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Abstract
Using deep learning with satellite images enhances our understanding of human develop-
ment at a granular spatial and temporal level. Most studies have focused on Africa and on a 
narrow set of asset-based indicators. This article leverages georeferenced village-level cen-
sus data from across 40% of the population of India to train deep models that predicts 16 
indicators of human well-being from Landsat 7 imagery. Based on the principles of transfer 
learning, the census-based model is used as a feature extractor to train another model that 
predicts an even larger set of developmental variables—over 90 variables—included in two 
rounds of the National Family Health Survey (NFHS). The census-based-feature-extractor 
model outperforms the current standard in the literature for most of these NFHS variables. 
Overall, the results show that combining satellite data with Indian Census data unlocks rich 
information for training deep models that track human development at an unprecedented 
geographical and temporal resolution.
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1 Introduction

While country-level data on health and material-living standards—human development for 
short—exist in plentitude for the developing world, within-country data on human devel-
opment at high spatial and temporal resolution are limited. Such local data, measuring the 
human development of villages and neighborhoods, are critical for monitoring progress 
towards the Sustainable Development Goals and enabling tailored public policies to speed 
up development (Burke et al., 2021; Subramanian et al., 2023).

Recently, scholars have combined earth observations (EO) and machine learning (ML) 
in developing EO-ML methods to estimate human development using satellite images 
(Burke et al., 2021; Chi et al., 2022; Head et al., 2017; Jean et al., 2016; Kino et al., 2021; 
Pandey et  al., 2018; Rolf et  al., 2021; Suraj et  al., 2017; Yeh et  al., 2020). Despite the 
success of EO-ML methods, they are limited in at least four ways: (1) while some stud-
ies analyze non-African countries (Chi et al., 2022; Subash et al., 2018; Watmough et al., 
2016), most studies focus on African development (Burke et al., 2021; Head et al., 2017; 
Jean et al., 2016; Yeh et al., 2020), missing how these models work in other regions, such 
as India, where human development is generally low and unequally distributed; (2) the 
majority of EO-ML methods focus only  on a limited number of outcomes (Head et  al., 
2017; Yeh et al., 2020), often material assets; (3) EO-ML methods often incorporate night-
light luminosity data as a crude proxy for economic development to boost ML performance 
(Henderson et al., 2018; Xie et al., 2015), yet other more informative proxies for human 
development—such as census data—has not been tested yet; and (4) current EO-ML meth-
ods rely on cross-sectional data, and it remains unclear how they handle shifts in human-
development distribution over time.

This article develops EO-ML methods capable of measuring human development in 
selected Indian states across time and space at the village level. Specifically, we use Land-
sat 7 imagery and ML trained on census data. Our methods contribute to addressing the 
aforementioned knowledge gaps. First, we move beyond Africa and into one of the world’s 
most populous countries: India. Second, although existing studies develop EO-ML meth-
ods for only a few outcomes—most notably income and a household asset index—we tai-
lor and evaluate our EO-ML methods for over 90 outcomes that capture many dimensions 
of human development. Third, instead of relying on nighttime light luminosity (Xie et al., 
2015), our method uses transfer learning based on a multidimensional asset index con-
structed from the Indian Census. Our results show that our asset index outperforms night-
time light luminosity as a target to extract relevant features from daytime imagery. Fourth, 
we explore the capacity of our model to predict outcomes in periods that were not used to 
train it. Additionally, we test the performance of a set of transformations on the distribution 
of outcomes designed to correct for shifts in the distributions of outcomes over time.

2  Background

Traditionally, scholars have used census or household surveys to assess human develop-
ment (Atkinson, 2016; Daoud et al., 2016; Halleröd et al., 2013). A census is a comprehen-
sive measurement of the material living standard of all individuals in a population, yet it 
is conducted infrequently (usually every ten years) and collects a small number of charac-
teristics of the target population (Randall & Coast, 2015). In contrast, although household 
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surveys cover a wide range of variables that usually include health outcomes, these surveys 
have limited reliability for local statistical inference. Increasing the frequency of censuses 
or surveys would cost governments hundreds of millions of US dollars (Atkinson, 2016). 
Despite an increase in surveying frequency, scholars would still not have a method for tra-
versing back in time to measure the history of human development.

Geostatistical methods offer an alternative to estimate the distribution of several events, 
such as population density (Tatem, 2017), air quality (Raheja et al., 2021, 2022), energy 
consumption (Chithaluru et al., 2022; Samriya et al., 2022; Singh et al., 2022), and human 
development (Alegana et al., 2015; Steele et al., 2017). Often these methods rely on inter-
polating and extrapolating geo-temporal data. Although these methods are important for 
geo-temporal estimation, they are limited by the fact that they require geo-temporal data. 
That is, they require tabular data for many geographical units, distributed over time and 
space. For human development, such data are often missing, blocking the effective use of 
geostatistical methods.

As satellite imagery has existed for several decades (Young et al., 2017), this data source 
provides a promising low-cost alternative to track human development at a granular spatial 
and temporal resolution (Jean et al., 2016). Twenty years ago, researchers started to explore 
this avenue by using nighttime light luminosity as a proxy for human development (Chen 
& Nordhaus, 2011; Doll et al., 2006; Henderson et al., 2012, 2018; Sutton et al., 2007). 
Recent advances in the overlap of EO and computer science have made significant progress 
since then, offering an alternative measurement method that combines daytime light and 
nighttime light satellite images with ML methods to estimate local characteristics of cit-
ies, villages, and neighborhoods (Burke et al., 2021; Chi et al., 2022; Head et al., 2017; 
Jean et al., 2016; Kino et al., 2021; Pandey et al., 2018; Rolf et al., 2021; Suraj et al., 2017; 
Yeh et al., 2020). Although an EO-ML method requires ground truth data from census or 
surveys for training, it tends to outperform the use of nighttime light luminosity to meas-
ure human development (Jean et al., 2016). Nonetheless, as previously mentioned, existing 
EO-ML methods are limited in at least four ways.

First, besides a few exceptions (Chi et al., 2022; Subash et al., 2018; Watmough et al., 
2016), most of the success of existing EO-ML methods has been based on measuring 
human development in Africa (Burke et al., 2021; Head et al., 2017; Jean et al., 2016; Yeh 
et al., 2020). A critical question is whether the success of EO-ML methods is tied to cul-
tural, demographic, or economic idiosyncrasies of the African population, and thus, how 
well EO-ML methods generalize to other parts of the world remains to be evaluated.

Second, most of the existing EO-ML methods have been tested on a limited number 
of cross-sectional outcomes. For example, both Yeh et al.(2020) and Jean et al.(2016) test 
their method on household income and an asset index that captures a household’s general 
material-living standards. Although Head et  al. (2017) makes progress in extending the 
EO-ML method to other dimensions of human development, their study focuses on a lim-
ited number of countries (Nepal, Haiti, Nigeria, and Rwanda) and dimensions (e.g., elec-
tricity, mobile-phone ownership, child nutrition). Additionally, although Chi et al. (2022) 
makes significant progress by producing material-wealth estimates of most low- and 
middle-income countries, this study is limited to income and an asset index. Thus, much 
remains to be done to evaluate how well an EO-ML method can measure other aspects of 
human development from space.

Third, because luminosity has been shown to correlate with economic development 
(Chen & Nordhaus, 2011; Doll et  al., 2006; Henderson et  al., 2012, 2018; Sutton et  al., 
2007), Xie et al (2015) developed a transfer learning method to use luminosity as a proxy 
training data when poverty data is lacking. Incorporating luminosity has been shown to 



 A. Daoud et al.

1 3

boost performance even in data-rich situations (Chi et al., 2022; Yeh et al., 2020). While 
luminosity data is plentiful—that data exists yearly since the 1990s—more research is 
needed to evaluate the use of more informative proxies. In the case of human development 
in India, census data may provide such proxy data.

Fourth, existing EO-ML methods face severe limitations when predicting outcomes for 
periods not represented in training data, as the distributions of outcome variables shift over 
time. For example, while ownership of a mobile phone was an indicator of material wealth 
20 years ago, today, this product is omnipresent and thus less suitable for measuring mate-
rial wealth (Daoud, 2018; Gordon & Nandy, 2012; Nandy et al., 2016). Adjusting EO-ML 
methods for distributional changes remains a challenge for effectively predicting outcomes 
for periods models that have not been trained on.

If scholars had an EO-ML method that captured human development outside of Africa, 
they would start making progress toward evaluating the validity and reliability of com-
bining ML and satellite images for measuring human development globally, with high 
frequency and crisp granularity (Burke et al., 2021; Deaton, 2015). India hosts about 1.4 
billion of the world’s population, yet it lacks consistent temporal and spatial estimates of 
human development (Alkire & Seth, 2015; Daoud & Nandy, 2019; Subramanian et  al., 
2023). With increasing validity and reliability for India, EO-ML methods will become 
more trustable in measuring the trajectories of human development spatially and tempo-
rally. For example, these trajectories will reveal how fast villages or neighborhoods are 
lifting out of poverty and ill health and how well public policies are working in Indian 
localities.

As delineated in the Introduction, our article addresses these four knowledge gaps. First, 
it analyzes how well EO-ML methods work in the Indian context, moving beyond Africa; 
second, it evaluates how well EO-ML methods estimate human development in multiple 
dimensions, instead of focusing on a few; third, it leverages transfer learning (described 
in Sect.  3.2) based on a multidimensional asset index constructed from the Indian Cen-
sus, instead of nighttime light luminosity; and fourth, it uses a variety of distribution shifts 
methods to handle change over time.

3  Data and Methods

3.1  Data

Figure 1 provides a map of India, displaying the population shares of the states included 
in this study in grades of red. We restrict our sample to six states where vector data rep-
resenting the administrative boundaries of villages in the census data were available: 
Uttar Pradesh, West Bengal, Bihar, Jharkhand, Punjab, and Haryana. These states have 
around 218,000 villages, about one-third of all Indian villages, and home to 40% of India’s 
population.

Our analysis relies on five sources of data: (1) household data from the 2001 and 2011 
Indian censuses to measure demographic and material-living conditions, (2) the Indian 
National Family Health Survey (NFHS) data from years 2015–16 (called NFHS-4) and 
2019–20 (NFHS-5) to measure health outcomes; (3) village-level-administrative bounda-
ries (polygons); (4) satellite imagery from Landsat 7 for the years 2001, 2011, 2016 and 
2019; and (5) nighttime light data provided by the Defense Meteorological Satellite Pro-
gram’s Operational Linescan System (DMSP-OLS) for 2011.
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3.1.1  Census and the National Family Health Survey

Our study uses the 2001 and 2011 Indian censuses to collect socioeconomic variables. 
From the 2011 census, we created 16 asset indices measuring material-living standards, 
defined in Table 1. For each index, we calculate the average occurrence of material assets 
in a village. For example, “electronics” is the average occurrence of “radio, transistor, tv, 
and laptops.”1 The 16-dimensional material-asset vector of outcomes from the census is 
denoted Yc.

Fig. 1  Scope of the study demographically and geographically

1 The underlying material asset is equaly weighted in the aggregation, yet a task for future research is to 
weight these assets depending on their contribution to human development.
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As shown in Table 2, while the 2001 census has similar definitions for most variables 
compared to 2011, some of them are measured at a different level of aggregation. This 
mismatch in aggregation makes it challenging to compare outcomes across the two census 
rounds. For example, in 2011, the village-level data report the percentage of households 
having a telephone. In comparison, the 2001 data uses a binary variable indicating whether 
a telephone is available in the village. Because of this mismatch, we cannot directly com-
pare these sets of outcomes in the 2001 and 2011 censuses at the village level.

A redeeming aspect of the 2001 Census is that the values for 10 of the 16 variables 
we construct using 2011-census data are available as a fraction of the population at the 
tehsil level, one administrative level up from the village level. Table 2 shows how these ten 
variables are constructed from 2001 and 2011 tehsil-level census data. Although a tempo-
ral evaluation for some variables is not possible at the finest level of aggregation (village 
level), it is still possible if we accept an aggregation at the tehsil level.2 The methods sec-
tion delineates our aggregation procedure.

Our study also includes other demographic data from a separate section of the census, 
denoted by Yc∗ . It includes these data in the transfer learning models to assess whether the 
feature extracted when using Yc as an outcome can be used to predict demographic vari-
ables that are likely to display a weaker correlation with satellite imagery’s visible features.

While the census measures material-living standards, the NFHS captures mainly 
health outcomes. The NFHS is a multi-round survey providing information on the health 
of women and children. Our study uses 93 outcomes denoted by the vector Ys , where the 
superscript s stands for survey. These outcomes are defined in Table 3. As NFHS surveys 
do not release information to identify households’ villages, we aggregate predictions to the 
district level for model evaluation, as detailed in the methods section.

3.1.2  A Primer on Image Data

Before discussing our Landsat satellite image source, we discuss the fundamental structure 
of image data. Image data consists of a squared grid that is composed of pixels. Mathemat-
ically, that grid of pixels is a matrix. In a black-and-white image, there is only one matrix 
where each pixel takes a value representing the intensity of blackness. This matrix repre-
sents a band (also known as a channel). A band consists of numeric values, where each 
value represents radiation (light intensity) within a range of wavelengths of the electromag-
netic spectrum (e.g., in Landsat 7, the red band measures radiation between wavelengths 
of 630 to 790 nanometres). A color image, including a daylight satellite image, consists of 
pixels populating three bands, thus three matrices, representing the colors red, green, and 
blue (RGB).

The size of the squared grid—thus the size of the matrix—is defined in height and 
width that covers a prespecified spatial area. For satellite images, the image size is com-
monly described in terms of meters or kilometers (km). Our satellite images capture a 
3.36-by-3.36 km of each village, and the resolution of that image consists of pixels where 
each pixel populates a spatial size of 15-m-by-15 m. This means that the vertical side of 
the square grid is 224 pixels (3360 m divided by 15 m) and the horizontal side consists of 

2 India is divided into the following administrative units, starting from the finest to the most aggregated: 
a village comprises around 1000 households; a tehsil covers about 100 villages; a district (with an average 
population of 1.1 million) has around ten tehsils; and a state captures a set of districts. Our data has 189 dis-
tricts in six states in Northern and Eastern India.
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Table 3  The dimension-reduced NFHS district level health vector

Variable Description

Factor-1 Population (female) age 6 years and above who ever attended school (%)
Factor-2 Population below age 15 years (%)
Factor-3 Sex ratio of the total population (females per 1000 males)
Factor-4 Sex ratio at birth for children born in the last five years (females per 1000 males)
Factor-5 Children under age 5 years whose birth was registered (%)
Factor-6 Households with electricity (%)
Factor-7 Households with an improved drinking-water source1 (%)
Factor-8 Households using improved sanitation facility2 (%)
Factor-9 Households using clean fuel for cooking3 (%)
Factor-10 Households using iodized salt (%)
Factor-11 Households with any usual member covered by a health scheme or health insurance (%)
Factor-12 Women who are literate (%)
Factor-13 Men who are literate (%)
Factor-14 Women with 10 or more years of schooling (%)
Factor-15 Women age 20–24 years married before age 18 years (%)
Factor-16 Men age 25–29 years married before age 21 years (%)
Factor-17 Women age 15–19 years who were already mothers or pregnant at the time of the survey (%)
Factor-18 Any method4 (%)
Factor-19 Any modern method4 (%)
Factor-20 Female sterilization (%)
Factor-21 Male sterilization (%)
Factor-22 IUD/PPIUD (%)
Factor-23 Pill (%)
Factor-24 Condom (%)
Factor-25 Total unmet need (%)
Factor-26 Unmet need for spacing (%)
Factor-27 Health worker ever talked to female non-users about family planning (%)
Factor-28 Current users ever told about side effects of current method6 (%)
Factor-29 Mothers who had antenatal check-up in wthe first trimester (%)
Factor-30 Mothers who had at least 4 antenatal care visits (%)
Factor-31 Mothers whose last birth was protected against neonatal tetanus7 (%)
Factor-32 Mothers who consumed iron folic acid for 100 days or more when they were pregnant (%)
Wfactor-33 Mothers who had full antenatal care8 (%)
Factor-34 Registered pregnancies for which the mother received mother and child protection (MCP) card 

(%)
Factor-35 Mothers who received postnatal care from a doctor/nurse/LHV/ANM/midwife/other health 

personnel within 2 days of delivery (%)
Factor-36 Mothers who received financial assistance under Janani Suraksha Yojana (JSY) for births 

delivered in an institution (%)
Factor-37 Average out of pocket expenditure per delivery in public health facility (Rs.)
Factor-38 Children born at home who were taken to a health facility for check-up within 24 h of birth 

(%)
Factor-39 Children who received a health check after birth from a doctor/nurse/LHV/ANM/ midwife/

other health personnel within 2 days of birth (%)
Factor-40 Institutional births (%)
Factor-41 Institutional births in public facility (%)
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Table 3  (continued)

Variable Description

Factor-42 Home delivery conducted by skilled health personnel (out of total deliveries) (%)
Factor-43 Births assisted by a doctor/nurse/LHV/ANM/other health personnel (%)
Factor-44 Births delivered by caesarean section (%)
Factor-45 Births in a private health facility delivered by caesarean section (%)
Factor-46 Births in a public health facility delivered by caesarean section (%)
Factor-47 Children age 12–23 months fully immunized (BCG, measles, and 3 doses each of polio and 

DPT) (%)
Factor-48 Children age 12–23 months who have received BCG (%)
Factor-49 Children age 12–23 months who have received 3 doses of polio vaccine (%)
Factor-50 Children age 12–23 months who have received 3 doses of DPT vaccine (%)
Factor-51 Children age 12–23 months who have received measles vaccine (%)
Factor-52 Children age 12–23 months who have received 3 doses of Hepatitis B vaccine (%)
Factor-53 Children age 9–59 months who received a vitamin A dose in last 6 months (%)
Factor-54 Children age 12–23 months who received most of the vaccinations in public health facility (%)
Factor-55 Children age 12–23 months who received most of the vaccinations in private health facility 

(%)
Factor-56 Prevalence of diarrhoea (reported) in the last 2 weeks preceding the survey (%)
Factor-57 Children with diarrhoea in the last 2 weeks who received oral rehydration salts (ORS) (%)
Factor-58 Children with diarrhoea in the last 2 weeks who received zinc (%)
Factor-59 Children with diarrhoea in the last 2 weeks taken to a health facility (%)
Factor-60 Prevalence of symptoms of acute respiratory infection (ARI) in the last 2 weeks preceding the 

survey (%)
Factor-61 Children with fever or symptoms of ARI in the last 2 weeks preceding the survey taken to a 

health facility (%)
Factor-62 Children under age 3 years breastfed within one hour of birth9 (%)
Factor-63 Children under age 6 months exclusively breastfed10 (%)
Factor-64 Children age 6–8 months receiving solid or semi-solid food and breastmilk10 (%)
Factor-65 Breastfeeding children age 6–23 months receiving an adequate diet10,11 (%)
Factor-66 Non-breastfeeding children age 6–23 months receiving an adequate diet10, 11 (%)
Factor-67 Total children age 6–23 months receiving an adequate diet10,11 (%)
Factor-68 Children under 5 years who are stunted (height-for-age)12 (%)
Factor-69 Children under 5 years who are wasted (weight-for-height)12 (%)
Factor-70 Children under 5 years who are severely wasted (weight-for-height)13 (%)
Factor-71 Children under 5 years who are underweight (weight-for-age)12 (%)
Factor-72 Women whose Body Mass Index (BMI) is below normal (BMI < 18.5 kg/m2)14 (%)
Factor-73 Men whose Body Mass Index (BMI) is below normal (BMI < 18.5 kg/m2) (%)
Factor-74 Women who are overweight or obese (BMI √¢‚Ä∞¬· 25.0 kg/m2)14 (%)
Factor-75 Men who are overweight or obese (BMI √¢‚Ä∞¬· 25.0 kg/m2) (%)
Factor-76 Children age 6–59 months who are anaemic (< 11.0 g/dl) (%)
Factor-77 Non-pregnant women age 15–49 years who are anaemic (< 12.0 g/dl) (%)
Factor-78 Pregnant women age 15–49 years who are anaemic (< 11.0 g/dl) (%)
Factor-79 All women age 15–49 years who are anaemic (%)
Factor-80 Men age 15–49 years who are anaemic (< 13.0 g/dl) (%)
Factor-81 Blood sugar level—high (> 140 mg/dl) (%) women
Factor-82 Blood sugar level-very high (> 160 mg/dl) (%) women
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the same number of pixels. Combining the three bands and the size of the grid together, 
we obtain an array with three bands, each band consisting of 224-by-224 pixels, and where 
each pixel in a band takes a numeric value, representing the radiation within the range of 
electromagnetic wavelengths of that color. By combining the three bands, one obtains an 
image consisting of an array with dimensions 224-by-224-by-3. Through this combination, 
objects and patterns emerge in the image. In our case, these patterns refer to roads, vegeta-
tion, human settlement areas, and other meaningful entities visible from the sky that cor-
relate with human development.

For each of the 218,000 villages in our sample, we have collected a 224-by-224-by-3 
satellite image, denoted as Xd . These raw images constitute the input to the image process-
ing algorithm. Thus, the data consist of pairs of input and output, 

{

Xd
i
, Yc

i

}n

i=1
 , where n is 

the number of villages.
In preparing our pairs of data for EO-ML training, we preprocessed our images. First, 

the images are divided into batches. Training is more efficient when done in small batches 
instead of using all the data simultaneously. Second, color pixel values are normalized, 
thereby, scaling them in the same way. A normalized scale helps the algorithm to find opti-
mal parameters faster. Finally, the image batches are randomly divided into two sets: train-
ing and testing. In the training set, the algorithm fits the model. In the test set, the model 
evaluates its final performance.

3.1.3  Landsat 7 Satellite Images

This article tests the capacity of EO-ML methods to predict human-development-related 
outcomes from 2001 to 2019, which requires a repository of imagery of consistent quality 
throughout this period. Because imagery captured by Landsat-7 provides such a repository, 
our analysis relies on this satellite technology.

Nonetheless, using Landsat data presents several challenges. First, cloud cover limits 
the availability of imagery, especially in tropical and subtropical regions. Second, black 
stripes produced by the failure of the Scan Line Corrector found in images collected after 
May 31, 2003, further limit imagery availability. Third, topographic effects introduce large 

Table 3  (continued)

Variable Description

Factor-83 Blood sugar level-high (> 140 mg/dl) (%) men
Factor-84 Blood sugar level-very high (> 160 mg/dl) (%) men
Factor-85 Slightly above normal (Systolic 140–159 mm of Hg and/or Diastolic 90–99 mm of Hg) (%) 

women
Factor-86 Moderately high (Systolic 160–179 mm of Hg and/or Diastolic 100–109 mm of Hg) (%) 

women
Factor-87 Very high (Systolic >  = 180 mm of Hg and/or Diastolic >  = 110 mm of Hg) (%) women
Factor-88 Slightly above normal (Systolic 140–159 mm of Hg and/or Diastolic 90–99 mm of Hg) (%) 

men
Factor-89 Moderately high (Systolic 160–179 mm of Hg and/or Diastolic 100–109 mm of Hg) (%) men
factor-90 Very high (Systolic >  = 180 mm of Hg and/or Diastolic >  = 110 mm of Hg) (%) men
Factor-91 Cervix (%)
Factor-92 Breast (%)
Factor-93 Oral cavity (%)
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variations in the appearance of land covers across space, hampering ML’s capacity to 
detect land cover classes (Khatami et al., 2016). Fourth, the spatial resolution is too coarse 
in the visible bands (30 m) as compared to state-of-the-art EO-ML methods that use high-
resolution imagery.

This paper tackles these challenges by creating annual composites from the repositories 
of Landsat 7 imagery available in the Google Earth Engine servers. The procedure is run 
on Google Earth Engine’s servers and includes topographic correction (Ekstrand, 1996; 
Riano et al., 2003; Richter et al., 2009), downscaling of spatial resolution to 15 m using the 
panchromatic band, and the aggregation of all available imagery into annual composites 
to minimize the impacts of clouds and the failure of the Scan Line Corrector. Appendix 1 
presents details of this procedure. Figure 2 shows the resulting annual image composites 
for three villages. Panels (a) through (c) show the satellite images of three selected vil-
lages, along with a black square delimitating the 224-by-224 pixels used as inputs to the 

Fig. 2  a Landsat 7 pansharpened and terrain corrected Quality Composite for Village A. b Landsat 7 pan-
sharpened and terrain corrected Quality Composite for Village B. c Landsat 7 pansharpened and terrain 
corrected Quality Composite for Village C. d Location of Villages
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deep model. The geographic location of these villages in India is shown in panel (d). While 
their images may appear to have a medium quality when compared to modern high-reso-
lution imagery, the proposed procedure applies EO’s state-of-the-art methods to maximize 
the quality of annual composites and the results show that they likely contain valuable 
information to estimate human development.

3.1.4  Nighttime Light Data

While daytime composites capture how villages’ material living standards appear from the 
sky during the day, we use nighttime light data, denoted as X� , to quantify how much lumi-
nosity a village emits during the night. Each pixel contains one band (luminosity value). 
The more luminosity emitted, the higher the material-living standards tend to be (Chen & 
Nordhaus, 2011; Doll et al., 2006). Our analysis relies on nighttime light data from DMSP-
OLS. The nighttime light data is available in 30 arc-second grids (about 800 m at the lati-
tude of New Delhi), spanning − 180 to  180° longitude and − 65 to  75° latitude. Each 30-arc-
second grid cell is mapped to integer values from 0 to 63, where 63 corresponds to the 
highest nighttime light intensity.

3.2  Methods

Before providing a primer on EO-ML methods, we provide a birds-eye view of our over-
arching modeling strategy, as shown in Fig. 3. As displayed in panel (a) of Fig. 3, we will 
use all the aforementioned data to train a set of EO-ML deep-models f  at the village level, 
using daylight Xd as input for all outcomes. To make efficient use of the few outcome sam-
ples in our sample, we use transfer learning. Transfer learning involves solving two tasks: 
an auxiliary task and the target task of interest. Here, the auxiliary task amounts to fitting 
a deep-learning model f ∶ X

d
→ Y

c , predicting the census-measured human development 

Fig. 3  Deep-learning models. Architecture of two deep models, f and fb, that utilize transfer learning to pre-
dict health outcomes (NFHS) and demographic data (census) from satellite images captured in 2011
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outputs Yc . The last layers of the trained neural network model f  are modified to accom-
modate the output for the target task, keeping earlier layers (parameters) intact. The task 
of this modified model is now to predict survey-measured outcomes Ys and other census 
demographic outputs Yc∗ . That is denoted as f ∶ X

d
→ Y

s
× Y

c∗ . Here, f  is further tuned 
to predict survey-derived outcomes Ys and demographic variables Yc∗ . Our goal with using 
transfer learning is to let f  benefit from the training experience of predicting Yc and thereby 
reducing the requirement of collecting a large sample—data points that are expensive to 
collect or unavailable.

As shown in panel (b) of Fig. 3 and discussed later, we compare our model f  with a 
benchmark model fb . The benchmark model uses daylight images Xd as input but night-
light data X� as output in the auxiliary task. Also relying on transfer learning, fb will then 
predict survey Ys and census outcomes Yc∗.

3.2.1  A Primer on Machine Learning for Image Data

After pre-processing the satellite images, they are ready to be fed to the image process-
ing algorithms. The input to the algorithm is three matrices representing the three colour 
bands. There are a variety of image processing algorithms for handling this input (e.g., 
one of the first algorithm developed is the multilayer perceptron3) but those algorithms 
that perform the best on a variety of image prediction tasks, build on a basic architecture 
called convolutional neural networks (CNN) (LeCun et al., 1989). By basic architecture, 
we mean algorithmic components (operations) that are shared across modern image pro-
cessing algorithms. This basic architecture consists of two algorithmic stages: ‘identifying 
a feature representation’ and ‘conducting the prediction’.

In the feature-representation step, the image processing algorithm estimates which 
image characteristics (features) are predictive of the outcome—in our case this outcome is 
the vector of sixteen values that captures the material-assets from the census, Yc. A feature 
can be concrete, abstract, and the continuum between concrete and abstract. A concrete 
feature is for example a visible region of an image such as a road, lake, or human settle-
ment. An abstract feature refers to latent characteristics such as the combination of image 
regions and patterns not directly apparent to the human eye (Decelle, 2022). In classifying 
satellite images, the learned latent features often correspond to the nested representation of 
the image.

The algorithm identifies features by applying three operations sequentially and repeat-
edly. Because these operations follow each other sequentially, these operations are also 
called layers. The three operations are the convolution layer, activation layer, and pool-
ing layer. The convolution layer is an operation that quantifies how well all sections of an 
image match a set of a predefined number of filters—the number of filters depends on the 
deep-learning architecture (Goodfellow et  al., 2016). A filter encodes an image pattern. 
The intuition is that some filters encode horizontal or diagonal lines, while others measure 
the prevalence of arches or diagonals. In practice, however, while the number of filters is 
predefined by the architecture of the image processing algorithm, the encoding of a filter’s 
contents is learned through training the model, and exposing it to a specific dataset. The 
filters are learned through an estimation procedure called backpropagation (LeCun et al., 

3 A perceptron takes a column as input. Each band matrix is loosened by stacking all its pixels values into 
one column. For a 224-by-224 image matrix, the resulting column has 50,176 entries (that is because the 
matrix has 224*224 = 50,176 entries).
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1989, 2015). The overarching task of backpropagation is to populate these filters with 
numeric weights such that they minimize the sum of squared prediction error; that is the 
error between the training sample of each village’s human development and the model’s 
prediction of human development. The test set is only used to evaluate the performance of 
the model when all the weights and other parameters have been fully specified. The test set 
evaluates the generalization capability of the model.

In the convolution layer, when the algorithm applies a filter to an image segment it 
applies an operation called convolution—hence its name a ‘convolution layer’ or ‘convo-
lution neural networks.’ In the context of deep learning, a convolution is a mathematical 
operation that evaluates how well an image section matches a filter. Initially, the backprop-
agation algorithm populates a filter with random weights (or weights used from pretraining 
on other images from ImageNet), which then also represents a nonsensical feature. The 
deep-learning algorithm then convolves that filter over the entire image, striding over its 
region by region. For each stride, it applies a convolution: it calculates the dot-product 
between the pixel values of the image segment and the filter weights. The dot product pro-
vides a metric of similarity between the filter and the image region; the larger the similar-
ity, the larger the dot-product value. For example, the dot product (denote it as a ) between 
a 3-by-3 filter with weights w1 …w9 (populating the filter row by row) and an image region 
with pixel values a1 … a9 is a = a1w1 +…+ a9w9 . If there is no similarity between the 
filter and the image segment, the dot product will equal zero; if the similarity is high, the 
dot product will be large. Because the starting weights are randomly initialized, the mean-
squared error (MSE) of the initial model will be poor. But as the backpropagation opera-
tion updates the weights, the better filters it will find, thereby lowering the MSE.

As said, convolution is a dot product that produces a linear combination of the weights 
and the pixel values. However, to capture nonlinear combinations and obtain efficient train-
ing (with the help of smooth gradients), this dot product passes through a non-linear func-
tion, called an activation function. That function is often the Rectified Linear Unit (ReLU) 
function. The ReLU function is defined as max(0, a) , which means that if the dot product 
is less than zero the output of ReLU is zero, otherwise it retains a . This resulting output 
means that the activation function considers only filter-image-segment similarities that are 
sufficiently large. To prioritize larger similarities, deep learning models include a bias term 
in each convolution. For each stride i an intercept bi is added (known as bias) to set a 
higher threshold for when the ReLU is activated, thereby making the model more conserv-
ative for when it activates this part of the parameters space. Thus, each stride i produces 
a dot product containing the following terms, ak = a1w1 +…+ a9w9 + bk . The activa-
tion layer applies the activation function to all convolved units k between the filter and the 
image regions in that deep-model depth.

To retain the original size of the image, the algorithm adds padding to the image; that 
is an additional boarder of pixels surrounding the entire image. The values of those pixels 
are often set to zero, defaulting to a black color. Padding preserves the size of the origi-
nal image and it also enables the image edges more possibility to affect the convolution 
operator and thereby the activation layer. When padding exists, the output of the con-
volution and activation layers is a new matrix with the same size as the original image. 
Those values now populate a processed image, with all the corresponding dot-products 
a1
1
,… , a1

k
 . For our satellite images, they produce the following number of processed pixels: 

k = 224 ∗ 224 = 50, 176 pixels.
The pooling layer reduces the dimension of the output of the activation layer. That 

reduction also shrinks the number of parameters the model must estimate, demand for data, 
and thus, counters overfitting. The pooling layer consist often of a 2-by-2 kernel that strides 
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over the output of the activation layer, computing the maximum. Thus, it is called max 
pooling. In each stride, that kernel calculates the maximum of its 2-by-2 window. That 
maximum value now populates a new, shrunken image. Although the image is shrunken, 
the algorithm retains the most salient information in each stride.

In a nutshell, the three operations of the convolution, activation, and pooling layers sum-
marize the information of an image. Those summaries are comparable to other statistical 
operations—such as the mean or variance—but tailored to image data. That summarization 
of three operations is often applied repeatedly, which refers to the depth of the architecture, 
often also called hidden layers. Different modeling architectures have different depths and 
are suitable for different data sizes.

Nonetheless, regardless of the architecture, the main modeling task of the feature-repre-
sentation step is to learn the filters by estimating their weights and biases. Once the model 
learns those filters, it has a suitable feature representation of which features in the satellite 
images are predictive of human development.

The last step of a deep-learning architecture culminates with a prediction step. That step 
is conducted by taking the final activations and their weights and passing them to a fully 
connected layer. The fully connected layer is comprised of its final weights, connecting to 
the output layer. These outputs can be binary or categorical, in which case the model is pre-
dicting classification; or they can be continuous, which would be called regression. In the 
case of binary or categorical output, the final layers pass the fully-connected-layer weights 
through a SoftMax function. This function converts the output into probabilities of cat-
egory membership. In our case, the output layer consists of human development indicators.

Transfer learning is a methodology where a deep learning model is trained on one task 
(e.g., predict ImageNet categories) and then adapted to another (e.g., predict human devel-
opment). Transfer refers to adapting the weights and biases to a new task. It achieves that 
by replacing the fully connected layer with a fresh fully connected layer, adapted for a new 
task (Zhuang et al., 2021). Then, it tends to fix the weights and biases of the hidden layer 
and estimate only the weights and biases of the fully connected layer. Alternatively, one 
can fine-tune the weights of all layers, if sufficient data exists.

3.2.2  Our Selection of Machine Learning Algorithms

Our analysis relied on a variety of deep-learning architectures, denoted as a set of functions 
f  . To evaluate model dependency in our experiments, we used the following set of func-
tions: ResNet-18 ( f18 ), ResNet-34 ( f34 ), ResNet-50 ( f50 ), VGG-16 ( f16 ). The Visual Geom-
etry Group (VGG) model is one of the early deep-learning architectures, showing a wide 
range of applicability (Simonyan & Zisserman, 2015). The number 16 denotes the number 
of convolution layers the model uses. Residual neural network (ResNet) is a deep learning 
model that uses the fundamental architecture previously discussed but adds a skip connec-
tion, allowing information to flow more efficiently between the depth of the model (hidden 
layers) (He et al., 2016). A skipping connection is a shortcut where a convolution is passed 
forwards, deeper into the modeling layers. As for the VGG model, the ResNet numbers 18, 
34, and 50 refer to the number of convolutions layers the model contains. The higher the 
number, the deeper the model.

All models are pre-trained on ImageNet (Deng et al., 2009). That means that the filter 
parameters (weights and biases) of the hidden layers the models use are not randomly ini-
tialized. Then we tune the model for our regression tasks to predict Yc . While the hidden 
layers use ImageNet parameters, the fully connected layer starts with random weights. Our 
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training procedure replaced the last fully connected layer of dimensions 512 × 1000 of each 
pre-trained network by a randomly initialized layer of dimensions 512 × 16. The procedure 
fine-tuned the pre-trained network and freshly train the randomly initialized last layer for 
transfer learning of the material-asset vectors, using samples from Xd as input and the cor-
responding Yc as output. Our estimation procedure relies on the Adam optimizer with a 
learning rate 10−3 and a batch size of 64. To enhance model-training performance, we com-
pute and use the normalized band-wise mean and standard deviation of our dataset instead 
of the mean and variance of the ImageNet data. Our estimation use a train-test split of 8:2.

The loss function, L , is based on a composition of the 16 human-development out-
comes. The fully connected layer has 16 output layers, one layer for each development out-
come. To optimize the EO-ML model simultaneously for all of these outcomes, we calcu-
late the 16 mean sum of squares (MSE) for each output layer, and weight them equally. 
Mathematically, that loss function is the following expression, 

L(f (x), y) =
1

n

n
∑

i=1

�

1

16

16
∑

c=1

�

f c
�

xi
�

− yc
i

�

�

 Here, the ML model is f (x) and f c
(

xi
)

 is that 

model’s MSE prediction for the human-development outcome c.

3.2.3  Transfer Learning from Material‑Asset Vector to Demographic and NFHS Data

Our research design relies on two assumptions. The first assumption is that satellite images 
record human development from the sky. That is, Xd contains predictive information about 
the material-asset vector Yc . This assumption is reasonable as household asset indicators 
have been found to correlate with the observable features in the daytime satellite images 
like the proportion of built-up area, road area and road types, density and type of housing, 
water bodies, forest cover, and green areas (Jean et al., 2016).

Our second assumption is that f  can be leveraged to indirectly estimate Ys and Yc∗ from 
Xd using transfer learning. While Ys and Yc∗ contain outcomes that are likely to display a 
weaker correlation with imagery’s raw features, f  is expected to extract abstract features 
that are better positioned to deliver accurate predictions for these outcomes. Thus, with 
transfer learning, we can expand the dimensions of human development that can be studied 
(Daoud et  al., 2019; Kino et  al., 2021), even in small datasets that do not offer a large-
enough training set (Zhuang et al., 2021).

While transfer learning to demographic census data ( Yc∗ ) requires no additional steps, 
transfer learning to NFHS data needs to adjust for the different level of aggregation at 
which census and NFHS data are available (village vs. district). To address this difference 
in aggregation, we pass the village Landsat image to our model and extract the layer just 
before the final prediction layer of the 16-dimensional material-asset vector. Then, we aver-
age this layer across all villages in each district, weighing by villages’ population. Using 
this averaged layer as inputs, we train a neural network with two fully connected layers 
with rectified linear activation to do a regression on Ys.

3.2.4  Temporal Evaluation

To evaluate the performance of f  across time, we perform experiments where we first train 
our model using 2011 inputs and outputs: f

(

Xd
2011,i

)

= Ŷc
2011,i

 . Then, for evaluation we use 
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held-out 2001-census data, Yc
2001,i

 and Xd
2001,i

. That is, f
(

Xd
2001,i

)

= Ŷc
2001,i

 . Our analysis 
conducts the temporal evaluation at the tehsil level (indexed by h ), where definitions of 
census variables match for 10 out of the 16 components of the material-asset vector. To 
conduct this evaluation, we aggregate predictions at the tehsil level using a weighted aver-
age of village-level predictions, Ŷc

2011,h
=
∑

i wiŶ
c
2011,i

 , where wi is the share of teshil’s h 
population living in village i . Thus, the target loss we aim to minimize is the sum of 
squares over all tehsils, that is, 

∑

h

�

Ŷc
2011,h

− Yc
2001,h

�2

.
A challenge is that the distribution of some outcome variables across villages experi-

enced a significant shift over time (e.g., ownership of cell phones), whereas the distribution 
of features of imagery across villages (e.g., roads, constructed area) contain only a modest 
shift in the same period. This mismatch between input (e.g., satellite images) and output 
(e.g., cell phones) challenges an approach that aims to directly evaluate ML models across 
time, and thus, we resort to indirect methods that take into account the temporal shift in the 
distribution of the outcome variables.

Our analysis tested three distribution transformation, denoted by g() , to align 2001 to 
2011 ground truth distributions: (i) Simple transform, which matches the mean and vari-
ance of the 2001 ground truth census data to mean and variance of 2011 census data before 
evaluation; (ii) Histogram matching, which transforms 2001 census data by matching his-
tograms of the 2001 census and 2011 census at 10 bins for each variable; and (iii) Linear 
optimal transport, which learns a linear optimal transport from 2001 to 2011 census on the 
training data, and applied it to 2001 census test ground truth before evaluating (Papadakis, 
2015).

3.2.5  Benchmark Model

Our assessment evaluates the relative performance of f  , which uses a 16-dimensional 
material-asset vector derived from census data as a feature extractor, by comparing its per-
formance to one of the current standards in the EO-ML literature, which uses nighttime 
light data instead (Henderson et al., 2012; Xie et al., 2015). As Fig. 3 shows, this baseline 
consists of first training an ML model to predict nighttime light values from daytime satel-
lite imagery. The relevant nighttime light cells consist of the latitude and longitude for the 
centroid of the daytime satellite image.

Relying on transfer learning, we then replace the last prediction layer of the nighttime 
light model to predict Yc∗ and Ys , and compare the R2 to the ones obtained by the models 
described in the previous section.

3.2.6  Aggregations

For all levels of aggregation and experiments, the satellite-input data is always collected 
at the village level Xd

it
 . Yet our analysis relies on different aggregation levels, because of 

either mismatch in definition at the village level or missing latitude–longitude information 
for outcomes Yi . First, all census-based cross-sectional results rely on village-level data i, 
and thus, do not use any aggregation. Second, for all NFHS experiments, we conduct the 
evaluation at the district level: although ground-truth data Ys

i
 is collected at the village-

level, we aggregate to the district level d to calculate the loss function because villages are 
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not identified. Third, for the temporal analysis of census data, we conduct the model evalu-
ation at the tehsil level where the definitions of census variables match across time.

4  Results

4.1  Estimating the 16‑Dimensional Material‑Asset Vector for Transfer Learning

As previously discussed, our analysis relies on four ML models: ResNet-18, ResNet-34, 
ResNet-50, and VGG-16. As shown in Fig. 4, although all models had comparable model 
performance, ResNet-18 performed slightly better for 13 of the 16 outcomes. ResNet-34 
trails the ResNet-18 performance, and ResNet-34 performs better on water-related out-
comes, with R2 in the range of 0.3 and 0.4. Henceforth, we only present results from 
ResNet-34, as this is the best overall-performing model: it performs similarly to ResNet-18 
on 13 of 16 outcomes, but better than ResNet-18 on the last three outcomes.4

Our ResNet-34 (henceforth referred to as f34 ) model’s average R2-performance, across 
all 16 outcomes using census 2011, is 0.5, with a standard deviation of 0.12. As the left-
most panel  in Fig. 4 shows, our f34 performance ranges from as high as R2 = 0.69 (per-
manent house) to a low of R2 = 0.27 (water-treated). All our models perform well on out-
comes that have a physical appearance from the sky (e.g., housing quality), and it tends to 

Fig. 4  Relative performance of four deep-learning models, ResNet-18, ResNet-34, ResNet-50, and VGG-
16, in prediction of Multidimensional Asset Index

4 Other model results are available upon request.
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struggle with outcomes that merely correlate with outcomes appearing from the sky (e.g., a 
household’s water-quality access correlates with housing quality).

For the results in Fig. 4, our models are directly learning to associate the daylight-image 
input, Xd

i
 to the census-material-living-standards outputs Yc

i
 . That is, no aggregation or 

transfer learning is used. In what follows, we assess if this model can be successfully used 
to expand the scope of predicted variables using transfer learning.

4.2  Cross‑Sectional Transfer Learning Results

In Fig.  5, our model f34 relies on transfer learning to predict variables from the demo-
graphic section of the 2011 census ( Yc∗ , panel a) or NFHS-4 ( Ys ., panels b to d). As dis-
cused in the Methods section, the key innovation here is that and Ys contains outcomes that 
are distal from what the combination of satellite-images and f34 can be expected to predict. 
For example, as previously mentioned, predicting housing quality from satellite images is 

Fig. 5  2011 Multidimensional Asset Index results. a Comparison of transfer learning of summary popula-
tion and demographic data at the village level using the nightlight and asset models. The Population and 
Demographic variables are extracted from the Population Census Abstract. The results are based on the 
16-dimensional asset model to remotely measuring demographic characteristics with transfer learning. st 
and sc stand for scheduled tribe and scheduled caste, respectively. b Comparison of transfer learning of 
the NFHS-4 variables at the district level using the asset models and 2015 images. The figure captures the 
R-squared of the 93 NFHS variables. Acronyms: JSY = Janani Suraksha Yojana, ARI = “acute respiratory 
infection”MCP = Mother and Child Protection Health personnel = doctor/nurse/LHV/ANM/midwife/and 
similara health personnel
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Fig. 5  (continued)
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likely to work because roofs, roads, and yards are directly observable from the sky. In con-
trast, predicting literacy rate or religious affiliation is more challenging, as these outcomes 
are not directly observable from satellite images.

The left-hand side of panel (a) in Fig. 5 shows that our model f ∗
34

 can predict not only 
material-living standards but also demographic characteristics with reasonable perfor-
mance. The model performs best on measuring the share of scheduled tribe ( R2 = 0.49), 
followed by literacy rate ( R2 = 0.34), working population ( R2 = 0.15), and scheduled caste 
( R2 = 0.1). The right-hand side of the panel (a) in Fig. 5 uses nightlight luminosity in the 
transfer-learning step instead of our f ∗

34
 that uses the 16-dimensional material-asset vector 

for transfer learning. Our f ∗
34

 performs the best. A nightlight-transfer model has the follow-
ing performance: literacy rate ( R2 = 0.21), scheduled tribe ( R2 = 0.18), working population 
( R2 = 0.08), and scheduled cast ( R2 = 0.06).

Similarly, although Ys contains mainly health outcomes, f ∗
34

 has the capacity to predict 
several of them reasonably well. Panel (b) of Fig. 5 shows the results for transfer-learn-
ing based on NFHS-4 outcomes Ys . The left-hand side of panel (b) shows that our model 
f ∗
34

 identifies sufficient signal to predict a variety of health-related outcomes. Of the 93 
outcomes, 27 had a score of R2 ≥ 0.5 . The right-hand side of panel (b) show the results 
for the benchmark model, which uses nightlight luminosity in the transfer-learning step. 
Our model outperforms the benchmark in 89 out of the 93 variables. The top five scor-
ing variables when predicting Ys are precent of women overweight, households with clean 
fuel, share of population below age 15, access to condoms for birth control, and birth with 
caesarean section. The bottom five are vaccination against measles, men with high blood 
sugar, diarrhea treated with zinc, women with anemia, and women with high blood pres-
sure (BP). These variables have all negative R2 , which means that the predictions of f ∗

34
 are 

worse than just using the sample mean for each Ys.

4.3  Temporal Transfer Learning Results

Our f ∗
34

 trained on the 16-dimensional material-asset vector is able to predict temporal 
changes, targeting the census 2001 and NFHS-5 (collected in 2019–20). Panel (a), Fig. 6, 
shows the census-2001 results. As described in the Methods section, besides the non-
transformed (original) data, we use three procedures to align the outcome distributions. 
Using no transformation, the model produces poor results. The worst performing outcome 
is has-phone, the proportions of phones in villages, with an R2 = −236 . The model pro-
duces negative R2 for electronics ( R2 = −0.1 ), banking-services availability (R2 = −2.7 ), 
and no-assets ( R2 = −0.5 ). As previously mentioned, negative R2 means that the model is 
performing worse than a prediction equal to the sample mean. This is due to shifts in the 
distribution of outcome variables that outpace changes in the satellite imagery. Next, we 
show how the three proposed transformations help ameliorate this problem.

While the simple-transform algorithm produces uneven results with negative and posi-
tive R2 , the best performing transformations are histogram matching and linear-optimal 
matching. Based on these two transformations, our model f ∗

34
 estimates the following out-

comes with R2 ≥ 0.5 : oil-like (having energy source from kerosene/other oil), electric-like 
(having energy source from grid/solar), bathroom-within (having bathroom within prem-
ises), and cook-fuel-processed (having LPG/electric stove). Outcomes that f ∗

34
 tends to esti-

mate less precisely are electronics (having possession of radio/transistor/tv/laptop) and has-
phone (having possession of land-line/mobile/both). One reason why histogram matching 
and linear-optimal transform perform better than simple transform, is that simple transform 
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Fig. 6  Temporal results. a Remotely measuring 2001-census outcomes from 2011-census training and with 
distribution transformations. The figure shows prediction of the 2001 tehsil level asset vector using 2011 
asset model and 2001 images for different temporal transformations of the tehsil level asset distributions. 
The outcomes “no-assets” and “has-phone” have negative R2 exceeding − 1 and have thus been dropped in 
the model “No transformation”. b Estimating NFHS-5 outcomes. The figure shows the distribution of how 
well each transformation performs in predicting an outcome in NFHS-5. The x-axis is R2 performance and 
the y-axis is the density of the number of outcomes. The four densities represent untransformed prediction, 
simple transform, histogram matching, and linear optimal transport. c Double-transfer learning (from Cen-
sus 2011 to NFHS-4, and then to outcomes in NFHS-5) with the selected 3 child outcomes

▸

Fig. 6  (continued)

only aligns the two first central moments (mean and variance), while the other two align 
the 2001 and 2011 census distributions across different distribution characteristics.

Panel (b), Fig. 6, shows the performance of f ∗
34

 to predicting NFHS-5 (the year 2019) 
health outcomes (93 variables). Here, we rely on double-transfer learning. The first transfer 
step consists of f ∗

34
 predicting NFHS-4 outcomes. The second transfer step consists now 

of modifying f ∗
34

 into f ∗∗
34

—that is, we change the last layer in f ∗
34

 enabling it to predict 
NFHS-5 outcomes. On top of the double-transfer, we also apply the three proposed trans-
formations to check how much they assist in improving the temporal predictions.

It turns out that there is no added value of conducting an additional transformation 
when predicting NFHS-5. As the four densities largely overlap, all four transformations 
are performing equally. This contrasts with the improvements in accuracy delivered by 
the same transformations when predicting 2001 census outcomes using models trained 
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in 2011. The difference may be due to the shorter timespan between NFHS surveys 
(5 years) and NFHS variables changing more slowly through time.

Focusing on “No transformation,” the double-transfer model f ∗∗
34

 predicts 4 outcomes 
with R2-performance above 0.7 (e.g., Oral cavity, Women with 10 or more years of school-
ing, and Women’s BMI), 22 outcomes with R2-performance above 0.5, 70 outcomes above 
R2-performance above 0.1, and 23 outcomes below R2-performance of 0.

In panel (c), Fig.  6, we focus on NFHS-5 outcomes related to child health only. 
Regardless of transformations, f ∗∗

34
 performs well in predicting mother’s access to ante-

natal care, mothers who consumed iron folic acid for 100 days or more when they were 
pregnant (%), and share of children underweight.

5  Discussion

The global community has committed to ambitious targets articulated in the Sustainable 
Development Goals. Although many governments are vigilant in implementing public 
policies to improve human development for their populations, policymakers lack reliable 
methods to monitor the effects of their policies at a sufficiently granular level over time 
and space (Burke et al., 2021). To tackle this lack, scholars are creating innovative methods 
that capitalize on the predictive accuracy of ML and the visual granularity supplied by EO 
(Burke et al., 2021; Daoud & Dubhashi, 2023; Jerzak et al., 2023; Rolf et al., 2021). As 
most of these EO-ML methods focus on Africa (Chi et al., 2022; Suraj et al., 2017), our 
article creates a comparable method for India.

That is this article’s first contribution: while existing EO-ML methods for Africa cover 
human development for roughly one-seventh of the world population, our method makes 
progress towards covering an additional one-seventh.

The second and third contributions are that we evaluate how well EO-ML method 
applies to a multitude of human development indicators and using transfer learning for 
improved estimation. Our results show that using a census provides a better leverage than 
nightlight luminosity for transfer learning for these multitude of outcomes. While night-
light luminosity is a frequently used complementary data source to estimate human devel-
opment (Henderson et al., 2012; Xie et al., 2015), our experiments show that a 16-dimen-
sional asset index performs better. Using this asset index as a leverage, our EO-ML method 
transferred, with noteworthy accuracy, to estimate a myriad of health outcomes as meas-
ured by NFHS.

A fourth contribution of this paper is that our EO-ML method uses outcome-distribution 
transformations to better estimate temporal change. Because some dimensions of human 
development change faster—an outcomes such as access to mobile phones—than the mate-
rial shape of neighborhoods as exhibited in satellite images, EO-ML method can struggle 
in estimating temporal change (Young et  al., 2017). When performing transfer learning 
between Indian censuses (2011 to 2001), our analysis shows that accessible transforma-
tions such as histogram matching or linear-optimal transform boost accuracy by several 
factors. While these transformations helped the prediction in the census, there is a lack of 
improved performance between NFHS surveys (years 2015–16 to 2019–20). This lack of 
difference is perhaps due to the temporal lag between NFHS-4 and NFHS-5 being only five 
years, and health outcomes changing more slowly than assets. Nonetheless, more research 
is needed to evaluate when transformations help calibrate EO-ML models.
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Of the 93 health outcomes and for all transformations our experiments evaluated, about 
70 had positive R2 values, and the best transformation (i.e., linear optimal transport) pro-
duced values R2 > 0.5 for 23 outcomes. Conversely, as the temporal results show, night-
light-based transfer produced consistently less competitive R2 values. Thus, our EO-ML 
method enables scholars and policymakers to measure health outcomes that are not directly 
observable from the sky. For example, our top-performing outcomes—with R2 around 
0.6—are precent of women overweight, share of population below age 15, and birth with 
caesarean section, woman-underaged marriage and women with secondary education.

Improving maternal and child health outcomes are integral part of the Sustainable 
Development Goals. Although the Indian economy is growing and Indian governments are 
improving their public-health and anti-poverty policies, much remains for pulling millions 
out of poverty in the next several decades (Alkire & Seth, 2015; Drèze & Sen, 2013; Reddy 
& Daoud, 2020; Thorat et al., 2017). For example, India has halved its population-poverty 
rate from 45.3 (head-count ratio) in 1993 to 21.9% in 2012, yet about 54 million people 
still live in extreme poverty and with ill-health. To calibrate public policies, policymakers 
require geo-temporal data for efficient policy targeting (McBride & Nichols, 2016), from 
modeling urban air quality (Raheja et al., 2021, 2022) to energy flows (Chithaluru et al., 
2022; Samriya et al., 2022; Singh et al., 2022) to human development. Our EO-ML method 
is one critical piece for enabling such efficient targeting (Aiken et al., 2022).

Appendix 1: Landsat 7 Processing

We build a single image for each village i and year t, using Google Earth Engine’s Tier 1 
and Tier 2 repositories of Landsat 7 daytime imagery (Gorelick et al., 2017).5 We process 
these images on Google Earth Engine’s servers into batches. In a given batch and year, we 
use the Quality Assessment Band to remove imagery with more than 5% of cloud cover-
age over the batch area, defined as the union of all 3.36 × 3.36 km squares centered at the 
centroid of the batch’s villages’ administrative boundaries. Then, we select four bands for 
processing: the red, green, and blue soil reflectance bands, plus the panchromatic top-of-
the-atmosphere band.

The selected images are processed with the C-correction Teillet method to smooth the 
effect of topography in the imagery (Ekstrand, 1996; Riano et  al., 2003; Richter et  al., 
2009), which has been shown to improve the capacity of EO-ML methods to distinguish 
among land cover classes (Khatami et  al., 2016). The selected imagery is then ordered 
from the one with the highest level of Normalized Difference Vegetation Index (NDVI) 
within the batch area to the one with the lowest. Then, a mosaic is built across the batch 
area through a recursive method that selects, from the first imagery, all the valid pixels and 
then moves to the second to fill pixels that were covered by clouds or saturated in the first 
image. This method continues down the list until all pixels are filled, or the end of the list 
is reached.

The use of year-round composites allows us to maximize the probability of obtaining 
data for all pixels in subtropical regions with cloudy, wet seasons, and the use of NDVI as 
a quality measurement maximizes the chances of observing standing crops in agricultural 

5 Tier 1 contains imagery of the highest quality. Tier 2 imagery have the same radiometric standard as that 
of the Tier 1 imagery, but do not meet Tier 1’s geometric specifications.
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lands, which is likely to help the model differentiate agricultural land from bare soil. This 
composite also enables us to fill the gaps produced by the failure of the Scan Line Correc-
tor found in images collected after May 31, 2003.

Finally, we use a simple Multiresolution Analysis (MRA) pan-sharpening method to 
combine the RGB 30-m resolution bands with the 15-m resolution panchromatic band and 
create our final 15-m resolution RGB imagery (Vivone et al., 2015). Panels (a) through (c) 
in Fig. 2 display the final composites for the year 2011 in three selected villages, whose 
locations are shown in panel (d) of the same figure. Features like fields, roads, and con-
structed areas are clearly discernible in the composites. Note that, except for the lines with 
lower NDVI introduced by the failure of the Scan Line Detector, the composites preserve 
the spatial–temporal context of the imagery. That is, two neighboring pixels have a high 
chance of being drawn from the same Landsat image, and bands in any given pixels are 
always drawn from the same image. This is a result of the method used to construct the 
composites, which contrasts with the simpler approach of using the median value of each 
band for each pixel, which introduces unnecessary noise to the input imagery.

Before feeding the imagery to the deep learning models presented in the methods sec-
tion, our procedure normalizes each band to have a mean of zero and a standard devia-
tion of one across all image samples Xd . When unpacking the batch, the result contain 
a sequence of 224 × 224 × 3 input tensors, each of which is associated with a single vil-
lage-year, covering 11.3 square kilometers. This geographical-image size is suitable as it 
is directly compatible with established deep-learning-model architectures that our analysis 
relies on (Krizhevsky et al., 2017).

Funding Open access funding provided by Linköping University.

Data Availability Replication code is available at Github, https:// github. com/ AIand Globa lDeve lopme ntLab/ 
EOML- for- India.

Declarations 

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aiken, E., Bellue, S., Karlan, D., Udry, C., Blumenstock, J. E., Bellue, S., Karlan, D., Udry, C., & Blu-
menstock, J. E. (2022). Machine learning and phone data can improve targeting of humanitarian aid. 
Nature. https:// doi. org/ 10. 1038/ s41586- 022- 04484-9

Alegana, V. A., Atkinson, P. M., Pezzulo, C., Sorichetta, A., Weiss, D., Bird, T., Erbach-Schoenberg, E., & 
Tatem, A. J. (2015). Fine resolution mapping of population age-structures for health and development 
applications. Journal of the Royal Society Interface, 12, 20150073. https:// doi. org/ 10. 1098/ rsif. 2015. 
0073

https://github.com/AIandGlobalDevelopmentLab/EOML-for-India
https://github.com/AIandGlobalDevelopmentLab/EOML-for-India
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41586-022-04484-9
https://doi.org/10.1098/rsif.2015.0073
https://doi.org/10.1098/rsif.2015.0073


Using Satellite Images and Deep Learning to Measure Health and…

1 3

Alkire, S., & Seth, S. (2015). Multidimensional poverty reduction in India between 1999 and 2006: Where 
and how? World Development, 72, 93–108. https:// doi. org/ 10. 1016/j. world dev. 2015. 02. 009

Atkinson, T. (2016). Monitoring global poverty: Report of the commission on global poverty. The World 
Bank. https:// doi. org/ 10. 1596/ 978-1- 4648- 0961-3

Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using satellite imagery to understand and pro-
mote sustainable development. Science, 371, abe8628. https:// doi. org/ 10. 1126/ scien ce. abe86 28

Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings 
of the National Academy of Sciences, 108, 8589–8594. https:// doi. org/ 10. 1073/ pnas. 10170 31108

Chi, G., Fang, H., Chatterjee, S., & Blumenstock, J. E. (2022). Microestimates of wealth for all low- and 
middle-income countries. Proceedings of the National Academy of Sciences USA, 119, e2113658119. 
https:// doi. org/ 10. 1073/ pnas. 21136 58119

Chithaluru, P., Al-Turjman, F., Kumar, M., & Stephan, T. (2022). MTCEE-LLN: Multilayer threshold clus-
ter-based energy-efficient low-power and lossy networks for industrial internet of things. IEEE Internet 
of Things Journal, 9, 4940–4948. https:// doi. org/ 10. 1109/ JIOT. 2021. 31075 38

Daoud, A., Halleröd, B., & Guha-Sapir, D. (2016). What is the association between absolute child pov-
erty, poor governance, and natural disasters? A global comparison of some of the realities of climate 
change. PLoS ONE, 11, e0153296. https:// doi. org/ 10. 1371/ journ al. pone. 01532 96

Daoud, A., Kim, R., & Subramanian, S. V. (2019). Predicting women’s height from their socioeconomic sta-
tus: A machine learning approach. Social Science & Medicine, 238, 112486. https:// doi. org/ 10. 1016/j. 
socsc imed. 2019. 112486

Daoud, A., & Dubhashi, D. (2023). Statistical modeling: The three cultures. Harvard Data Science Review. 
https:// doi. org/ 10. 1162/ 99608 f92. 89f6f e66

Daoud, A. (2018). Unifying studies of scarcity, abundance, and sufficiency. Ecological Economics, 147, 
208–217. https:// doi. org/ 10. 1016/j. ecole con. 2018. 01. 019

Daoud, A., & Nandy, S. (2019). Implications of the politics of caste and class for child poverty in India. 
Sociology of Development, 5, 428–451. https:// doi. org/ 10. 1525/ sod. 2019.5. 4. 428

Deaton, A. (2015). The great escape: Health, wealth, and the origins of inequality, Reprint edition. (ed). 
Princeton University Press.

Decelle, A. (2022). Fundamental problems in statistical physics XIV: Lecture on machine learning. 
arXiv preprint arXiv:2202.05670. https:// doi. org/ 10. 48550/ arXiv. 2202. 05670

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical 
image database. In 2009 IEEE conference on computer vision and pattern recognition. Presented 
at the 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. https:// doi. 
org/ 10. 1109/ CVPR. 2009. 52068 48.

Doll, C. N. H., Muller, J.-P., & Morley, J. G. (2006). Mapping regional economic activity from night-
time light satellite imagery. Ecological Economics, 57, 75–92. https:// doi. org/ 10. 1016/j. ecole con. 
2005. 03. 007

Drèze, J., & Sen, A. (2013). An uncertain glory: India and its contradictions. Penguin.
Ekstrand, S. (1996). Landsat TM-based forest damage assessment: Correction for topographic effects. 

Photogrammetric Engineering and Remote Sensing, 62, 151–162.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
Gordon, D., & Nandy, S. (2012). Measuring child poverty and deprivation. In Z. Minujin, M. Alberto, 

& S. Nandy (Eds.), Global child poverty and well-being: Measurement concepts policy and action 
(pp. 57–101). Policy Press.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth 
engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, Big 
Remotely Sensed Data: Tools, Applications and Experiences, 202, 18–27. https:// doi. org/ 10. 1016/j. 
rse. 2017. 06. 031

Halleröd, B., Rothstein, B., Daoud, A., & Nandy, S. (2013). Bad governance and poor children: A com-
parative analysis of government efficiency and severe child deprivation in 68 low-and middle-
income countries. World Development, 48, 19–31.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In Presented at 
the proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Head, A., Manguin, M., Tran, N., Blumenstock, J. E. (2017). Can human development be measured with 
satellite imagery? https:// doi. org/ 10. 1145/ 31365 60. 31365 76

Henderson, J. V., Squires, T., Storeygard, A., & Weil, D. (2018). The Global distribution of economic 
activity: Nature, history, and the role of trade. The Quarterly Journal of Economics, 133, 357–406. 
https:// doi. org/ 10. 1093/ qje/ qjx030

Henderson, J. V., Storeygard, A., & Weil, D. N. (2012). Measuring economic growth from outer space. 
American Economic Review, 102, 994–1028. https:// doi. org/ 10. 1257/ aer. 102.2. 994

https://doi.org/10.1016/j.worlddev.2015.02.009
https://doi.org/10.1596/978-1-4648-0961-3
https://doi.org/10.1126/science.abe8628
https://doi.org/10.1073/pnas.1017031108
https://doi.org/10.1073/pnas.2113658119
https://doi.org/10.1109/JIOT.2021.3107538
https://doi.org/10.1371/journal.pone.0153296
https://doi.org/10.1016/j.socscimed.2019.112486
https://doi.org/10.1016/j.socscimed.2019.112486
https://doi.org/10.1162/99608f92.89f6fe66
https://doi.org/10.1016/j.ecolecon.2018.01.019
https://doi.org/10.1525/sod.2019.5.4.428
https://doi.org/10.48550/arXiv.2202.05670
https://doi.org/10.1109/CVPR.2009.5206848.
https://doi.org/10.1109/CVPR.2009.5206848.
https://doi.org/10.1016/j.ecolecon.2005.03.007
https://doi.org/10.1016/j.ecolecon.2005.03.007
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1145/3136560.3136576
https://doi.org/10.1093/qje/qjx030
https://doi.org/10.1257/aer.102.2.994


 A. Daoud et al.

1 3

Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite 
imagery and machine learning to predict poverty. Science, 353, 790–794. https:// doi. org/ 10. 1126/ 
scien ce. aaf78 94

Jerzak, C.T., Johansson, F., Daoud, A. (2023). Integrating earth observation data into causal inference: 
challenges and opportunities. arXiv preprint arXiv: 2301. 12985

Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on 
supervised pixel-based land-cover image classification processes: General guidelines for practition-
ers and future research. Remote Sensing of Environment, 177, 89–100. https:// doi. org/ 10. 1016/j. rse. 
2016. 02. 028

Kino, S., Hsu, Y.-T., Shiba, K., Chien, Y.-S., Mita, C., Kawachi, I., & Daoud, A. (2021). A scoping review 
on the use of machine learning in research on social determinants of health: Trends and research pros-
pects. SSM-Population Health, 15, 100836. https:// doi. org/ 10. 1016/j. ssmph. 2021. 100836

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional 
neural networks. Communications of the ACM, 60, 84–90. https:// doi. org/ 10. 1145/ 30653 86

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). Hand-
written digit recognition with a back-propagation network. Advances in neural information process-
ing systems. Morgan-Kaufmann.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https:// doi. org/ 10. 
1038/ natur e14539

McBride, L., & Nichols, A. (2016). Retooling poverty targeting using out-of-sample validation and 
machine learning. The World Bank Economic Review. https:// doi. org/ 10. 1093/ wber/ lhw056

Nandy, S., Daoud, A., & Gordon, D. (2016). Examining the changing profile of undernutrition in the 
context of food price rises and greater inequality. Social Science & Medicine, 149, 153–163. https:// 
doi. org/ 10. 1016/j. socsc imed. 2015. 11. 036

Pandey, S.M., Agarwal, T., Krishnan, N.C. (2018). Multi-task deep learning for predicting poverty 
from satellite images. In Thirty-second AAAI conference on artificial intelligence. Presented at the 
thirty-second AAAI conference on artificial intelligence.

Papadakis, N. (2015). Optimal transport for image processing. In Habilitation thesis, Université de 
Bordeaux.

Raheja, S., Obaidat, M. S., Sadoun, B., Malik, S., Rani, A., Kumar, M., & Stephan, T. (2021). Modeling 
and simulation of urban air quality with a 2-phase assessment technique. Simulation Modelling 
Practice and Theory, 109, 102281. https:// doi. org/ 10. 1016/j. simpat. 2021. 102281

Raheja, S., Obaidat, M. S., Kumar, M., Sadoun, B., & Bhushan, S. (2022). A hybrid MCDM framework 
and simulation analysis for the assessment of worst polluted cities. Simulation Modelling Practice 
and Theory, 118, 102540. https:// doi. org/ 10. 1016/j. simpat. 2022. 102540

Randall, S., & Coast, E. (2015). Poverty in African households: The limits of survey and census repre-
sentations. The Journal of Development Studies, 51, 162–177. https:// doi. org/ 10. 1080/ 00220 388. 
2014. 968135

Reddy, S. G., & Daoud, A. (2020). Entitlements and capabilities. In E. C. Martinetti, S. Osmani, & 
M. Qizilbash (Eds.), The cambridge handbook of the capability approach. Cambridge University 
Press.

Riano, D., Chuvieco, E., Salas, J., & Aguado, I. (2003). Assessment of different topographic corrections 
in landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and 
Remote Sensing, 41, 1056–1061. https:// doi. org/ 10. 1109/ TGRS. 2003. 811693

Richter, R., Kellenberger, T., & Kaufmann, H. (2009). Comparison of topographic correction methods. 
Remote Sensing, 1, 184–196. https:// doi. org/ 10. 3390/ rs103 0184

Rolf, E., Proctor, J., Carleton, T., Bolliger, I., Shankar, V., Ishihara, M., Recht, B., & Hsiang, S. (2021). 
A generalizable and accessible approach to machine learning with global satellite imagery. Nature 
Communications, 12, 4392. https:// doi. org/ 10. 1038/ s41467- 021- 24638-z

Samriya, J. K., Tiwari, R., Cheng, X., Singh, R. K., Shankar, A., & Kumar, M. (2022). Network intru-
sion detection using ACO-DNN model with DVFS based energy optimization in cloud framework. 
Sustainable Computing: Informatics and Systems, 35, 100746. https:// doi. org/ 10. 1016/j. suscom. 
2022. 100746

Simonyan, K., Zisserman, A. (2015). Very deep convolutional networks for large-scale image recogni-
tion. arXiv: 1409. 1556 [cs].

Singh, A., Obaidat, M. S., Singh, S., Aggarwal, A., Kaur, K., Sadoun, B., Kumar, M., & Hsiao, K.-F. (2022). 
A simulation model to reduce the fuel consumption through efficient road traffic modelling. Simulation 
Modelling Practice and Theory, 121, 102658. https:// doi. org/ 10. 1016/j. simpat. 2022. 102658

Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., Bjelland, J., Engø-
Monsen, K., de Montjoye, Y.-A., Iqbal, A. M., Hadiuzzaman, K. N., Lu, X., Wetter, E., Tatem, A. 

https://doi.org/10.1126/science.aaf7894
https://doi.org/10.1126/science.aaf7894
https://arxiv.org/abs/2301.12985
https://doi.org/10.1016/j.rse.2016.02.028
https://doi.org/10.1016/j.rse.2016.02.028
https://doi.org/10.1016/j.ssmph.2021.100836
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/wber/lhw056
https://doi.org/10.1016/j.socscimed.2015.11.036
https://doi.org/10.1016/j.socscimed.2015.11.036
https://doi.org/10.1016/j.simpat.2021.102281
https://doi.org/10.1016/j.simpat.2022.102540
https://doi.org/10.1080/00220388.2014.968135
https://doi.org/10.1080/00220388.2014.968135
https://doi.org/10.1109/TGRS.2003.811693
https://doi.org/10.3390/rs1030184
https://doi.org/10.1038/s41467-021-24638-z
https://doi.org/10.1016/j.suscom.2022.100746
https://doi.org/10.1016/j.suscom.2022.100746
http://arxiv.org/abs/1409.1556
https://doi.org/10.1016/j.simpat.2022.102658


Using Satellite Images and Deep Learning to Measure Health and…

1 3

J., & Bengtsson, L. (2017). Mapping poverty using mobile phone and satellite data. Journal of the 
Royal Society Interface, 14, 20160690. https:// doi. org/ 10. 1098/ rsif. 2016. 0690

Subash, S. P., Kumar, R. R., & Aditya, K. S. (2018). Satellite data and machine learning tools for pre-
dicting poverty in rural India. Agricultural Economics Reseaerch Review, 31, 231. https:// doi. org/ 
10. 5958/ 0974- 0279. 2018. 00040.X

Subramanian, S. V., Ambade, M., Kumar, A., Chi, H., Joe, W., Rajpal, S., & Kim, R. (2023). Progress 
on sustainable development goal indicators in 707 districts of India: A quantitative mid-line assess-
ment using the national family health surveys, 2016 and 2021. The Lancet Regional Health-South-
east Asia. https:// doi. org/ 10. 1016/j. lansea. 2023. 100155

Suraj, P.K., Gupta, A., Sharma, M., Paul, S.B., Banerjee, S. (2017). On monitoring development indica-
tors using high resolution satellite images. arXiv: 1712. 02282 [cs, econ].

Sutton, P. C., Elvidge, C. D., & Ghosh, T. (2007). Estimation of gross domestic product at sub-national 
scales using Nighttime satellite imagery. International Journal of Ecological Economics & Statis-
tics, 8, 5–21.

Tatem, A. J. (2017). WorldPop, open data for spatial demography. Scientific Data, 4, 170004. https:// doi. 
org/ 10. 1038/ sdata. 2017.4

Thorat, A., Vanneman, R., Desai, S., & Dubey, A. (2017). Escaping and falling into poverty in India 
today. World Development, 93, 413–426. https:// doi. org/ 10. 1016/j. world dev. 2017. 01. 004

Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G. A., Restaino, R., & 
Wald, L. (2015). A Critical comparison among pansharpening algorithms. IEEE Transactions on 
Geoscience and Remote Sensing, 53, 2565–2586. https:// doi. org/ 10. 1109/ TGRS. 2014. 23617 34

Watmough, G. R., Atkinson, P. M., Saikia, A., & Hutton, C. W. (2016). Understanding the evidence base 
for poverty-environment relationships using remotely sensed satellite data: An example from Assam, 
India. World Development, 78, 188–203. https:// doi. org/ 10. 1016/j. world dev. 2015. 10. 031

Xie, M., Jean, N., Burke, M., Lobell, D., Ermon, S. (2015). Transfer learning from deep features for remote 
sensing and poverty mapping. arXiv: 1510. 00098 [cs].

Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., & Burke, M. (2020). Using 
publicly available satellite imagery and deep learning to understand economic well-being in Africa. 
Nature Communications, 11, 2583. https:// doi. org/ 10. 1038/ s41467- 020- 16185-w

Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A 
survival guide to landsat preprocessing. Ecology, 98, 920–932. https:// doi. org/ 10. 1002/ ecy. 1730

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive sur-
vey on transfer learning. Proceedings of the IEEE, 109, 43–76. https:// doi. org/ 10. 1109/ JPROC. 2020. 
30045 55

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1098/rsif.2016.0690
https://doi.org/10.5958/0974-0279.2018.00040.X
https://doi.org/10.5958/0974-0279.2018.00040.X
https://doi.org/10.1016/j.lansea.2023.100155
http://arxiv.org/abs/1712.02282
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1016/j.worlddev.2017.01.004
https://doi.org/10.1109/TGRS.2014.2361734
https://doi.org/10.1016/j.worlddev.2015.10.031
http://arxiv.org/abs/1510.00098
https://doi.org/10.1038/s41467-020-16185-w
https://doi.org/10.1002/ecy.1730
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555

	Using Satellite Images and Deep Learning to Measure Health and Living Standards in India
	Abstract
	1 Introduction
	2 Background
	3 Data and Methods
	3.1 Data
	3.1.1 Census and the National Family Health Survey
	3.1.2 A Primer on Image Data
	3.1.3 Landsat 7 Satellite Images
	3.1.4 Nighttime Light Data

	3.2 Methods
	3.2.1 A Primer on Machine Learning for Image Data
	3.2.2 Our Selection of Machine Learning Algorithms
	3.2.3 Transfer Learning from Material-Asset Vector to Demographic and NFHS Data
	3.2.4 Temporal Evaluation
	3.2.5 Benchmark Model
	3.2.6 Aggregations


	4 Results
	4.1 Estimating the 16-Dimensional Material-Asset Vector for Transfer Learning
	4.2 Cross-Sectional Transfer Learning Results
	4.3 Temporal Transfer Learning Results

	5 Discussion
	Appendix 1: Landsat 7 Processing
	References


