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David Bosch
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Abstract

The study of Machine Learning models in asymptotic regimes, has provided
insight into many of the properties of ML models, but seemingly contradicts
classical statistical wisdom. To solve this mystery, this thesis focuses on
the analysis of models such as the LASSO and Random features regression,
when the data points and model parameters grow infinite at constant ratios.
It provides analysis for the asymptotic behavior of these problems, including
characterization of the learning curves; the predicted training and generalization
error as a function of the degree of overparameterization.

The papers in this thesis particularly focus on the usage of Gaussian
comparison theorems as a methodological tool for the analysis of these problems.
In particular, the convex Gaussian min max theorem allows us to study more
complex ML optimization problems, by considering alternative models that are
simpler to analyze, but asymptotically hold similar properties.

Secondarily, this thesis considers universality, which within the asymptotic
context demonstrates that many statistics of ML models are fully determined
by lower order statistical moments. This allows us to study surrogate Gaussian
models, matching these moments. These surrogate Gaussian models can
subsequently be analyzed by means of the Gaussian comparison theorems.
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Chapter 1

Introductory Chapters

1 Introduction

In contrast to classical statistical theory, the modern day machine learning
models that are used in practice generalize well to unseen data, despite being
massively overparameterized. Statistical wisdom assumes that an overparamet-
erized statistical model overfits to the training data set, and generalize poorly.
Instead, in practice, increasing the model size often improves the generalization
further. It is therefore of theoretical interest to analyze machine learning
models in the context of statistics to determine the origin of this behavior,
and to determine how this knowledge may be leveraged to build more useful
models.

The double decent curve, as described by [1] is the most representative of
this rising field. Since its proposal, many machine learning algorithms have
demonstrated double descent and some of them have been analyzed. This
includes linear regression [2]–[4], ridge regression [5], [6], LASSO, Random
Features [7], [8], and others [9]–[18]. These models have been analyzed by a
number of methods, including the replica technique [19], Gaussian widths [20],
as well as the Gaussian comparison theorem [7], [21], [22], which is the focus of
this thesis.

As the name suggests, comparison theorems allow us to analyze models, or
more specifically optimization problems over models, by comparing them to
alternative optimization problems. These alternative optimization problems
should be simpler, or more amenable to analysis, than the original problem.
Assuming that certain statistics of the alternative problem converge to definite
values, in some limit, similar conclusions maybe drawn for the original problem.
The particular theorem, central to this thesis, is the Convex Gaussian Min Max
Theorem (CMGT) [23]–[26], which allows for comparisons of optimizations
that contain bilinear Gaussian forms.

The CGMT, as well as many other theoretical approaches require Gaus-
sianity of the data or features, and often both to be applicable. This is not
representative of real data. However in high dimensional space, we frequently
observe the concentration of statistics of random objects, such as vectors,

3
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matrices and tensors. Similarly to the central limit theorem, many statistics of
non-Gaussian random variables, will in large limits exhibit a similar behaviour
to Gaussian models that match their lower order moments, namely mean and
variance. Proving this fact for the interesting statistics of particular ML models,
such as training and testing loss, is called universality [27]–[31]. This allow us
to study Gaussian surrogate models that have similar asymptotic properties
to the models of interest. Universality has been demonstrated for the random
features case [32], and under certain assumptions Empirical Risk Minimization
[33]. As such, for non-Gaussian random data or features, proving universality
and applying the Gaussian surrogate model allows for the analysis by means of
comparison theorem (or other techniques).

In paper I of this thesis we extend the existing analysis of the least abso-
lute shrinkage and selection operator (LASSO) and the closely related basis
pursuit (BP) problem, which attempt to minimize the ℓ1 norm of a solution
vector of a square-loss optimization. We derive expressions for the asymptotic
generalization error for both problems. Furthermore, we consider weak and
strong features and demonstrate their impact on generalization. In paper
II, we consider the setup of random features regression (see 2.4). Here we
extend the existing universality results of [32] to additional cases, including ℓ1
regularization, and then make use of a novel nested application of the CGMT to
obtain asymptotic expressions for the training, generalization error, as well as
the sparsity of the solution vector. We particularly focus on the case of elastic
net regularization [34] and ℓ1 regularization, which could not be previously
analyzed, in the random feature context.
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2 Background

In this section, we give the relevant background for the works in this thesis.
Firstly, we lay out the motivations and the preliminary concepts of what we
want to analyze. Next, we discuss comparison theorems, most prominently
the Convex Gaussian Min Max Theorem. Then, we discuss universality and
the arguments that may be used to obtain it. Finally, we discuss the random
features model and how it maybe explored in this regime.

2.1 Problem Setup

In supervised learning problems, we are concerned with datasets, (x, y) ∈ Rd×R
drawn from some joint probability distribution px,y, where the d−dimensional
x are called the data, and y are the labels. Our goal is to find some function f :
Rd → R that maps samples of the data to potential labels ŷi = f(xi), such that
they minimize the mean value of some metric ℓ(y, ŷ) : R×R→ R, that we call a
loss function. Frequently, as in the case of this thesis, we consider an empirical
version of this problem where we have a dataset D =

{
(xi, yi) ∈ Rd × R

}n
i=1

of n−datapoints sampled from this distribution, and we attempt to minimize
the empirical estimator

min
f∈F

1

n

n∑

i=1

ℓ(f(xi), yi), (1)

where F is some class of functions. We note that we must restrict the class
of functions F , otherwise we are able to exactly map each data point to the
corresponding label in many different ways. While this minimizes the loss,
there is no guarantee that the result effectively generalizes to unseen data. The
generalization error is measured by:

Egen = E(xnew,ynew)ℓ̂(ynew, h (f(xnew))) (2)

where (xnew, ynew) ∼ px,y is a new sample drawn from the same distribution, ℓ̂
is a (potentially the same) loss function, and h is some potential post-processing
function (such as the sign function).

In the scope of this thesis, we will consider a class of functions parameterized
by a set of parameters θ ∈ Rm, given by

F = {fθ(x) = φ(x)Tθ}. (3)

Here φ(·) : Rd → Rm is a fixed function that maps the input data into a space
of some other dimension m. We will generally restrict φ to a particular form,
such as a random feature mapping, as discussed in section 2.4. To choose
the value of the parameters θ, we employ the empirical risk minimization
framework, and examine the following minimization problem:

Etrain = min
θ∈Rm

1

n

n∑

i=1

ℓ(fθ(xi), yi) +R(θ), (4)
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where R : Rm → R is a regularization function. We will generally consider
cases where the regularization function is separable:

R(θ) =

m∑

i=1

r(θi), (5)

where r : R → R is applied element-wise to the elements of θi = (θi)i. We

furthermore define θ̂ as one of the optimal solutions of problem (4). In general,
we will assume that the problem (4) is strongly convex, such that the solution

θ̂ is unique.
Similarly in the context of parameterized functions, the generalization error

will be a function of the choice of parameter θ. We will consider generalizations
of the form:

Egen(θ) = E(xnew,ynew) [ℓ(ynew, fθ(xnew))] . (6)

In other words, we will consider the same loss function, without post processing.
Furthermore, in the papers of this thesis other statistics of the set of

parameters θ will be studied. In general these are functions T (θ) : Rm → R
of the parameters θ. The generalization error is one of these statistics, but
we will also study T (θ) = ∥θ∥1, the ℓ1 norm of the parameters, which gives a
proxy for the sparsity of the solution vector θ.

The papers of this thesis provide theoretical analysis of certain problems
of this type, in paper 1 the LASSO problem, and in paper 2 random feature
mappings. We aim to give expressions for the training error, generalization
error, and certain other statistics, that are accurate in the asymptotic regime.
By asymptotic regime we mean the regime, where the number of data points
n, the number of model parameters m, and the dimension of the input data d
all grow infinite at constant ratios:

m

n

n,m→∞−−−−−→ γ
m

d

m,d→∞−−−−−→ η. (7)

To compute these expressions, we will first assume an existing true model,
or teacher, that relates the data points x and the labels y as follows:

yi = φ(xi)
Tθ∗ + νi, (8)

where θ∗ ∈ Rm is a “true” parameter vector, and νi is noise, that is i.i.d
drawn from some distribution pν . We generally assume noise to be Gaussian.
Based on this model, we define the error vector e = θ− θ∗ which measures the
degree of miss-match between the chosen parameters and the true parameters.
Our asymptotic expression for various statistics of interest will be frequently
expressed as functions of the optimal error vector ê = θ̂ − θ∗.

Our theoretical approach to analyzing problems of this type will be by
means of comparison theorem, discussed in section 2.2 below. These theorems,
and in particular the Convex Gaussian Min max Theorem (CGMT) allows us to
consider another optimization problem, alternative to problem (4), which in the
asymptotic limit matches a wide range of the statistics of the original problem;
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such as the training error (4) and generalization error (6). This alternative
optimization is in general simpler to analyze, and occasionally permits closed
form solutions.

The comparison theorems that we consider require that the data embeddings
φi = φ(xi) are Gaussian. In the majority of potential models, this is not
the case. As such, in cases like the random feature model, we must first take
a preliminary step before the CGMT analysis can be undertaken. We must
demonstrate that we can replace φi with φ̃i which are Gaussian distributed
according to N (µ′,Σ′) and asymptotically match the first two moments of φi:

∥Exφ(x)− µ′∥2
n→∞−−−−→ 0 (9)

∥∥Exφ(x)φ(x)
T −Σ′∥∥

2

n→∞−−−−→ 0. (10)

We must then show that the statistics of interest, ie the training error, gen-
eralization error, etc. are asymptotically the same under this replacement of
Gaussians. If this can be demonstrated, it is called universality. Universality
is discussed in section 2.3 below.

2.2 Comparison Theorems

Recalling the ERM problem as described in equation (4), we note that in many
cases this optimization is analytically intractable, and/or computationally
expensive to perform. For the sake of analysis it may be prudent to instead
consider an alternative optimization, which is hopefully simpler to analyze. If
this alternative optimization problem has desirable qualities, such as placing
bounds on the the statistics of the original problem, it may serve as a good
candidate for such an analysis.

Here, we discuss the Convex Gaussian Min Max Theorem (CGMT), which
is a particular form of a Gaussian comparison theorem. It demonstrates that
certain optimizations over Gaussian bilinear forms can be analyzed by an
alternative optimization that provides an upper and lower bound in probability
of the training error of the original problem. If the alternative problem con-
centrates on some value, we can guarantee that the original problem similarly
concentrates.

2.2.1 Gaussian Min Max Theorem

The CGMT is a particular application to optimization problems of a general
theorem concerning Gaussian processes by Gordon [35].

Theorem 1 (Gordon [35]) Let Xij and Yij be two centered real valued Gaus-
sian Processes indexed by 1 ≤ i ≤ I and 1 ≤ j ≤ J , assume that the following
holds

EX2
ij = EY 2

ij ∀i, j
EXijXik ≥ EYijYik ∀i, j, k
EXijXlk ≤ EYijYlk ∀j, k, i ̸= l. (11)
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Then for all λij ∈ R we have that

P


 ⋂

1≤i≤I

⋃

1≤j≤J
[Yij ≥ λij ]


 ≥ P


 ⋂

1≤i≤I

⋃

1≤j≤J
[Xij ≥ λij ]


 . (12)

Gordon’s theorem compares two Gaussian processes indexed by discrete
sets I, J and examines the probability of events of the form:

⋂

1≤i≤I

⋃

1≤j≤J
[Yij ≥ λij ]. (13)

For a fixed value λ, this event may be translated into the language of optimiz-
ation theory, and can be equivalently expressed as the optimal solution of a
min-max problem:

P
(

min
1≤i≤I

max
1≤j≤J

Yij ≥ λ
)

(14)

As such, assuming the conditions on the covariance structure of the two problems
given in (11), the optimal solution of the min max over the discrete set of I, J
of Y dominates the optimal solutions of the min max over X in probability. In
practice, the second condition of equation (11), is often taken to be an equality
relation, which is a special case.

To go from Gordon’s theorem to the CGMT one must make a particular
choice for the Gaussian processes X and Y . The unions and intersections
readily transfer to min and max respective over discrete sets. By means of an
ϵ-net argument, it may be extended to min-max problems over continuous sets.
We now describe the CGMT.

2.2.2 Convex Gaussian Min Max Theorem

The CGMT is described by the following theorem:

Theorem 2 (CGMT [24]) Let G ∈ Rn×m, g ∈ Rn,h ∈ Rm have i.i.d stand-
ard Normal elements, and are independent of each other. Let S1 ⊂ Rn and
S2 ⊂ Rm be compact sets, and let ψ(·, ·) : Rn×m → R be continuous function
defined on S1 × S2. Consider the following two problems:

P1(G) = min
x∈S1

max
y∈S2

xTGy + ψ(x,y), (15)

P2(g,h) = min
x∈S1

max
y∈S2

∥x∥2 yTg + ∥y∥2 hTx+ ψ(x,y). (16)

Then for any c ∈ R we have that

P (P1(G) < c) ≤ 2P (P2(g,h) ≤ c) . (17)

Furthermore, if S1,S2 are convex sets and ψ is convex-concave on S1 × S2.
Then for any C ∈ R, it holds that

P (P1(G) > C) ≤ 2P (P2(g,h) ≥ C) . (18)
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This theorem demonstrates that the alternative optimization in (16) both
upper bounds and lower bounds the primary optimization (15) in probability.
This theorem is most useful if the alternative optimization concentrates. Assume
that there is some µ such that

P(|P2(g,h)− µ| ≥ ϵ) n,m,→∞−−−−−−→ 0 ∀ϵ > 0. (19)

Then by the bounds given by the theorem we similarly see that

P(|P1(G)− µ| ≥ ϵ) n,m,→∞−−−−−−→ 0 ∀ϵ > 0. (20)

As such, we can analyze or solve problem P2, and assuming concentration, we
can determine the optimal value of P1 by proxy.

We make note of an important pitfall concerning this method of analysis.
Primarily, the CGMT only demonstrates convergence of the optimal values of
the two optimization problems. The optimal solutions x̂1, ŷ1 of P1 and x̂2, ŷ2

of P2 will in general be distinct and independent of each other. This difficulty
must be addressed by additional arguments concerning the statistics of the
optimal solutions.

For example, under mild conditions, it can be shown that ∥x̂1∥ will converge
to the value of ∥x̂2∥, for a number of different norms. In general, we can
frequently obtain convergence information about the statistics of the solutions,
despite the solutions themselves being different.

As an example of the application of this theorem, we may note that for
any loss function ℓ and Gaussian φi for i = 1, . . . , n we can express the ERM
problem (4) as:

min
θ∈Rm

∑

i

ℓ(φTi θ, yi) +R(θ) = min
θ∈Rm

max
z∈Rn

∑

i

ziφ
T
i θ − ℓ∗(zi, yi) +R(θ), (21)

where ℓ∗ is the Legendre transform of ℓ with respect to the first element, and
z = (zi)i. If it can be shown that θ̂, ẑ can both be restricted to compact
sets, then the CGMT can be applied. To see this, we may recall that by the
definition of the Legendre transform ℓ∗ is convex in the first element, and R
is generally convex. Furthermore, we note that the conditions are trivially
satisfied if the problem is strongly convex-concave, as this allows for an implicit
ℓ22 ball around the unique solutions of the optimization problems, therefore
allowing the CGMT to be applied. This occurs for example if R(θ) is strongly
convex and ℓ is L−smooth, which implies that ℓ∗ is strongly convex.

2.3 Universality

2.3.1 Motivation

We may note that the CGMT only works when the matrix G in (15) is i.i.d
Gaussian, which is not realistic in the majority of practically considered ML
use cases.
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Letting y = (yi)i and Xij = φj(xi), where the elements of X are i.i.d but
no longer Gaussian, we consider the following problem:

P(X) = min
θ
∥y −Xθ∥22 +R(θ)

= min
e
∥ν −Xe∥22 +R(e+ θ∗), (22)

where we introduce the error vector e = θ − θ∗, recalling the label definition
in (8). This optimization problem may be expressed in terms of a min max
problem by taking the Legendre transform of the 2−norm, as in (21). Then,
we obtain:

P(X) = min
e

max
z

zTν − zTXe− 1

2
∥z∥22 +R(e+ θ∗). (23)

The result is in the form assumed by CGMT. However, the matrix X is no
longer i.i.d Gaussian.

The CGMT might appear to be inapplicable, at this point, however we are
dealing with the asymptotic limit in which n,m, d→∞. As such, we may be
able to exploit the “blessing of dimensionality” by recalling that the properties
of many random matrices and vectors concentrate in this large limit.

To gain a deeper insight, we may recall the classical example of the central
limit theorem for an independent sequence of random variables Xi with mean
µ and variance σ2. We recall that as n→∞,

1

n

n∑

i

Xi →d N (µ, σ2). (24)

As such, regardless of many of the complexities and higher order moments of a
probability distribution Xi, the empirical mean is only dependent on the first
two moments, µ, σ2. We may hope that in (22) a similar phenomenon occurs
and that the statistics of interest, such as the training and generalization error,
may similarly depend only on the first few moments of the distribution X, in
the large limit. Then, we may instead consider another random vector x̃ which
has the same first and second moments as a row x of X. In other words,

Ex = Ex̃ = µ E(x− µ)(x− µ)T = E(x̃− µ)(x̃− µ)T (25)

Accordingly, we ask if there is a class of test functions ϕ such that
∣∣∣ϕ(P(X))− ϕ(P(X̃))

∣∣∣ n→∞−−−−→ 0. (26)

In other words, under the set of test functions, the values of the original
problem and the Gaussian surrogate are asymptotically indistinguishable. More
generally, let θX and θX̃ be the optimal solutions of the two problems. We
hope to find a set of test functions such that for relevant statistics T we have:

|ϕ(T (θX))− ϕ(T (θX̃))| n→∞−−−−→ 0. (27)

Establishing such relations, we can show a chain of relationships for ana-
lyzing the ML problem. Firstly, by means of universality we can prove that
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the training and generalization error of the original problem, and the Gaussian
surrogate problem, will be asymptotically equivalent.

Then by considering the Gaussian surrogate problem, we can make use of
the CGMT to analyze it. By means of the CGMT analysis, we find alternative
expressions for training and generalization error for the Gaussian surrogate
model that hold asymptotically. From this chain, we see that the CGMT values
will converge to their corresponding values in the original problem, in the
asymptotic limit. This allows us to analyze problems such as random feature
embeddings, by means of an alternative CGMT problem.

2.3.2 Proving Universality

While there exist a number of possible approaches to proving universality
of models, here we focus on two that are used in the literature; first being
Lindeberg’s Method and the second being Stein’s method. Lindeberg’s method
is used in the works of [28], [32], [33], while steins method is additionally used
in [32], [33].

Lindebergs Method: The principle of Lindeberg’s method is to step by
step replace parts of the feature matrix by a Gaussian surrogate, and then to
bound the difference in the value of the test functions under this change. For
example, let X ∈ Rn×m be a data matrix of n data points of dimension m,
where each data point xi ∼ P for some probability distribution P with mean
µ and covariance Σ. Furthermore, let T (X) be some function of this data, for
example the training loss of a model trained on this data.

For Lindeberg’s argument, we consider another set of data points x̃i ∼
N (µ,Σ), and consider a set of intermediate matrices

Xr = [x1 x2 · · ·xr−1 x̃r · · · x̃n]T r = 0, . . . , n. (28)

We observe that X0 = X and Xn = X̃. Now, we note that

∥∥∥T (X)− T (X̃)
∥∥∥
2

2
=

∥∥∥∥∥
n−1∑

r=0

T (Xr)− T (Xr+1)

∥∥∥∥∥

2

2

≤
n−1∑

r=0

∥T (Xr)− T (Xr+1)∥22 , (29)

where the first equality is obtained by a telescoping sum, and the second by
the triangle inequality. If we demonstrate that ∥T (Xr)− T (Xr+1)∥22 ≤ C

n3/2 ,
for some constant C > 0, we will be able to show that:

∥∥∥T (X)− T (X̃)
∥∥∥
2

2
≤
n−1∑

r=0

C

n3/2
≤ C√

n

n→∞−−−−→ 0 (30)

As such, by bounding the difference between two successive terms of the
replacement we can prove that the statistics T of X and a Gaussian surrogate
that matches the first and second moment, are asymptotically equivalent.
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Stein’s method: Stein’s method for determining universality relies on a
property of Gaussians, known as Stein’s lemma. Steins lemma, establishes for
a function g of a Gaussian vector x̃ ∼ N (0, σ2) that

Ex̃T g(x̃) = σ2E∇g(x̃). (31)

Assuming that universality holds, we can then assume that in the asymptotic
limit a function of interest T of a non Gaussian vector x will begin to act like
a function of Gaussian variable. Recalling what we want to bound

|ExT (x)− Ex̃T (x̃)| = |Ex [T (x)− Ex̃[T (x̃)]] |, (32)

we aim to find a function f(x) such that

f ′(x)− xf(x) = T (x)− Ex̃[T (x̃)], (33)

in which case we may argue that

|ExT (x)− Ex̃T (x̃)| = |Ex(f ′(x))− Exxf(x)|. (34)

This translation step can be easier to perform as the right hand side can be
simpler to bound than the left hand side. Often, this is performed by exploiting
the fact that f(x) can be Taylor expanded to match the f ′(x) term. We may
also note that f(x) has a definite solution in terms of T , for 1 dimensional
data, it is given by

f(x) = ex
2/2

∫ x

−∞
e−t

2/2[T (t)− Ex̃[T (x̃)]]dt. (35)

Solutions for higher dimensional cases also exist, see [36].

2.4 Random feature and Hermite Polynomials

Much of the analysis in the papers in the sequel concern a particular model called
the random features model. Consider a dataset {(zi, yi) ∈ Rd × R}ni=1, where
we assume that zi ∼ N (0, Id). We then let W ∈ Rm×d be a weight matrix,
with i.i.d standard normal elements, and with rows wi ∈ Rd where i = 1, . . . ,m.
Finally, let σ be a non-linear activation function applied elementwise. We then
define the random feature embedding as

Xij = σ(wT
i zj) i = 1, . . . ,m j = 1, . . . , n. (36)

Our goal is to find a mapping from the elements of X = (Xij) to the labels
y = (yi)i by considering a class of parametric functions

F =

{
fθ(X) =

1√
m
Xθ

}
, (37)

where each function fθ is parameterized by θ. Our goal is to find the optimal
value of θ by minimizing the objective value of the problem, given by:

Etrain = min
θ∈Rm

1

2n

∥∥∥∥y −
1√
m
Xθ

∥∥∥∥+R(θ). (38)
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Furthermore, let θ̂ be the optimal solution to this problem. For the sake of
analysis, we must also assume an existing model on the relationship between
the data and the lables, we choose

y =
1√
m
Xθ∗ + ν (39)

Where θ∗ ∈ Rm is the ”true” solution vector, which may be either deterministic
or random according to some distribution pθ∗ , and ν is noise. We generally
assume noise to be Gaussian, distributed according to ν ∼ N (0, σ2

νIn).
According to the steps of the analysis laid out above, we would first like to

replace the given problem by a Gaussian equivalent. However, this presents a
difficulty due to the choice of non-linearity. We may note that, for a given row
x of X that the mean and covariance, with respect to the data, are given by

µ = Ezσ

(
1√
d
Wz

)
Σ = Ezσ

(
1√
d
Wz

)
σ

(
1√
d
Wz

)T
(40)

While the values of µ and Σ can be computed numerically, they are often
intractable to compute analytically, and as such difficult to work with. Instead,
a clever trick by means of Hermite polynomial expansion can be used.

2.4.1 Hermite Polynomials

A Hermite polynomial expansion for a function f produces an expansion of the
function in terms of a function basis. This function basis consists of polynomials
that are orthogonal with respect to the Gaussian measure. More specifically
for any function f(x), its Hermite polynomial expansion is given by:

f(x) =

∞∑

n=0

1

n!
√
2π
bnHn(x)

bn =

∫ ∞

−∞
f(x)Hn(x)e

−x2/2 dx, (41)

where Hn(x) are the Hermite polynomials, explicitly defined by

Hn(x) = (−1)nex2/2 d
n

dxn
e−x

2/2. (42)

These polynomials have interesting properties with respect to the Gaussian
measure. Let ⟨·, ·⟩ be an inner product between functions, defined as

⟨a(x), b(x)⟩ =
∫ ∞

−∞
a(x)b(x)e−x

2/2dx. (43)

Then we may note that

⟨Hn(x), Hm(x)⟩ = δnm
√
2πn!. (44)



14 CHAPTER 1. INTRODUCTORY CHAPTERS

As such, they form an orthogonal basis, with respect to a Gaussian measure,
e−x

2/2. Furthermore, for a given function we note that

∥f(x)∥2 = ⟨f(x), f(x)⟩ = ⟨
∑

n

1

n!
√
2π
bnHn(x),

∑

n

1

n!
√
2π
bnHn(x)⟩

=
∑

n

b2n. (45)

Now, we may recall that H0(x) = 1 and that H1(x) = x, and hence for any
function f(x):

b0 =
1√
2π
⟨H0(x), f(x)⟩ =

1√
2π

∫ ∞

−∞
f(x)e−x

2/2 dx = Exf(x) (46)

b1 =
1√
2π
⟨H1(x), f(x)⟩ = Exxf(x) = Exf ′(x) (47)

where the final relation is due to Stein’s lemma. Although this must be proven,
by the principals of universality discussed above, we might assume that the
majority of the information relevant for our statistics, may be contained only
within the first two terms of this expansion. Operating under this assumption
we could truncate the polynomial expansion to the following form:

f(x) ≈ b0 + b1x+ b∗z, (48)

where z ∼ N (0, 1) is a Gaussian that roughly captures all of the higher order
information of the expansion. By the conservation of energy of the polynomial
we can see that b∗ must be given by:

b2∗ = Ef2(x)− b20 − b21 =

n∑

n=2

b2n. (49)

Returning to the Random features model, this Hermite approximation
allows us to consider:

σ

(
1√
d
wTz

)
≈ b0 + b1

1√
d
wTz + b∗z̄ (50)

b0 = Eσ(x) b1 = Eσ′(x) b∗ =
√
Eσ2(x)− b20 − b21 z̄ ∼ N (0, 1). (51)

Hence, we obtain:

µ = Eσ
(

1√
d
Wz

)
≈ b01

def
= µ′, (52)

and with covariance

Σ = Eσ
(

1√
d
wTz

)
σ

(
1√
d
w̄Tz

)T

≈ b011
T +

b1
d
WW T + b2∗I

def
= Σ′. (53)
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In the papers below, we assume that σ is an odd function, and this results in
b0 = 0. Furthermore, if we assume mild conditions on W , [32] has demonstrated
that in the asymptotic limit,

∥Σ−Σ′∥2 ≤
Cpolylog(m)√

m

m→∞−−−−→ 0, (54)

where ∥·∥2 is the operator norm (largest singular value), C > 0 is a positive
constant and polylog m is a polynomial of the logarithm of m. As such
the approximation asymptotically matches the first two moments of the true
random features. It requires further work, to prove that a Gaussian replacement
of the features with this approximation also satisfies universality, but it can be
established, as shown in [32].

The above discussion suggests that for the sake of analysis, we may examine
an alternative optimization problem

E ′train = min
θ

1

2n

∥∥∥∥ỹ −
1√
m
X̃θ

∥∥∥∥+R(θ), (55)

where the rows x̃i ∼ N (0,Σ′) and ỹi = x̃i
Tθ∗ + νi. With respect to the

statistics of interest, namely training and generalization error, this problem
will asymptotically have the same values as problem (38). As for additional

statistics, such as the sparsity, ∥θ̂∥1. We concretely derive universality for this
case in paper 2 of this thesis.
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3 Summary of the Included Papers

3.1 Paper 1

In this paper we consider the Least absolute shrinkage and selection operator
(LASSO) and the closely related Basis Pursuit optimization problem. For a
given data set {(xi, yi) ∈ Rm × R}ni=1, the LASSO problem is given by

min
θ∈Rm

1

2n

n∑

i=1

(yi − θTxi)
2 +

λ√
m
∥θ∥1 , (56)

where λ ≥ 0 is the parameter that controls regularization strength. The basis
pursuit problem is defined in the limit of λ→ 0, when m > n, as

min
θ∈Rm

∥θ∥1
s.t

yi = θTxi i = 1, . . . , n. (57)

We consider the case where xi are normally distributed with zero mean
and covariance matrix R, and where the labels are given by

y1 =
1√
m
xTi θ

∗ + νi i = 1, . . . , n. (58)

Here, νi is i.i.d Gaussian noise with variance σ2
ν . It is specifically assumed

that θ∗ is nearly sparse. By this, we mean that a small subset A of indices of
θ∗ exist such that θ∗

A, ie θ∗ restricted to the indices in A, has values much
large than θ∗

Ac . For this problem, the generalization error, as a function of the
regularization parameter can be expressed as

Egen(λ) = Ex,y(y − θ̂Tλx)
2 − E(y − xTθ∗)2

= eTλReλ (59)

where θ̂λ is the solution to (56) for a given value of regularization strength

λ ≥ 0, and eλ = θ̂λ − θ∗ is the error vector.
In theorem 1 of this paper we demonstrate, by means of the CGMT, that

the optimization problem (56), can asymptotically be expressed as

min
e

1

2
eTRe+

q√
n
eTh+

qλ

β
√
m

∥∥∥∥
θ∗
√
m

+ e

∥∥∥∥
1

, (60)

where h ∼ N (0, Im) and β, q are constants satisfying:

q2 = eTRe+ σ2
ν , β = q +

1

n
eTh. (61)

In this paper, we consider the case that R is diagonal, with entries rj
for j = 1, . . . ,m. The values of rj gives the strength of the given features.
We consider combinations of strong and weak features, such that for some
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set r1 = r2 = · · · rm1 = R for some larger value R and for the remainder
rm1+1 = · · · = rm = r where R > r. This gives us m1 strong features and
m − m1 weak features. Theoretically, we determine an expression for the
generalization error in terms of these weak features given by:

Egen(λ) =
1

m

m∑

j=1

rjEϕ

[
T λq

βrj

(
θ∗j +

qϕ
√
rjγ
− θ∗j

)2
]
, (62)

where γ = n
m , ϕ is a standard Gaussian random variable, and T is a soft

thresholding operator, defined as

Ta(b) =





b− a b > a

b+ a b < −a
0 |b| ≤ a

(63)

We also give theoretical expressions for the predicted sparsity of the solution
vector. We experimentally verify the claims made and explore the impact of
the regularization strength and strength of the features and generalization and
sparsity of the solution vectors.

3.2 Paper 2

In this paper we consider the case of random features regression as described
in section 2.4. We make two contributions to this problem. The first is an
extension of the results for universality, and the second is a novel nested
application of the CGMT that allows us to express the original optimization as
a 4 -dimensional scalar optimization. Previous results involved optimizations
of m−dimensional proximal operators which were in many cases intractable.

For universality, we extended the existing results in [32]. [32] had given
universality results for random feature models, subject to the hermite trick
as explained in 2.4.1, under a number of assumptions. The main assumption
we improve upon is the necessity of the regularization function to be strongly
convex, and to have a third derivative that is uniformly bounded over all R.

We extend this result in two ways. Firstly, we deal with regularization
functions that are not differentiable at all points. We prove that if we can
construct a sequence of functions Rk(θ) converging uniformly to R(θ) as k →∞,
and if all of those functions Rk are thrice differentiable, then universality holds
for R(θ) as well. This allows us to prove universality for the the elastic net
regularization function:

R(θ) =
α

2
∥θ∥2 + λ ∥θ∥1 . (64)

Here α, λ are two regularization strength parameters. Secondarily, we extend
the universality results to ℓ1 regularization. To prove this, we make use of a
similar technique as [28] and consider elastic net regularization at very small
values of α. We demonstrate that with high probability the feature matrix X
(as described in section 2.4) satisfies the restricted isometry property [37]. We
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make use of this to show that the difference in solution vector between the cases
of α small and α = 0, is negligible, and therefore the solution is stable, despite
the lack of strong convexity. We make use of this argument to demonstrate the
universality of ℓ1 regularization.

We then consider the Gaussian equivalent random feature problem for the
case of generic strongly convex regularization or ℓ1 regularization, and find
an alternative optimization problem by means of a nested CGMT argument.
We note that there are two sources of randomness in the RF problem, the
randomess of the Gaussian input data z and secondarily that of the Gaussian
weight matrix W . The two applications of the CGMT are applied to both
sources of randomness, successively. The resulting alternative optimization
problem is given by:

max
β>0

min
q>0

max
ξ>0

min
t>0

1

m
E
[
M 1

2c1
R

(
θ∗ − c2

√
γ

2c1
ϕ

)]

−c
2
2γ

4c1
+
ξt

2
+
βq

2
+
βσ2

ν

2q
+
ξβ2

2tη
− βξ2

2q
− qβ

2η
− β2

2
, (65)

where ϕ is a standard Gaussian vector, c1, c2 are functions of β, q, ξ, and t, and
M 1

2c1
R is the Moreau envelope over the function R. The Moreau envelope

with step size τ over a function f is given by:

Mτ f (y) = min
x

1

2τ
∥x− y∥2 + f(x). (66)

In the case that the regularization function is separable, in many cases the
Moreau envelope can be solved explicitly, which allows us to obtain a 4d scalar
optimization function that converges to the training error of random feature
regression. We can similarly obtain an expression for the generalization error
that is asymptotically exact. Experimentally, we consider the cases of elastic
net and ℓ1 regularization, and verify our claims. Similarly to paper I above, we
also obtain asymptotic expressions for the sparsity of the solution vector.
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4 Discussion and Future Work

In this thesis, we have considered the asymptotic analysis of machine learning
models. In paper I, we considered the case of the ℓ1 regularized least squares,
or LASSO problem. We considered the case of Gaussian features, with vari-
ous feature strengths. We gave expressions for the asymptotic training and
generalization loss as a function of feature strength. We also gave asymptotic
expressions for the sparsity of the solution vector and considered the effect
of feature strength of the sparsity of the LASSO solution. In Paper II, we
considered the random features model. We extended the universality results
to more general strongly convex regularizers, as well as the specific case of
ℓ1 regularization. Making use of a novel nested application of the CGMT
on the covariance of the Gaussian surrogate model, we obtained a 4d scalar
optimization problem which is readily computable, and from which the training
and generalization error, as well as the sparsity of the solution vector may be
obtained.

There are a number of future directions for the research presented in
this thesis. One direction is to consider the case of deep random feature
models, where the data is embedded through multiple weight matrices and
nonlinearities. For this case, universality must first be established, then our
technique of applying the CGMT in a nested manner allows us to examine how
depth impacts the generalization of RF models.

A current limitation of the CGMT as a method of analysis is that it only
works on bilinear Gaussian forms. This makes it very difficult to analyse ML
models that have vector output, such as classification. Some work has been
done is this field [38], however most likely a new tool must be developed,
potentially extending the CGMT to cover these cases.

Another possible direction is to consider additional types of layer for asymp-
totic analysis, such as convolutional layers. While convolutional layers can be
expressed as binlinear forms, the feature matrix is no longer i.i.d Gaussian as
weights are now shared within a filter. Addressing this problems would also
require us to develop some different technique to analyse these cases. Finally,
it is interesting to consider the case of a 2 layer NN instead of a RF models, in
which the weights of both layers are trained.
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