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We say that an algebra is zero-product balanced if ab ⊗ c
and a ⊗ bc agree modulo tensors of elements with zero-
product. This is closely related to but more general than the 
notion of a zero-product determined algebra introduced and 
developed by Brešar, Villena and others. Every surjective, 
zero-product preserving map from a zero-product balanced 
algebra is automatically a weighted epimorphism, and this 
implies that zero-product balanced algebras are determined 
by their linear and zero-product structure. Further, the 
commutator subspace of a zero-product balanced algebra can 
be described in terms of square-zero elements.
We show that a commutative, reduced algebra is zero-product 
balanced if and only if it is generated by idempotents. 
It follows that every commutative, zero-product balanced 
algebra is spanned by nilpotent and idempotent elements.
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1. Introduction

A linear map π : A → B between algebras is said to preserve zero-products if ab = 0
implies π(a)π(b) = 0, for all a, b ∈ A. The typical example of such a map is a weighted 
homomorphism, namely the composition of an algebra homomorphism A → B with 
a centralizer on B, and a much studied problem is to determine situations in which 
zero-product preserving, linear maps are automatically of this form; see, for example, 
[14,15,12,2,11].

Maps preserving zero-products or more general forms of orthogonality occur naturally 
in many different settings. For instance, Banach showed in 1932 that for p �= 2, every 
linear, isometric map on Lp([0, 1]) sends functions with disjoint support to functions with 
disjoint support, and Lamperti showed in 1958 that this characterizes linear isometries on 
arbitrary Lp-spaces. This was later generalized to maps between other Banach lattices; 
we refer to the monograph [1]. The intimate connection between being isometric and 
preservation of orthogonality is also shown by the results of Koldobsky [30] and Blanco-
Turnšek [6] that a linear map between normed spaces preserves orthogonality in the 
Birkhoff–James sense if and only if it is a scalar multiple of a linear isometry.

In the structure theory of C∗-algebras, zero-product preserving, positive maps [37,23]
are used to model noncommutative partitions of unity, leading to the notion of nuclear 
dimension [38] – a noncommutative covering dimension – which plays a central role in 
the classification theory of nuclear C∗-algebras.

Back to the basic problem: When is a zero-product preserving, linear map π : A → B

between algebras automatically a weighted homomorphism? Since the range of a weighted 
homomorphism is essentially a subalgebra, it is natural to restrict attention to the case 
that π is surjective.

To tackle the basic problem, we focus on a property that lies between preservation of 
zero-products and being a weighted homomorphism:

Definition A. We say that a map π : A → B between algebras is semimultiplicative if 
π(ab)π(c) = π(a)π(bc) for all a, b, c ∈ A.

This property has implicitly appeared in the literature before, but as far as we know 
it was never given a name and it has not been systematically studied so far.

It is easy to see that every weighted homomorphism is semimultiplicative, and we 
show in Theorem 4.3 that the converse holds under the mild technical assumption that 
A is idempotent and that B is idempotent and faithful (which includes the case that 
A is unital, and B is unital, or simple, or a Banach algebra with bounded approximate 
identity). It is also easy to see that every surjective, semimultiplicative map from an 
idempotent algebra to a faithful algebra preserves zero-products. Thus, the following 
question arises naturally:

When is a zero-product preserving map semimultiplicative?
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The main concept of this paper is a property that captures exactly when the above 
question has a positive answer. Throughout this paper, K denotes a unital, commutative 
ring.

Definition B (2.6). We say that a K-algebra A is zero-product balanced if

ab⊗ c− a⊗ bc ∈ spanK

{
u⊗ v ∈ A⊗K A : uv = 0

}

for all a, b, c ∈ A.

Zero-product balancedness is closely related to the concept of a zero-product de-
termined algebra introduced by Brešar, Grašič and Ortega in [12] It has also been 
extensively studied in the context of Banach algebras under the name ‘property B’, 
[2], and under the name ‘algebraic property B’ in [3]. For details on these concepts, we 
refer to the recent book by Brešar, [11].

We show that every zero-product balanced algebra is zero-product determined 
(Proposition 2.10), and that the converse holds for algebras admitting a certain fac-
torization (Proposition 2.11), which includes unital algebras as well as Banach algebras 
with a bounded left approximate identity (Corollary 2.12). However, Example 2.17 shows 
that there are algebras that are zero-product balanced but not zero-product determined, 
even commutative and finite-dimensional ones.

The following result summarizes our findings:

Theorem C (4.3, 4.4). Let π : A → B be a surjective, linear map between idempotent 
algebras. Assume that B is faithful. Consider the following properties:

(1) π preserves zero-products;
(2) π is semimultiplicative;
(3) π is a weighted homomorphism.

Then (1)⇐(2)⇔(3). If A is zero-product balanced, then (1)⇒(2) as well, and then 
(1)–(3) are equivalent.

An important consequence is that zero-product balanced algebras are determined by 
their linear and zero-product structure:

Corollary D (4.5). Let A be a zero-product balanced, idempotent algebra, and let B be 
a faithful, idempotent algebra. Then A and B are isomorphic if and only if they admit 
a bijective, zero-product preserving, linear map A → B.

It is a well-studied problem to determine in which algebras every additive commutator 
[a, b] := ab −ba can be expressed as a sum of square-zero elements [35,13,3]. In Section 5, 
we show that this is always possible in zero-product balanced algebras, and we even 
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give a precise description of the commutator subspace in terms of special square-zero 
elements. We define an orthogonally factorizable square-zero element as an element x
such that there exist y and z with x = yz and zy = 0. We use FN2(A) to denote the 
collection of such elements in an algebra A; see Definition 5.1.

Theorem E (5.3). Let A be a zero-product balanced, idempotent K-algebra. Then the 
subspace of A generated by additive commutators agrees with the subspace generated 
by FN2(A).

The last three sections of the paper are devoted to the following question:

Question F. Which algebras are zero-product balanced?

If an algebra is generated by idempotents, then it is zero-product balanced; see 
Proposition 3.6. In certain situations, the converse also holds: In [10, Theorem 3.7], 
Brešar shows that a unital, finite-dimensional K-algebra over a field K is zero-product 
balanced (equivalently, zero-product determined) if and only if it is generated by idem-
potents. The following result is in the same spirit:

Theorem G (7.3). A commutative K-algebra over a field K is reduced and zero-product 
balanced if and only if it is generated by idempotents.

In this case, the algebra is isomorphic to the algebra of finite-valued, continuous 
functions X → K with compact support for some Boolean space X.

We deduce some structure results in the non-reduced case: Let A be a commutative, 
zero-product balanced K-algebra over a field K. Then the Jacobson radical agrees with 
the prime radical (Lemma 7.1), every element in A is a sum of a nilpotent element and a 
linear combination of finitely many pairwise orthogonal idempotents (Corollary 7.5), and 
A is a semiregular, clean, exchange ring (Corollary 7.6). This leads to a dichotomy: A 
commutative, zero-product balanced algebra either admits a character (a homomorphism 
to the base field) or is nilradical; see Proposition 8.1. Using this, we obtain a general 
dichotomy result for zero-product balanced algebras:

Theorem H (8.2). Let A be a zero-product balanced K-algebra over a field K. Then 
either A has a character, or A is a radical extension over its commutator ideal, that is, 
for every a ∈ A exist m, n ≥ 1 and rj , xj , yj , sj ∈ A such that

am =
n∑

j=1
rj [xj , yj ]sj .
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Conventions

All rings are associative, but possibly nonunital and noncommutative. Ideal means 
two-sided ideal.

Acknowledgments
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2. Zero-product balanced algebras

In this section, after recalling the definition of a zero-product determined algebra 
from [12], we introduce the more general notion of a zero-product balanced algebra; see 
Definition 2.6. Every zero-product determined algebra is also zero-product balanced; see 
Proposition 2.10. We show that the converse holds for algebras admitting a certain fac-
torization (Proposition 2.11), which includes unital algebras as well as Banach algebras 
with a bounded left approximate identity (Corollary 2.12). In particular, a C∗-algebra is 
zero-product determined if and only if it is zero-product balanced. Example 2.17 shows 
that there exist zero-product balanced algebras that are not zero-product determined.

We also observe that zero-product balancedness passes to (certain) ideals and quo-
tients; see Propositions 2.14 and 2.15. In particular, an algebra is zero-product balanced 
whenever its multiplier algebra is, and we use this in later sections to generalize some 
results in the literature to the nonunital setting; see Theorem 3.8 and Example 4.6.

Several results in this section, or versions thereof, have appeared in [11]. In particular, 
versions of Propositions 2.2 and 2.4 are given in [11, Proposition 1.3], which also implies 
Proposition 2.10. Further, in the context of Banach algebras, a version of Proposition 2.8
has appeared as [11, Proposition 5.2], and versions of Propositions 2.14 and 2.15 have 
appeared as [11, Theorem 5.8].

Throughout this section, K denotes a commutative, unital ring. Given a subset X of 
a K-module V , we use

spanK X :=
{
λ1x1 + . . . + λnxn ∈ V : n ≥ 1, λ1, . . . , λn ∈ K,x1, . . . , xn ∈ X

}

to denote the K-submodule of V generated by X.

Definition 2.1. Given a K-module V , a K-algebra A, and a K-bilinear map ϕ : A ×A →
V , one says that ϕ preserves zero-products if for all a, b ∈ A with ab = 0, we have 
ϕ(a, b) = 0.

Following [12], we say that A is zero-product determined if for every K-module V and 
every K-bilinear map ϕ : A × A → V that preserves zero-products, there exists a K-
linear map Φ: spanK A2 → V such that ϕ(a, b) = Φ(ab) for all a, b ∈ A, where spanK A2

denotes the submodule of A generated by {ab : a, b ∈ A}.
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The next result is contained in [11, Proposition 1.3]. (The assumption that K is a 
field is not necessary for the equivalence of (i) and (ii) of [11, Proposition 1.3].)

Proposition 2.2. A K-algebra A is zero-product determined if and only if for every zero-
product preserving K-bilinear map ϕ : A × A → V to some K-module V , we have ∑n

j=1 ϕ(aj , bj) = 0 for all a1, . . . , an, b1, . . . , bn ∈ A satisfying 
∑n

j=1 ajbj = 0.

We will repeatedly use the following notation.

Notation 2.3. Let A be a K-algebra. We set

Z2(A) = spanK

{
u⊗ v ∈ A⊗K A : uv = 0

}
.

Proposition 2.4. Let A be a K-algebra, and let m : A ⊗K A → A be the linear map 
satisfying m(a ⊗ b) = ab for a, b ∈ A. Then A is zero-product determined if and only if 
ker(m) ⊆ Z2(A).

Proof. This follows from Proposition 2.2 applied to the universal zero-product preserv-
ing, bilinear map ϕ : A ×A → (A ⊗K A)/Z2(A) given by

ϕ(a, b) = (a⊗ b) + Z2(A)

for a, b ∈ A. �
Example 2.5. Every algebra A with zero-product (that is, ab = 0 for all a, b ∈ A) is 
zero-product determined. Indeed, in this case we have ker(m) = A ⊗K A = Z2(A).

Definition 2.6. We say that a K-algebra A is zero-product balanced if

ab⊗ c− a⊗ bc ∈ Z2(A)

for all a, b, c ∈ A.

Example 2.7. Let A be an algebra such that A3 = {0}, that is, abc = 0 for all a, b, c ∈ A. 
Then A is zero-product balanced, since already ab ⊗ c and a ⊗ bc themselves belong to 
Z2(A) for all a, b, c ∈ A.

On the other hand, in Example 2.17 we give examples of algebras with A3 = {0} such 
that A is not zero-product determined.

Proposition 2.8. Let A be a K-algebra. Then the following are equivalent:

(1) A is zero-product balanced.
(2) For every K-module V and every K-bilinear map ϕ : A × A → V that preserves 

zero-products we have ϕ(ab, c) = ϕ(a, bc) for all a, b, c ∈ A.
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Proof. Let us show that (1) implies (2). Assuming (1), let ϕ : A × A → V be a bilinear 
map to a K-module V that preserves zero-products. By the universal property of the 
tensor product, this induces a linear map ϕ̄ : A ⊗K A → V such that ϕ(a, b) = ϕ̄(a ⊗ b)
for all a, b ∈ A. Given u, v ∈ A with uv = 0, we have

ϕ̄(u⊗ v) = ϕ(u, v) = 0,

and it follows that ϕ̄ vanishes on Z2(A). Thus, given a, b, c ∈ A, using that ab ⊗c −a ⊗bc ∈
Z2(A) at the second step, we get

ϕ(ab, c) = ϕ̄(ab⊗ c) = ϕ̄(a⊗ bc) = ϕ(a, bc).

The situation is shown in the following commutative diagram:

A×A

ϕ

A⊗K A

ϕ̄

(A⊗K A)/Z2(A),

V

Conversely, assume (2) and consider the universal bilinear map ϕ : A ×A → A ⊗K A

given by ϕ(a, b) = a ⊗ b. Let (A ⊗K A)/Z2(A) be the quotient as K-modules, and let 
π : A ⊗K A → (A ⊗K A)/Z2(A) denote the quotient map. Then π ◦ ϕ is a bilinear map 
that preserves zero-products. Hence, given a, b, c ∈ A, using the assumption at the second 
step, we get

π(ab⊗ c) = (π ◦ ϕ)(ab, c) = (π ◦ ϕ)(a, bc) = π(a⊗ bc)

and thus ab ⊗ c − a ⊗ bc ∈ Z2(A), as desired. �
Recall that throughout this section, K denotes a commutative, unital ring.

Proposition 2.9. Let L ⊆ K be a unital subring (with the same unit), and let A be 
a K-algebra. Assume that A is zero-product determined (zero-product balanced) as an 
L-algebra. Then A is zero-product determined (zero-product balanced) as a K-algebra.

Proof. We use the characterization of zero-product balancedness from Proposition 2.8. 
Assume that A is zero-product balanced as a L-algebra. Let ϕ : A × A → V be a K-
bilinear map to some K-module V . Considering V as a L-module, the map ϕ is L-bilinear, 
and we obtain by assumption that ϕ(ab, c) = ϕ(a, bc) for all a, b, c ∈ A.

The proof for zero-product determination is similar, using Proposition 2.2. �
In particular, if a K-algebra A is zero-product balanced as a ring, then it is also zero-

product balanced as a K-algebra. Thus, even when considering a Banach algebra or a 
C∗-algebra, it is most interesting to determine if it is zero-product balanced as a ring.
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Proposition 2.10. Every zero-product determined algebra is zero-product balanced.

Proof. Let A be a zero-product determined K-algebra. To verify Proposition 2.8(2), let 
ϕ : A ×A → V be a K-bilinear map to some K-module V . By zero-product determination, 
there exists a linear map Φ: spanK A2 → V such that ϕ(a, b) = Φ(ab) for all a, b ∈ A. 
It follows that

ϕ(ab, c) = Φ(abc) = ϕ(a, bc)

for all a, b, c ∈ A. �
If A is unital, then the converse also holds: If A is zero-product balanced, and ϕ : A ×

A → V is a bilinear map, then ϕ(ab, c) = ϕ(a, bc) for all a, b, c ∈ A, which implies that 
the map Φ: A → V given by Φ(a) := ϕ(a, 1) satisfies

ϕ(a, b) = ϕ(ab, 1) = Φ(ab)

for all a, b ∈ A. However, and unlike in [10], we will be particularly interested in nonunital 
algebras.

The next result shows that the converse to Proposition 2.10 also holds if A admits a 
certain factorization (which is automatic in the unital case).

Proposition 2.11. Let A be a K-algebra such that for every n ≥ 1 and a1, . . . , an ∈ A

there exist x, y1, . . . , yn ∈ A such that aj = xyj for j = 1, . . . , n. Then A is zero-product 
determined if and only if A is zero-product balanced.

Proof. Assume that A is zero-product balanced, and let ϕ : A ×A → V be a zero-product 
preserving K-bilinear map to some K-module V . To apply Proposition 2.2, let aj , bj ∈ A

for j = 1, . . . , n such that 
∑n

j=1 ajbj = 0. We need to show that 
∑n

j=1 ϕ(aj , bj) = 0. By 
assumption, there exist x, y1, . . . , yn ∈ A such that aj = xyj for j = 1, . . . , n. Then

x
( n∑

j=1
yjbj

)
=

n∑
j=1

ajbj = 0.

Using that A is zero-product balanced at the second step, and using that ϕ preserves 
zero-products at the last step, we obtain

n∑
j=1

ϕ(aj , bj) =
n∑

j=1
ϕ(xyj , bj) =

n∑
j=1

ϕ(x, yjbj) = ϕ
(
x,

n∑
j=1

yjbj

)
= 0,

as desired. �
Corollary 2.12. Let A be a Banach algebra with a bounded left approximate identity. Then 
A is zero-product determined as a C-algebra (as a ring) if and only if A is zero-product 
balanced as a C-algebra (as a ring).
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Proof. Given n ≥ 1 and a1, . . . , an ∈ A, the multiple Cohen factorization theorem ([18, 
Theorem 17.1]) provides x, y1, . . . , yn ∈ A such that aj = xyj for j = 1, . . . , n. This 
verifies the assumption of Proposition 2.11, proving the result. �
Remark 2.13. Using a right-sided version of Proposition 2.11 and a right-sided version 
of the multiple Cohen factorization theorem, we see that Corollary 2.12 also holds for 
Banach algebras with a bounded right approximate identity.

Proposition 2.14. Let A be a zero-product balanced K-algebra, and let I ⊆ A be a (two-
sided) ideal. Assume that I = spanK I · A = spanK A · I. (For example, this is the case 
if A is unital.) Then I is a zero-product balanced K-algebra.

Proof. The proof is similar to that of [10, Proposition 2.7]. Let ϕ : I × I → V be a 
zero-product preserving K-bilinear map to some K-module V . We need to show that 
ϕ(xy, z) = ϕ(x, yz) for all x, y, z ∈ I.

Given x, y ∈ I, consider the map ψx,y : A × A → V given by ψx,y(a, b) := ϕ(xa, by). 
Note that ψx,y is K-bilinear and zero-product preserving. Using that A is zero-product 
balanced, we obtain

ϕ(xab, cy) = ψx,y(ab, c) = ψx,y(a, bc) = ϕ(xa, bcy),

for all a, b, c ∈ A. Now let x, y, z ∈ I. Using that A = spanK I · A = spanK A · I, choose 
xj , zk ∈ I and aj , ck ∈ A such that

x =
m∑
j=1

xjaj and z =
n∑

k=1

ckzk.

Then

ϕ(xy, z) =
∑
j,k

ϕ(xjajy, ckzk) =
∑
j,k

ϕ(xjaj , yckzk) = ϕ(x, yz),

as desired. �
Proposition 2.15. Let A be a zero-product balanced K-algebra, and let I ⊆ A be an ideal. 
Then A/I is a zero-product balanced K-algebra.

Proof. Set B := A/I, and let π : A → B be the quotient map. Let ϕ : B × B → V be 
a zero-product preserving K-bilinear map to some K-module V . We need to show that 
ϕ(xy, z) = ϕ(x, yz) for all x, y, z ∈ B.

Define ψ : A × A → V by ψ(a, b) := ϕ(π(a), π(b)) for a, b ∈ A. If a, b ∈ A satisfy 
ab = 0, then π(a)π(b) = π(ab) = 0, and then ψ(a, b) = 0, which shows that ψ preserves 
zero-products. By assumption, we obtain ψ(ab, c) = ψ(a, bc) for all a, b, c ∈ A.
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Given x, y, z ∈ B, choose a, b, c ∈ A with π(a) = x, π(b) = y and π(c) = z. Then

ϕ(xy, z) = ϕ(π(ab), π(c)) = ψ(ab, c) = ψ(a, bc) = ϕ(π(a), π(bc)) = ϕ(x, yz). �
We close this section with some explicit examples of zero-product balanced algebras, 

including some which are not zero-product determined (Example 2.17). These examples 
are closely related to Examples 5.3 and 5.4 in [11], which are in the context of Banach 
algebras.

Example 2.16. Let K be a field, and let m ≥ 2. Let Nm denote the universal K-algebra 
generated by a nilpotent element of order m. Note that Nm is isomorphic to Nm :=
xK[x]/〈xm〉, and that it can be identified with the subalgebra of the matrix algebra 
Mm(K) generated by the unilateral shift

⎛
⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
...

. . . . . .
0 · · · 0 1
0 · · · 0 0

⎞
⎟⎟⎟⎟⎠

We claim that N2 and N3 are zero-product determined (and thus also zero-product 
balanced by Proposition 2.10). Indeed, N2 is isomorphic to K with zero multiplica-
tion and therefore is zero-product determined by Example 2.5. We have N3 = {λx +
μx2 : λ, μ ∈ K}. Given any K-vector space V and a zero-product preserving, bilinear 
map ϕ : N3 ×N3 → V , we have

ϕ(λx + μx2, σx + τx2) = ϕ(λx, σx) = ϕ(λσx, x).

With Φ: spanK N2
3 = {μx2 : μ ∈ K} → V given by Φ(μx2) = ϕ(μx, x), it follows that 

ϕ(a, b) = Φ(ab). Thus N3 is zero-product determined.
On the other hand, we claim that Nm is not zero-product balanced for m ≥ 4. To 

prove this, we will show that x2 ⊗ x − x ⊗ x2 does not belong to Z2(Nm).
First, note that

Nm =
{
λ1x

1 + . . . + λm−1x
m−1 : λ1, . . . , λm−1 ∈ K

}
.

Given a =
∑

j λjx
j ∈ Nm, we set

n(a) := min{j : λj �= 0}.

Given a, b ∈ Nm, we have ab = 0 if and only if n(a) +n(b) ≥ m. Let ϕ : Nm → K be the 
linear map satisfying ϕ(x) = 1 and ϕ(xj) = 0 for j ≥ 2, and set ψ = id⊗ϕ : Nm⊗KNm →
Nm ⊗K K ∼= Nm. Then
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ψ(b⊗ x) = b and ψ(b⊗ xj) = 0

for b ∈ Nm and j ≥ 2. Given a ∈ Nm, we have ϕ(a) �= 0 if and only if n(a) = 1. 
Therefore, if a, b ∈ Nm satisfy ab = 0, then ψ(a ⊗ b) �= 0 if and only if n(a) = 1 and 
n(b) = m − 1, that is, b = μxm−1 for some μ ∈ K, and then ψ(a ⊗ b) = ϕ(a)μxm−1.

To reach a contradiction, assume that x2⊗x −x ⊗x2 =
∑

j aj⊗bj for some aj , bj ∈ Nm

with aj , bj ∈ Nm and ajbj = 0. As noted above, if n(aj) = 1, then bj = μjx
m−1 for some 

μj ∈ K. We have

ψ(x2 ⊗ x− x⊗ x2) = x2.

On the other hand, using that m ≥ 4, we have

ψ
(∑

j

aj ⊗ bj
)

=
∑

n(j)=1

ϕ(aj)bj =
∑

n(j)=1

ϕ(aj)μjx
m−1 �= x2

which is the desired contradiction.

The following is an example of a zero-product balanced algebra which is not zero-
product determined. By taking K = R and D = C, one can construct the example to 
be a 4-dimensional R-algebra.

Example 2.17. Let K be a field, set N3 := xK[x]/〈x3〉 as in Example 2.16, and let D be 
any unital K-algebra without zero-divisors. Set

A := D ⊗K N3,

with product induced by (d ⊗ a)(e ⊗ b) := de ⊗ ab for d, e ∈ D and a, b ∈ N3.
Note that the product of any three elements in A is zero, whence A is zero-product 

balanced by Example 2.7. Assume that dimK(D) ≥ 2. We claim that then A is not 
zero-product determined. To see this, choose d0 ∈ D which is not a scalar multiple of 
the identity. Consider the elements d0 ⊗ x and 1 ⊗ x in A. Set

t := (d0 ⊗ x) ⊗ (1 ⊗ x) − (1 ⊗ x) ⊗ (d0 ⊗ x) ∈ A⊗K A.

Let m : A ⊗K A → A be induced by the multiplication map A ×A → A. Then

m(t) = (d0 ⊗ x)(1 ⊗ x) − (1 ⊗ x)(d0 ⊗ x) = (d01 ⊗ x2) − (1d0 ⊗ x2) = 0.

On the other hand, we will show that t does not belong to Z2(A). We have

A =
{
d⊗ x + e⊗ x2 : d, e ∈ D

}
.
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Set I := {e ⊗x2 : e ∈ D} ⊆ A. Let ϕ : A → D be the K-linear map satisfying ϕ(d ⊗x) = d

and ϕ(e ⊗ x2) = 0 for d, e ∈ D, and set ψ := ϕ ⊗ ϕ : A ⊗K A → D ⊗K D.
Given a = d ⊗ x + e ⊗ x2 and b = f ⊗ x + g ⊗ x2 in A, we have

ab = df ⊗ x2.

Using that D has no zero divisors, it follows that ab = 0 if and only if a ∈ I or b ∈ I. 
Since ϕ(I) = {0}, we see that ψ(a ⊗ b) = 0 whenever ab = 0, and thus ψ vanishes on 
Z2(A). On the other hand, we have

ψ(t) = ϕ(d0 ⊗ x) ⊗ ϕ(1 ⊗ x) − ϕ(1 ⊗ x) ⊗ ϕ(d0 ⊗ x) = d0 ⊗ 1 − 1 ⊗ d0 �= 0.

Thus, t /∈ Z2(A), as desired. We conclude that A is not zero-product determined.

3. Semimultiplicative maps and transferable elements

In order to study zero-balanced algebras and semimultiplicative maps, in this section 
we introduce the subalgebra T (A) of transferable elements in A, which measures how 
far A is from being zero-product balanced. To study the case that A is nonunital, we 
introduce the set of multiplier transferable elements TM(A).

Given a K-algebra A, its multiplier algebra M(A) is defined as the set of pairs (L, R)
of K-linear maps L, R : A → A such that

xL(y) = R(x)y, L(xy) = L(x)y, and R(xy) = xR(y)

for all x, y ∈ A. Then M(A) is a K-algebra for the componentwise K-linear structure, 
and with the product of (L1, R1), (L2, R2) ∈ M(A) given by (L1L2, R2R1). Every a ∈ A

defines an element (La, Ra) ∈ M(A) with La(x) := ax and Ra(x) := xa for x ∈ A. The 
map μ : A → M(A), a �→ (La, Ra), is multiplicative and K-linear and it maps A onto an 
essential ideal of M(A). The kernel of μ is the ideal of two-sided annihilators in A. In 
particular, if A is faithful, then μ identifies A with an essential ideal of M(A), and the 
multiplier algebra is the largest unital K-algebra containing A as an essential ideal; see 
Section 1 of [17] for details.

We show that every idempotent of M(A) belongs to TM(A); see Lemma 3.5. It follows 
that an algebra A is zero-product balanced whenever it is contained in the subalgebra 
of M(A) generated by idempotents; see Proposition 3.6. This is an improvement over 
earlier results, since it can be used to show zero-product balancedness for certain algebras 
that contain no nontrivial idempotents. For example, given any ring R, and n ≥ 2, the 
matrix ring Mn(R) is zero-product balanced, although it may not contain any nonzero 
idempotents.

Throughout this section, K denotes a commutative, unital ring.
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Definition 3.1. Let A be a K-algebra. We say that an element b ∈ M(A) is (multiplier) 
transferable if ab ⊗ c − a ⊗ bc ∈ Z2(A) for all a, c ∈ A. We write TM(A) for the set 
of multiplier transferable elements, and we let T (A) = A ∩ TM(A) denote the set of 
transferable elements in A.

We omit the straightforward proof of the next result.

Proposition 3.2. Let A be a K-algebra. Then TM(A) is a subalgebra of M(A), and thus 
T (A) is a subalgebra of A.

Proposition 3.3. Let A be a K-algebra. Then the following are equivalent:

(1) A is zero-product balanced;
(2) A = T (A);
(3) A ⊆ TM(A);
(4) every zero-product preserving, bilinear map A × A → V to a K-module V is semi-

multiplicative.

Proof. The equivalence of (1), (2) and (3) follows from the definition of zero-product 
balancedness. The equivalence of (1) and (4) follows from Proposition 2.8. �
Corollary 3.4. Let A be a zero-product balanced K-algebra. Then every linear, zero-
product preserving map π : A → B to another K-algebra is semimultiplicative.

Proof. Consider the bilinear map ϕ : A × A → B given by ϕ(a, b) := π(a)π(b). Then ϕ

preserves zero-products, and therefore is semimultiplicative by Proposition 3.3. We get

π(ab)π(c) = ϕ(ab, c) = ϕ(a, bc) = π(a)π(bc)

for all a, b, c ∈ A. �
Lemma 3.5. Let A be a K-algebra. Then TM(A) contains all idempotents in M(A).

Proof. Let a, c ∈ A, and let e ∈ M(A) be idempotent. We need to verify that ae ⊗ c −
a ⊗ ec ∈ Z2(A). Note that ae and ec belong to A. We have ae(c − ec) = 0 and therefore

ae⊗ c− ae⊗ ec = ae⊗ (c− ec) ∈ Z2(A).

Similarly, since (ae − a)ec = 0, we get

ae⊗ ec− ae⊗ c = (ae− a) ⊗ ec ∈ Z2(A).

It follows that

ae⊗ c− a⊗ ec =
(
ae⊗ c− ae⊗ ec

)
+

(
ae⊗ ec− ae⊗ c

)
∈ Z2(A). �
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By [9, Theorem 4.1], a unital K-algebra that is generated by its idempotents (as a 
K-algebra) is zero-product determined as a K-algebra; see also [11, Theorem 2.15]. By 
Proposition 2.10, such algebras are zero-product balanced. We recover Brešar’s result 
and generalize it to the nonunital setting:

Proposition 3.6. Let A be a K-algebra which is contained in the subalgebra of M(A)
generated by the idempotents in M(A). Then A is zero-product balanced.

Proof. By Lemma 3.5, every idempotent in M(A) belongs to TM(A). Further, by 
Proposition 3.2, TM(A) is a subalgebra of M(A), and therefore A ⊆ TM(A), by as-
sumption. By Proposition 3.3, this implies that A is zero-product balanced. �
Example 3.7. The following classes of rings are generated by their idempotents, and 
therefore are zero-product balanced; see [8, after Lemma 2.1] for the first three, and [34, 
Corollary 3.8] for the last one:

• simple rings that contain a nontrivial idempotent (this includes all simple, unital 
C∗-algebras that contain a projection p �= 0, 1);

• unital rings R containing an idempotent e such that e and 1 − e are full, that is, 
spanZReR = spanZR(1 − e)R = R;

• matrix rings Mn(R), where R is any unital ring and n ≥ 2;
• unital C∗-algebras of real rank zero that have no one-dimensional irreducible repre-

sentations.

We now turn to matrix algebras. If A is a unital K-algebra and n ≥ 2, then the ma-
trix algebra Mn(A) is generated by its idempotents as a K-algebra (even as a ring); see 
[11, Corollary 2.4]. It follows from Proposition 3.6 that Mn(A) is zero-product balanced 
(equivalently by Proposition 2.11, it is zero-product determined); see also [12, Theo-
rem 2.1] and [11, Corollary 2.17] In the next theorem, we extend this result by showing 
that matrix algebras over not necessarily unital algebras are always zero-product bal-
anced.

Theorem 3.8. Let A be a (not necessarily unital) K-algebra, and let n ≥ 2. Then the 
matrix algebra Mn(A) is zero-product balanced (even as a ring).

Proof. The matrix algebra Mn(A) is naturally an ideal in Mn(M(A)). This induces a 
natural, unital homomorphism Mn(M(A)) → M(Mn(A)) that is the identity on Mn(A). 
By [11, Corollary 2.4], Mn(M(A)) is generated by its idempotents as a ring. It follows 
that the subring of M(Mn(A)) generated by the idempotents contains Mn(A). Hence, 
the result follows from Proposition 3.6. �
Question 3.9. Is every (nonunital) matrix algebra zero-product determined?
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The following easy example shows that an algebra may be contained in the subalgebra 
generated by idempotents of its multiplier algebra even if it does not contain any nonzero 
idempotents itself.

Example 3.10. Let C0((0, 1]) be the C-algebra of continuous functions f : [0, 1] → C

satisfying f(0) = 0. The matrix algebra M2(C0((0, 1])) is naturally isomorphic to the 
algebra of continuous functions g : [0, 1] → M2(C) with g(0) = 0. It follows that 
M2(C0((0, 1])) contains no nonzero idempotents. Nevertheless, it is zero-product bal-
anced by Theorem 3.8.

4. Weighted epimorphisms

This section contains one of the main applications of zero-product balancedness, 
namely Theorem 4.4: it allows one to deduce that certain zero-product preserving maps 
are automatically weighted homomorphisms.

Throughout this section, K denotes a unital, commutative ring. A K-algebra A is 
said to be idempotent if A = spanK A2, that is, for every a ∈ A there exist n ≥ 1
and bj , cj ∈ A, for j = 1, . . . , n, such that a =

∑n
j=1 bjcj . A K-algebra A is said to be 

faithful if whenever a ∈ A satisfies aA = {0} or Aa = {0}, then a = 0. A K-algebra is 
idempotent if and only if it is idempotent as a ring (that is, as a Z-algebra). Similarly, 
being faithful also only depends on the ring structure.

The class of rings that are idempotent and faithful includes every unital ring, every 
simple ring, and – using Cohen’s factorization theorem – every Banach algebra with a 
bounded left (or right) approximate identity; in particular, every C∗-algebra. Further, 
every semiprime ring is faithful, but there exist prime rings that are not idempotent.

A centralizer on a K-algebra A is a K-linear map S : A → A such that aS(b) =
S(ab) = S(a)b for all a, b ∈ A.

Definition 4.1. A K-linear map π : A → B between K-algebras is said to be a weighted 
homomorphism if there exist a multiplicative, linear map π0 : A → B and a centralizer 
S on B such that π = S ◦ π0.

A weighted epimorphism is a surjective, weighted homomorphism. A weighted isomor-
phism is a bijective, weighted homomorphism.

Some authors require the centralizer in the definition of a weighted homomorphism 
to be bijective, for example [2, Definition 3.2]. We do not follow this convention since we 
want to include the important class of positively weighted ∗-homomorphisms between 
C∗-algebras; see [23].

Moreover, in Theorem 4.3 below we show that under mild assumptions on the alge-
bras, the factorization of a surjective, weighted homomorphism as in Definition 4.1 is 
unique and the centralizer is automatically bijective. Thus, in this setting, weighted epi-
morphisms are precisely the maps arising as an epimorphism composed with a bijective 
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centralizer on the target; and weighted isomorphisms are precisely the maps arising as an 
isomorphism composed with a bijective centralizer on the target. (This also shows that 
the terminologies ‘weighted epimorphism’ and ‘weighted isomorphism’ are unambiguous 
in this setting.)

Recall that a map π : A → B between K-algebras is said to be semimultiplicative if 
π(ab)π(c) = π(a)π(bc) for all a, b, c ∈ A.

Proposition 4.2. Let π : A → B be a surjective, semimultiplicative, linear map between 
idempotent K-algebras. Assume that B is faithful.

Then the map T : B → B, given by

T
( n∑

j=1
π(aj)π(bj)

)
=

n∑
j=1

π(ajbj)

for aj , bj ∈ A, is a well-defined, bijective centralizer on B and the composition π0 := T ◦
π : A → B is an epimorphism (a surjective, multiplicative, K-linear map). In particular, 
π is a weighted homomorphism with a bijective weight.

Proof. We isolate the following fact for repeated use.
Claim: Let a1, . . . , an, b1, . . . , bn ∈ A. Then

n∑
j=1

π(aj)π(bj) = 0 if and only if
n∑

j=1
π(ajbj) = 0. (4.1)

To prove the claim, let x, y ∈ A. Then

n∑
j=1

π(ajbj)π(x)π(y) =
n∑

j=1
π(aj)π(bjx)π(y) =

n∑
j=1

π(aj)π(bj)π(xy).

If 
∑n

j=1 π(aj)π(bj) = 0, then 
∑n

j=1 π(ajbj)π(A)π(A) = {0}. Using that π is surjec-
tive, it follows that 

∑n
j=1 π(ajbj)BB = {0}. Since B is faithful, we first deduce that ∑n

j=1 π(ajbj)B = {0}, and then 
∑n

j=1 π(ajbj) = 0.
Now assume that 

∑n
j=1 π(ajbj) = 0. Then 

∑n
j=1 π(aj)π(bj)π(A2) = {0}. Using that 

A = spanK A2 and that π is surjective, it follows that 
∑n

j=1 π(aj)π(bj)B = {0}, and so ∑n
j=1 π(aj)π(bj) = 0. This proves the claim.

We first verify that T as defined in the statement is a bijective centralizer. Using 
the “only if” implication in the claim, and using that B is idempotent and that π is 
surjective, we see that T is well-defined. It is injective by the “if” implication.

We show that T is surjective. Let v ∈ B. Using that π is surjective and A = spanK A2, 
we can choose aj , bj ∈ A such that v =

∑
j π(ajbj). Then v = T (

∑
j π(aj)π(bj)).
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We show that T is a centralizer. Let b, c ∈ B. Choose xj , yj , z, w ∈ A such that

b = π(z) =
∑
j

π(xj)π(yj) and c = π(w).

Let a ∈ A. Then

T (bc)π(a) = T (π(z)π(w))π(a) = π(zw)π(a) = π(z)π(wa)

=
∑
j

π(xj)π(yj)π(wa) =
∑
j

π(xj)π(yjw)π(a)

=
∑
j

π(xjyj)π(w)π(a) = T
(∑

j

π(xj)π(yj)
)
π(w)π(a)

= T (b)cπ(a).

Using that B is faithful and π is surjective, we deduce that T (bc) = T (b)c.
Similarly, we have

π(a)T (cb) = π(a)π(wz) = π(aw)π(z) =
∑
j

π(aw)π(xj)π(yj)

=
∑
j

π(a)π(w)π(xjyj) = π(a)cT (b),

which implies T (cb) = cT (b). This shows that T is a centralizer.
To show that π0 := T ◦ π is multiplicative, let a, b ∈ A. Using that T is a centralizer 

at the first two steps, we get

T (π(a))T (π(b)) = T
(
π(a)T (π(b))

)
= T

(
T (π(a)π(b))

)
= T (π(ab)).

Using that T is bijective, it is clear that π0 is surjective. �
Theorem 4.3. Let π : A → B be a surjective, linear map between idempotent K-algebras. 
Assume that B is faithful.

Then the following are equivalent:

(1) π is semimultiplicative: π(ab)π(c) = π(a)π(bc) for all a, b, c ∈ A;
(2) π is a weighted homomorphism: there exist a homomorphism π0 : A → B and a 

centralizer S on B such that π(a) = S(π0(a)) for every a ∈ A.

Moreover, if the above hold, then the homomorphism π0 and the centralizer S as in (2) 
are unique, and π0 is surjective, and S is bijective and satisfies

S
(
π(ab)

)
= π(a)π(b) (4.2)
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for all a, b ∈ A. If these conditions hold, then B is isomorphic to a quotient of A. 
Specifically, I = {a ∈ A : π(a) = 0} is an ideal and A/I ∼= B.

Further, π is bijective (that is, a weighted isomorphism) if and only if π0 is bijective 
(that is, an isomorphism).

Proof. To verify that (2) implies (1), assume that π = S◦π0 for a multiplicative, K-linear 
map π0 : A → B and a centralizer S on B. Given a, b, c ∈ A, we have

π(ab)π(c) = S(π0(ab))S(π0(c)) = S(π0(a)π0(b))S(π0(c))

= S(π0(a))π0(b)S(π0(c)) = S(π0(a))S(π0(b)π0(c)) = π(a)π(bc).

Conversely, to verify that (1) implies (2), assume that π is semimultiplicative. It 
follows from Proposition 4.2 that there exist a surjective homomorphism π0 : A → B

and a bijective centralizer S on B satisfying (4.2) such that π(a) = S(π0(a)) for every 
a ∈ A. This shows that (2) holds.

To verify that π0 and S are unique, let π̃0 : A → B be a homomorphism and let S̃

be a centralizer on B such that π(a) = S̃(π̃0(a)) for every a ∈ S. A priori, π̃0 is not 
necessarily surjective and S̃ is not necessarily bijective. We first show that S̃ satisfies 
(4.2). Given a, b ∈ A, we have

S̃
(
π(ab)

)
= S̃

(
S̃(π̃0(a)π̃0(b))

)
= S̃

(
π̃0(a)S̃(π̃0(b))

)
= S̃

(
π̃0(a)π(b)

)
= S̃

(
π̃0(a)

)
π(b) = π(a)π(b).

Using that π is surjective and A is idempotent, every element in B is of the form ∑
j π(ajbj) for some aj , bj ∈ A, and it follows that S = S̃. In particular, S̃ is bijective. 

It then follows that π̃0 = π0.
Using that S is bijective, it follows that I (the kernel of π) agrees with the kernel 

of π0, which clearly is an ideal of A. Further, π0 induces an isomorphism between A/I

and B. �
The next result presents a major application of being zero-product balanced.

Theorem 4.4. Let π : A → B be a surjective, linear map between idempotent K-algebras. 
Assume that A is zero-product balanced and that B is faithful.

Then the following are equivalent:

(1) π preserves zero-products;
(2) π is semimultiplicative;
(3) π is a weighted homomorphism.

If these conditions hold, then B is isomorphic to a quotient of A. Specifically, I =
{a ∈ A : π(a) = 0} is an ideal and A/I ∼= B.



E. Gardella, H. Thiel / Linear Algebra and its Applications 670 (2023) 121–153 139
Proof. By Corollary 3.4, (1) implies (2). The equivalence between (2) and (3) follows 
from Theorem 4.3. To show that (2) implies (1), let a, b ∈ A satisfy ab = 0. Given 
x, y ∈ A, it follows that

π(a)π(b)π(xy) = π(a)π(bx)π(y) = π(ab)π(x)π(y) = 0.

Using that A = spanK A2 and that π is surjective, it follows that π(a)π(b)B = {0}. Since 
B is faithful, we get π(a)π(b) = 0, as desired.

Assuming that the conditions (1)-(3) hold, the remaining statements follow from 
Theorem 4.3. �
Corollary 4.5. Let A be a zero-product balanced, idempotent K-algebra, and let B be a 
faithful, idempotent K-algebra. Then A and B are isomorphic as K-algebras if and only 
if there is a bijective, zero-product preserving, linear map A → B.

Example 4.6. Let A and B be idempotent K-algebras, let n ≥ 2, and assume that B is 
faithful. Then Mn(A) and B are isomorphic as K-algebras if and only if there exists a 
bijective, zero-product preserving, linear map Mn(A) → B.

Indeed, using idempotency of A, one easily shows that Mn(A) is idempotent. Fur-
ther, Mn(A) is zero-product balanced by Theorem 3.8. Now the result follows from 
Corollary 4.5.

Remark 4.7. Let π : A → B be a surjective, semimultiplicative, linear map between 
K-algebras. Assume that A is unital, and that B is idempotent and faithful. Then 
Theorem 4.4 applies and we obtain a surjective homomorphism π0 : A → B and a bijec-
tive centralizer S : B → B such that π = S ◦ π0. Further, B is isomorphic to a quotient 
of A and thus B is unital.

Let us see that π(1) is a central invertible element in B, and that S is given by 
S(b) = π(1)b for b ∈ B. Indeed, by (4.2), S satisfies

S(π(a)) = S(π(1a)) = π(1)π(a) and S(π(a)) = S(π(a1)) = π(a)π(1),

for every a ∈ A. Using that π is surjective, we deduce that π(1) is central in B, and 
that S(b) = π(1)b = bπ(1) for every b ∈ B. Since S is bijective, it follows that π(1) is 
invertible in B.

5. Commutators and factorizable square-zero elements

This section contains another important application of zero-product balancedness: A 
description of the commutator subspace in terms of square-zero elements. We refer to 
[11, Section 9.1] for an introduction to the historical context and for analogous results 
for commutators in zero-product determined algebras.



140 E. Gardella, H. Thiel / Linear Algebra and its Applications 670 (2023) 121–153
To obtain our result, we introduce the class of orthogonally factorizable square-zero 
elements; see Definition 5.1. We show that in idempotent, zero-product balanced alge-
bras, the subspace generated by these elements agrees with the commutator subspace; 
see Theorem 5.3. In particular, in idempotent, zero-product balanced rings, every com-
mutator is a sum of (orthogonally factorizable) square-zero elements.

Throughout this section, K denotes a unital, commutative ring. Our results apply to 
K-algebras, which for K = Z includes the case of rings.

Definition 5.1. Let A be a K-algebra. We let N2(A) := {x ∈ A : x2 = 0} denote the set 
of square-zero elements. We further set

FN2(A) :=
{
x ∈ A : there exist y, z ∈ A with x = yz and zy = 0

}
.

We call the members of FN2(A) orthogonally factorizable square-zero elements.
If the context is clear, we simply write N2 for N2(A) and FN2 for FN2(A).

Given a K-algebra A, we denote the additive commutator of elements a, b ∈ A by 
[a, b] := ab − ba. We set [A, A] := {[a, b] : a, b ∈ A}, and we let spanK [A, A] denote the 
linear subspace of A generated by the commutators. Note that many authors use [A, A]
to denote spanK [A, A].

Lemma 5.2. Let A be a K-algebra. Then FN2(A) ⊆ [A, A] ∩N2(A).

Proof. Let x ∈ FN2(A). Choose y, z ∈ A with x = yz and zy = 0. Then x = yz − zy =
[y, z] ∈ [A, A]. Also, x2 = yzyz = 0, so x ∈ N2(A) as well. �

Recall that a K-algebra A is said to be idempotent if A = spanK A2.

Theorem 5.3. Let A be a zero-product balanced, idempotent K-algebra. Then

spanK [A,A] = spanK FN2(A).

Proof. By Lemma 5.2, the inclusion ‘⊇’ holds in general. The proof of the reverse in-
clusion is inspired by the proof of [11, Theorem 9.1]. Set F := spanK FN2, and consider 
the biadditive map ϕ : A × A → A/F given by ϕ(x, y) := yx + F for x, y ∈ A. Then 
ϕ preserves zero-products, since if x, y ∈ A satisfy xy = 0, then yx ∈ FN2(A) ⊆ F , 
that is, ϕ(x, y) = 0 + F . Since A is zero-product balanced, for all x, y, z ∈ A we obtain 
ϕ(xy, z) = ϕ(x, yz) and hence

zxy − yzx ∈ F. (5.1)

Now, given a, b ∈ A, we need to verify [a, b] ∈ F . Since A is idempotent, we can choose 
zj , xj ∈ A such that a =

∑n
j=1 zjxj . Using (5.1), we get
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[a, b] =
n∑

j=1
(zjxjb− bzjxj) ∈ F = spanK FN2. �

Example 5.4. Let R be a simple ring that contains a nontrivial idempotent. Then [13, 
Theorem 6] shows that [R, R] ⊆ spanZN2. We recover and strengthen this result as 
follows. As noted in Example 3.7, R is generated by its idempotent elements and is 
therefore zero-product balanced by Proposition 3.6. Since every simple ring is idempo-
tent, Theorem 5.3 applies and shows that

spanZ[R,R] = spanZ FN2 ⊆ spanZN2.

In [25], we study the case of more general simple rings, while in [26] arbitrary rings are 
studied. This, in particular, applies to C∗-algebras, which are one of the main classes 
considered in [26]. It would also be interesting to explore aspects of this nature in the 
context of Lp-operator algebras [19], for example for the well-behaved families arising 
from groups [21,22] or groupoids [20,16].

Example 5.5. Let R be a left Rickart ring, that is, assume that for every x ∈ R there 
is an idempotent e ∈ R such that the left annihilator {a ∈ R : ax = 0} is equal to the 
left ideal Re. (For example, this is the case if R is a von Neumann regular ring, or an 
AW*-algebra, or a von Neumann algebra.) Let us see that FN2 = N2.

The inclusions FN2 ⊆ N2 are true in general by Lemma 5.2. To show the converse 
inclusion, let x ∈ N2. Find an idempotent e ∈ R such that

Re = {a ∈ R : ax = 0}.

Since x2 = 0, we have x ∈ Re. Choose r ∈ R such that x = re. Then xe = ree = re = x. 
Set f := 1 − e. Since e = ee ∈ Re, we have ex = 0, and thus fx = x. Thus, x = xe and 
ex = 0, which shows x ∈ FN2.

Hence, if R is a left Rickart ring that is zero-product balanced, then

spanZ[R,R] = spanZ FN2 = spanZN2.

Example 5.6. Let A be an idempotent K-algebra, and let n ≥ 2. Given a matrix a ∈
Mn(A), the following are equivalent:

(1) a ∈ spanK [Mn(A), Mn(A)];
(2) a ∈ spanK FN2(Mn(A));
(3) trace(a) ∈ spanK [R, R].

Indeed, as in Example 4.6, we see that Mn(A) is idempotent and zero-product bal-
anced. Therefore, the equivalence between (1) and (2) follows from Theorem 5.3. By [31, 
Corollary 17], (1) is equivalent to (3) for arbitrary rings.
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Remark 5.7. For n ≥ 2, it is natural to try determine the minimal numbers N(n) and 
NF (n) such that every commutator in the matrix ring Mn(R) (with n ≥ 2) over a unital 
ring R is a sum of at most N(n) square-zero elements (at most NF (n) orthogonally fac-
torizable square-zero elements). It was shown in [3, Theorem 4.4] that every commutator 
in the matrix algebra over a unital algebra is a sum of at most 22 square-zero elements. 
The result also holds for unital rings, and an inspection of the proof shows that the 
constructed square-zero elements are orthogonally factorizable, and thus NF (n) ≤ 22 for 
all n ≥ 2.

On the other hand, it was shown in Corollary 3.4 and Theorem 3.6 of [35] that the 
diagonal matrix in M5(C) with diagonal entries 4, −1, −1, −1, −1 is not the sum of three 
square-zero matrices, while it clearly is a commutator:

⎛
⎜⎜⎜⎝

4 0
−1

−1
−1

0 −1

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

0 4 0
3

2
1

0 0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0 0
1

1
1

1 0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

We thus have 4 ≤ N(5) ≤ NF (5) ≤ 22.

Problem 5.8. Determine N(n) and NF (n) for n ≥ 2.

6. Zero-product balanced algebras without zero divisors

As always, we will assume that K is a unital, commutative ring. We start with an 
elementary observation:

Remark 6.1. Let A be a zero-product balanced K-algebra that contains no zero-divisors. 
Then

Z2(A) := spanK

{
u⊗ v ∈ A⊗K A : uv = 0

}
= {0},

and thus ab ⊗ c = a ⊗ bc in A ⊗K A for every a, b, c ∈ A. Further, every K-bilinear map 
ϕ : A ×A → V to a K-module automatically preserves zero-products, and thus

ϕ(ab, c) = ϕ(a, bc)

for every a, b, c ∈ A, by Proposition 2.8.

The last statement in the next result is a generalization of [11, Corollary 1.8] to the 
nonunital setting.

Proposition 6.2. Let A be a zero-product balanced K-algebra that contains no zero-
divisors. Then A is commutative. Moreover, if K is a field, then either A = {0} or 
A ∼= K.
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Proof. We may assume that A �= {0}. To show that A is commutative, let a, b ∈ A. 
Choose nonzero elements x, y ∈ A. Applying Remark 6.1 for the biadditive map ϕ : R×
R → R, (r, s) �→ rbs, we obtain

xaby = ϕ(xa, y) = ϕ(x, ay) = xbay.

Hence, x(ab − ba)y = 0, and since A has no zero divisors, we deduce that ab = ba, as 
desired.

Assume now that K is a field and that A �= {0}. We will show that every two nonzero 
elements of A are scalar multiples of each other, which readily implies the conclusion. 
Let a, b ∈ A be nonzero, and choose any other nonzero element c ∈ A. Then bc �= 0 and 
ca �= 0, which allows us to choose a K-linear functional ϕ : A → K such that ϕ(bc) �= 0
and ϕ(ca) �= 0.

Applying Remark 6.1 to the K-bilinear map A ×A → A given by (x, y) �→ xϕ(y), at 
the first step, and for the map A × A → A given by (x, y) �→ ϕ(x)y, at the third step, 
we get

aϕ(bc) = abϕ(c) = ϕ(c)ab = ϕ(ca)b.

Hence, a = ϕ(bc)−1ϕ(ca)b, as desired. �
Remark 6.3. Let A be a K-algebra such that

ab⊗ c = a⊗ bc

in A ⊗KA for every a, b, c ∈ A. Applying Remark 6.1 for the biadditive map ϕ : R×R →
R, (r, s) �→ sr, we obtain

abx = ϕ(bx, a) = ϕ(b, xa) = xab

for all a, b, c ∈ A. Hence, every product of two elements belongs to the center Z(A), and it 
follows that Z(A) is an ideal in A such that the quotient A/Z(A) has zero multiplication. 
Further, the product of a commutator with the product of any two elements is zero, and 
it follows that the commutator ideal in A has zero multiplication.

Does it follow that A is commutative? The answer is ‘Yes’ if A is faithful (for example, 
if it is unital or has no zero divisors), or idempotent, or has no nilpotent ideal (for 
example, if it is semiprime), or if K is a field (Proposition 6.2).

Question 6.4. Does there exist a noncommutative ring R such that ab ⊗ c = a ⊗ bc in 
R⊗Z R for all a, b, c ∈ R?

Following [7], we say that a unital, commutative ring R is solid if x ⊗ 1 = 1 ⊗ x in 
R ⊗Z R for every x ∈ R. It follows immediately that every solid ring is zero-product 
balanced. Typical examples of solid rings are the finite cyclic rings Z/nZ for n ≥ 2, 
and the unital subrings of the field Q of rationals. The classification of solid rings from 



144 E. Gardella, H. Thiel / Linear Algebra and its Applications 670 (2023) 121–153
[7, Proposition 3.5] shows that every solid ring can be constructed from these typical 
examples.

Proposition 6.5. Let R be a unital ring without zero divisors. Then R is zero-product 
balanced as a ring if and only if it is a (commutative) solid ring.

Proof. Using that Z2(R) = {0}, we see that R is zero-product balanced as a ring if 
and only if ab ⊗ c = a ⊗ bc for all a, b, c ∈ R. Using that R is unital, this is equivalent 
to x ⊗ 1 = 1 ⊗ x for all x ∈ R. By definition, this holds if R is solid, which proves 
the backward direction. Conversely, assume that R is zero-product balanced. Then R is 
commutative by Proposition 6.2, and thus a solid ring. �
Example 6.6. While the field Q is zero-product balanced as a ring, the fields R and C
are not. Indeed, R and C are not solid, since every torsion-free, solid ring is a subring 
of Q by [7, Lemma 3.7]. On the other hand, the ring 2Z of even integers is a nonunital, 
zero-product balanced ring without zero divisors.

7. Commutative, zero-product balanced algebras

In this section, we specialize to the case that K is a field. We prove the main result 
of the paper: A commutative K-algebra over a field K is reduced and zero-product 
balanced if and only if it is generated by idempotents; see Theorem 7.3. This is in the 
same spirit as the result of Brešar, [10, Theorem 3.7], that a unital, finite-dimensional K-
algebra is zero-product balanced (equivalently, zero-product determined) if and only if it 
is generated by idempotents. We deduce that every commutative, zero-product balanced 
algebra is spanned by its idempotent and nilpotent elements; see Corollary 7.5.

Let R be a ring (not necessarily unital or commutative). A right ideal I ⊆ R is regular
if there exists a ∈ R such that ax − x ∈ I for all x ∈ R. The Jacobson radical of 
R, denoted rad(R), is the intersection of all maximal regular right ideals of R. If R is 
unital, then every right ideal is regular. If R is commutative, then regular right ideals are 
precisely the (two-sided) ideals I ⊆ R such that R/I is unital, and it follows that rad(R)
is the intersection of all ideals I ⊆ R such that R/I is a field. The ring R is semiprimitive
(or Jacobson semisimple) if rad(R) = {0}. For details we refer to [27, Section I.2].

The prime radical (also called lower nilradical) of A, denoted nil(R), is the intersection 
of all prime ideals of R. If R is commutative, then nil(R) is the set of nilpotent elements 
in R. The ring R is semiprime if nil(R) = {0}. Note that nil(R) ⊆ rad(R).

A ring is said to be reduced if it contains no nonzero nilpotent elements. A commutative 
ring is reduced if and only if it is semiprime.

Lemma 7.1. Let A be a commutative, zero-product balanced K-algebra over a field K. 
Then A/I ∼= K for every proper prime ideal I ⊆ A.

Thus, every proper prime ideal of A is maximal regular, and nil(A) = rad(A).
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Proof. Let I ⊆ A be a proper prime ideal in A. By Proposition 2.15, the quotient A/I is 
a zero-product balanced K-algebra. Since it is also prime and commutative, and therefore 
has no zero divisors, it follows that A/I ∼= K by Proposition 6.2. Thus, A/I is unital 
and simple, and therefore I is a maximal regular ideal. �

The next result generalizes [11, Example 2.24].

Proposition 7.2. Let K be a field, and let A be a (not necessarily unital) subalgebra of ∏
N K. If A contains an element whose components are all pairwise distinct, then A is 

not zero-product balanced as a K-algebra.

Proof. The proof is based on that of [11, Example 2.24]. We view elements of A as 
sequences (an)n with an ∈ K. By assumption, there exists y = (yn)n ∈ A such that 
the elements yn are pairwise distinct. To reach a contradiction, we assume that A is 
zero-product balanced. By definition, we deduce that y2 ⊗ y − y ⊗ y2 belongs to Z2(A), 
that is, there exist uk, vk ∈ A such that

y2 ⊗ y − y ⊗ y2 =
n∑

k=1

uk ⊗ vk,

and such that ukvk = 0 for each k = 1, . . . , n. As in the proof of [11, Example 2.24], 
there is an infinite subset N ⊆ N such that, with

I :=
{
a ∈ A : an = 0 for n ∈ N

}

we have uk ∈ I or vk ∈ I for each k = 1, . . . , n. Grouping the tensors uk ⊗ vk according 
to whether uk ∈ I or vk ∈ I, we rewrite

y2 ⊗ y − y ⊗ y2 +
l∑

i=1
si ⊗ zi =

m∑
j=1

wj ⊗ tj (7.1)

for si, tj ∈ I and zi, wj ∈ A. We may assume that the elements s1, . . . , sl are linearly 
independent. To show that the elements y2, y, s1, . . . , sl are linearly independent, assume 
that λ, μ, κ1, . . . , κl ∈ K satisfy

0 = λy2 + μy +
l∑

i=1
κisi.

Considering indices in s, t ∈ N where ys and yt are nonzero and distinct, we obtain 
λ = ν = 0, and then also κ1 = . . . = κl = 0.

Let ϕ : A → K be a K-linear map vanishing on y, s1, . . . , sl, and such that ϕ(y2) = 1, 
which exists because {y2, y, s1, . . . , sl} is linearly independent. Applying the K-bilinear 
map A ×A → A given by (x, y) �→ ϕ(x)y, to (7.1), we obtain that
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y =
m∑
j=1

ϕ(wj)tj ∈ I,

which is the desired contradiction. �
Let us briefly recall the Stone duality between Boolean rings and Boolean spaces. 

A Boolean ring is a ring such that every element is idempotent. A Boolean space is 
a zero-dimensional, locally compact, Hausdorff space. Given a Boolean ring R, the set 
of nonzero ring homomorphisms R → {0, 1} can be equipped with a natural topology 
turning it into a Boolean space XR.

Conversely, given a Boolean space X, the space RX := Cc(X, {0, 1}) of continuous 
functions X → {0, 1} that have compact support is naturally a Boolean ring. Moreover, 
there are natural isomorphisms R ∼= RXR

and X ∼= XRX
, and this even induces an 

equivalence of categories for suitable choices of morphisms.
We note that this duality restricts to a duality between unital Boolean rings and 

compact Boolean spaces.
Let R be a commutative ring. We turn the set Idem(R) of idempotent elements in 

R into a Boolean ring by using the same multiplication as in R, but by defining a new 
addition +̄ by e+̄f := e + f − 2ef .

We write Kd for the field K equipped with the discrete topology. Given a locally 
compact, Hausdorff space X, we use Cc(X, Kd) to denote the algebra of continuous 
functions f : X → Kd that have compact support.

Let A be a commutative K-algebra. We say that two idempotents e, f ∈ A are orthog-
onal if ef = 0. Using that the product of two idempotents in A is again an idempotent, 
it follows that A is generated by idempotents as a K-algebra if and only if it is the 
K-linear span of its idempotents. We simply say that A is generated by idempotents. If 
this is the case, then every element a ∈ A can be written as a =

∑n
j=1 λjej for nonzero, 

pairwise different coefficients λj ∈ K and pairwise orthogonal idempotents e1, . . . , en in 
A. Moreover, this presentation is unique up to permutation of indices.

Theorem 7.3. Let A be a commutative K-algebra over a field K. Then the following are 
equivalent:

(1) A is reduced and zero-product balanced as a K-algebra;
(2) A is generated by idempotents as a K-algebra;
(3) A ∼= Cc(X, Kd) for a Boolean space X.

Moreover, if these statements are satisfied, then the space X in (3) is unique (up to 
homeomorphism) and X ∼= XIdem(R), the Boolean space associated to Idem(R).

Proof. To show that (2) implies (1), assume that A is generated by idempotents. Then 
A is zero-product balanced by Proposition 3.6. Next, let a ∈ A satisfy a2 = 0. Choose 
nonzero, pairwise different λj ∈ K and pairwise orthogonal idempotents e1, . . . , en ∈ A
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such that a =
∑n

j=1 λjej . One readily gets 0 = a2 =
∑n

j=1 λ
2
jej , and thus λ1 = . . . =

λn = 0, which implies a = 0. It follows that nil(A) = {0}, and so A is reduced.
To show that (1) implies (2), assume that A is reduced and zero-product balanced. 

Let X denote the set of prime ideals in A. By Lemma 7.1, for each x ∈ X we obtain 
a surjective ring homomorphism πx : A → K with kernel x. Given a ∈ A, we write 
a(x) := πx(a) ∈ K. Since A is reduced and commutative, it is semiprime, and so the 
intersection of all prime ideals is zero. It follows that the map π : A →

∏
x∈X K, given 

by π(a) := (a(x))x∈X , is an injective ring homomorphism.
Given a ∈ A, we set

σ(a) :=
{
a(x) : x ∈ X

}
.

We claim that σ(a) is finite. To obtain a contradiction, assume that there exists 
a sequence (xn)n in X such that the elements a(xn) are pairwise distinct. Then the 
composition of π with the canonical map 

∏
X K →

∏
N K is a ring homomorphism 

whose image is a subring of 
∏

N K that contains an element whose components are pair-
wise distinct. By Proposition 7.2, π(A) is not zero-product balanced, which contradicts 
Proposition 2.15. This proves the claim.

To show that A is generated by idempotents, let a ∈ A with a �= 0. Let λ1, . . . , λn be 
an enumeration of the nonzero elements in σ(a). For each j = 1, . . . , n set Fj := {x ∈ X :
a(x) = λj}, and let fj ∈

∏
x∈X K be the indicator function of Fj , that is, fj = ((fj)x)x∈X

with (fj)x = 1 if x ∈ Fj and (fj)x = 0 otherwise. Then π(a) =
∑n

j=1 λjfj , and it suffices 
to show that the idempotents f1, . . . , fn belong to π(A).

Fix j ∈ {1, . . . , n}. Then λj

∏
k �=j(λj − λk) ∈ K is nonzero, and we can define

ej :=

⎛
⎝λj

∏
k �=j

(λj − λk)

⎞
⎠

−1

a
∏
k �=j

(a− λk) ∈ A,

where a 
∏

k �=j(a − λk) is understood as 
∑

S⊆{1,...,n}\{j}(
∏

k∈S λk)an−|S|. Note that ej is 
an idempotent. Evaluating at each x ∈ X, we see that π(ej) = fj . We have shown that 
a =

∑n
j=1 λjej for idempotents e1, . . . , en ∈ A.

To show that (3) implies (2), we just notice that Cc(X, Kd) is generated by idem-
potents. To show the converse, assume that A is generated by idempotents. Set X :=
XIdem(A). Given an idempotent e ∈ A, let S(e) denote the subset of X consisting of 
those characters on Idem(A) that map e to 1. Then S(e) is a compact, open subset 
of X, and the characteristic function χS(e) belongs to Cc(X, {0, 1}). The isomorphism 
Idem(A) ∼= Cc(X, {0, 1}) of Boolean rings is given by e �→ χS(e).

We define π : A → Cc(X, Kd) by

n∑
λjej �→

n∑
λjχS(ej),
j=1 j=1
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for λj ∈ K and pairwise orthogonal idempotents ej ∈ A. One checks that this map is an 
isomorphism of K-algebras. �

Observe that the one-dimensional, commutative algebra K, equipped with zero multi-
plication, is zero-product balanced (even zero-product determined by Example 2.5), yet 
not generated by idempotents. This shows that Theorem 7.3 does not generalize to ar-
bitrary commutative algebras, and that [10] does not generalize to arbitrary (nonunital) 
finite-dimensional algebras.

A ring R is said to be regular if for every x ∈ R there is y ∈ R with x = xyx.

Corollary 7.4. Let A be a commutative, zero-product balanced K-algebra over a field 
K. Then A/ nil(A) is generated by idempotents as a K-algebra. Further, A/ nil(A) is a 
regular ring.

Proof. The quotient B := A/ nil(A) is a commutative, reduced K-algebra that is zero-
product balanced by Proposition 2.15. It follows from Theorem 7.3 that B is generated 
by idempotents.

To verify that B is regular, let x ∈ B. If x = 0, then y = 0 satisfies x = xyx. Thus, we 
may assume that x is nonzero, in which case we can choose pairwise orthogonal idem-
potents e1, . . . , en ∈ B and nonzero, pairwise distinct λj ∈ K such that x =

∑n
j=1 λjej . 

Set y :=
∑n

j=1 λ
−1
j ej . Then x = xyx, as desired. �

Corollary 7.5. Let A be a commutative, zero-product balanced K-algebra over a field K, 
and let π : A → A/ nil(A) be the quotient map. Then the following hold:

(1) There exists a unique K-algebra homomorphism σ : A/ nil(A) → A such that π ◦σ =
idA/ nil(A).

(2) Every element of A has the form

x + λ1e1 + . . . + λnen

for a nilpotent x ∈ A, pairwise orthogonal idempotents e1, . . . , en ∈ A, and nonzero, 
pairwise distinct λ1, . . . , λn ∈ K. Moreover, this presentation is unique up to permu-
tation of the indices.

Proof. (1). The quotient A/ nil(A) is generated by idempotents by Corollary 7.4. An 
ideal is said to be nil if each of its elements is nilpotent. It is a classical result that 
idempotents lift modulo nil ideals. If the ring is even commutative, then the lift is unique; 
see, for example [28, Proposition 7.14]. This implies the existence and uniqueness of the 
map σ.

(2). Let a ∈ A. Set

ā := π(a) ∈ A/ nil(A) and x := a− σ(ā).
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We have a = x + σ(ā). Since π(x) = 0, we have x ∈ nil(A), and this decomposition of 
a as a sum of a nilpotent element and an element in the image of σ is unique. Further, 
using that A/ nil(A) is generated by idempotents, and that σ is K-linear and multi-
plicative, it follows that there exist pairwise orthogonal idempotents e1, . . . , en ∈ A, and 
nonzero, pairwise distinct λ1, . . . , λn ∈ K such that σ(ā) =

∑n
j=1 λjej . The uniqueness 

of the presentation of ā as a linear combination of idempotents gives the same for the 
presentation of σ(ā). �

A ring R is said to be semiregular if R/ rad(R) is regular, and every idempotent in 
R/ rad(R) can be lifted to an idempotent in R.

Exchange rings were introduced in the unital setting by Warfield in [36]. This was 
generalized to the nonunital case by Ara in [4]: A ring R is an exchange ring if for every 
x ∈ R there exists an idempotent e ∈ R and r, s ∈ R such that e = rx = x + s − sx. 
Every regular ring is an exchange ring.

Following Nicholson, [32], we say that a unital ring is clean if every element is a 
sum of an invertible and an idempotent. This was generalized by Nicholson-Zhu, [33], to 
nonunital rings.

Corollary 7.6. Let A be a commutative, zero-product balanced K-algebra over a field K. 
Then A is semiregular, clean, and an exchange ring.

Proof. By Lemma 7.1, we have nil(A) = rad(A). Since idempotents lift modulo nil ideals 
([28, Proposition 7.14]), it follows that idempotents in R/ rad(A) lift. The quotient B :=
A/ nil(A) is a regular ring by Corollary 7.4. It follows by definition that A is semiregular.

As noted in the examples before Proposition 1.3 in [4], the class of (not necessarily 
unital) exchange rings includes all radical rings and all regular rings. Thus, nil(A) and 
A/ nil(A) are exchange rings. Since idempotents in A/ nil(A) lift, it follows from [4, 
Theorem 2.2] that A is an exchange ring. Finally, it follows from [33, Theorem 2] that 
a commutative ring is clean if and only if it is an exchange ring. (The unital case was 
shown in [32, Proposition 1.8].) �
Remark 7.7. Commutative K-algebras that are generated by idempotents have been 
studied in different contexts. For example, by [29, Corollary 2.3], if K is an algebraically 
closed field of characteristic zero, and G is a torsion, abelian group, then the group 
algebra K[G] is generated by idempotents, and a unital, commutative K-algebra A is 
generated by idempotents if and only if it there exists a surjective K-algebra homomor-
phism K[H] → A for some torsion group H.

A different viewpoint is through Boolean powers: If K is a field, and B is a Boolean 
algebra with associated compact Boolean space X, then the algebra C(X, Kd) of finite-
valued, continuous functions X → K is called the Boolean power of K by B. It follows 
from [5, Theorem 2.7] that a unital K-algebra is generated by idempotents if and only if 
it is a Boolean power. This also provides a proof of the equivalence between (2) and (3) 
in Theorem 7.3 in the unital case.
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8. A dichotomy for zero-product balanced algebras

In this section we use our findings for commutative, zero-product balanced algebras 
from Section 7 to obtain structural results for arbitrary zero-product balanced algebras.

By a character on a K-algebra A we mean a nonzero K-algebra homomorphism 
A → K. By Lemma 7.1, if A is a commutative, zero-product balanced K-algebra over a 
field K, then its nilradical nil(A) agrees with its Jacobson radical rad(A).

Proposition 8.1. Let A be a commutative, zero-product balanced K-algebra over a field K. 
Then A either admits a character or is (nil)radical. If A is also unital, then it admits a 
character.

Proof. It is clear that A cannot admit a character and be nil-radical at the same time. 
Assuming that A is not nil-radical, we need to show that A admits a character. Then 
A is reduced, and thus A ∼= Cc(X, Kd) for some Boolean space X, by Theorem 7.3. 
Evaluating at some point in X defines a character on Cc(X, Kd).

If A is unital, then it cannot be nil-radical and therefore admits a character. �
Theorem 8.2. Let A be a zero-product balanced K-algebra over a field K. Then either A
has a character, or A is a radical extension over its commutator ideal, that is, for every 
a ∈ A exist m, n ≥ 1 and rj , xj , yj , sj ∈ A such that

am =
n∑

j=1
rj [xj , yj ]sj .

Proof. We may assume that A �= {0}. Let I denote the commutator ideal of A:

I =

⎧⎨
⎩

n∑
j=1

rj [xj , yj ]sj : rj , xj , yj , sj ∈ A

⎫⎬
⎭ .

We first show that A cannot admit a character and be a radical extension of I at the 
same time: Let π : A → K be a character. Since K is commutative, we have π([x, y]) = 0
for every x, y ∈ A. It follows that π(I) = {0}. Given a ∈ A and m ≥ 1 with am ∈ I, we 
have π(a)m = π(am) = 0, and thus π(a) = 0. Thus, if A is a radical extension of I, then 
π(A) = {0}, a contradiction.

The quotient algebra A/I is a commutative K-algebra that is zero-product balanced 
by Proposition 2.15. If A/I admits a character, then the composition A → A/I → K is a 
character on A. Thus, we may assume that A/I has no character. Then A/I is nil-radical 
by Proposition 8.1, and it follows that A is a radical extension of I. �

We showed in [24] that a unital K-algebra A is generated by its commutators as an 
ideal if and only if there exists N ∈ N such that every element in A is a sum of N products 
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of pairs of commutators. If A is also zero-product balanced, then every commutator of 
A is a sum of orthogonally factorizable square-zero elements by Theorem 5.3, and it 
follows that every element in A is a sum of products of pairs of orthogonally factorizable 
square-zero elements. However, it remains unclear if there is a uniform bound on the 
number of required summands, since Theorem 5.3 provides no bound on the number 
of summands needed to express a commutator as a sum of orthogonally factorizable 
square-zero elements; see Question 8.4.

Theorem 8.3. Let A be a unital, zero-product balanced K-algebra that is generated by 
its commutators as an ideal. Then for every a ∈ A there exist n ∈ N and elements 
vj , wj , xj , yj ∈ A such that

a =
n∑

j=1
vjwjxjyj , and wjvj = yjxj = 0 for j = 1, . . . , n.

(Note that vjwj and xjyj are orthogonally factorizable square-zero elements.)

Proof. By [24, Theorem 3.4], we have A = spanK [A, A] · [A, A]. By Theorem 5.3, we have 
spanK [A, A] = spanK FN2(A), and thus A = spanK FN2(A) · FN2(A), which implies 
the statement. �
Question 8.4. Let A be a unital, zero-product balanced K-algebra that is generated by 
its commutators as an ideal. Does there exist N ∈ N such that every element in A is a 
sum of N products of pairs of elements in FN2(A)?

Corollary 8.5. Let A be a unital, zero-product balanced K-algebra over a field K. Then 
the following are equivalent:

(1) A admits no character;
(2) A is generated by its nilpotent elements as an ideal;
(3) every element in A is a sum of products of pairs of (orthogonally factorizable) square-

zero elements.

Proof. Let I denote the commutator ideal of A as in the proof of Theorem 8.2. If 
I �= A, then A/I is a unital, commutative K-algebra that is zero-product balanced by 
Proposition 2.15. Then, by Proposition 8.1, A/I admits a character. This shows that (1) 
implies (2). By Theorem 8.3, (2) implies (3). Since characters map square-zero elements 
to zero, we see that (3) implies (1). �
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