at the transmitter and receiver, radio signals have great poten-
tial to enable accurate localization and sensing [12]. Moreover,
the geometric nature of the propagation channel even mandates
that communication, localization, and sensing should be jointly
designed, as high-rate directional transmissions can only be
provided with prior knowledge of UE locations and predictions
of blockages in the environment. This will make 6G the
first generation where localization is not an add-on feature to
communication, but localization is designed from the onset
to operate jointly with communication, with strong mutual
synergies [10], [13]. RISs are expected to play an important
role, both to increase or maintain data rates, but also to support
accurate user localization and tracking [10], [14]. Research
on RISs for communication and localization has progressed
enormously over the past few years [14]–[20]. Nevertheless,
important and fundamental challenges remain. Among these
challenges, two inter-related problems stand out: (i) how is
it possible to reduce the channel state information (CSI)
estimation overhead and the RIS configuration rate by jointly
exploiting localization and communication? (ii) How and
when to control the RIS meta-atoms to support communication
and localization functions?

RIS Channel Estimation: Conventionally, the RIS config-
uration requires the knowledge of CSI over the BS-RIS and
RIS-UE links. The channel estimation problem is challenging,
as a nearly-passive RIS does not have either the possibility to
locally estimate the channel or the possibility of sending pilot
signals [21], [22]. This leads to a cascaded channel estimation
problem at either the BS or UE [22], which requires a sequence
of different RIS configurations during the estimation process.
The number of such configurations depends on the underlying
structure of the channel. When the channel is sparse and
thus can be described by few parameters, efficient channel
estimation is possible. In unstructured channels, on the other
hand, the overhead is proportional to the number of RIS
elements if the RIS is optimized based on instantaneous
CSI. In [23], [24], for example, random phase and structured
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configurations of RIS elements are investigated by show-
ing how discrete Fourier transform (DFT)-based sequences
achieve the minimum variance estimation provided that the
number of pilot symbols is larger or equal to the number of
RIS elements. Inspired by the sparsity of the mmWave/THz
propagation channel, a class of compressed sensing (CS)
based channel estimation schemes have been developed [7],
[25]–[27]. Generally, the performance of CS-based methods
relies on the proper sparse representation of the cascaded
channel, and better estimation performance usually requires
high computational complexity. Another strategy is to factorize
the high-dimensional cascaded channel into a set of low-
dimensional sub-channels [28]–[30]. By recovering the low-
dimensional subchannels through subspace-based algorithms
(such as singular value decomposition (SVD) or high-order
SVD), the overall cascaded channel is obtained. However,
the training overhead and complexity increase with the size
of all dimensions, and the channel estimation performance
also depends on the accuracy of the decomposition models.
The application of machine learning methods for RIS channel
estimation have been considered [31]–[33]. Since analytical
closed-form expressions of the channel estimate and channel
estimation error are hard to obtain with machine learning, this
approach is usually not suitable to theoretically quantify the
RIS performance.

RIS Optimization in Communications: In general, channel
estimation for RIS configuration requires significant amount
of training overhead [21], [34]. Instead of relying on in-
stantaneous CSI for RIS optimization, the use of statistical
CSI for RIS configuration has been considered recently [35]–
[38]. For example, upper bounds for the uplink and downlink
ergodic rate are derived in [35], [36]. Based on the obtained
analytical formulas, the RIS phase configuration is optimized
using the alternating direction method of multipliers (ADMM)
and alternating optimization (AO) based algorithms. The au-
thors of [37] study a multiple BS interference channel, and
derive an upper bound for the ergodic rate by assuming the
maximal ratio transmission (MRT) precoding scheme. The
RIS optimization is performed by using an iterative parallel
coordinate descent (PCD) method. The research works in [35]–
[37] consider either single-user or signal-antenna user setups.
In addition, the ergodic rate is obtained by assuming a specific
transmission scheme (such as the MRT in [36], [38]). In
order to improve the achievable rate, the two-timescale CSI
scheme [39]–[42] has been proposed. The main idea of the
two-timescale scheme is to optimize the RIS configuration
based on long-term CSI, and the precoding at the BS based on
instantaneous CSI [39], [42]. Since the long-term CSI changes
slowly, the RIS configuration does not need to be updated
frequently. In addition, the acquisition of the instantaneous
CSI for optimizing the BS precoding requires a number
of pilot symbols that depends on the number of users and
antenna elements at that UEs, but that is independent of the
number of RIS elements. In [41], the authors first obtain
the aggregated channel from the users to the BS in each
channel coherence interval, by utilizing a linear minimum
mean square error estimator (LMMSE), and they then derive
closed-form expressions of the ergodic achievable rate under

the assumption of maximal ratio combining (MRC) at the BS.
Due to these assumptions (LMMSE and MRC), the resulting
expression of the uplink ergodic rate is not optimal [41], [42].
The analysis in [41] shows, however, that the two-timescale
scheme requires knowledge of the locations and the angles of
the users with respect to the BS and the RIS, which vary
much slower than the instantaneous CSI. Specifically, the
rate depends on the location-dependent angle-of-arrival (AOA)
and angle-of-departure (AOD), which indicates that accurate
estimates of the locations of the users are needed for system
optimization. By contrast, the location uncertainty of the UEs
has been taken into account in [43] when optimizing the RIS
configuration. However, the authors of [43] did not consider
the inherent ability of RISs to help estimating the locations
of the UEs. Also, the precoding design does not account for
channel estimation errors.

RIS for Localization: Based on these research works, it is
apparent that the optimization of RIS-aided channels based
on statistical CSI requires the estimation of the location of
the UEs. The presence of RISs can help this challenging
task. Specifically, localization theoretical bounds have been
investigated in [44]–[46] with the purpose of understanding the
potential advantages of using RISs compared to schemes based
only on the natural scattering of the environment. Practical
RIS-aided localization algorithms can be found in [14], [19],
[20], [47]–[49]. In [20], [47], a receive signal strength (RSS)
based multi-user positioning scheme is proposed in which the
phase profile of the RIS is optimized to obtain a favorable
RSS distribution in space, and thus a better discrimination
of the RSS signature of neighboring locations. In [48], a
machine learning method for RSS-based fingerprint localiza-
tion is investigated. The authors demonstrate that the diversity
offered by a RIS can be successfully used to generate reliable
radio maps. Better performance can be obtained by exploiting
phase/time-of-arrival (TOA) of signals. In this direction, the
authors of [14], [19] propose a low-complexity localization
algorithm that estimates the TOA of the direct path and the
path reflected by the RIS, as well as the AOD from the RIS
to infer, in the far-field region, the position of the UE in the
presence of synchronization errors. In [49], a narrowband and
a two-step wideband positioning algorithms exploiting near-far
propagation conditions are proposed. These solutions operate
when the BS is blocked and positioning relies only on the
signal reflected by the RIS. To our best knowledge, there exist
no research works that combine localization and communica-
tion with the purpose of reducing the overall signaling and
estimation overhead in RIS-aided networks.

In this paper, we investigate how communication and local-
ization can be jointly exploited in order to significantly reduce
the CSI estimation overhead by optimizing the configuration of
the RIS for several channel coherence intervals. This leads to a
novel frame structure, comprising infrequent localization and
RIS control tasks, combined with a more frequent optimization
of the BS precoders to maximize the transmission rate. Our
contributions are summarized as follows:
• We propose a novel integrated localization and commu-

nication framework and protocol for multi-RIS, multi-
user MIMO communications, consisting of three phases:



3

Phase I for localization, Phase II for location-aided
channel estimation, and Phase III for data transmission.
Instead of relying on external sources for localization,
the proposed framework obtains the location information
based on the transmission of dedicated pilot signals in
Phase I. Also, as the locations of the UEs change slowly
compared to the channel variations, we perform the
localization task of the UEs based on a longer timescale.

• We propose a design approach for the optimal RIS profile
that requires the RIS configuration at a low rate and
that accounts for the localization performance in Phase I.
Resorting to the location-based RIS optimization scheme
proposed in [43], the proposed RIS design strategy works
well both in static and dynamic scenarios.

• We design a channel estimation scheme in Phase II using
location information. We derive a closed-form expression
for the channel covariance matrix of the estimation error
and show that it is sufficiently accurate with the aid of
numerical results. Our analysis reveals that the effective
achievable rate is significantly improved by the proposed
channel estimation algorithm that relies on prior location
information compared to existing approaches.

• We propose optimal precoder design schemes that ac-
count for the channel estimation error to maximize the
conditional achievable rate. The proposed precoder design
achieves near-optimal rate performance with a small
number of pilot symbols, thanks to a proper configuration
of the RIS phase profile, an improved channel estimation,
and a proper precoder design, all benefiting from the
localization in Phase I.

The proposed framework has the following distinguishable
features: 1) the integration of localization into the commu-
nication system design; 2) the optimal RIS configuration to
maximize the conditional achievable rate based on periodical
location estimates; 3) the optimal precoding design to maxi-
mize the conditional achievable rate based on the estimation
of instantaneous CSI; 4) the reduction of the overhead for
instantaneous CSI acquisition with the help of localization.
These targets are significantly different from existing two-
timescale schemes [39]–[42] because the localization of the
UEs is integrated with the tasks of RIS optimization and
channel estimation; and because we rely upon the statistical
position-based RIS optimization scheme proposed in [43] by
considering only imperfect instantaneous CSI.

This paper is structured as follows. In Section II, the system
models including the RIS reflection and channel models are
introduced. The considered time scales (fast and slow time
scales) and the proposed framework are presented in Section
III. The location-coherent optimization method is presented in
Section IV and the channel-coherent optimization algorithm is
described in Section V. The numerical results are presented in
Section VI, and conclusions are drawn in Section VII.

Notations: Vectors and matrices are denoted by bold low-
ercase and uppercase letters, respectively. The notations (·)∗,
(·)T, (·)H, (·)−1, and (·)†, are reserved for the conjugate,
transpose, conjugate transpose, inverse, and Moore-Penrose
pseudoinverse operations. The expectation is denoted by E{·}.
The notation Diag(a) is to form a diagonal matrix with

a being the diagonal elements. The operation vec(A) is to
transform the matrix A into a column vector by stacking the
columns on top of one another. The symbol ⊗ denotes the
Kronecker product. δ (·) is the Dirac delta function. <{·} and
={·} denote the real and imaginary part, respectively. The 2-
argument arctangent function arctan 2(x, y) returns a single
value θ such that −π < θ ≤ π and, for r =

√
x2 + y2,

x = r cos(θ) and y = r sin(θ). The inverse of the cosine
function is denoted by arccos(·). The Frobenius norm is
denoted by ‖ · ‖F. The three-dimension (3D) rotation group
of special orthogonal matrices is denoted by SO(3). Complex
Gaussian random vectors are denoted by a ∼ CN (ā,Ra) with
E{a} = ā, and E{(a− ā)(a− ā)H}) = Ra; if all entries of
a are real numbers, we use a ∼ N (ā,Ra).

II. COMMUNICATION SYSTEM AND CHANNEL MODEL

We consider a narrowband system with multiple RISs and
multiple users as shown in Fig. 1. We assume that the LOS
paths from the BS to the UEs are blocked, so that only the
NLOS paths are present in the BS-UE direct links.1 The
carrier frequency is f0, and the corresponding wavelength is
λ = c/f0 where c is the speed of light. A uniform rectangular
array (URA) is deployed at the BS whose center-location is
pB ∈ R3, with NB = NB,x × NB,y antenna array elements
and the orientation matrix OB ∈ SO(3). In the system,
there are K RISs whose center-locations and orientations are
denoted by pRk ∈ R3 and ORk ∈ SO(3), respectively. Each
RIS comprises P = NRk,x × NRk,y unit cells (meta-atoms),
forming a URA. Based on the knowledge of the BS location,
we can either optimize the locations of the RISs or we can
select the RISs in the network such that the BS-RIS links are in
LOS. The number of UEs under simultaneous service is I ≥ 1.
The i-th UE is equipped with a URA of NUi = NUi,x×NUi,y

antenna elements, whose center-location is pUi ∈ R3 and
whose orientation matrix is OUi ∈ SO(3). All arrays have
cell/element spacing equal to λ/2.2

A. Reflection Model for the RIS

Assuming each unit cell is sufficiently small to be con-
sidered in the far-field region of the BS and UE, the local
reflection coefficient of the p-th unit cell towards the general
direction of scattering Θ = (θaz, θel), with θaz and φel

denoting the azimuth and elevation angles in the local coor-
dinate system of the RIS, can be modeled as rp (Θinc,Θ) =√
F (Θinc)F (Θ)Gcbp [43], where F (Θ) is the normalized

power radiation pattern of each unit cell, which is assumed
to be frequency-independent within the bandwidth of interest,
and is defined as

F (Θ) =

{
cosq (θel) , θel ∈ [0, π/2] , θaz ∈ [0, 2π];
0, otherwise (1)

where q is a tunable parameter, Θinc = (θaz,inc, θel,inc) is
the angle of incidence with respect to the RIS, and Gc is the

1This is the deployment scenario where an RIS can be more suitable for
improving the communication performance.

2In RISs whose elements have inter-distances smaller than half-wavelength,
the mutual coupling needs to be taken into account [6]. This generalization
is postponed to a future research work.
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Fig. 1: Application scenario: integrated localization and communication with multiple RISs and UEs. We assume that the LOS path from the
BS to the UE is blocked while the RIS-BS links are in LOS. The locations of the UEs are not perfectly known and the UEs can randomly
move throughout the network.

boresight gain of the unit cell [43], [50], [51]. The term bp,
which is often referred to as the load reflection coefficient,
is defined as bp = ρp exp(φp), where ρp and φp are the
amplitude and phase of the p-th RIS element, respectively. The
load reflection coefficient of each unit cell is the parameter of
the RIS that can be optimized for performance improvement.
In this paper, for simplicity, we assume ρp = 1. Therefore, the
optimization of b = [b1, b2, · · · , bP ]T is equivalent to optimize
the RIS phase profile.

B. Indirect Link Models (BS-RIS-UE Channel)

As mentioned, the BS, RISs, and UEs are equipped with
URAs with Nx × Ny elements. For a given direction u =
[sin(θel) cos(θaz), sin(θel) sin(θaz), cos(θel)]

T, where θel and
θaz are the elevation and azimuth angles, respectively, the
steering vector is defined as a(Q,θ) = [a1, a2, · · · , aNxNy

]T,
with the ((nx − 1) × Ny + ny)-th element given by
a(nx−1)×Ny+ny

= exp(2π/λqT
nx,ny

u) and qnx,ny = [(nx −
1)λ/2 − (Nx − 1)λ/4, (ny − 1)λ/2 − (Ny − 1)λ/4, 0]T is
the position of the (nx, ny)-th antenna element for nx =
1, 2, · · · , Nx and ny = 1, 2, · · · , Ny. We use the notation
θ = [θel, θaz]T for the angles and Q ∈ RNxNy×3 with
Q = [q1,1, q1,2, · · · , qNx,Ny

]T for the positions of the antenna
elements in the array’s local coordinate system.

1) BS-RIS channel: The channel matrix from the BS to the
k-th RIS, HB,Rk ∈ CP×NB , is

HB,Rk = αB,ka (QRk ,φRk)aT (QB,θB,Rk) , (2)

and αB,k =
√
F (φRk)GTGcλ/(4π|pk,B|) exp(−2π|pk,B|/λ)

is the path gain of the LOS from the BS to the k-th RIS.
The matrices QB ∈ RNB,xNB,y×3 and QRk ∈ RP×3 contain
the positions of the antenna elements of the BS and the
k-th RIS, respectively, and θB,Rk = [θel

B,k, θ
az
B,k]T is the

AOD from the BS to the k-th RIS, which corresponds to
the direction of the vector pk,B = OB(pRk − pB) in the
local coordinate system of the BS. The elevation and azimuth
angles are given by θaz

B,k = arctan 2([pk,B]2, [pk,B]1) and
θel

B,k = arccos ([pk,B]3/‖pk,B‖), respectively. Similarly,
φRk = [φel

Rk
, φaz

Rk
] is the AOA at the k-th RIS from the BS.

2) RIS-UE channel: The channel from the k-th RIS to the
i-th UE is denoted by HRk,i = H̄Rk,i(pUi) + H̃Rk,i, and it
is composed of a LOS component (denoted by H̄Rk,i(pUi) ∈
CNUi

×P ) and an NLOS component (denoted by H̃Rk,i ∈
CNUi

×P ). Based on a Rice channel model, and defining the
Rician factor κk,i ≥ 0, the LOS channel component is given
by [42]

H̄Rk,i(pUi) = ᾱk,ia (QUi ,φRk,Ui)a
T (QRk ,θRk,Ui) , (3)

where ᾱk,i =
√
κk,iρk,i/(κk,i + 1) exp(−2π|pRk,Ui |/λ) is

the path gain of the LOS from the k-th RIS to the i-th
UE with ρk,i = F (θRk,Ui)GRGcλ

2/(16π2‖pRk,Ui‖α), where
pRk,Ui = OUi(pUi − pRk), and α is the path-loss exponent.
The matrix QUi ∈ CNUi

×3 contains the positions of the
antenna elements of the i-th UE. θRk,Ui = [θel

Rk,Ui
, θaz

Rk,Ui
]T

is the AOD from the k-th RIS to the i-th UE, and φRk,Ui =
[φel

Rk,Ui
, φaz

Rk,Ui
]T is the AOA from the k-th RIS to the i-th

UE.
The NLOS component H̃Rk,i is modeled as a random

matrix, and vec(H̃Rk,i) ∼ CN (0, R̃k,i). When R̃k,i is the
identity matrix, the RIS-UE channel model reduces to the
independent and identically distributed Rician fading model
[38], [41], [42].

3) BS-RIS-UE channel: Given the RIS profile bk, the
overall channel matrix from the BS to the i-th UE via the
k-th RIS, Hk,i(bk,pUi) ∈ CNUi

×NB , is given by

Hk,i(bk,pUi) =(H̄Rk,i(pUi) + H̃Rk,i)Diag (bk)HB,Rk .
(4)

It can be shown that hk,i(bk,pUi) = vec(Hk,i(bk,pUi)) ∼
CN (h̄k,i(bk,pUi),Rk,i(bk)), with

h̄k,i (bk,pUi) =
(

(Diag (bk)HB,Rk)
T ⊗ INUi

)
· vec

(
H̄Rk,i(pUi)

)
, (5)

Rk,i (bk) =
(

(Diag(bk)HB,k)
T ⊗ INUi

)
· R̃k,i

(
(Diag(bk)HB,k)

T ⊗ INUi

)H

. (6)
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Fig. 2: The proposed frame structure: we assume that the UE locations change slowly during the location coherence interval TL, and that
the channel remains unchanged during the channel coherence interval TC. Each location coherence interval includes NC channel coherence
intervals, and it is split into three phases: 1) Phase I with duration TP1 , 2) Phase II with total duration NCTP2 , and 3) Phase III with total
duration NC(TC − TP2).

C. Direct Link Model (BS-UE Channel)

The NLOS component of the direct link consists of a
number of clustered paths, each corresponding to a micro-
level scattering path. As a result, the channel matrix of the
direct link from the BS to i-th UE, which is denoted by
H̃B,i ∈ CNUi

×NB , can be modeled as a random matrix, where
its elements are i.i.d. CN (0, σ2

B,i) random variables.

III. SEPARATION OF TIME SCALES AND PROPOSED
FRAMEWORK

In the considered integrated localization and communication
framework, we consider several location coherence intervals
TL and divide such a period into three phases, as shown in
Fig. 2. Note that the channel changes faster than the locations.
Therefore, it is reasonable to assume that the location coher-
ence interval includes multiple channel coherence intervals.

A. Time Scales

To account for user mobility and channel variations, we
consider two time indices, t and τ .

1) Fast time scale: The fast time index t corresponds
to the individual narrowband signals transmitted within one
channel coherence interval, whose duration is TC and is
proportional to λ/v, where v is the maximum UE speed.
Hence, the number of transmissions within one channel co-
herence interval is TCB, where B is the signal bandwidth.
We denote by bk,t = [b

(k,t)
1 , b

(k,t)
2 , · · · , b(k,t)P ]T the load

reflection coefficients of the k-th RIS at time instant t.
The transmit signal (precoded data or pilot) is denoted by
xt = [xt,1, xt,2, · · · , xt,NB

]T. The received signal at the i-th
UE, i.e., yi,t = [y

(i,t)
1 , y

(i,t)
2 , · · · , y(i,t)

NU
]T, can be written as

yi,t =HB,i(Bt,pUi)xt + nt, (7)

where HB,i(Bt,pUi) = H̃B,i +
∑K
k=1Hk,i(bk,t,pUi) is

the cascaded channel from the BS to UE i, with Bt =
{b1,t, b2,t, · · · , bK,t}. The white Gaussian noise (AWGN) is

denoted by nt ∼ CN (0, σ2
nINU

) with σ2
n = nfN0B, where

nf is the noise factor, and N0 is the noise power density.
2) Slow time scale: In contrast, τ ∈ {0, 1, · · · , NC − 1}

is the time index related to the time scale at which the user
moves, with sampling time TC. NC is the number of channel
coherence intervals in one location coherence interval (after
TP1

), i.e., TL = TP1
+ NCTC. We model the user movement

by a random walk process, where the user position at the
beginning of a frame is denoted by pUi,0, while during the
coherence interval τ , it is pUi,τ = pUi,τ−1 + vi,τ , where
vi,τ ∼ N (0,Σpos) and Σpos is the covariance of the random
walk with sampling period TC.

B. Proposed Frame Structure

1) Phase I: Phase I is intended to estimate the UE locations
as well as to optimize the RIS phase profile. To this end, the
BS transmits the pilot sequence sP1

t , t = 1, 2, · · · , TP1B, and
the RISs configures the phase profile bP1

k,t. With the received
sequences, we estimate the UE locations based on AOD
estimations (see Section IV-A). In addition, we optimize the
phase profile of all RISs based on the estimates of the locations
and on the covariance matrix of the location uncertainty (see
Section IV-B). The optimized phase profiles remain unchanged
during Phases II and III until the UE locations are outdated.
Phase I is repeated every location coherence interval in order
to appropriately update the RIS phase profiles.

2) Phase II: We divide the remaining time TL − TP1

into several channel coherent blocks and assume that the
channel remains unchanged in each coherent block. Phase II
in each channel coherent interval TC is intended to obtain the
estimate of the composed channel, based on which the optimal
precoders of the BS are designed to maximize the achievable
rate. To this end, the BS transmits the pilot sequence sP2

t ,
t = 1, 2, · · · , TP2

B, and channel estimation is performed
on the received pilot symbols (see Section V-A), without
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involving any configuration of the RIS.3

3) Phase III: The Phase III is intended to perform data
transmission with the RIS phase profile optimized in Phase I
and with the optimal BS precoder optimized in Phase II.

Thus, the localization accuracy of the UEs impacts the
communication performance. The user movement, the NLOS
components, and the pilots used in Phase I impact the lo-
calization accuracy of the UEs, and the channel estimation
accuracy in Phase II impacts the achievable rate. Our aim is
to understand how localization helps channel estimation and
data communication.

IV. LOCATION-COHERENT OPTIMIZATION PHASE

Here, we describe the operations in Phase I, where the BS
transmits TP1

B pilots to estimate the UE positions. From the
estimated positions, we describe how the RIS phase profile is
optimized. For both positioning and phase profile optimization,
we use performance bounds, in order to obtain fundamental
performance insights and to be agnostic to specific algorithms
for localization.

A. UE Location Estimation Bound

We use Fisher information analysis [19] to obtain the
covariance matrix Σi,0 of the position of the i-th user given the
observations yi,t at the beginning of a frame, corresponding
to τ = 0. For simplicity, but with no loss of generality,
we assume that the same pilot symbols are transmitted at
each time instance, i.e., xt = x for all t. As the BS-UE
channel does not convey location information, it is treated
as an interference term in the received signal. Therefore, we
simply remove the received signal from the direct link (if
any) by designing the RIS phases such that bP1

k,2ť−1
= −bP1

k,2ť
,

for ť = 1, 2, · · · , TP1/2B, (we assume that TP1B is an even
number).4 Next, at the receiver, we calculate y̌i,t as

y̌i,ť =
1

2
(yi,2ť−1 − yi,2ť)

=

K∑
k=1

H̄Rk,iDiag(b̌k,ť)HB,Rkx+ ňť,i. (8)

Here, (8) follows by substituting (4) into (7). Also b̌k,ť = bk,2ť,
and ňť,i ∼ CN (0, σ̌2

nINUi
) models the AWGN and the

RIS-UE multipath, where σ̌2
n = σ2

n/2 + σ2
i and σ2

i =∑K
k=1 ‖HB,Rkx‖2Fσ2

k,i. The NLOS components in (8) have
opposite sign and are added coherently. Also, the NLOS
components for different values of ť can be modeled as
independent from one another, since the RIS phase profile
is configured randomly and independently for different ť. In
addition, the employed configuration for the phase profile does

3When a time-division duplexing system is employed, the downlink CSI
can be estimated by taking advantage of channel reciprocity through the
transmission of pilots in the uplink. Therefore, the proposed framework can
still be utilized, by applying an appropriate processing to the channel estimates
and to the covariance matrix of the channel estimation errors. However, in
this work, we limit our analysis to the downlink only, where the CSI at the
BS is obtained through channel feedback [52], [53].

4The considered design of the RIS phase profile does not require either prior
knowledge of the UE locations or signaling overhead from the BS. Further
details can be found in [54].

not require prior knowledge of the UE locations, and it is
computationally efficient.

To compute Σi,0 from (8), we use a two-step approach.
We define the channel parameter vector for the i-th user
ηi ∈ R6K as ηi = [θT

i ,φ
T
i , ᾱi]

T, where θi ∈ R2K and
φi ∈ R2K are vectors containing the AODs (at the RISs)
and AOAs (at the UEs) from the RISs to the i-th UE,
respectively, and ᾱi contains the channel gains. Specifically,
θi = [θT

R1,Ui
, . . . ,θT

RK ,Ui
]T, φi = [φT

R1,Ui
, . . . ,φT

RK ,Ui
]T,

and ᾱi = [<(ᾱ1,i),=(ᾱ1,i), . . . ,<(ᾱK,i),=(ᾱK,i)]
T. Next,

we compute the Fisher information matrix (FIM) for the
channel parameters, which is denoted by J(ηi) ∈ R6K×6K ,
as J(ηi) = 2

σ̌2
i

∑TP1
B/2

ť=1
<
{
∇ηiµi,ť(∇ηiµi,ť)H

}
[55]. Here,

µi,ť is the noise-free observation of (8) given by µi,ť =∑K
k=1 H̄Rk,iDiag

(
b̌k,ť
)
HB,Rkx, where ∇ηµi,t ∈ C6K×NUi

is obtained as [∇ηµi,t]r,s = ∂[µi,t]s/∂[η]r, which can be
calculated based on the relations in Section II. Also, we define
the vector of position parameters as ζi ∈ R(4K+3), where
ζi = [pT

Ui,0
,φT

i , ᾱi]
T.5 The corresponding FIM matrix can be

calculated as J(ζi) = ΥT
i J(ηi)Υi. Here, Υi ∈ R6K×(4K+3)

is the Jacobian matrix defined as [Υi]s,r = ∂[ηi]s/∂[ζi]r,
which can be calculated based on the geometrical relations
described in Section II. The localization error matrix Σi,0 ∈
R3×3 is obtained as the first 3×3 diagonal block of the inverse
of J(ζi), i.e.,

Σi,0 =
[
J−1(ζi)

]
1:3,1:3

. (9)

For comparison, it is interesting to analyze the case study
when Phase I is not introduced in Fig. 2. In this case, the
UE location estimates can be obtained using conventional
positioning techniques, e.g., fingerprinting and GNSS-based
methods [56]. For simplicity, we refer to this scenario as the
prior-based scheme with the covariance matrix of location
uncertainty given by

Σi,0 = Σpri
i,0 . (10)

In each case, we can generate a synthetic estimate of the
position as p̂Ui,0 = pUi,0 +wi, where wi is a realization of
a random vector with distribution N (0,Σi,0).

In Section VI, we show that a practical estimation algorithm
achieves the proposed bounds for sufficiently large values of
the SNR. We anticipate that we consider a scenario with two
RISs, in which the considered channel estimator operates as
follows. First, it separates the received signal from each RIS by
using a temporal code of a given length, as described in [54].
Then, for each RIS-aided path, it estimates a one-dimensional
AoA (assuming the UE is equipped with a linear-array an-
tenna). Based on the estimated AoA, the signals received at
different UE antennas are added constructively. Subsequently,
the AODs are estimated by using the algorithm in [19, Sec. IV-
C]. Finally, a coarse estimate of the UE position is obtained
by finding the intersection6 of the two lines corresponding
to the two AODs. The obtained estimate is then refined by

5We localize the UE using the AODs only.
6If the two lines do not cross, a point with minimum aggregated distance

from the two lines is selected.
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maximizing the log-likelihood function by using the coarse
estimate as the initial point.

It is worth noting that the localization performance could
be improved if LOS paths exist between the BS and UE. This
case study is postponed to a future research work, since the
performance gains depend on the relative strengths between
the RIS-aided and LOS paths.

B. RIS Phase Profile Optimization

The RIS phase profile is optimized based on the statistics
of the terminal locations and the NLOS components of all
associated connections. To this end, we take inspiration from
the location-based RIS optimization approach proposed in
[43], which assumes that the actual locations of the UEs are
uniformly distributed around an estimated location. How the
localization of the UEs is performed is, however, not specified
in [43]. Therein, the localization statistics are assumed to be
available from external sources, e.g., based on the GNSS. By
contrast, we consider the localization scheme in Section IV-A,
i.e., the RIS optimizer assumes that the actual position of the
UEs is distributed around the estimated position according to
a normal distribution with covariance matrix given by (10).

To elaborate, let P be a sample set of random variables with
distributions N

(
p̂Ui,0 ,Σi,0

)
, where p̂Ui,0 is the estimated UE

position. Similarly, let T be a sample set of realizations of the
NLOS matrices H̃B,i and H̃Rk,i generated according to the
corresponding statistics and introduce Ω = {P, T }. Therefore,
we denote by B = {b1, b2, . . . , bK} the set of vectors contain-
ing the reflection coefficients of the K RISs. Note that for any
realization ω ∈ Ω and for any B, all channel matrices in (7)
can be determined. The system thus turns out to be a classical
MIMO communication system whose optimal behavior can be
determined according to established methods. Based on [43],
it is therefore possible to optimize the conditional sum rate
Rtot (ω,B) by using the block coordinate descent method to
solve a weighted MMSE (WMMSE) problem. The framework
proposed in [43] allows us to obtain a local optimum of the
problem:

max
B

∫
Rtot (ω,B) fΩ (ω) dω. (11)

In (11), the optimal RIS phase profile is evaluated by maximiz-
ing the conditional sum rate, where the average is evaluated
with respect to the distribution fΩ (ω) of Ω. Specifically, the
integral in (11) is computed by the Monte Carlo method, which
involves generating the user locations and the NLOS channel
links according to their statistical distribution. The details of
the solution of (11) are omitted for clarity. Interested readers
can refer to [43] for the derivation.

The proposed approach belongs to the schemes commonly
referred to as two-time scale approaches, where the optimiza-
tion of the RIS is performed at time scales much longer
than the coherence time of the channel. However, classical
two-time scale approaches [39]–[42] are based on the ideal
assumption that the positions of the users are known exactly,
i.e. p̂Ui,0 = pUi,0 and Σi,0 = 0. In this case, the set P reduces
to pUi,0 , i.e., the rate in (11) is averaged over the NLOS
channel realizations only. This approach can be considered as a

benchmark that results in upper bound performance. To prove
the effectiveness of the proposed RIS optimization approach,
it is interesting to analyze the case study where the user
position is affected by an estimation error, i.e., p̂Ui,0 6= pUi,0

but the RIS is optimized without considering this uncertainty,
i.e. assuming Σi,0 = 0. Also in this case, called punctual
optimization, the set P reduces to a single point, i.e., the rate
in (11) is averaged only over the NLOS channel realizations.

V. CHANNEL-COHERENT OPTIMIZATION PHASE

In this section, we describe the operations executed in
Phase II. In each channel coherence interval (indexed by τ ),
specifically, we estimate the composed channel from the BS
to each UE, and optimize the BS precoders. For notation
convenience, we drop the index τ > 0.

A. Channel Estimation

Given the optimized RIS phase profile B =
{b1, b2, · · · , bK} obtained as described in Section IV-B,
the composed channel between the BS and the i-th UE is
denoted by HB,i(B,pUi). To perform channel estimation, the
BS transmits the pilot matrix XP2

= [x1,x2, · · · ,xTP2B
],

and the corresponding received signal at the i-th UE is
Yi,P2 = HB,i(B,pUi)XP2 + Ni,P2 , where Ni,P2 =
[nP2

1,i,n
P2
2,i, · · · ,n

P2

TP2
B,i] denotes the noise component, with

ni,P2
= vec(Ni,P2

) ∼ CN (0, σ2
nINUi

TP2B
). Denoting

yi,P2 = vec(Yi,P2), we have yi,P2 = XhB,i(B,pUi) +ni,P2 ,
where hB,i(B,pUi) = vec(HB,i(B,pUi)), and
X = (XT

P2
⊗ INUi

).
Since the end-to-end channel HB,i(B,pUi) includes the

NLOS components of BS-UE direct link and the NLOS
components of RIS-UE links, which are unstructured com-
ponents, channel estimators that exploit the channel sparsity
are not suitable. Therefore, we consider two classical channel
estimators: the maximum-likelihood (ML) channel estimator
which does not require the prior statistics of the channel (such
as the mean h̄B,i and the covariance RB,i), and the channel
estimator which utilizes such prior information. In particular,
thanks to the localization performed in Phase I, some partial
channel state information is obtained to exploit the MMSE
channel estimation method to improve the channel estimation
accuracy.

1) ML channel estimator: ML channel estimation can be
applied if TP2

B ≥ NB. Specifically,

ĥ
(ML)
B,i = (XHX)−1XHyi,P2

. (12)

The associated channel estimation error ∆h
(ML)
B,i is indepen-

dent of hB,i (B), and its distribution is CN (0,E
(ML)
i ), where

E
(ML)
i = σ2

n(XHX)−1. (13)

2) LMMSE channel estimator: According to Section II,
given the optimized RIS phase profile B and the UE location
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pUi , the mean vector h̄B,i(B,pUi) and the covariance matrix
RB,i(B,pUi) of the channel vector hB,i(B,pUi) are given by

h̄B,i(B,pUi) =

K∑
k=1

h̄k,i (bk,pUi) , (14)

RB,i(B,pUi) =σ2
B,iINBNUi

+

K∑
k=1

Rk,i (bk) , (15)

where h̄k,i (bk,pUi) and Rk,i (bk) are defined in (5) and (6),
respectively.

Based on the location estimates in Section IV-A, the mean
of the channel given the optimized RIS phase profile B
is obtained by marginalizing (14) with respect to the UE
positions, as

h̄B,i(B) =

K∑
k=1

∫
h̄k,i (bk,pUi) f (pUi) dpUi . (16)

Here, f(pUi) is the probability density function of the i-th UE
location, which is assumed to follow a Gaussian distribution
with mean p̂Ui,0 and covariance matrix Σi,0. Similarly, the
covariance matrix of the channel vector is

RB,i(B) =

∫
E
{
hB,i(B,pUi)h

H
B,i(B,pUi)

}
f (pUi) dpUi

− h̄B,i(B)h̄H
B,i(B). (17)

The mean and covariance in (16) and (17) can be computed
numerically given the statistical characterization of the UE
positions. Also, when

√
Tr(Σi,0) is small, we can assume,

based on Appendix A, that hB,i(B,pUi) has a Gaussian
distribution. We have the following proposition.

Proposition 1. Assume the channel vector hB,i(B,pUi) ∼
CN (h̄B,i(B),RB,i(B)), the LMMSE estimator for hB,i is
given by

ĥ
(MMSE)
B,i =Λi

(
yi,P2 −Xh̄B,i

)
+ h̄B,i, (18)

where Λi = RB,iX
H(XRB,iX

H + σ2
nINUi

TP2
)−1

and the mean-square error ∆h
(MMSE)
B,i satisfies

E{∆h(MMSE)
B,i (ĥ

(MMSE)
B,i )H} = 0 with CN (0,E

(MMSE)
i )

where

E
(MMSE)
i = RB,i −ΛiXRB,i. (19)

The proof of Proposition 1 is available in [42], [55]. The
relation between the ML and LMMSE estimators is elaborated
in the following proposition.

Proposition 2. Let ∆Ei = E
(ML)
i − E

(MMSE)
i where

E
(MMSE)
i and E

(ML)
i are the covariance matrices of the

channel estimation error given by (19) and (13), respectively.
We then have ∆Ei � 0, i.e., ∆Ei is positive definite.

Proof. The proof immediately follows from (13) and (19).

Proposition 2 indicates that, thanks to the knowledge of
the statistics of the channel, we can always achieve better
channel estimates with the LMMSE estimator compared with
the ML estimator. Therefore, we consider the LMMSE channel
estimator in the following.

B. Conditional Achievable Rate

During the data transmission phase, the signal received at
the i-th UE in the presence of NU concurrent transmitted
streams is given by

y
(D)
i =HB,ixi +HB,i

NU∑
j=1,j 6=i

xj + n
(D)
i , (20)

where xj = Vjs
(D)
j is the transmitted precoded vector, Vj

is the precoding matrix, and s(D)
j is the vector of transmit-

ted symbols to the j-th UE, with normalized power, i.e.,
E{s(D)

j (s
(D)
j )H} = INU

. The noise component n(D)
i is mod-

eled as CN (0, σ2
nINU

).
1) Transmitter with complete channel knowledge: When

the complete CSI is known at the transmitter, the achievable
rate of the i-th UE can be obtained as [43]

Ri (V,B) = log det
(
INU

+ V H
i H

H
B,i (B) J̄−1

i HB,i (B)Vi
)
,

(21)

with J̄i =
∑NU

j=1,j 6=iHB,jVjV
H
j H

H
B,j + σ2

nINU
, where V =

{V1,V2, . . . ,VNu} denotes the set of precoding matrices of
all the NU UEs.

2) Transmitter with LMMSE channel estimates: When the
LMMSE channel estimates are available at the transmitter, we
rewrite (20) as

y
(D)
i =

(
Ĥ

(MMSE)
B,i + ∆H

(MMSE)
B,i

) NU∑
j=1

xj + n
(D)
i

=Ĥ
(MMSE)
B,i xi + ñi, (22)

where ĥ
(MMSE)
B,i = vec(Ĥ

(MMSE)
B,i ) is given in (18), and

∆h
(MMSE)
B,i = vec(∆H

(MMSE)
B,i ) is the LMMSE chan-

nel estimation error vector. ñi = ∆H
(MMSE)
B,i xi +

HB,i

∑NU

j=1,j 6=i xj + n
(D)
i is the equivalent noise-plus-

interference component. The corresponding conditional
achievable rate is given next.

Proposition 3. With the LMMSE channel estimates ĥ(MMSE)
B,i

given in (18), the conditional achievable rate of the i-th UE
is

Ri (V,B) = log det(INU
+ V H

i Ĥ
H
B,i(B)J̃−1

i ĤB,i(B)Vi),
(23)

with J̃i given by

J̃i =σ2
nINU

+ Es

NB∑
m=1

NB∑
n=1

Π
(m,n)
i E

(m,n)
i

+ Es

NB∑
m=1

NB∑
n=1

( NU∑
j=1,j 6=i

Π
(m,n)
j

)
R

(m,n)
B,i , (24)

where E
(m,n)
i = E{∆h(m)

B,i (∆h
(n)
B,i)

H}, R
(m,n)
B,i =

E{h(m)
B,i (B,pUi)(h

(m)
B,i (B,pUi))

H}, and Π
(m,n)
i is the (m,n)-

th element in Πi = ViV
H
i .

Proof. See Appendix B.
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Equations (21) and (23) are used to optimize the RIS phase
profile in Phase I and the BS precoding in Phase III, respec-
tively. As for the optimization of the RIS phase profile, from
the rate in (21) or (23), the conditional sum-rate in (11) can be
formulated as Rtot (ω,B) =

∑
iRi (V,B). Then, the integral

in (11) is computed numerically, from a set of realizations
for Ω and computing (21) or (23) for each realization. The
optimization of the BS precoding is discussed next.

C. Optimal Precoder Design

In this section, we compute the optimal precoding matrices
by taking into account that the LMMSE channel estimates are
available at the transmitter. To the best of our knowledge, this
is not available in the open technical literature. On the other
hand, the computation of the optimal precoding matrices with
complete channel knowledge is discussed in [43]. The optimal
precoding matrices can be derived according to the following
sum-rate maximization problem

max
V

NU∑
i=1

Ri (V,B) (25)

s.t. Tr
(
ViV

H
i

)
≤ Pi, i = 1, 2, . . . , NU,

where Pi is the power budget of the i-th UE and Ri (V,B)
is defined in (23). To solve problem (25), we utilize the
iterative WMMSE algorithm. Let us introduce the MSE ma-
trix Ei(V,Gi) = Es,n,∆Hi

{
(si − s̃i)(si − s̃i)H

}
, where

s̃i = GH
i yi and Gi is the linear decoding matrix of the ith

UE. The superscript ‘(D)’ is omitted for simplicity. Assuming
that the information symbols are zero-mean and i.i.d. RVs, i.e.,
E
{
sis

H
i

}
= INU

and E
{
sis

H
j

}
= 0L for j 6= i, we get

Ei(V,Gi) = (I −GH
i ĤiVi)(I −GH

i ĤiVi)
H

+

NU∑
j=1,j 6=i

GH
i ĤiVjV

H
j Ĥ

H
i Gi

+

NU∑
j=1

E∆Hi{GH
i ∆HiVjV

H
j ∆HH

i Gi}+ σ2
nG

H
i Gi

= (I −GH
i ĤiVi)(I −GH

i ĤiVi)
H

+

NU∑
j=1,j 6=i

GH
i ĤiVjV

H
j Ĥ

H
i Gi +GH

i (Ci + σ2
nI)Gi

where Ci =
∑NU

j=1 E∆Hi{∆HiVjV
H
j ∆HH

i } and
E∆Hi

{∆HiVjV
H
j ∆HH

i } is given in (30).
Problem (25) can be reformulated as the following MSE

minimization problem

min
V,W,G

NU∑
i=1

{
Tr [WiEi (V,Gi)]− log det (Wi)

}
(26)

s.t. Tr
(
ViV

H
i

)
≤ Pi, i = 1, 2, . . . , NU,

where Wi � 0 is the matrix of weights for the MSE of
the i-th UE, and W = {W1,W2, . . . ,WNU

} and G =
{G1,G2, . . . ,GNU

} are the sets of all weight and receive
filter matrices, respectively.

The equivalence between problem (25) and (26) follows by
recalling the relation between the MMSE covariance Êi(V) =
min
Gi
Ei(V,Gi), the achievable rate log det(Ê−1

i (V)) and by

the fact that the optimal solution of (26) is Wi = Ê−1
i (V).

Further details can be found in [57].
Unfortunately, problem (26) is non-convex. If all the opti-

mization variables are fixed except one, however, it is a convex
optimization problem in the remaining variables. Accordingly,
the weighted MSE minimization problem in (26) can be
solved by using an iterative block coordinate descent (BCD)
algorithm [58]. To elaborate, let us denote by G(q+1)

i , W (q+1)
i

and V (q+1)
i the optimization variables after the (q + 1)-th

iteration. Then, we have the following.
• Receive filter: The receive filter matrix can be com-

puted as G
(q+1)
i = arg min

Gi
Ei(V(q),Gi), which

yields G(q+1)
i = (J

(q)
i )−1ĤiV

(q)
i , in which J

(q)
i =∑NU

j=1 ĤiV
(q)
j (V

(q)
j )HĤH

i +Ci+σ2
nI . The correspond-

ing MMSE is E
(q+1)
i = Ei(V,G(q+1)

i ) = I −
V H
i Ĥ

H
i (J

(q)
i )−1ĤiVi.

• Weights: The weights can be computed as W (q+1)
i =

(E
(q+1)
i )−1.

• Precoding filters: V q+1
i can be computed solving the

following problem

V q+1
i = arg min

V
Tr
(
W

(q+1)
i

(
I − Γ

(q+1)
i,i

)
(I − Γ

(q+1)
i,i )H

+

NU∑
j=1,j 6=i

W
(q+1)
j Γ

(q+1)
j,i

(
Γ

(q+1)
j,i

)H

+

NU∑
j=1

W
(q+1)
j

· E∆Hj

{(
G

(q+1)
j

)H

∆HjViV
H
i ∆HH

j G
(q+1)
j

})
(27)

s.t. Tr
(
ViV

H
i

)
≤ Pi, i = 1, 2, . . . , NU,

in which Γ
(q)
i,j =

(
G

(q)
i

)H
ĤiVj . The solution

to problem (27) is V
(q+1)
i = (K(q+1) +

µiIM )−1ĤH
i G

(q+1)
i W

(q+1)
i where

K(q+1) =

NU∑
j=1

ĤH
j G

(q+1)
j W

(q+1)
j (G

(q+1)
j )HĤj

+E∆Hj

{
∆HH

j G
(q+1)
j W

(q+1)
j

(
G

(q+1)
j

)H

∆Hj

}
,

(28)

and the Lagrange multiplier µi in the optimization prob-
lem is chosen so that the power constraint in (26) for the
i-th UE is fulfilled.

D. Complexity Analysis

The proposed integrated localization and communication
method encompasses four tasks: (1) localization, (2) RIS
optimization, (3) channel estimation, and (4) BS precoder
design. Channel estimation and BS precoder design result
in the highest computational complexity, which originates
from computing the inversion of matrices, whose sizes de-
pend on the number of transmit and receive antennas. To
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TABLE I: PARAMETERS IN SIMULATIONS

Parameters Values
Carrier frequency fc 28 GHz

Bandwidth B 120 KHz/36 MHz
Antenna array at BS 8× 2
Antenna array at UE 2× 2
Number of RISs, K 2

Number of unit cells per RIS, P 80× 40
Antenna/cell spacing ∆d Half wavelength

BS location pB [60, 15, 2]T

UE location pUi [10, 5, 0]T and [25, 10, 0]T

Surfaces location pRk [0, 15, 3]T and [15, 20, 3]T

Transmit antenna gain GT 2.5
Receive antenna gain GR 2.5

The boresight gain at RIS Gc π
Exponential parameter q in (1) 0.57
Channel coherent interval Tc 1 ms

Total transmission power 22 dBm
Noise factor 5 dB

Noise power spectrum density -169 dBm/Hz

perform localization, the proposed estimator applies two one-
dimensional searches per RIS to find the AOA and the AOD,
which are used to provide a coarse estimate of the location.
Also, the refined estimate of the position is obtained via an
optimization in a three-dimensional space around the coarse
location estimate. The computational complexity is determined
by the optimization of the RIS phase shift profile, since
multiple RISs equipped with a large number of elements are
considered. Also, an iterative optimization method is applied
in (11), whose computation complexity is discussed in [43].
However, the RISs need to be optimized on a longer timescale,
i.e., every location coherence interval.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Scenario

We consider an integrated localization and communication
scenario where a single BS serves two UEs. The BS and
UEs are equipped with URAs, with size 8 × 2 and 2 × 2,
respectively. In the scenario under study, we place 2 RIS on
the walls surrounding the UEs. Each RIS has a size of 0.42
m × 0.21 m and forms a 80 × 40 URA. The location of
the BS is pB = [60, 15, 2]T. The centers of two RIS URAs
are located at pR1

= [0, 15, 3]T and pR2
= [15, 20, 3]T.

In Phase I, the UEs are located in pU1,0
= [10, 5, 0]T and

pU2,0
= [25, 10, 0]T at time 0. The location uncertainty

covariance matrix in (10) is set to Σpri
i,0 = Diag([2, 2, 0]), i.e.,

the location uncertainty range is
√

Tr(Σpri
i,0) = 2 meters.7 The

other simulation parameters are given in Table I.8

For the mobility model, we assume that the UE moves
only in the x − y plane, with Σpos = Diag(σ2

x, σ
2
y, 0). We

consider that the maximum velocity of the UE is 1 m/s, which
corresponds to a maximum Doppler shift fD ≈ 93 Hz at

7This is the reported accuracy obtained with the fingerprinting-based indoor
localization algorithm in [56].

8The NLOS components between the RIS and UE are follows a Rician
distribution with independent and identically distributed fading, similar to
[38], [41], [42]. However, the proposed framework can be applied to other
fading models that account for the spatial correlation among the RIS elements
if their inter-distances are smaller than half-wavelength [59].
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Fig. 3: (a) Position error bounds and localization performance as
a function of the Rician factor κ (40 pilots are used); (b) The
cumulative distribution function of the achievable rate for different
RIS phase profiles.

the considered carrier frequency fc = 28 GHz. As a result,
we can set the channel coherent interval to TC = 1 ms (as
fDTC ≈ 0.093), which accommodates 120 symbols for the
considered bandwidth B = 120 kHz.9 We assume TL = 1
s, i.e., 1000 channel coherent intervals are contained in one
location coherent interval.

B. Location-coherent Optimization Phase

1) Location estimation performance: In Fig. 3a, the posi-
tion error bounds derived using (9) are evaluated. Specifically,
we see that the derived bounds are achievable with the used
localization algorithm if sufficient transmission power is allo-
cated. It is also apparent from Fig. 3a that, if the Rician factor
is sufficiently large, the position error bounds and the actual
localization performance are improved. This is because the

9In the present study, we assume that the localization phase is executed
by using a single subcarrier. During the communication phase, on the other
hand, we consider that multiple subcarriers are used for data transmission.
Thus, the power is distributed uniformly over a bandwidth of 36 MHz (300
subcarriers). This means that the power per subcarrier is much lower during
the communication phase (and the corresponding computation of the rate) as
compared with the localization phase.
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Algorithm 1 RIS Optimization and Evaluation Procedure

Require: pUi,0 , Σi,0, Σpos, σ2
k,i and σ2

B,i
repeat

Compute p̂Ui,0 = pUi,0 +wi and pUi,τ = pUi,0 +vi,τ (see Section
IV-A);

RIS optimization:
1. Obtain the optimal RIS phase profile Bopt according to Section IV-B.
Achievable rate evaluation at time τ :
2. Generate the LOS component of the RIS-UE and BS-UE links based

on the actual UE positions pUi,τ ;
3. Generate the instances of the NLOS components of the RIS-UE and

BS-UE links based on σ2
k,i and σ2

B,i, respectively;
4. Construct the channel HB,i based on the channel models in Section

II and Bopt;
5. Compute the precoding matrices and the achievable rate for the given

RIS phase profile Bopt by solving the optimization problem in (25).
until End (Monte Carlo)

RIS-UE channel is more position dependent when the Rician
factor is large. Accordingly, the advantages of the proposed
localization scheme are more apparent in RIS optimization,
channel estimation, and BS precoder optimization. For sim-
plicity, we consider large Rician factors (e.g., 50) in most
of the simulations. The good agreement between the position
error bounds and the numerical estimates obtained by using
a practical localization algorithm justifies the use of the FIM
for RIS optimization, channel estimation, and BS precoder
optimization.

2) RIS optimization and rate evaluation: In Algorithm 1,
we summarize the procedure to optimize the RISs and to
calculate the rate. Precisely, we initialize Algorithm 1 with
the initial positions pUi,0 and the corresponding uncertainty
covariance matrices Σi,0 at time 0. Moreover, we set the
fading parameters of the NLOS links. Then, several Monte
Carlo iterations are run. In each run, we compute the estimated
locations p̂Ui,0 of the UEs at time 0 and the actual locations
pUi,τ according to the random walk model described in
Section III. Algorithm 1 is split in two parts. In the first, the
RIS phase profiles are optimized as described in Section IV-B.
In the second, the channels are generated based on the actual
positions of the users and the corresponding NLOS channel
parameters. Finally, the precoding matrices and the achievable
rate for the given RIS phase profiles Bopt are computed solving
the optimization problem in (25).

To demonstrate the advantages of localization in Phase I,
we first analyze the stationary case in which the UEs do not
move, i.e., pUi,τ = pUi,0 and we compare the achievable rate
of the following RIS optimization approaches:
• Scheme 1: random phase profile. In this case, the phases

of the RISs are randomly chosen in [0, 2π). Therefore,
the RISs optimization in Algorithm 1 is not performed.

• Scheme 2: the prior-based approach. In this case, Σi,0 is
given by (10).

• Scheme 3: the proposed Phase I-based approach. In this
case, Σi,0 is given by (9).

• Scheme 4: the two-timescale approach with ideal location
estimation, i.e., Σi,0 = 0.

In Table II, we show the average achievable rate for the four
aforementioned schemes. Comparing Scheme 2 with Scheme
1, it is clear that optimizing the RISs on the basis of even
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Fig. 4: Achievable rate performance for mobile UEs. We assume that
the UEs move in the x-direction. Curves (a), (b), (c), and (d) refer
to Scheme 3, Scheme 2, Punctual - Phase I and Punctual - Prior
schemes, respectively.

coarse UE localization information significantly outperforms
the random phase configuration in terms of sum rate, which
is consistent with the results in [43]. In addition, the proposed
Phase I-based RIS optimization scheme (Scheme 3) leads to
a significant performance improvement over Scheme 1 and
Scheme 2. Specifically, with the increase of TP1

in Phase
I, the average achievable rate increases as a consequence of
the reduction of the UE location uncertainty. It is also shown
in Table II that the proposed RIS optimization scheme ap-
proaches the optimal RIS phase profile configuration obtained
by Scheme 4. The marginal achievable rate improvement when
TP1

B = 40 also indicates that we can use a small number of
pilots for localization in Phase I, which saves resources for
Phases II and III.

3) Outage rate performance: Fig. 3b shows the cumula-
tive distribution function (CDF) of the achievable rate for
different RIS optimization schemes. Thanks to the proposed
localization-aided framework of Phase I, the location uncer-
tainty is significantly reduced, and the CDF becomes steeper,
i.e., larger rates can be supported with high probability
(Scheme 3 in the figure). The achievable rates of the UE by
assuming an outage probability equal to 0.1 are given in Table
II. We see that the proposed RIS optimization scheme can
significantly improve the outage rate.

4) Achievable rate performance with UE movement: In the
case of UE movement, the rate, as a function of τ , of the
following RIS optimization schemes is illustrated in Fig. 4.
• Scheme 2: this is the same as Scheme 2 in Fig. 3b, and

it is indicated by (b) in Fig. 4.
• Scheme 3: this is the same as Scheme 3 in Fig. 3b, and

it is indicated by (a) in Fig. 4. In this case, the number
of pilots used in Phase I is 40.

• Punctual - Phase I (indicated by (c) in Fig. 4). In this
case, we consider Phase I with TP1

B = 20 for UE
location estimation and the RIS is optimized without
considering the location uncertainty, i.e., based on the
punctual optimization approach in Section IV-B.

• Punctual - Prior (indicated by (d) in Fig. 4). In this case,
we consider the Prior scheme for UE location estimation
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TABLE II: RATE PERFORMANCE WITH DIFFERENT RIS PHASE PROFILES

RIS Phase Profile Sum Rate (bits/s/Hz) Outage Rate: UE 1 (bits/s/Hz) Outage Rate: UE 2 (bits/s/Hz)
Scheme 1 0.46 0.78 0.08
Scheme 2 2.46 0.27 0.18

Scheme 3: TP1
B = 20 4.79 4.48 3.81

Scheme 3: TP1
B = 40 4.96 4.56 4.47

Scheme 4 5.43 5.5 5.36

and the RIS is optimized without considering the loca-
tion uncertainty, i.e., based on the punctual optimization
approach described in Section IV-B.

Figure 4 shows that, owing to the increase of the location
uncertainty due to the UE movements, the rate of the first
two case studies degrades, indicating that Phase I needs to be
implemented periodically to compensate for the movements
of the UEs. The results in Fig. 4 justifies the choice of a
location coherence interval equal to TL = 1s in the considered
case. However, the rate degradation in case study (a) is not
very significant during a single location coherence interval TL,
which highlights that the proposed location-aided optimization
scheme is robust to slow UE movements. From Fig. 4, we
also observe the significant performance gain of the proposed
Phase I-based fixed RIS optimization scheme over the prior-
based fixed RIS optimization scheme. Thus, the localization
in Phase I is effective in the presence of mobile UEs, provided
that the location coherence interval is optimized as a function
of the mobility level of the UEs.

As for the curves (c) and (d) in Fig. 4, we observe a clear
degradation of the achievable rate. This is attributed to the
misalignment between the obtained RIS profile and the actual
positions of the UEs, which are different from those utilized
for optimizing the RIS. When the location uncertainty is
large, the probability of misalignment is more likely to occur,
causing a more pronounced degradation of the achievable rate.
The obtained results demonstrate that it is highly beneficial to
account for the localization uncertainty when optimizing the
RIS phase profiles.

In conclusion, the proposed location-aided approach for
optimizing the RIS phase profile is a convenient solution,
since the locations of the UE need to be estimated only every
location coherence interval TL, thus reducing the overhead for
configuring the RIS and the associated computational com-
plexity. However, it is necessary that the location coherence
interval TL is adapted to the level of mobility of the UEs.

C. Results for the Channel-coherent Optimization Phase

1) Channel estimation performance: We show the normal-
ized mean-square error of the proposed channel estimation
scheme in Fig. 5. Specifically, the analytical channel esti-
mation error is obtained as ‖E(MMSE)

i ‖2F/‖hB,i(B,pUi)‖2
where E(MMSE)

i is given in (19) and hB,i(B,pUi) is the exact
channel vector. From Fig. 5, we observe that the analytical
formula of the channel estimation error matches well with the
simulations.

This observation justifies the Gaussian approximation for
the channel estimation error, as detailed in Proposition 1.
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Fig. 5: Channel estimation performance with a different number of
pilots in Phase II. The number of pilots in Phase I is TP1B = 40. The
analytical results are obtained with (19) and the Gaussian assumption
is used for the derivation. The numerical results are obtained using
the estimates from (18).

We also evaluate the channel estimation error when the lo-
cations of the UEs are estimated with traditional positioning
techniques without executing Phase I. Both cases show a
good agreement between the analytical derivation based on the
Gaussian approximation and the simulations. In general, the
Rician factor changes slowly when the environment is quasi
static, and therefore can be estimated accurately. However,
if the estimated Rician factor differs from the actual Rician
factor, the performance of the proposed RIS optimization
and channel estimation algorithms is negatively impacted.
We analyze the sensitivity to the accurate estimation of the
Rician factor in Fig. 5. Specifically, we optimize the RIS by
assuming a Rician factor equal to 50, while the actual Rician
factor is equal to 40. In the considered case study, as can be
seen from Fig. 5, the mismatch of the Rician factor has a
negligible impact on the accuracy of channel estimation. This
result can be explained as follows. First, the performance of
proposed localization algorithm does not change dramatically
if the mismatch of the Rician factor is not too large. This
is confirmed by the localization performance shown in Fig.
3a. Second, since the proposed RIS optimization and channel
estimation algorithms are performed by assuming a certain
level of location uncertainty, the sensitivity to estimation errors
of the Rician factor is reduced.

The performance gain obtained by using the proposed
localization method in Phase I shows that UEs’ localization,
RIS optimization and channel estimation are intertwined: the
localization has a beneficial effect on both RIS optimization
and channel estimation. The good match of the analytical
and numerical results indicates that we can use the analytical
expression of the covariance of the channel estimation error
to design the BS precoder, as per Section V-C.

2) Effective achievable rate: We evaluate the effective
achievable rate in Phase II, which is defined as Reff

i (V,B) =
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in Phase I to provide better UE location information. If Phase
I is not included, the UE location information is provided with
traditional localization techniques. The perfect channel case is the
upper bound of the proposed scheme since no channel estimation
error is considered.

ηRi(V,B) where Ri(V,B) is derived by solving the optimiza-
tion problem in (25), and η = (TL − (TP1

+ NCTP2
))/TL ≈

(TC−TP2
)/TC takes into account the overhead due to the CSI

estimation. We have ignored TP1 since TP1 � TL, in general.
In Fig. 6, we report the effective achievable rate which is
obtained by applying the optimal precoder design described in
Section V-C. In addition, we use the conventional framework
without Phase I as a benchmark. We see that the conventional
channel estimation scheme has a significant performance loss
compared to the proposed channel estimation scheme assisted
by Phase I. The reasons are as follows. First, the localization
executed in Phase I improves the RIS optimization, which
creates favorable propagation channels for communication.
This can be verified with the RIS optimization results in
Fig. 3b. Also, the localization executed in Phase I improves
the channel estimation performance, which helps to design
better precoders in the presence of channel estimation error.
This can be verified by the results in Fig. 5. The Rician
factor of the RIS-UE channel has also an impact on the
effective rate. Comparatively, a larger Rician factor indicates
a stronger LOS path between the RISs and the UEs, hence the
localization accuracy in Phase I improves. This is verified by
the performance gains obtained for a larger Rician factor with
respect to a smaller Rician factor, given the same number of
pilots utilized in Phase II.

The trade-off between the channel estimation accuracy and
the effective achievable rate can be observed in Fig. 6. To
be specific, when fewer pilots are used in Phase II, the
channel estimation error is large, causing the degradation of
the effective achievable rate. When many pilots are used,
the channel estimation error is significantly reduced, but the
associated larger overhead degrades the effective achievable
rate. Therefore, there is an optimal number of pilots to be used
in Phase II in order to achieve the best effective achievable
rate. From Fig. 6, when the Rician factor is 50 and the number
of pilots in Phase I is 40, the optimal number of pilots in Phase
II is 16 for the proposed scheme. If the Rician factor is 5,

the optimal number of pilots in Phase II is 17. This indicates
that more pilots are required to compensate the performance
loss caused by the degradation of the localization and CSI
estimation accuracy due to fading.

Overall, from the results in Figs. 3 - 6, we conclude that
a small number of pilots (TP1B + NCTP2B) is necessary
during one location coherence interval to achieve the (near)
optimal achievable rate in a multi-user and multi-RIS scenario,
thanks to the proposed optimal RIS phase profile design, CSI
estimation, and optimal precoder design. With the help of
localization, we can significantly reduce the number of pilots
required for RIS-assisted communications. Therefore, the pro-
posed integrated localization and communication framework
paves the way for an efficiency deployment and utilization of
RISs in future wireless communications.

VII. CONCLUSIONS

In this paper, we have proposed an integrated localization
and communication framework for applications to multi-user
and multi-RIS wireless systems. We have proposed a new
protocol consisting of three phases to perform localization, RIS
optimization, CSI estimation, and precoder design. We have
shown that, by integrating localization and communication, we
can significantly improve the accuracy of RIS optimization
based on estimates of the UE locations and the associated
location uncertainty. Specifically, we have shown that the RIS
phase profiles can be optimized only sporadically based on
the location coherence interval of the UEs, which is longer
than the channel coherence interval for typical wireless appli-
cations. In addition, we have shown that the estimation of the
CSI every channel coherent interval benefits from the proposed
preceding location phase. Moreover, we have developed the
optimal precoder design scheme that takes into account the
instantaneous CSI and the associated estimation error. Exten-
sive numerical results have demonstrated the effectiveness of
the proposed approach.

APPENDIX A
JUSTIFICATION OF THE GAUSSIAN APPROXIMATION

We first obtain the channel vector hB,i(B,pUi) as
hB,i(B,pUi) = vec(H̃B,i) +

∑K
k=1 hk,i(bk,pUi). We then

apply the Taylor series expansion of hB,i(B,pUi) at a given
p close to pUi , given by

hB,i(B,pUi) =

K∑
k=1

((HT
B,kDiag(B)⊗ INU

)vec(H̃k,i)

+vec(H̃B,i) + h̄k,i(B,p) +
∂h̄k,i(B,pUi)

∂pUi

∣∣∣∣
pUi

=p

(pUi − p)

+O
(
(pUi − p)2

)
.

When
√

Tr(Σi,0) is small, the chosen p is close to pUi ;
as a result, the higher orders O

(
(pUi − p)2

)
can be rea-

sonably ignored. The remaining first order approximation of
hB,i(B,pUi) consists of the summation of Gaussian compo-
nents, which indicates that hB,i(B,pUi) can be well approx-
imated by a Gaussian distribution if

√
Tr(Σi,0) is small.
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APPENDIX B
PROOF OF PROPOSITION 3

It can be verified that E{ñi} = 0. Since E{xixH
j } =

0NU×NU for i 6= j, we have

J̃i =E{ñiñH
i } = EsE{∆H(MMSE)

B,i ViV
H
i (∆H

(MMSE)
B,i )H}

+ EsE{HB,i(

NU∑
j=1,j 6=i

VjV
H
j )HH

B,i}+ σ2
nINU

. (29)

Denoting ∆H
(MMSE)
B,i = [∆h

(1)
B,i,∆h

(2)
B,i, · · · ,∆h

(NB)
B,i ], the

error covariance matrix in (19) is

E
(MMSE)
i =


E

(1,1)
i E

(1,2)
i · · · E

(1,NB)
i

E
(2,1)
i E

(2,2)
i · · · E

(2,NB)
i

...
...

. . .
...

E
(NB,1)
i E

(NB,2)
i · · · E

(NB,NB)
i

 ,

where E(m,n)
i = E{∆h(m)

B,i (∆h
(n)
B,i)

H}. Let Πi = ViV
H
i

where

Πi =


Π

(1,1)
i Π

(1,2)
i · · · Π

(1,NB)
i

Π
(2,1)
i Π

(2,2)
i · · · Π

(2,NB)
i

...
...

. . .
...

Π
(NB,1)
i Π

(NB,2)
i · · · Π

(NB,NB)
i

 ,
Thus, we obtain

E

{
∆H

(MMSE)
B,i ViV

H
i

(
∆H

(MMSE)
B,i

)H
}

=

NB∑
m=1

NB∑
n=1

Π
(m,n)
i E

{
∆h

(m)
B,i

(
∆h

(n)
B,i

)H
}

=

NB∑
m=1

NB∑
n=1

Π
(m,n)
i E

(m,n)
i . (30)

In addition, RB,i(B) can be expressed as

RB,i(B) =


R

(1,1)
B,i R

(1,2)
B,i · · · R

(1,NB)
B,i

R
(2,1)
B,i R

(2,2)
B,i · · · R

(2,NB)
B,i

...
...

. . .
...

R
(NB,1)
B,i R

(NB,2)
B,i · · · R

(NB,,NB)
B,i

 ,

where R(m,n)
B,i = E{h(m)

B,i (B,pUi)(h
(m)
B,i (B,pUi))

H}. The sec-
ond component in (29) will be

EsE

HB,i

 NU∑
j=1,j 6=i

VjV
H
j

HH
B,i


=Es

NB∑
m=1

NB∑
n=1

 NU∑
j=1,j 6=i

Π
(m,n)
j

R(m,n)
B,i . (31)

Inserting (30) and (31) into (29), we have J̃i given in (24).
This completes the proof.
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