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“We can only see a short distance ahead, but
we can see plenty there that needs to be done.”

–Alan Turing, 1950
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Abstract
Accelerated digitalization and sensor deployment in society in recent years poses
critical challenges for associated data processing and analysis infrastructure
to scale, and the field of big data, targeting methods for storing, processing,
and revealing patterns in huge data sets, has surged. Artificial Intelligence
(AI) models are used diligently in standard Big Data pipelines due to their
tremendous success across various data analysis tasks, however exponential
growth in Volume, Variety and Velocity of Big Data (known as its three V’s)
in recent years require associated complexity in the AI models that analyze
it, as well as the Machine Learning (ML) processes required to train them.
In order to cope, parallelism in ML is standard nowadays, with the aim to
better utilize contemporary computing infrastructure, whether it being shared-
memory multi-core CPUs, or vast connected networks of IoT devices engaging
in Federated Learning (FL).

Stochastic Gradient Descent (SGD) serves as the backbone of many of the
most popular ML methods, including in particular Deep Learning. However,
SGD has inherently sequential semantics, and is not trivially parallelizable
without imposing strict synchronization, with associated bottlenecks. Asyn-
chronous SGD (AsyncSGD), which relaxes the original semantics, has gained
significant interest in recent years due to promising results that show speedup
in certain contexts. However, the relaxed semantics that asynchrony entails
give rise to fundamental questions regarding AsyncSGD , relating particularly
to its stability and convergence rate in practical applications.

This thesis explores vital knowledge gaps of AsyncSGD , and contributes
in particular to: Theoretical frameworks – Formalization of several key
notions related to the impact of asynchrony on the convergence, guiding
future development of AsyncSGD implementations; Analytical results –
Asymptotic convergence bounds under realistic assumptions. Moreover, several
technical solutions are proposed, targeting in particular: Stability – Reducing
the number of non-converging executions and the associated wasted energy;
Speedup – Improving convergence time and reliability with instance-based
adaptiveness; Elasticity – Resource-efficiency by avoiding over-parallelism,
and thereby improving stability and saving computing resources. The proposed
methods are evaluated on several standard DL benchmarking applications
and compared to relevant baselines from previous literature. Key results
include: (i) persistent speedup compared to baselines, (ii) increased stability and
reduced risk for non-converging executions, (iii) reduction in the overall memory
footprint (up to 17%), as well as the consumed computing resources (up to 67%).

In addition, along with this thesis, an open-source implementation is pub-
lished, that connects high-level ML operations with asynchronous implemen-
tations with fine-grained memory operations, leveraging future research for
efficient adaptation of AsyncSGD for practical applications.
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Thesis Overview





1.1. INTRODUCTION 1

1.1 Introduction

“I propose to consider the question, ‘Can machines think?’ ” are the opening
words of Alan M. Turing in the article Computing Machinery and Intelligence,
published 1950 in Mind [1]. Realizing that such an, at the time, controversial
question would undoubtedly be overwhelmed with criticism, if not utterly
dismissed, especially without hope to ever provide a reasonable definition of
“think” (or even “machine” for that matter) Turing swiftly circumvents this
issue simply by defining a game:
The Imitation Game. Also known as the Turing Test, the Imitation Game
determines whether a machine possesses human intelligence. In the test, a
human evaluator queries, by text messages, two participants, one of which is a
machine. If the evaluator cannot distinguish the human participant from the
machine, it passes the test. In the article, Turing optimistically argues against
common objections to the statement “machines can think” and predicts “... at
the end of the century the use of words and general educated opinion will have
altered so much that one will be able to speak of machines thinking without
expecting to be contradicted”.
Artificial Intelligence today. One cannot easily argue against Turing’s
prophecy, to a large extent, having been fulfilled at the moment of writing this
thesis. A classic example of early advancement of Artificial Intelligence (AI) is
the ability of computers to play chess. Already in the 1980s, state of art chess
computers beat prominent human players, and in 1997 the IBM machine Deep
Blue beat the, at the time, reigning human world champion Garry Kasparov in
a six-game chess match [2]. Among many factors attributed to the success of
Deep Blue, the ability to perform extensive tree searches, thanks to a massively
parallel implementation, is considered one of the most important. More recently,
the success of the AI model AlphaGo from DeepMind in beating the human
champion at the substantially more complex game of Go in 2016 [3] marks a
significant milestone for the evolution of AI. The trend in increasingly capable
AI models, performing exceptionally well at a variety of tasks, keeps progressing;
Only during the last year, at the time of writing, tremendous leaps within
so-called AI language models (sometime loosely referred to as chat bots) have
been achieved. Among the most successful are the LaMDA model [4] from
Google and ChatGPT from OpenAI, which both show astounding capabilities of
(i) conversing in human language, (ii) retrieving and explaining information, (iii)
language translation, as well as (iv) computer code generation and debugging.
In some circles, it has even been disputed whether or not these models have
passed the Turing Test. The consequences of the above achievements cannot
be underestimated, considering that 97% of mobile phone users are using
AI-powered voice assistants. In general, AI shows its strengths in almost every
industry nowadays, e.g., for autonomous vehicles, personalized medical care,
and intelligent power management in smart grids [5], and the usage of AI
exhibits super-linear growth across academic disciplines [6].
Digitalization and Big Data. The success of AI technology as means for
automatic intelligent data processing has never been more needed, considering
the vast digitalization and sensor deployment in society, which results in huge
amounts of information to be analyzed. This has sparked the interest in the
field of Big Data, defined as the collection of methods for storing, processing,
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and analyzing extremely large data sets to reveal patterns, trends, and associa-
tions, especially relating to human behavior and interactions. Big Data is often
associated with its three V’s, by which it is typically characterized, namely its (i)
Volume, (ii) Variety, and (iii) Velocity. As digitalization continues to progress
rapidly, so do also the challenges associated with the three V’s, including the
need for increasingly complex AI models that can analyze it, and consequently
also for efficient infrastructure and implementations of such models to scale.

Indeed, data is the new oil. It is increasingly common to come across the
comparison between the significance of data in modern society and the impact
that oil has had during the last century. The two indeed resemble one another
in many ways, some of the most prominent being (i) how value is extracted
through careful refinement processes, (ii) utilization for higher efficiency in
industrial processes, (iii) increase in quality of life through products for pri-
vate use. Although the inadvertent environmental impact of oil is well-known
nowadays, the strong resemblance of also this aspect to Big Data is scarcer in
literature. Analogous to oil, the processing and consumption of also data has
an increasingly substantial impact on the global environment; Increasing con-
sumption of computational resources for data processing necessitate analogous
energy consumption, sometimes disproportionately high to common belief [7,8]
For instance, it has been estimated that training a single AI language model
can emit close to 300,000kg of carbon dioxide equivalent, which is nearly five
times the lifetime emissions of an average car, including its manufacture [9].
Consequently, along with rapidly growing complexity of AI models, super-linear
growth in the environmental footprint of them exhibits similar trends [6]. This
is significant, in particular when considering that since 2012, the amount of
computing power used by state-of-art AI models has grown exponentially with
a 3.4-month doubling time1 [10], and expectations of associated increasing
environmental impact cannot reasonably be excluded.

New challenges. As opposed to oil, which is a finite resource, the global
estimated volume of digital data exhibits exponential growth at an astounding
rate (Figure 1.1), and this trend has no end in sight [11]. As a consequence,
there is an associated critical demand for scalable computing infrastructure for
AI to analyze it. In addition to scalability, such AI infrastructure must cope
with several substantial technical difficulties, stemming from the fact that data
is typically stored in isolated depots, and associated with strict data privacy
concerns. In fact, where data privacy is most critical is often where advances in
automated data analysis with AI is needed the most, e.g., competition-critical
business operational data, power consumption patterns in smart grids, and
sensitive medical data of private individuals. The associated technical solutions
face additional heavy resistance from growing administrative measures for data
privacy, including the General Data Protection Regulation (GDPR) of the
European Union, as every privacy-concerned EU-citizen knows the tedious
process of unticking a long list of data-sharing options. However, privacy
concerns of data owners must be taken seriously, and any viable technical
solution must adhere to them. The above challenges associated to scalability
and security constitute major driving factors for finding methods that better
utilize parallel and distributed computing infrastructure for AI, since it can

1In comparison, Moore’s law exhibits a mere 2-year doubling period
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Figure 1.1: Global volume of created digital data (ZB) during the last decade,
and forecasts until 2025 [11].

contribute to solving both. Such methods, showing promising potential for
data privacy in particular, have started to appear within the recently popular
Federated Learning (FL) paradigm, in which the training of AI models, i.e.,
the Machine Learning (ML), is done in parallel across distributed data depots
where the data is located. The locally trained AI models, which encode the
knowledge gained from the data associated to individual depots, are shared and
aggregated with the effort to construct a global AI model. FL indeed eliminates
the need for data sharing, however the paradigm gives rise to critical research
questions regarding the implementations of the underlying ML algorithms that
actually train the AI models, in particular their scalability, since they are not
always trivially parallelizable.
ML – under the hood. The numerical iterative optimization algorithm
Stochastic Gradient Descent (SGD), the credit for which is usually attributed
Augustin-Louis Cauchy who first proposed it in 1847, is the backbone of the
many successful modern ML algorithms. Through efficient processing of data in
random batches, SGD enables training a variety of AI models, including Logistic
Regression, Support Vector Machines, and the recently popular Artificial Neural
Networks (ANN). However, SGD dates back to long before computers were
used in practice, not to mention ones capable of parallel processing. SGD is in
fact, like many other iterative algorithms, highly sequential in its nature. This
is due to that the computation associated with each iteration is dependent on
the outcome of the previous one. However, everything considered, i.e., rapidly
growing (i) computational demands (the three V’s), (ii) complexity of AI models,
as well as (iii) data privacy concern and distribution of data, the community
must work towards finding solutions to parallel and federated learning in
order to fully utilize contemporary hardware, and increased connectivity and
distributed computing resources.
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“When we start talking about parallelism and ease of use of truly
parallel computers, we’re talking about a problem that’s as hard as
any that computer science has faced. ... I would be panicked if I
were in industry.”

John L. Hennessy — Stanford President (2006)

Trends in systems and networks. The above quote, by the previous
President of Stanford, John L. Hennessy, is from the beginning of this century,
when the end of Moore’s law was growing more apparent. The amount of
processing power that a single integrated circuit could bring was approaching a
limit, and improvements in performance were increasingly difficult and expensive
to achieve. As a result, the microprocessor manufacturing industry shifted
from the pattern of increasing the performance of conventional sequential
processors, to focus instead on equipping processing chips with a higher number
of cores [12]. In the meanwhile, the growth of the IoT paradigm, with vast
networks of connected physical devices equipped with data-collecting sensors
and processing ability, started accelerating at unprecedented rates [13]. The
new “law” that emerged was consequently one of exponentially growing number
of parallel computational workers, either as (i) processors in computing chips,
or (ii) nodes in distributed computing networks. Ever since, it has been
the privilege of the software development community to solve the numerous
problems arising in the field of parallel and distributed programming, in the
strive to fully utilize the new generation computing infrastructure. The interest
in the field has increased rapidly due to the significant performance gains that
it can entail, and while the hardware community continuously challenges with
new computing infrastructure, so does also the software community challenge
by constructing the parallel algorithms that master it.
Parallel SGD today. The sequential nature of SGD, and other iterative
methods like it, leaves two options for parallelization, namely (i) that parallelism
is allowed only during each individual iteration and synchronizing at the end
in a lock-step manner, (ii) or relaxing the semantics of the original algorithm.
These options are both viable approaches to parallelization of SGD and are
known as synchronous and asynchronous SGD (SyncSGD and AsyncSGD),
respectively. Among the two, SyncSGD is significantly more widely adopted —
in fact, the principle of averaging workers’ partial result after each iteration is
used on many levels of applications, ranging from standard GPU-accelerated
ML libraries on private desktop computers, to the standard federated averaging
FL approach on high-end distributed cloud infrastructure. In addition to its
simplicity in implementation, an important reason for the wide adoption of
SyncSGD is that it is understandable; As pointed out already in [14], “If all
processors communicate to each other their partial results at each instance
of time and perform computations synchronously, the distributed [or parallel]
algorithm is mathematically equivalent to a single processor (serial) algorithm
and its convergence may be studied by conventional means”. However, it is
easy to realize that the synchronous parallelization approach suffers limitations
in scalability. This is due to the fact that each iteration is only as fast as
the slowest contributing worker. Hence, slow workers, i.e., stragglers, present
particularly in heterogeneous computing environments, can significantly impact
the convergence time. On the other hand, asynchronous approaches alleviate
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this limitation, and show improved scalability in many practical applications.
However, the reduced inter-worker coordination that asynchrony entails breaks
the semantics of the original SGD algorithm and leads to several critical
questions; Among the most important are (i) how the convergence rate is
affected, and (ii) what impact asynchronous parallelization of SGD has on the
consumption of computing resources. Moreover, the degree of synchronization
that is still required, such as when accessing shared variables in shared-memory
contexts, becomes a focal point. For example, degradation in convergence due
to lock-free inconsistent access is a risk, depending on the application. This can
be avoided with consistency-enforcing mechanisms, one option being locking,
however it is unclear whether or not it is worth the computational overhead it
introduces in practice. Similarly to how the massively parallel implementation
of the Deep blue chess computer was integral for it constituting a milestone in
early AI development, also today, as introduced above, parallelism is crucial
for modern ML deployments.

Despite the many challenges that are observable today, the parallel comput-
ing paradigm will surely continue to be crucial for the continued progress of AI
in the years to come, just like new challenges will surely arise – the quote by A.
Turing in the initial pages of this thesis remains, and will remain, true: “We
can only see a short distance ahead, but we can see plenty there that needs to
be done.” —Alan Turing, 1950
Thesis objective. Results on asynchronous parallelism in iterative optimiza-
tion for ML were not widely reported until the beginning of the last decade,
when the interest in the topic started growing significantly along with the
increased demand for scalable AI. Since then, AsyncSGD has shown promis-
ing potential to achieve scalable speedup in certain contexts, however several
fundamental questions remain regarding the usefulness of the method in prac-
tice. This thesis identifies and explores relevant knowledge gaps of AsyncSGD
in previous literature and proposes technical solutions that enable efficient
utilization in relevant application areas. To achieve the above, the thesis
focuses particularly on (i) formalization of key concepts associated to Async-
SGD , (ii) extending analytical convergence results under realistic theoretical
assumptions, (iii) develop algorithmic adaptations that accommodate for the
unique challenges associated to asynchrony, (iv) realistic empirical evaluation
on benchmarks relevant for practical applications.
Thesis structure. The remainder of the Overview chapter covers prelim-
inary theoretical foundation and metrics of interest related to SGD and its
application in ML (Section 1.2), background of approaches to parallel SGD
and current state-of-art (Section 1.3), a summary of relevant research questions
(Section 1.4), and the main contributions of this thesis to address them (Section
1.5). The chapters that follow consist of the published articles associated with
this dissertation, where adaptations in notation have been made for the purpose
of unification across the chapters; A full list of the adopted nomenclature is
available in Table 1.1.
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Table 1.1: List of symbols used throughout this thesis.

Symbol Meaning

Optimization

L Non-negative loss function
ϵ Precision threshold for convergence
θi AI model, i.e., vector of trainable parameters, at iteration i

d Equals |θ|, i.e., optimization problem dimension
D Dataset used for training
Bi Mini-batch of data sampled randomly from D in iteration i

b Mini-batch size b = |B|
ηi Step size in iteration i

η Step size, constant throughout execution
∇L̃(θ), ∇LB(θ) Stochastic gradient of L at θ, computed over a random mini-batch

µ Momentum parameter

Parallelism

i Iteration number
t Wall-clock time
m̂ System maximum parallelism level
∆ Update to the shared state by a worker
τ Staleness, defined as the number of applied concurrent updates
τ̂ Assumed maximum system staleness τ̂ = maxi τi

vi The view of a worker when applying an update, vi = θi−τi
m∗C Computational saturation point
m∗S System saturation point

ANN

y(x : θ) Output computed based on input x and parameters θ

ŷ(x) Label for x

o(l) Output vector of layer l

σ Non-linear activation function

1.2 SGD for machine learning
In this section, SGD is introduced, in particular in the context of ML applica-
tions. Examples of such applications relevant for this thesis are introduced as
well, including different types of ANN layers. Moreover, metrics of interest are
defined, including a discussion on a useful decomposition of them, particularly
useful as KPIs when evaluating new implementations of parallel ML methods.

1.2.1 Stochastic gradient descent
SGD in ML. SGD is a first-order iterative numerical optimization algorithm,
which follows:

θi+1 = θi − η∇L̃(θi) (1.1)

given an optimization problem

minimize
θ∈Rd

LD(θ) (1.2)

where (i) D is a data set to be processed, (ii) θ ∈ Rd is an AI model that
encodes the learned knowledge from D for a specific task and (iii) L̃ are random
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Figure 1.2: Stochastic Gradient Descent is a first-order iterative numerical
optimization algorithm which repeatedly steps in the direction of steepest
descent, following the slope of the target function.

observations of the target function L : Rd → R+ which quantifies the loss of θ
on D, and (iv) η is the step size – a hyper-parameter that typically needs to
be tuned to individual applications for SGD to be effective. The initialization
point θ0 is chosen at random according to some distribution, which as one might
expect may significantly impact the convergence [15]. A random observation
L̃ of L in iteration i is acquired by evaluating θi on a subset, or mini-batch,
Bi ⊂ D, sampled uniformly at random, i.e., L̃(θi) = LB(θi).

The SGD iteration (1.1) repeatedly adjusts the model θ along the negative
gradient of L, the direction of which constitutes the one of steepest descent. The
convergence trajectory hence corresponds to the slope of the target function
(see Figure 1.2). The iteration (1.1) is repeated until a solution θ∗ of sufficient
quality is found, typically LD(θ∗) < ϵ, referred to as ϵ-convergence.

Benefits of SGD. In the context of data processing, the original deterministic
counterpart Gradient Descent (GD) to SGD sets B = D, i.e., considers the
entire data set in every iteration. The stochastic element of SGD due to random
data sub-sampling entails two major benefits: (i) sampling and processing only
small mini-batches enables significantly faster iterations and (ii) the algorithm
is effective on non-convex target functions, as opposed to GD. However, SGD
introduces a new hyper-parameter, namely the batch size b = |Bi|, which
relates to the level of sampling variance, i.e., the level of stochasticity or noise
in the convergence trajectory.

SGD with momentum. While a certain degree of noise is necessary for
enabling convergence in non-convex settings, it can be fatal when too high,
causing endless sporadic oscillation about the initialization point θ0. In practice,
b consequently requires careful tuning. A widely established method for reducing
such oscillation, while maintaining the stochasticity as necessary, is Momentum-
SGD (MSGD), defined as follows:

θi+1 ← θi + µ(θi − θi−1)− η∇LB(θi) (1.3)

for some momentum parameter µ ∈ [0, 1]. Momentum has become known
to significantly accelerate the convergence of SGD in many practical settings.
Especially for target functions which are irregular and asymmetric in its shape,
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Figure 1.3: The input o(0) to a multi-layer ANN undergoes several transfor-
mations which are parameterized by the components of θ, namely θ(l,n,w)[j]
denoting the jth component of the transformation weight associated with the
nth neuron of the lth layer.

forming narrow valleys. Such irregularities are in particular known to arise in
deep learning applications.

1.2.2 Artificial neural networks

Deep Learning (DL), i.e., deep Artificial Neural Network (ANN) training,
the training of which is enabled by SGD, is a major component of many
recently successful AI models, including DeepMind ’s AlphaGo [3], Google’s
LaMDA [4], ChatGPT from OpenAI, among others. At the core, ANNs are
computational structures inspired by the biological brain and consist of many
fundamental units referred to as neurons. They consist of several layers of
non-linear transformations that process the input data in consecutive steps (see
Figure 1.3). Each layer is parameterized by a weight matrix and a bias vector,
both constituting part of the parameter vector θ, which is learned through the
optimization process (1.1). The input data, e.g., an image, to be analyzed by the
ANN is provided as initialization to the first layer. After processing throughout
the layers, this results in some output in the last layer, corresponding to e.g.,
the predicted class of the input image. Different topological properties, such as
connectivity among neurons, give rise to a diverse set of neural architectures.
Among the most commonly used are Multi-Layer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs):

• MLPs consist of densely-connected layers, each applying a non-linear
transformation of its input and passing the result on to the next layer:

o(l)n = σ

|Nl−1|−1∑
j=0

θ(l,n,w)[j] · o(l−1)j + θ(l,n,b)


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where o
(l)
n is the output of neuron n ∈ {0, . . . , Nl − 1} in the l-th layer, σ

is a non-linear activation function, typically the ReLU function σ(x) =
max(0, x), and θ(l,n,w), θ(l,n,b) contains the learnable weights and bias
parameters of to the n-th neuron.

• CNNs consist of layers that convolve the input with learnable filters for
feature detection:

o
(l)
n,f = σ

 k∑
j=0

θ(l,f,w)[j] · o(l−1)n+j + θ(l,f,b)


for a number of filters f , corresponding to a 1D convolution. This can
be naturally extended to 2D, with filter matrices being convolved with
the input in both axes. Convolutional layers are sparsely connected and
reduce the number of weights to be learned. They are especially efficient
for analysis of image (or other spatially dependent) data due to the
translation-invariant property of feature detection with convolution.

Convolutional layers are often used in combination with MaxPool layers, which
pick the maximum output of a number of consecutive neurons as the output
of the layer. This is meant to leverage detection of relevant features, as well as
significantly reduce its dimension. It will hence also decrease the total number
of learnable weights. In the last, output, layer of an ANN, the softmax activa-
tion function σj(x) = exj/

∑|x|
k=1 e

xk (e being Euler’s number) for each output
neuron j, is often used for classification problems. Its output satisfies the require-
ments of a probability distribution function, and is consequently interpreted
as such in this context, i.e., the estimated class distribution y of an input x.
The training. Given the true class label ŷ of the input x, the performance
of an ANN for classification is quantified by some error function, e.g., the
cross-entropy loss function:

L(ŷ, y(x : θ)) = −
|out|∑
j

y(x : θ)j log(ŷj)

where y is the output of the last layer, and naturally depends on the input x and
the current state of θ. The training process of an ANN now constitutes of iter-
atively adjusting θ to minimize the error function LD(θ) = 1

|D|
∑

x∈D L(ŷ, y(x :

θ)). The BackProp algorithm is used for computing ∇θL(θ), and SGD is then
used for minimizing f , and training the ANN. In every iteration the input is
selected at random, either as single data point or as a mini-batch over which
the error is averaged.

1.2.3 Metrics of interest
Metric decomposition. The implementation of any algorithm affects its
performance and usefulness in practice. When it comes to SGD, or any
other iterative optimization algorithm for that matter, the performance is
influenced by many aspects of the implementation as well as the system on
which it is executed. As described in [16] (and Chapter B in this thesis)
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a useful decomposition of the performance is to consider the statistical and
computational efficiency, defined as follows:

(i) Statistical efficiency measures the number of SGD iterations required
until reaching ϵ-convergence.

(ii) Computational efficiency measures the number of iterations per time
unit.

Convergence. The overall convergence time, i.e., the wall-clock time until ϵ-
convergence (when L(θ∗) < ϵ), is the most relevant in practice. The convergence
rate, in this context referring to the instantaneous rate of change of the loss
function L, i.e., ∂L

∂t is closely related, where t denotes wall-clock time. As also
pointed out in [16], the convergence rate is essentially the product:

convergence rate = statistical efficiency× computational efficiency

A similar conclusion is reached in Chapter D by more formal means, however
reaching a more precise description, by using the chain rule as follows:

∂L

∂t
=

∂L

∂i

∂i

∂t
(1.4)

where the right-hand side factors correspond exactly to the statistical and
computational efficiency, respectively. When proposing new algorithms (or
altering existing ones) in this application domain that potentially change the
computational efficiency, it is advisable to not only evaluate the statistical
efficiency, by counting the iterations until convergence. One must in general
consider these metrics in conjunction and measure the overall convergence rate.
Ideally, they should also be measured separately, as this is the only way to
truly understand from where potential improvements originate.

The aforementioned metrics become particularly important in the context of
parallel algorithms for iterative optimization, since depending on the method for
parallelization, such algorithms often have significant impact on computational
and statistical efficiency, as shall be seen in the following.

1.3 Parallel SGD
Motivation. With rapidly growing demands for data analysis, there is an
increasing interest in achieving the necessary scalability by utilizing parallel
algorithms for SGD, capable of utilizing modern many-core processing in-
frastructure as well as large clusters of distributed computing networks, e.g.,
Federated Learning. While parallelism can improve computational efficiency,
simply by applying a greater number of updates in each unit of time, the
impact on the statistical efficiency, and thereby the overall convergence rate,
is unpredictable. This follows from that the original SGD algorithm is inher-
ently sequential, requiring the computation of each iteration to be completed
in order to perform the computation of the next. Parallelization of SGD is
consequently non-trivial, and requires synchronization in every iteration (prior
to applying an update) in order to maintain the original sequential semantics of
SGD. Alternatively, workers can execute the SGD algorithm, i.e., accessing and
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updating the shared state θ, asynchronously, although this approach breaks the
sequential semantics. These approaches correspond to two main directions of
methods for parallel SGD, referred to as synchronous and asynchronous. In this
context, methods with varying degree of asynchrony have been proposed within
the spectrum that emerges, several of which can be considered particularly
representative ones, due to their requirements on synchronization, staleness,
and other consistency and progress guarantees.
Multi-dimensionality of parallelism. In addition to that methods for par-
allel SGD are placed along the synchrony-asynchrony spectrum, some address
specifically shared-memory contexts, where workers are parallel processes in
the same node, while others target implementations for distributed networks of
collaborative workers nodes, such as in FL. Moreover, centralized vs. decen-
tralized parallel SGD is another dimension of interest, however orthogonal to
the previous two to a large extent. Although decentralization can be of some
relevance in shared-memory contexts, in particular for improving consumption
of computing resources and memory, it is mostly researched in the context of
distributed computing, targeting e.g., reduced communication overhead and
need for trusted third parties, particularly relevant in FL settings [17].
Establishing unified terminology. There are several representative meth-
ods for parallel SGD, which employ fundamentally different mechanisms for
synchronization. There is however a terminological inconsistency in the lit-
erature of this domain, with opposing notions of consistency and progress
guarantees. For instance, the properties wait-freedom and inconsistency have
been attributed to parallel algorithms for SGD due to the presence of asyn-
chrony in the update aggregation [18, 19], while in other contexts lock-freedom
refers, somewhat more traditionally, to progress guarantees for concurrent
operations on the shared state [20]. The inconsistency in notation stems from
the fact that parallelization of an iterative algorithm, such as SGD, has at
least two different types, or dimensions, of synchronization. The first relates
to how updates (denoted by ∆) are aggregated (if at all) and is referred to
as the coarse-grained synchronization dimension. The second relates to the
fine-grained synchronization for operations on the shared state, such as read-
ing or applying an update. Although it is theoretically imaginable that the
fine-grained dimension be of interest in distributed settings, for instance in dis-
tributed shared memory settings, it has not been explored in practice. Instead,
the above terminology relating to the coarse-grained dimension is exclusively
used in distributed settings, while the fine-grained is used in shared-memory
ones. Hence, different works typically explore one of these dimensions, or the
other, and since both are explored within the scope of this thesis, a consis-
tent notation is adopted in following, which distinguishes the two. In the
coarse-grained (∆) dimension, we have:

∆-Progress describes synchronization mechanisms regulating how updates
are aggregated. Examples of such progress properties include computing
a global iteration by averaging the update contributions from a certain
number of workers, once-in-a-while synchronization, etc. An algorithm
which does not employ such aggregation is referred to as asynchronous
(Figure. 1.5), as opposed to synchronous (Figure. 1.4) ones which e.g.,
aggregate updates by averaging them in a lock-step manner.



12 CHAPTER 1. THESIS OVERVIEW

Table 1.2: Adopted terminology regarding properties of concurrent operations.

Meaning
Lock-freedom System-wide throughput, allows starvation
Wait-freedom System-wide throughput with starvation-freedom
Consistent Read operations return a consistent snapshot

Table 1.3: Consistency and progress guarantees for different methods for parallel
SGD.

Synchronous Hybrid Asynchronous
∆ Asynchronous × - - ✓ ✓ ✓

θ

Consistent ✓ ✓ ✓ ✓ × ✓

Lock-free × × × × ✓ ✓

SyncSGD [22] Stale-synchronous [23] n-softsync [24] AsyncSGD [25] Hogwild! [20] Leashed-SGD
[Chapter B]

∆-Consistency refers to conformity to a sequential execution. An algo-
rithm that allows any degree of asynchrony is typically not consistent
with a sequential execution, hence not ∆-consistent.

There is a strong dependency between ∆-Progress and ∆-Consistency, since
stronger progress requires higher degree of asynchrony and staleness, which
entails higher deviation from a sequential execution. The second dimension
relates to shared-memory parallelism contexts, and is relevant for characterizing
fine-grained synchronization for operations on the shared state θ. Here, the
following notation is introduced, with the aim to conform also to standard
notation (summarized in Table 1.2) in established literature on concurrent
implementations of shared data objects [21]:

θ-Progress refers to progress guarantees with respect to operations on the
shared state θ, in particular read and update. This includes in particular
lock-freedom.

θ-Consistency refers to the consistency model for operations on the shared
state θ, including in particular consistent read operations, as defined in
Table 1.2.

For the remainder of this thesis, in order to distinguish between different
concepts and conform to standard notation to the greatest extent possible,
the terms progress and consistency shall be used in the latter sense, i.e., with
respect to operations on the shared state θ. The coarse-grained dimension of
synchronization of the updates (∆) is primarily referred to as asynchrony. In
table 1.3, an overview is provided of some of the representative methods in the
literature, on the synchrony-asynchrony spectrum, which are relevant within
the scope of this thesis, and more detailed descriptions of these are provided in
the following (Section 1.3.1 and 1.3.2).
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Figure 1.4: In SyncSGD the workers’ individual updates are aggregated by
averaging, after which a global iteration is performed. SyncSGD essentially
corresponds to parallelization on the gradient computation level.

1.3.1 Synchronous parallel SGD

SyncSGD rundown. Synchronous parallel SGD (SyncSGD) is a straight-
forward lock-step-style parallel implementation of SGD, in which workers access
the shared state θ, then compute updates based on individual randomly sampled
data-batches and synchronize by averaging the resulting gradients before taking
a global step according to (1.1) [22], see Fig. (1.4). Today, SyncSGD is widely
adopted – in fact, the principle of averaging workers’ partial result after each
iteration is the core of parallelization on many levels of applications, ranging
from standard GPU-accelerated ML libraries on private desktop computers,
to the standard federated averaging FL approach [26] on high-end distributed
cloud infrastructure. In the original version, SyncSGD is statistically equivalent
to sequential SGD with larger mini-batch size, as observed empirically in [27],
and shown by more analytical means in Chapter A, and can be considered a
method for accelerated gradient computation. Hence, the original SyncSGD
approach does not break the semantics of the sequential SGD algorithm, and the
vast empirical results and theoretical convergence guarantees in the literature
entail predictable performance of SyncSGD . As pointed out already in [14], “If
all processors communicate to each other their partial results at each instance
of time and perform computations synchronously, the distributed [or parallel]
algorithm is mathematically equivalent to a single processor (serial) algorithm
and its convergence may be studied by conventional means”. A comprehensive
overview of methods along this approach is provided in [28]. However, SyncSGD
has inherent limitations in scalability, since the presence of slower workers, i.e.,
stragglers, become bottlenecks due to the fact that each SGD iteration is only
as fast as the slowest contributing worker. Some hybrid approaches, which
allow a certain degree of asynchrony, aim to alleviate such bottlenecks, and
some representative works are highlighted in the following.
Hybrid approaches. Stale-synchronous parallel (SSP) SGD relaxes the
strict synchronous semantics of SyncSGD , allowing faster workers to asyn-
chronously compute a bounded number of SGD steps based on a local version
of the state before synchronizing [23]. This method is particularly useful in
heterogeneous computing systems, where stragglers are kept in check. SSP has
been proven useful for distributed DL applications, e.g., in [29] where a method
for dynamically adjusting the staleness threshold is proposed, enabling improve-
ments in computational efficiency. From a progress perspective, note that the
original SyncSGD as well as SSP provide weak progress guarantees, since in
the presence of halting workers, the system as a whole will halt indefinitely in
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the synchronization step. This is partially addressed by the n-softsync protocol,
which is a further relaxed variant of SyncSGD with partial synchronization,
requiring only a fixed number n of workers to contribute a gradient at the
synchronization point. As opposed to SSP, there is no bound on the maximum
staleness. Introduced originally in the context of centralized distributed SGD
with a parameter server [24] [27], the recent work [18] implements similar
semantics in a decentralized setting utilizing a partial-allreduce primitive
which atomically applies the aggregated updates and redistributes the result.
Limitations. The computational scalability limitation of SyncSGD due to
stragglers, in particular in heterogenous computing environments, can be allevi-
ated to some extent through the aforementioned hybrid approaches. However,
the observation made in Chapter A, as well as in [27], namely that increased
synchronous parallelism in SGD is statistically equivalent to sequential SGD
with larger batch sizes, constitutes yet another scalability limitation. This
stems from the fact that the batch size, as highlighted in Section 1.2.1, corre-
sponds to a critical element of SGD, namely its stochastic variance, which in
appropriate magnitudes enable effectiveness on non-convex applications. How-
ever, when not tuned properly to the problem at hand, it can severely impact
the quality of the models that SGD executions outputs, in particular in terms
of generalizability [30], as well as the quality of the convergence trajectory in
general [31] [32]. Hence, it is necessary to explore additional tiers of parallelism,
that can enable extended scalability – and many promising solutions can be
found among asynchronous methods.

1.3.2 Asynchronous parallel SGD

Figure 1.5: AsyncSGD parallelizes the SGD iterations, allowing asynchronous
read (R) and update (U) operations on the shared state.

Highlights. Asynchronous parallel SGD (AsyncSGD) removes the gradient
averaging synchronization step, allowing workers to access and update the
shared state asynchronously. Consequently, while an update is being computed
by one worker, there can be concurrent updates applied by others. Hence,
AsyncSGD follows:

θi+1 ← θi − η∇̃f(vi) (1.5)

where vi = θi−τi is a worker’s view of θ and τi is the number of concurrent
updates, which defines the staleness. Updates are consequently generally
computed based on states which are older than the ones to which the updates
are applied. The resulting overall impact on the convergence trajectory is
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referred to as asynchrony-induced noise (AIN), and affects, together with the
overall distribution of the staleness observations τi, the statistical efficiency.
The notion of AIN is mentioned is several related previous works, however a
formal definition has not been proposed.
Orthogonality. Note that, while SyncSGD adheres to the original sequential
semantics of SGD and is consequently equivalent to accelerating the gradient
computation, the same does not hold for AsyncSGD . Instead, AsyncSGD
provides an additional layer of parallelism, which relaxes the sequential SGD
semantics, with inherent consequences to computational and statistical efficiency.
Since the two paradigms impact distinct levels of parallelism, they can be used
in conjunction, in particular by allowing asynchronously parallel workers to
individually engage in synchronous parallelization of the gradient computation.
Computational vs. statistical efficiency. AsyncSGD almost surely en-
ables increased computational efficiency with higher parallelism, as discussed
in Section 1.2.3, however, only up to a point where contention due to con-
current shared-memory access attempts becomes too severe, in accordance
with Amdahl’s law. We denote the corresponding number of workers by m∗C ,
referred to as the computational saturation point, and at this point the system
stagnates, and additional computing workers provide no additional speedup.
In addition, the presence of staleness and AIN in AsyncSGD , and the resulting
deviation from the original sequential semantics of SGD, results in decay in
statistical efficiency, which grows as more workers are introduced to the system
(see Section 1.2.3). Over-parallelization may thereby not only be redundant,
but in fact harm the statistical efficiency, with potentially dire consequences
on the overall convergence rate, or even non-converging or crashing executions.
The resulting trade-off between computational and statistical efficiency (1.4)
requires careful tuning of the level of parallelism (number of workers) m. The
appropriate choice of m depends heavily on the properties of the optimization
problem itself, as well as the choice of other hyper-parameters. In addition,
previous literature exclusively assumes that the appropriate parallelism choice
in AsyncSGD is constant, which is not necessarily the case.
Seminal works. The research direction of asynchronous iterative optimiza-
tion is not new and sparked primarily due to the works by Bertsekas and
Tsitsiklis, e.g., [33] and [34]. In those works, several highly relevant observa-
tions regarding asynchronous parallelization were highlighted, including for
instance a characterization of different degrees of asynchrony, and predicts
that it will imply reduced waiting, in particular under heterogeneity. In [34] in
particular, the following is concluded: “very strong evidence suggesting that
asynchronous iterations converge faster than their synchronous counterparts”.
Other predictions include usefulness of roll-back compensation, as well as ring-
based communication topology in AsyncSGD , bearing strong resemblance to
recently proposed approaches for delay compensation [35] and access pattern-
efficiency in NUMA architectures [36], respectively. Such seminal works, in
turn, build upon the early works by Jack L. Rosenfeld [37], as well as Dan
Chazan and Willard Miranker [38], where asynchrony, initially referred to as
chaotic relaxation, was first proposed as means to scale sequential iterative
algorithms, at the time in the context of solving ordinary differential equations.
AsyncSGD and momentum. More recently, Chaturapruek et al. [25]
show that, under several analytical assumptions such as convexity (linear and
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logistic regression), the convergence of AsyncSGD is not significantly affected
by asynchrony and that the noise introduced by staleness is asymptotically
negligible compared to the noise from the stochastic gradients. In [39] Lian
et al. show that these assumptions can be partially relaxed, and it is shown
that convergence is possible for non-convex problems, however with a bounded
number of workers, and assuming bounded staleness. Several works have
followed, aiming at understanding the impact of asynchrony on the convergence.
In [40] Mitliagkas et al. show that under certain stochastic staleness models,
asynchronous parallelism has an effect on convergence similar to momentum.
In [41] Mania et al. model the algorithmic effect of asynchrony in AsyncSGD
by perturbing the stochastic iterates with bounded noise. Their framework
yields convergence bounds which, as described in the paper, are not tight, and
rely on strong convexity of the target function. In the recent [19] Alistarh
et al. introduces the concept of bounded divergence between the parameter
vector and the workers’ view of it, proving convergence bounds for convex and
non-convex problems.
AsyncSGD and lock-freedom. Hogwild! [20], introduced by Niu et
al., implements AsyncSGD with guarantees on lock-freedom (θ-progress) with
respect to the shared state θ. This is achieved in a straight-forward manner by
allowing uncoordinated, component-wise atomic access to the shared state θt,
as opposed to traditional consistency-preserving access implemented with locks.
This significantly reduced the computational synchronization overhead and
was shown to achieve near-optimal convergence rates, assuming sparse updates.
AsyncSGD with sparse or component-wise updates has since been a popular
target of study due to the performance benefits of lock-freedom [42] [43]. De Sa
et. al [44] introduced a framework for analysis of Hogwild!-style algorithms for
sparse problems. The analysis was extended in [45], showing that due to the lack
of θ-consistency of Hogwild! (i.e., read operation includes partial updates)
the convergence bound increases with a magnitude of

√
d when relaxing the

sparsity assumption. This indicates in particular higher statistical penalty
for high-dimensional problems. This motivates development of algorithms
which, while enjoying the computational benefits of lock-freedom, also ensure
consistency, in particular for high-dimensional problems such as DL. In [16]
a detailed study of parallel SGD focusing on Hogwild! and a new, GPU-
implementation, is conducted, focusing on convex functions, with dense and
sparse data sets and comparison of different computing architectures.
AsyncSGD for DL. In [46] the focus is the fundamental limitation of data
parallelism in ML. They observe that the limitations are due to concurrent
SGD parameter accesses, during ML training, usually diminishing or even
negating the parallelization benefits provided by additional parallel comput-
ing resources. To alleviate this, they propose the use of static analysis for
identification of data that do not cause dependencies, for parallelizing their
access. They do this as part of a system that uses Julia, a script language that
performs just-in-time compilation. Their approach is effective and works well
for e.g., Matrix factorization SGD. For DNNs, as they explain, their work is
not directly applicable, since in DNNs permitting “good” dependence violation
is the common parallelization approach. Asynchronous SGD approaches for
DNNs are scarce in the current literature. In the recent work [47], Lopez et
al. proposes a semi-asynchronous SGD variant for DNN training, however
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requiring a master thread or node synchronizing the updates through gradi-
ent averaging and relying on atomic updates of the entire parameter vector,
resembling more a shared-memory implementation of parameter server. In [48]
theoretical convergence analysis is presented for SyncSGD with once-in-a-
while synchronization. They mention that the analysis can guide in applying
SyncSGD for DL, however the analysis requires strong convexity of the target
function. [49] proposes a consensus-based SGD algorithm for distributed DL.
They provide theoretical convergence guarantees, also in the non-convex case,
however the empirical evaluation is limited to iteration counting as opposed to
wall-clock time measurements, with mixed performance positioning relative to
the baselines. In [50] a topology for decentralized parallel SGD is proposed,
using pair-wise averaging synchronization.
Asynchrony-adaptive SGD. Delayed optimization in asynchronous first-
order optimization algorithms was analyzed initially in [51], where Agarwal et
al. introduce step sizes which diminish over the progression of SGD, depending
on the maximum staleness allowed in the system, but not adaptive to the
actual delays observed. Adaptiveness to delayed updates during execution
was proposed and analyzed in [52] under assumptions of gradient sparsity
and read and write operations having the same relative ordering. A similar
approach was used in [24], however for synchronous SGD with the softsync
protocol. In [24] statistical speedup is observed in some cases for a limited
number of worker nodes, however by using momentum SGD, which is not the
case in their theoretical analysis, and step size decaying schedules on top of the
staleness-adaptive step size. In [53], AdaDelay is proposed, which addresses a
particular constrained convex optimization problem, namely training a logistic
classifier with projected gradient descent. It utilizes a network of worker nodes
computing gradients in parallel which are aggregated at a central parameter
server with a step size that is scaled proportionally to τ−1. The staleness model
in [53] is a uniform stochastic distribution, which implies a strict upper bound
on the delays, making the system model partially asynchronous.
Asynchronous Federated Learning Recently, introducing an increased
degree asynchrony in federated contexts has gained traction, primarily as a
solution to the inherent heterogeneity of such contexts due to the emergence of
scalability bottlenecks, analogous to the ones highlighted in Section 1.3.1. An
extensive overview of such methods is provided in [54]. However, the existing
approaches are partially asynchronous, in the spirit of the aforementioned hybrid
approaches, and consequently cannot fully utilize the computational benefits of
asynchronous computation. This is not surprising, considering the substantial
knowledge gaps of the dynamics of AsyncSGD on practical applications in
simpler shared-memory and distributed contexts, hence deployment in wide
federated contexts naturally poses additional critical challenges.

1.4 Research problems and state of art

Limitations of synchrony. In SyncSGD , stragglers become bottlenecks,
making every iteration only as fast as the slowest worker. This issue can
however partially be reduced through relaxed semantics, such as SSP and the
n-softsync protocol (See section 1.3). Moreover, the convergence of SyncSGD
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under increasing parallelism is statistically equivalent to sequential SGD with
a larger mini-batch size b [27], which is a hyper-parameter that requires careful
tuning depending on the problem. In particular, the convergence can suffer
if b is too large [31] [32]. Moreover, in distributed settings, such as in FL
applications, synchronous distributed SGD rounds entails a significant com-
munication overhead, which, in addition to the above statistical scalability
limitation, is a contributing factor as to why such rounds typically employ only
a limited number of federated worker nodes. As discussed also in section 1.3.1,
the above considerations indicate limited scalability, as over-parallelization will
impose large-batch properties, which in some cases worsens the convergence [27]
of SyncSGD . This motivates further exploration of asynchronous parallelism
as a complement to SyncSGD for improved scalability and overall efficient
utilization of contemporary computing infrastructure.
Staleness and asynchrony-induced noise. AsyncSGD eliminates many
scalability bottlenecks of SyncSGD due to reduced inter-worker coordination
(stronger ∆-progress guarantees), however this also introduces other challenges
related to asynchrony. As discussed in section 1.3.2, asynchronous access to,
and update of, the shared state leads to staleness, i.e., that multiple updates
occur concurrently to the gradient computation of some worker. The updates
that are applied are hence not necessarily, in fact rarely in practice, based on
the latest shared state, as captured in (1.5). The associated notion of AIN,
i.e., the asynchrony-induced noise being the overall impact of asynchrony on
the convergence trajectory of AsyncSGD , is mentioned in previous literature.
However, no explicit definition of such has been proposed, let alone any method
for measurement, leaving significant knowledge gaps in the dynamics of Async-
SGD , and its deviation from its sequential counterpart. The impact of AIN
on the statistical efficiency of the convergence is unpredictable, however some
works indicate that the number of SGD iterations to ϵ-convergence increases
linearly in the maximum staleness [44,45]. Hence, only if the gains in computa-
tional efficiency from parallelism are sufficiently great, will there be an overall
improvement in wall-clock time until ϵ-convergence. Crucial steps toward
understanding how convergence is affected in AsyncSGD due to staleness are
taken in e.g., [40], explicitly quantifying the impact of parallelism, under a
certain statistical staleness model. The results indicate that the influence of
asynchrony has an effect similar to momentum in SGD, and a reduced step size.
Parallelism tuning. There is currently no well-established way to pre-
determine appropriate parallelism ranges of a given ML problem prior to
initiating and monitoring the execution, and such are typically found through
costly extensive searches [47, 55]. Hence, without such searches, there are
significant risks of (i) under-parallelism, with unnecessarily time-consuming
executions, however more importantly (ii) over-parallelism, with the associated
impact on the convergence trajectory and increased energy consumption. In
fact, over-parallelism tends to imply higher staleness and AIN, with unstable,
fluctuating loss values as a consequence, and even diverging and crashing
executions in the worst case [51, 56]. Thus, using appropriate parallelism
is important for ensuring high convergence quality, as well as for avoiding
unnecessary consumption of computational resources, especially considering
the general energy consumption due to modern deep learning research [7].
However, in practice only a small number of executions to reach a model of
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sufficient quality can be tolerated, and exhaustive searches are excessively time
consuming, and require significant computational resources. This implies a
fatal idea-implementation gap, where on the one side AsyncSGD can provide
tremendous acceleration of DL jobs, but it is agonizingly difficult to apply in
practice. There is hence a need for AsyncSGD implementations which are
efficient on wider ranges of parallelism, and otherwise automatically adjusts it
as to increase the convergence rate, which will be discussed extensively in the
chapters to follow.
Synchronization. As a consequence of Amdahl’s law [57], when there is a
synchronization overhead, the achievable speedup is bounded. In the context
of AsyncSGD , this applies in particular for computational efficiency, i.e., how
many SGD updates can be applied in a given time unit. This implies that
there is a computational saturation point m∗C for which additional workers will
not provide additional significant computational speedup. For this statement,
as well as the ones to follow in this paragraph, empirical evidence is provided
in the subsequent chapters. Moreover, the degradation of statistical efficiency
coupled to parallelism in AsyncSGD [41,46], i.e., more iterations required to
reach ϵ-convergence, implies that at some level of parallelism, which we refer to
as the system saturation point m∗S , additional workers will no longer reduce the
wall-clock time to ϵ-convergence, and might instead even increase it. It can be
concluded that m∗S ≤ m∗C from a simple argument of contradiction, assuming
that statistical efficiency degrades with higher parallelism. This assumption is
in accordance with results in previous literature [44,45], and explored further
in subsequent chapters.
Progress and consistency guarantees for ∆ vs. θ. As previously men-
tioned, read and update operations on θ become focal in AsyncSGD , since
they constitute the remaining synchronization in the otherwise asynchronous
algorithm. This is especially the case in shared-memory contexts, and there
must be primitives in place to handle concurrent attempts to read and update
by several workers, which unavoidably become bottlenecks for scalability at
sufficiently high levels of parallelism. Traditionally, a separate thread or node
acting as a parameter server is responsible for providing the latest parameter
state to workers, as well as processing contributing gradients, sequentializing
the updates [58]. To efficiently utilize multi-core systems, this was extended to
shared-memory implementations [20, 39,42]. The access to the shared state is
then scheduled by the operating system, and regulated by some synchroniza-
tion method, such as locking, to ensure consistency in case of concurrent read
and update attempts. However, locks can be computationally expensive, in
particular when the gradient computation step itself incurs little latency. In
addition, the total time spent waiting for locks grows as more workers are intro-
duced to the system, potentially posing a scalability bottleneck. By allowing
completely uncoordinated component-wise atomic read and update operations,
i.e., Hogwild! [20], such contention is eliminated, allowing significant speedup
for sparse and convex optimization problems in particular. However, for other
problems, as summarized in Table 1.3, Hogwild! introduces inconsistency
when read and update operations occur concurrently. Such inconsistency, in
addition to the potential impact of AIN, potentially incurs further statistical
penalty; there are indications that the expected number of iterations required
to converge increases linearly in

√
d [45]. Consequently, there are challenges
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in understanding whether it is worth the computational overhead to ensure
consistency for a given problem. In addition, in such contexts it is not clear
which synchronization primitives to utilize – which are scarce; there is a lack
of middle-ground solutions in the literature in the realm in between these
two endpoints of the synchronization spectrum, i.e., the consistency-enforcing
lock-based AsyncSGD and the lock-free inconsistency-prone Hogwild!.
Benchmarking and evaluation. There are challenges in conducting empir-
ical evaluations and comparisons which are useful and fair within the domain
of parallel SGD, for several reasons: Firstly, there are several metrics of in-
terest related to convergence of SGD, the measurements of which must be
effectively aggregated as to show the overall performance. Traditionally, in
ML the statistical efficiency is the metric most used, i.e., the number of SGD
iterations until reaching sufficient performance, i.e., ϵ-convergence. However,
when improvements in statistical efficiency are achieved by altering the under-
lying algorithm, this potentially alters the computational efficiency, i.e., the
number of SGD iterations per time unit. In such cases, it is hence necessary
that evaluations take this into consideration, and ideally provide measurements
of the overall convergence rate, i.e., the wall-clock time until converging to a
solution of sufficient quality. Secondly, the parallel SGD lacks established uni-
versal procedures for benchmarking, in particular for shared-memory contexts,
leaving the task of setting up an appropriate test environment to the individual
authors. The domain contains a wide spectrum of questions, ranging from
efficient communication protocols [59] in distributed contexts, such as FL, to
exploring the impact of progress guarantees and synchronization in shared data
structures [20,45]. This renders the task of designing a universal benchmark-
ing platform for parallel SGD including such universal procedures immensely
difficult, if not impossible. The Deep500 framework [60] takes important steps
in providing such an environment, although it focuses primarily on higher-level
distributed SGD. For instance, the framework provides a Python interface
for development, which does not facilitate exploration of for instance efficient
shared data structures for fine-grained synchronization and mechanisms for
memory management.

In this thesis, critical questions among the aforementioned challenges are
addressed, as summarized in the following section.

1.5 Thesis contributions
This section highlights the key contributions of this thesis’ associated publica-
tions, appearing in the subsequent chapters.

1.5.1 Convergence of staleness-adaptive SGD
The scalability limitations of traditional synchronous parallel SGD highlighted
in section 1.4 motivate further exploration of asynchronous parallelization, i.e.,
AsyncSGD which has shown promising improvements in ability to scale for
many applications. The degradation of statistical efficiency due to staleness
is however a limiting factor, forcing the user to carefully tune the level of
parallelism in order to maintain an actual overall speedup in convergence rate,
as also highlighted in section 1.4. In Chapter A, this is addressed through
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statistical modelling of the behavior of staleness in AsyncSGD . The models,
which are proposed based on reasoning of the dynamics of the algorithm and
its dependency on scheduling, capture the staleness distribution in practice to a
high degree of precision, and more accurately than models previously proposed
in the literature.

Based on the proposed staleness models, analytical results that quan-
tify the side-effect of asynchrony on the statistical efficiency are established
(Lemma A.4.1). Moreover, the proposed models enable derivation of a staleness-
adaptive step size, referred to as MindTheStep-AsyncSGD , which provably
reduces this side-effect (Theorem A.4.5), and can in expectation, depending on
the rate of adaptiveness, alter it into the more desired behavior of momentum
(Theorem A.4.3, A.4.6). It is shown that the staleness-adaptive step size is
efficiently computable (Theorem A.4.7), ensuring minimal additional synchro-
nization overhead for maximal scalability capability, as described in section
1.4. An empirical evaluation is provided, benchmarking the proposed staleness
models and the adaptive step size for a relevant use case, namely DL for image
classification. The empirical results show in particular:

(i) Significantly improved accuracy in modelling the staleness with our
proposed models.

(ii) Reduced penalty from asynchrony-induced noise, leading to up to a ×1.5
speedup in convergence compared to baseline (standard AsyncSGD with
constant step size) under high parallelism.

1.5.2 Framework for lock-freedom and consistency

AsyncSGD significantly reduces waiting compared to SyncSGD , as explained
in the previous sections, and this holds particularly in shared-memory contexts.
However, the remaining synchronization that is needed, in particular access to
the shared state, becomes focal and constitutes a possible bottleneck. Motivated
by analytical results in previous literature that indicate computational benefits
of lock-freedom, however a statistical penalty from inconsistency and staleness,
in Chapter B Leashed-SGD (lock-free consistent asynchronous shared-memory
SGD) is proposed, which is an extensible framework supporting algorithmic lock-
free implementations of AsyncSGD and diverse mechanisms for consistency,
and for regulating contention. It utilizes an efficient on-demand dynamic
memory allocation and recycling mechanism, which reduces the overall memory
footprint. An analysis of the proposed framework is provided, particularly in
terms of safety, memory consumption, and a model of the progression of parallel
threads in the execution of SGD is proposed, which is used for estimating
contention over time and confirming the potential of the built-in contention
regulation mechanism to reduce the overall staleness distribution.

Among the analytical results for Leashed-SGD , we have in particular guar-
antees on lock-freedom and atomicity, safety and exhaustiveness and bounds
on memory consumption (Lemma B.3.1, B.3.2). Moreover, the progression of
the algorithm over time is modelled, finding in particular fixed points in the
system useful for estimating potential contention and the effect of the built-in
contention-regulating mechanism (Theorem B.4.1, Corollary B.4.2 and B.4.3).
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An extensive empirical study of Leashed-SGD with lock-free consistent
methods for synchronization is conducted, evaluating its performance for MLP
and CNN training for image classification. The empirical study focuses on
scalability, dependence on hyper-parameters, distribution of the staleness; the
study benchmarks the proposed method compared to established baselines,
namely lock-based AsyncSGD and Hogwild!. We draw the following main
conclusions from the empirical study:

(i) Leashed-SGD provides significantly higher tolerance towards the level of
parallelism, with fast and stable convergence for a wide spectrum, taking
significant steps towards addressing the scalability challenges highlighted
in section 1.4. The baselines, however, require careful tuning of the
number of threads in order to avoid tediously slow convergence and are
more prone to completely failing or crashing executions.

(ii) The lock-free nature of Leashed-SGD entails a self-regulating balancing
effect between latency and throughput, leading to an overall reduced
staleness distribution, which in many instances is crucial for convergence.

(iii) For MLP training, up to 27% reduced median running time for ϵ-
convergence is observed for Leashed-SGD compared to baselines, with sim-
ilar memory footprint. For CNN training, a ×4 speedup for ϵ-convergence
is observed, with a memory footprint reduction with 17% on average.

For the empirical study, a modular and extensible C++ framework is
developed with the purpose of facilitating development of shared-memory
parallel SGD with varying synchronization mechanisms. Hence, critical steps
are taken towards addressing the challenges (highlighted in section 1.4) that
the community faces regarding a general platform for further exploration of
aspects of fine-grained synchronization in this domain.

1.5.3 Instance-based step size adaptiveness

As highlighted above, there are significant potential benefits of adaptiveness
to asynchrony, as shown in Chapter A and B, as well as concurrent works
(see Section 1.3.2). Additionally, convergence stability is critically sensitive to
parallelism degree and progress and consistency guarantees of the algorithmic
implementation, and the mechanisms to ensure them, e.g., locking, and in
Chapter C, these aspects are studied in conjunction, in order to understand
how AsyncSGD can be utilized effectively in practice.

Moreover, the existing approaches to staleness-adaptiveness are either
(i) heuristic or (ii) model-based, and common approaches typically use straight-
forward rules, such as dampening the step size linearly, or exponentially, based
on the observed staleness. An inherent pitfall of such approaches is that the
overall magnitude of the step size is altered, which by itself will impact the statis-
tical efficiency, especially for applications which are sensitive to that parameter,
including DL. However, this is not rare in the literature, e.g., in [24, 53, 56, 61],
which exclusively diminish the overall step size. This is problematic for several
reasons, e.g., (i) it reduces applicability to step size-sensitive applications,
and (ii) it introduces ambiguity regarding the source of potential performance
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improvements, reducing comparability between methods. Chapter C tar-
gets the above challenges, in particular by introducing the first instance-based
staleness-adaptive step size function tail-τ . Also, a framework for adaptiveness
to staleness in asynchronous parallel SGD (ASAP.SGD) is established, capturing
key properties of general staleness-adaptive step size functions. In detail:

(i) The analytical framework ASAP.SGD is established, which captures general
staleness-adaptive step size function properties that are (i) necessary for
maintaining overall step size magnitudes and ensuring method compa-
rability, and (ii) desired for prioritizing gradient freshness, and hence is
suitable to serve as a common platform for guiding the design of new
asynchrony-aware step size functions.

(ii) Within ASAP.SGD, tail-τ is introduced – an instance-based dynamic
staleness-adaptive step size function, which utilizes the overall observed
staleness distribution as means to implicitly take underlying system param-
eters into account, to generate an execution-specific adaptation strategy.

(iii) The convergence properties of the proposed tail-τ step size are ana-
lyzed, as well as the wider collection of general ones within the ASAP.SGD
framework, for convex and non-convex applications (Theorem C.5.6).
In addition, novel convergence bounds are established, in particular for
loss functions satisfying the Polyak-Lojasiewicz (PL) condition, a more
realistic generalization of strong convexity, which applies to a wide set of
relevant applications, including least squares, logistic regression, support
vector machines [62] and certain deep ANNs [63] (Theorem C.5.8).

(iv) The tail-τ function is evaluated on several benchmark implementations
and applications that capture several representative system features as-
sociated with synchronization, parallelism, execution-ordering properties.
The results show that LeNet and MLP training with AsyncSGD , on
MNIST, Fashion-MNIST, and CIFAR-10, tail-τ persistently achieves
significantly faster convergence (60% speedup on average). The results
show that this holds for three fundamentally different AsyncSGD im-
plementations, namely (i) lock-based AsyncSGD , (ii) Hogwild!, and
(iii) the lock-free consistent Leashed-SGD implementation, introduced in
Chapter B. The evaluation shows additionally that tail-τ drastically
lowers the risk of non-converging executions, especially to higher precision.

1.5.4 Elastic parallelism control
As highlighted above, appropriate degree of parallelism is important for ensuring
high convergence quality, as well as for avoiding unnecessary consumption
of computational resources, especially considering the energy consumption
due to modern deep learning research [7]. This is particularly important for
AsyncSGD , since over-parallelism leads to higher staleness and AIN, with
unstable, fluctuating loss trajectories, as well as non-converging executions,
with the associated energy losses. Since exhaustive searches to find optimal
parallelism is infeasible in practice, there is a new generation of robust, instance-
adaptive AsyncSGD methods, that balance the computational vs. statistical
trade-off, while retaining the computational benefits of asynchrony. Critical
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steps to achieve such are taken in Chapter D, where the proposed ElAsyncSGD
automatically balances the computational vs. statistical efficiency trade-off
by adjusting the parallelism level. By doing so, ElAsyncSGD enables single
executions with fast and stable convergence, and competes with, and most of
the time beats, the best constant-parallelism baselines that have been tuned to
optimal performance through exhaustive parallelism searches, at a significantly
lower cost in computing resources. Hence, evidence is provided that the optimal
parallelism is indeed not constant, but rather varies throughout the convergence
trajectory. In more detail, the chapter makes the following contributions:

(i) A formal definition of asynchrony-induced noise (AIN) is provided, de-
noted by ξ, which in particular quantifies the deviation of AsyncSGD
from its sequential counterpart, however, does the same for general nu-
merical iterative algorithms. In addition, a generic algorithmic extension
of AsyncSGD for efficiently measuring the AIN in real-time in such algo-
rithms is introduced, which is used to report its magnitudes for several
relevant DL benchmarking problems in the empirical study.

(ii) Novel convergence bounds are established, focusing particularly on the
impact of ξ and the parallelism degree, on the asymptotic convergence
of AsyncSGD . The convergence of AsyncSGD and ElAsyncSGD are
established on general non-convex problems (Theorem D.5.6, D.5.8), as
well as ones satisfying the Polyak-Lojasiewicz criterion, which applies for
several relevant DL problems (Theorem D.5.10).

(iii) ElAsyncSGD is introduced as an extension of AsyncSGD , which dynami-
cally regulates the parallelism level in real-time based on the instantaneous
convergence rate of the execution instance, targeting a balance between
computational and statistical efficiency, while striving for minimal con-
sumption of computational resources.

(iv) An extensive evaluation of the proposed ElAsyncSGD is presented, bench-
marking against standard AsyncSGD with tuned best constant parallelism,
on several DL benchmarks, including LeNet and MLP training on MNIST,
Fashion-MNIST and CIFAR-10. The evaluation reveals that the intel-
ligent parallelism regulation of ElAsyncSGD entails drastic reductions
in thread-seconds, and hence overall energy consumed by computational
resources. In addition, ElAsyncSGD additionally exhibits more stable
convergence trajectories, and converges to higher precision, thanks to
improved computational vs. statistical efficiency balance.

1.6 Conclusions and new research directions
The paradigm of synchronous parallel SGD (SyncSGD) is standard nowadays,
and its application span ranges from standard GPU-accelerated desktops to high-
end distributed networks of computing nodes engaging in Federated Learning.
SyncSGD is effective on various modern ML tasks, and is widely adopted due
to the simplicity and understandability – it is in fact equivalent to traditional,
sequential SGD. However, the strict scalability limitations of SyncSGD , that are
highlighted in this thesis and related work, motivate asynchronous parallelism
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(AsyncSGD). By relaxing the sequential SGD semantics, AsyncSGD provides
new magnitudes of potential speedup on a variety of optimization problems, in-
cluding modern ML tasks, and is in addition algorithmically orthogonal to Sync-
SGD , and can hence be applied in conjunction to make use of the two optimally.

At present, there are several known challenges of AsyncSGD , stemming
from the presence of asynchrony-induced noise (AIN) and staleness in its
updates. This thesis targets those, in particular through (i) formalization of
emerging notions, such as AIN, (ii) analysis of the impact of asynchrony on the
convergence properties under realistic assumptions, (iii) extending AsyncSGD
with real-time awareness to asynchrony-related phenomena in an instance-
adaptive fashion, as well as (iv) extensive evaluation of such for practically
relevant benchmarking applications. The above is performed with general
applications in mind, ranging from distributed federated learning deployments
to shared-memory contexts.

This thesis confirms that AsyncSGD significantly can accelerate relevant ML
applications, in particular Deep Learning ones. On the other hand, AsyncSGD is
sensitive to its parameters, especially the parallelism level ; over-parallelism can
entail slower executions, and even non-converging executions. The sensitivity
can be alleviated greatly, and significant performance benefits achieved, through
the asynchrony-aware adaptiveness, in particular instance-based, mechanisms
that are proposed in this thesis. Moreover, in shared-memory contexts, it is
established that the mechanisms for fine-grained synchronization of access to
the shared state have a similar impact. Additionally, this thesis discovers that
a time-varying parallelism level is superior to the best constant one, in terms
of convergence stability, as well as consumption of computing resources – an
elastic parallelism-regulating AsyncSGD extension is proposed, which achieves
superior convergence trajectories, while saving significant computing resources.

Within the scope of this thesis, it is established that asynchrony-awareness
and elasticity have tremendous benefits in AsyncSGD deployments, both
contributing to improved statistical efficiency, and the latter particularly to
efficiency in computing resources. With this in mind, and considering the
aforementioned limitations of traditional synchronous approaches, a natural
next step, and recommended future work, is to explore algorithmic extensions
that improve AsyncSGD in conjunction – in particular the ones proposed in this
thesis for resource-aware intelligent elasticity and asynchrony-awareness and
adaptiveness. By doing so, vital lessons regarding their combined impact of such
extensions may be learned, and crucial steps may be taken towards enabling
increased utilization of AsyncSGD in practical deployments. Considering the
rapidly growing needs for convergence speed, scalability, and resource efficiency
of such deployments, every such step is vital, as AsyncSGD will surely play a
growingly integral role in modern machine learning and AI systems.
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Abstract
Stochastic Gradient Descent (SGD) is very useful in optimization problems
with high-dimensional non-convex target functions, and hence constitutes an
important component of several Machine Learning and Data Analytics methods.
Recently there have been significant works on understanding the parallelism
inherent to SGD, and its convergence properties. Asynchronous, parallel SGD
(AsyncSGD) has received particular attention, due to observed performance
benefits. On the other hand, asynchrony implies inherent challenges in un-
derstanding the execution of the algorithm and its convergence, stemming
from the fact that the contribution of a thread might be based on an old
(stale) view of the state. In this work we aim to deepen the understanding of
AsyncSGD in order to increase the statistical efficiency in the presence of stale
gradients. We propose new models for capturing the nature of the staleness
distribution in a practical setting. Using the proposed models, we derive a
staleness-adaptive SGD framework, MindTheStep-AsyncSGD , for adapting the
step size in an online-fashion, which provably reduces the negative impact of
asynchrony. Moreover, we provide general convergence time bounds for a wide
class of staleness-adaptive step size strategies for convex target functions. We
also provide a detailed empirical study, showing how our approach implies
faster convergence for deep learning applications.
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A.1 Introduction
The explosion of data volumes available for Machine Learning (ML) has posed
tremendous scalability challenges for machine intelligence systems. Under-
standing the ability to parallelize, scale and guarantee convergence of basic
ML methods under different synchronization and consistency scenarios has
recently attracted a significant interest in the literature. The classic Stochastic
Gradient Descent (SGD) algorithm is a significant target of research studying
its convergence properties under parallelism.

In SGD, the goal is to minimize a function L : Rd → R of a d-dimensional
vector θ using a first-order light-weight iterative optimization approach; i.e.,
given a randomly chosen starting point θ0, SGD repeatedly changes θ in
the negative direction of a stochastic gradient sample, which provably is the
direction in which the target function is expected to decrease the most. The
step size ηi defines how coarse the updates are:

θi+1 ← θi − ηi∇L(θi) (A.1)

SGD is very useful in nonconvex optimization with high-dimensional target
functions, and hence constitutes a major part in several ML and Data Analytics
methods, such as regression, classification and clustering. In many applications,
the target function is differentiable and the gradient can be efficiently computed,
e.g., Artificial Neural Networks (ANNs) using Back Propagation [64].

To better utilize modern computing architectures, recent efforts propose
parallel SGD methods, complemented with different approaches for analyzing
the convergence. However, asynchrony poses challenges in understanding the
algorithm due to stale views of the state of θ, which leads to reduced statis-
tical efficiency in the SGD steps, requiring a larger number of iterations for
achieving similar performance. In this work, we focus on increasing the statis-
tical efficiency of the SGD steps and propose a staleness-adaptive framework
MindTheStep-AsyncSGD that adapts parameters to significantly reduce the
number of SGD steps required to reach sufficient performance. Our framework
is compatible with recent orthogonal works focusing on computational efficiency,
such as efficient parameter server architectures [23] [65] and efficient gradient
communication [59] [66].
Motivation and summary of state-of-the-art. Many established ML
methods, such as ANN training and Regression, constitute of minimizing a func-
tion L(θ) that takes the form of a finite sum of error terms L(d; θ) parameterized
by θ, evaluated at different data points x from a given set D of measurements:

LD(θ) =
1

|D|
∑
x∈D

L(x; θ) (A.2)

where the parameter vector θ, encodes previously gathered features from D.
In this context, SGD typically selects mini-batches B ⊆ D over which LB

is minimized and is known as Mini-Batch Gradient Descent (MBGD). This
type of SGD reduces the computational load in each step and hence enables
processing of large datasets more efficiently. Moreover, randomly selecting
mini-batches induces stochastic variation in the algorithm, which makes it
effective in non-convex problems as well.
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A natural approach to distribute work for objective functions of the form
(A.2) is to utilize data parallelism [22], where different workers (threads in a
multicore system or nodes in a distributed one) run SGD over different subsets
of D. This will result in differently learned parameter vectors θ, which are
aggregated, commonly in a shared parameter server (thread or node). The
aggregation typically computes the average of the workers contributions; this
approach is referred to as Synchronous Parallel SGD (SyncSGD) due to its
barrier-based nature. In its simple form, SyncSGD has scalability issues due
to the waiting time that is inherent in the aggregation when different workers
compute at different speeds. As more workers are introduced to the system,
the waiting time will increase unbounded. Requiring only a fixed number of
workers in the aggregation, known as λ-softsync, bounds this waiting time. The
barrier-based nature of the synchronous approaches to parallel SGD enables
a straightforward (yet expensive) linearization making the vast analysis of clas-
sical SGD applicable also to the parallel version. As a result, its convergence
is well-understood also in the parallel case, which however suffers from the
performance-degradation of the barrier mechanisms.

An alternative type of parallelization is Asynchronous Parallel SGD (Async-
SGD), in which workers get and update the shared variable θ independently of
each other. There are inherent benefits in performance due to that AsyncSGD
eliminates waiting time, however the lack of coordination implies that gradi-
ents can be computed based on stale (old) views of θ, which are statistically
inefficient. However, gains in computational efficiency due to parallelism and
asynchrony can compensate for this, reducing the wall-clock computation time.

Challenges. AsyncSGD shows performance benefits due to allowing workers
to continue doing work independently of the progress of other workers. However,
asynchrony comes with inherent challenges in understanding the execution
of the algorithm and its convergence. In this work we address mainly (i)
understanding the impact on the convergence and statistical efficiency of stale
gradients computed based on old views of θ and (ii) how to adapt the step size in
SGD to accommodate for the presence of asynchrony and delays in the system.

Contributions. With the above challenges in mind, in this work we aim to
increase the understanding of AsyncSGD and the effect of stale gradients in
order to increase the statistical efficiency of the SGD iterations. To achieve this,
we find models suitable for capturing the nature of the staleness distribution in
a practical setting. Under the proposed models, we derive a staleness-adaptive
framework MindTheStep-AsyncSGD for adapting the step size in the presence
of stale gradients. We prove analytically that our framework reduces the
negative impact of asynchrony. In addition, we provide an empirical study
which shows that our proposed method exhibits faster convergence by reducing
the number of required SGD iterations compared to AsyncSGD with constant
step size. In some more detail:

• We prove analytically scalability limitations of the standard SyncSGD ap-
proach that were observed empirically in other works.

• We propose a new distribution model for capturing the staleness in Async-
SGD , and show analytically how the optimal parameters can be chosen
efficiently. We evaluate our proposed models by measuring the distance
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to the real staleness distribution observed empirically in a deep learning
application and compare the performance to models proposed in other works.

• Under the proposed distribution models, we derive efficiently computable
staleness-adaptive step size functions which we show analytically can control
the impact of asynchrony. We show how this enables tuning the implicit
momentum to any desired value.

• We provide an empirical evaluation of MindTheStep-AsyncSGD using the
staleness-adaptive step size function derived from our proposed model, where
we observe a significant reduction in the number of SGD iterations required
to reach sufficient performance.

Before the presentation of the results in Sections A.3-A.6, we outline prelim-
inaries and background. Following the results-sections, we provide an extensive
discussion on related work, conclusions and future work.

A.2 Preliminaries

A.2.1 Stochastic gradient descent

We consider the optimization problem

minimize
θ

L(θ) (A.3)

for a function L : Rd → R. In this context, we focus on methods to address this
minimization problem (A.3) using SGD, defined by (A.1) for some randomly
chosen starting position θ0. We assume that the stochastic gradient ∇L̃ is
an unbiased estimator of ∇L, i.e., E[∇L̃(θ) | θ] = ∇L(θ) for all θ. This
assumption holds for several relevant applications, in particular for problems
of the form (A.2), including regression and ANN training. We assume that the
stochastic gradient samples are i.i.d, which is reasonable since the sampling
occurs independently by different threads. For the analysis in section A.5 we
adopt some additional standard assumptions on smoothness and convexity
which we will introduce in that section.

A.2.2 System model and asynchronous SGD

We consider a system with m̂ workers (that can be threads in a multicore system
or nodes in a distributed one), which repeatedly compute gradient contributions
based on independently drawn data mini-batches from some given data set D.
We also consider a shared parameter server (that can be a thread or a node
respectively), which communicates with each of the workers independently,
to give state information and get updates that it applies according to the
algorithm it follows.

The m̂ asynchronous workers aim at performing SGD updates according to
(A.1). Since each worker m must get a state θi prior to computing a gradient,
there can be intermediate updates from other workers before gradient from m
is applied. The number of such updates defines the staleness τi corresponding
to the gradient ∇L(θi).
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Assuming that the read and update operations can be performed atomically
(see details in Section A.4), under the system model above, the SGD update
(A.1) becomes

θi+1 ← θi − ηi∇L(vi) (A.4)

where vi = θi−τi is the thread’s view of θ.
We assume that the staleness values τi constitute a stochastic process which

is influenced by the computation speed of individual threads as well as the
scheduler. Unless explicitly specified, we make no particular assumptions on
the scheduler or computational speed among threads, except that all delays
follow the same distribution with the same expected delay, i.e., E[τi] = τ̄ for
all i. We do not require the staleness to be globally upper bounded, only that
updates are eventually applied, making our system model fully asynchronous.

While we assume above that gradient samples are pairwise independent,
it is not reasonable to make the same assumption for the staleness. In fact,
a staleness τi is by definition dependent on the writing time of concurrent
updates, which in turn are dependent on their respective staleness values. For
the analysis in Section A.5, we assume that stochastic gradients and staleness
are uncorrelated, i.e., that the stochastic variation of the gradients does not
influence the delays and vice versa. This is also a realistic assumption, since
delays are due to computation time and scheduling and the gradient’s stochastic
variation is due to random draws from a dataset.

A.2.3 Momentum

SGD is typically inefficient in narrow valleys when the target function in some
neighborhood increases more rapidly in one direction relative to another. Such
neighborhoods are frequent in target functions that arise in ML applications due
to their inherent highly irregular and non-convex nature. Adding momentum
(A.5) to SGD has been seen to significantly improve the convergence speed
for such functions. SGD with momentum, defined in (A.5), takes all previous
gradient samples into account with exponentially decaying magnitude in its pa-
rameter µ. As pointed out in [40], µ is often left out in parameter tuning, and in
some instances even failed to be reported [67]. However, the optimal value of al-
gorithmic parameters such as µ, just like η, depends on the problem, underlying
hardware, as well as the choice of other parameters. Tuning µ has been shown
to significantly improve performance [15], especially under asynchrony [40].

For µ ∈ [0, 1], SGD with momentum is defined by

θi+1 ← θi + µ(θi − θi−1)− ηi∇L(θi) (A.5)

A.3 On the scalability of SyncSGD

Optimal convergence with SyncSGD requires, as observed empirically in [27],
that the mini-batch size is reduced as the number of worker nodes increases.
We prove analytically this empirical observation. We show that, from an
optimization perspective, the effect of more workers on the convergence is
equivalent to using a larger mini-batch size, which we refer to as the effective
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mini-batch size. For maintaining a desired effective mini-batch size, which is
the case in many applications [31] [32], workers must hence use smaller batches
prior to the aggregation. Since the mini-batch size clearly is lower bounded,
there is an implied strict upper bound on the number of worker nodes that can
leverage the parallelization, which provides a bound on the scalability of the
synchronous approach.

In mini-batch GD for target functions L(θ) of the form (A.2) the stochas-
ticity is due to randomly drawing mini-batches B of size b from a dataset D
without replacement. For any mini-batch size b, we have that L̃(θ) = LB(θ)
is an unbiased estimator of L(θ) since

E[L(θ)] = E[LB(θ)] =
b

|D|
∑
j

LBj
(θ)

=
b

|D|
∑
j

1

b

∑
x∈Bj

L(x; θ) =
1

|D|
∑
x∈D

L(x; θ) = L(θ)

Hence, the SGD updates are in expectation representing the entire dataset
D. Note that we assume

⋃
Bi = D. We have, however, that as the batch

size b increases, the stochasticity of L̃(θ) diminishes. One can realize this
by considering the extreme case b = |D| for which the data sampling is
deterministic. Hence, decreasing b induces larger variance for the distribution
of L(θ). This enables SGD to avoid local minima and hence be effective also in
non-convex optimization problems.

The optimal value of b is dependent on the problem and requires tuning;
it has been seen that the convergence can suffer if b is too large [31] [32].

In the following theorem we show that by increasing the number of worker
nodes in SyncSGD , from an optimization perspective, we get a behavior equiv-
alent to a sequential execution of SGD with a larger mini-batch size, which we
refer to as the effective mini-batch size.

Theorem A.3.1. SyncSGD with m̂ workers, all using batch size b, is equivalent
to a sequential execution of SGD with batch size m̂ · b, referred to as effective
batch size.

Proof. Consider the case with two worker nodes. Assuming that the batches
are disjoint, which is likely for large datasets, each SGD step is of the form

θi+1 =

(
θi − η∇LB1(θi)

)
+
(
θi − η∇LB2(θi)

)
2

= θi −
η

2
(∇LB1

(θi) +∇LB2
(θi))

For mini-batch GD, i.e., a target function of the form (A.2), and with mini-batch
size b, the above formula becomes:

θi+1 = θi −
η

2

(
∇1

b

∑
x∈B1

L(x, θi) +∇
1

b

∑
x∈B2

L(x, θi)

)
From linearity of the gradient, we have

θi+1 = θi − η∇ 1

2b

∑
x∈B1∪B2

L(x, θi) = θi − η∇LB1∪B2
(θi)
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that corresponds to the SGD step with batch size 2b. This inductively implies
the theorem statement.

Since the mini-batch size is clearly lower bounded, Theorem A.3.1 implies
that for a sufficiently large number of worker nodes, the effective mini-batch size
scales linearly in the number of workers nodes. In order to maintain reasonable
mini-batch size with sufficient variation in the updates, this implies a strict
upper bound on the number of workers nodes. Moreover, under the assumption
that there is an optimal mini-batch size b∗ for a given problem, which has
been seen to be a common assumption, we have that the maximum number
of workers possible in order to achieve optimal convergence is exactly m̂ = b∗,
each using mini-batch size b = 1.

A.4 The proposed framework

We outline MindTheStep-AsyncSGD for staleness-adaptive steps and analyze
how to choose a suitable adaptive step function under different staleness models.

A.4.1 The MindTheStep-AsyncSGD framework

We consider a standard parameter-server type of algorithm [23] [58], with
atomic read and write operations, ensuring that workers acquire consistent
views of the state θ. In a distributed system, consistency can be realized through
the communication protocol. In a multi-core system, where worker nodes are
threads and θ can be stored on shared memory, consistency can be realized with
appropriate synchronization and producer-consumer data structures, with the
extra benefit that they can pass pointers to the data (parameter arrays) instead
of moving it. In Algorithm A.4.1 we show the pseudocode for MindTheStep-
AsyncSGD , describing how standard AsyncSGD using a parameter server
(thread or node) is extended with a staleness-adaptive step.

Algorithm A.1 MindTheStep-AsyncSGD
1: GLOBAL start point θ0, functions L(θ) and η(τ)

2: Worker w
3: (i, θ)← (0, θ0)
4: repeat
5: compute g ← ∇L(θ)
6: send (i, g) to S
7: receive (i, θ) from S
8: until break

9: Parameter server S
10: (i′, θ)← (0, θ0)
11: repeat
12: receive (i, g) from a ready worker w
13: τ ← i′ − i
14: θ ← θ − η(τ)g
15: i′ ← i′ + 1
16: send (i′, θ) to w
17: until break

Note that MindTheStep-AsyncSGD as a framework essentially “modularizes"
the role of η as a parameter that can configure and tune performance, with
criteria and benefits that are analyzed in the next subsection.
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A.4.2 Tuning the impact of asynchrony
As pointed out in [40], asynchrony and delays introduce memory in the behavior
of the algorithms. In particular, in [40, Theorem 2], they quantify this and show
its resemblance to momentum, however for a constant step size. The corre-
sponding result for a stochastic staleness-adaptive step size is formulated here:

Lemma A.4.1. Let τ be distributed according to some PDF p such that
P [τ = i] = p(i). Then, for an adaptive step size function η(τ), we have

E[θi+1 − θi] = E[θi − θi−1] +

∞∑
j=0

(
p(j)η(j)−

p(j + 1)η(j + 1)
)
∇f(xi−j−1)− p(0)η(0)∇L(θi)

(A.6)

The proof of Lemma A.4.1 follows the structure of the one in [40], now
taking into account the adaptive step size. The main takeaways from Lemma
A.4.1 are that, under asynchrony, (i) the gradient contribution diminishes as the
number of workers increases2; (ii) there is a momentum-like term introduced
with parameter µ = 1 and (iii) the update depends on the series term:

Σ∇p,η =

∞∑
j=0

(
p(j)η(j)− p(j + 1)η

)
∇L(θi−j−1) (A.7)

which quantifies the potential impact of stale gradients depending on the
distribution of τ .

The issue of diminishing gradient contributions as the number of workers
increase can in theory be resolved by choosing a larger η. However, this would
require step sizes proportional to p(0)−1, which rapidly grows out of bounds
as the number of workers increases. Since large η can significantly impact
the statistical efficiency of the SGD steps in practice and in fact needs to be
carefully tuned, this poses a scalability limitation.

This is where MindTheStep-AsyncSGD can help tune the impact of asyn-
chrony, as we show in the following.
Momentum from geometric τ . Assuming a geometrically distributed
τ , the series Σ∇p,η is manifested in the convergence behavior in the form of
asynchrony-induced memory with a momentum effect; see Theorem 3 of [40],
repeated here for self-containment:

Theorem A.4.2 ( [40]). Let all τi be geometrically distributed with parameter
p, i.e., P[τ = k] = p(1− p)k. Then, for a constant η, the expected update (A.4)
becomes

E[θi+1 − θi] = (1− p)E[θi − θi−1]− pη∇L(θi) (A.8)

Theorem A.4.2 is easily confirmed by substituting p(i) in (A.7) with constant
η with the geometric PDF, which yields Σ∇p,η = −pE[θi − θi−1].

Eq. (A.8) resembles the definition of momentum, with expected implicit
asynchrony-induced momentum of magnitude µ = 1 − p. As the number of

2Here it is assumed that p(0) tends to zero as the number of workers increases. This is
easily realized for our proposed CMP τ model (A.12). For the geometric staleness model we
confirm empirically in section A.6 that this assumption holds in practice, recall that p(0) = p.
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workers grow and p tends to 0, Theorem A.4.2 suggests an implicit momentum
that approaches 1. This would imply a scalability limitation since the parameter
µ requires careful tuning.

Assuming a geometric staleness model, we show in the following how
MindTheStep-AsyncSGD with a particular step size function resolves this issue:

Theorem A.4.3. Let staleness τ ∈ Geom(p) and

ηi = C−τip−1η (A.9)

where C is a parameter to be chosen suitably. Then

E[θi+1 − θi] = µC,pE[θi − θi−1]− η∇L(θi)

and the implicit asynchrony-induced momentum is

µC,p = 2− (1− p)/C (A.10)

Proof. We have from (A.4)

θi+1 − θi = −ηi∇L(vi)
= θi − θi−1 − (θi − θi−1)− ηi∇L(vi)
= θi − θi−1 + ηi∇L(vi−1)− ηi∇L(vi)

Since the gradient and staleness processes are independent, we take first
expectation conditioned on the staleness

E[θi+1 − θi | τi, τi−1] = E[θi − θi−1 | τi, τi−1] + ηi∇L(vi−1)− ηi∇L(vi)

Now, take expectation w.r.t. the stochastic staleness τi, τi−1

E[θi+1 − θi] = E[θi − θi−1]

+E[ηi∇L(vi−1)]−E[ηi∇L(vi)]

= E[θi − θi−1] +

∞∑
j=0

P [τ = j]
η∇L(θi−j−1)

Cjp

−
∞∑
j=0

P [τ = j]
η∇L(θi−j)

Cjp

= E[θi − θi−1] + p

∞∑
j=0

(1− p)j
η∇L(θi−j−1)

Cjp

− p

∞∑
j=0

(1− p)j
η∇L(θi−j)

Cjp

= E[θi − θi−1]− η∇L(θi) +
∞∑
j=0

(1− p)j
η∇L(θi−j−1)

Cj

−
∞∑
j=1

(1− p)j
η∇L(θi−j)

Cj



36 Chapter A Convergence of Staleness-adaptive SGD

= E[θi − θi−1]− η∇L(θi)

+

∞∑
j=0

(
(1− p)j

Cj
− (1− p)j+1

Cj+1

)
η∇L(θi−j−1)

= E[θi − θi−1]− η∇L(θi)

+

∞∑
j=0

(1− p)j

Cj

(
1− 1− p

C

)
η∇L(θi−j−1)

= E[θi − θi−1]− η∇L(θi)

+

(
1− 1− p

C

) ∞∑
j=0

p(1− p)j

Cjpj+1
η∇L(θi−j−1)

= E[θi − θi−1]− η∇L(θi)

+

(
1− 1− p

C

)
E[ηi∇L(vi−1)]

= E[θi − θi−1]− η∇L(θi) +
(
1− 1− p

C

)
E[θi − θi−1]

=

(
2− 1− p

C

)
E[θi − θi−1]− η∇L(θi)

Note that the expected implicit momentum vanishes for C = (1 − p)/2.
More generally:

Corollary A.4.4. Any desired momentum µ∗ is, in expectation, implicitly
induced by asynchrony by using the staleness-adaptive step size in (A.9) with

C = (1− p)/(2− µ∗) (A.11)

Applicability of geometric τ . Each gradient staleness is comprised of two
parts, one of which is the staleness τC which counts the number of gradients
applied from other workers concurrent with the gradient computation. The
second part of the staleness, which we denote τS , counts, after the gradient
computation of a worker finishes, the number of gradients from other workers
which are applied first, which is decided by the order with which the workers
are scheduled to apply their updates. The complete staleness of a gradient is
τ = τC + τS . Note that, if we assume a uniform fair stochastic scheduler, then
τS is decided exactly by the number of Bernoulli trials until a specific gradient is
chosen, hence τS ∈ Geom(·). The geometric τ model is therefore applicable for
problems where τC << τS , i.e., when the gradient computation time typically
is smaller than the time it takes to apply a computed gradient (eq. A.4).

Now consider also relevant applications of SGD where the gradient com-
putation time τC is far from negligible, e.g., the increasingly popular Deep
Learning, which typically includes ANN training with BackProp [64] for gradi-
ent computation. The BackProp algorithm requires in the best-case multiple
multiplications of matrices of dimension d, which by far dominates the SGD
update step (A.4) which consists of exactly d floating point multiplications and
additions. For such applications the geometric τ model is hence not sufficient;
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we confirm this empirically in Section A.6. In the following, we propose a class
of τ distributions which is more suitable.
Conway-Maxwell-Poisson (CMP) τ . Considering applications with time-
consuming gradient computation such as ANN training, we aim to find a
suitable staleness model. Since now we consider (i) that τC >> τS and (ii) that
applying a computed gradient is relatively fast, we can consider the completion
of gradient computations as rare arrival events. This opts for a variant of
the Poisson distribution, such as the CMP distribution which in addition to
Poisson has a parameter ν which controls the rate of decay. We have that
τ ∈ CMP(λ, ν) if

P [τ = i] =
1

Z(λ, ν)

λi

(i!)ν
, Z(λ, ν) =

∞∑
j=0

λi

(j!)ν
(A.12)

which reduces to the Poisson distribution in the special case ν = 1, i.e if
τ ∈ CMP(λ, 1) then τ ∈ Poi(λ). For the remainder of this section, we aim
to further investigate the behavior of parallelism in SGD under the CMP
and Poisson models and propose an adaptive step size strategy to reduce the
negative impact and improve the statistical efficiency under asynchrony.

In a homogeneous system with m equally powerful worker nodes/threads,
we expect that the most frequent staleness observation (the distribution mode)
should relate to the number of workers. More precisely, since a sequential
execution would always have τ = 0, an appropriate choice of τ distribution
should have the mode m − 1. For the CMP distribution, we have that if
τ ∈ CMP(λ, ν) then the mode of τ is ⌊λ1/ν⌋, and we therefore hypothesize the
following relation:

λ1/ν = m (A.13)

For the special case ν = 1, i.e., a Poisson τ model, (A.13) enables us to
immediately choose an appropriate value for λ given the number of workers
m. In general, (A.13) simplifies the parameter search when fitting a CMP
distribution model to a one-dimensional line search, which is in practice a
significant complexity reduction.
τ -adaptive η. In the following, we argue analytically about how to choose an
adaptive step size function η for reducing the negative impact of stale gradients.
We will see how a certain τ -adaptive step size can bound the magnitude of
Σ∇p,η (A.7), and even tune the implicit asynchrony-induced momentum to any
desired value.

Theorem A.4.5. Assume τ ∈ CMP (λ, ν), and let the adaptive step size
function be defined as follows:

η(τ) = Cλ−τ (τ !)νη (A.14)

for any constant C. Then we have Σ∇p,η = 0.

Proof. We have

Σ∇p,η =

∞∑
j=0

(
p(j)η(j)− p(j + 1)η(j + 1)

)
∇L(θi−j−1)
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Substituting p(j) for the CMP PDF (A.12) gives

Σ∇p,η =
1

Z(λ, ν)

∞∑
j=0

λj

(j!)ν

(
η(j)− λ

η(j + 1)

(j + 1)ν

)
∇L(θi−j−1) (A.15)

Now, applying the adaptive step size (A.14) gives

Σ∇p,η =
C

Z(λ, ν)

∞∑
j=0

λj

(j!)ν
η

(
λ−j(j!)ν−

λ

(j + 1)ν
λ−(j+1)((j + 1)!)ν

)
∇L(θi−j−1)

=
C

Z(λ, ν)

∞∑
j=0

λj

(j!)ν
η

(
(j!)ν

λj
− (j!)ν

λj

)
∇L(θi−j−1) = 0

Theorem A.4.5 shows how a simple and tunable τ -adaptive step size miti-
gates the Σ∇p,η quantity.

However, from Lemma A.4.1, we see that even though Σ∇p,η is mitigated by
the adaptive step size (A.14), the SGD steps still have a fixed implicit momen-
tum term of magnitude µ = 1. We show in Theorem A.4.6 how the implicit
momentum can be tuned to any desired value through a particular choice of η(τ).

Theorem A.4.6. Assume τ ∈ CMP (λ, ν). Then, Σ∇p,η, in expectation, takes
the form of asynchrony-induced momentum of magnitude exactly K, i.e.

Σ∇p,η = KE[θi − θi−1]

when using the adaptive step size function:

η(τ) = c(τ)λ−τ (τ !)νη (A.16)

where

c(τ) = 1− K

ηeλ

τ−1∑
j=0

λj

(j!)ν
(A.17)

Proof. Let Ψ(j) = η(j)− λη(j+1)
(j+1)ν , and hence

Σ∇p,η =
1

Z(λ, ν)

∞∑
j=0

λj

(j!)ν
Ψ(j)∇L(θi−j−1)

Applying the adaptive step size (A.16) gives

Ψ(j) =
j!ν

λj
eλη (c(j)− c(j + 1))
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Now,

Ψ(j) = K ⇔ c(j)− c(j + 1) =
K

ηeλ
λj

j!ν

⇔ c(j) = c(j − 1)− K

ηeλ
λj−1

(j − 1)!ν

= c(0)− K

ηeλ

j∑
k=1

λj−k

(j − k)!ν
= c(0)− K

ηeλ

j∑
k=1

λk

(k)!ν

Since η(0) = η, we have c(0) = 1. Now we have

Σ∇p,η = K

∞∑
j=0

1

Z(λ, ν)

λi

(i!)ν
∇L(θi−j−1)

= KE [∇L(vi−1)] = KE [θi − θi−1]

Theorem A.4.6 shows how the series term Σ∇p,η can take the form of momen-
tum of desired magnitude by using a particular τ -adaptive step size. The c(τ)
contains a sum that is O(τ) in computation time. This indicates that such an
adaptive step size function might not scale well, since τ is expected to be in
the magnitude of m. In the following Corollary we show how this is resolved
by the corresponding η(τ) under the Poisson τ -model.

Corollary A.4.7. Assuming τ ∈ Pois(λ), the series term Σ∇p,η takes the form
of implicit momentum of magnitude K when using the adaptive step size:

η(τ) =

(
1− K

η

Γ(τ, λ)

Γ(τ)

)
λ−ττ !η (A.18)

where Γ(·) and Γ(·, ·) are the Gamma and Upper Incomplete Gamma function,
respectively.

Proof. Under the Poisson τ model, i.e., CMP with ν = 1, (A.17) rewrites to:

c(i) = 1− K

ηeλ

τ−1∑
j=0

λj

(j!)
= 1− K

η

Γ(i, λ)

(i− 1)!

= 1− K

η

Γ(i, λ)

Γ(i)

Corollary A.4.7 shows how the series Σ∇p,η is in expectation replaced by
momentum of any desired magnitude. Note that there exist efficient (O(1))
and accurate numerical approximation methods for the Gamma and Upper
Incomplete Gamma function [68].
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A.5 Convex convergence analysis
In this section we analyze the convergence time of MindTheStep-AsyncSGD-
type algorithms for convex and smooth optimization problems.

Consider the optimization problem (A.3) where an acceptable solution θ∗

satisfies ϵ-convergence, defined as ∥θ − θ∗∥2 ≤ ϵ.
We assume that the problem is addressed using MindTheStep-AsyncSGD

under the system model described in Section A.2. Note that we consider a
staleness-adaptive step size, hence ηi = η(τi) is stochastic.

For the analysis in this section, we consider strong convexity and smoothness,
specified in Assumption A.5.1. These analytical requirements are common in
convergence analysis for convex problems [44] [53] [45] [69].

Assumption A.5.1. We assume that the objective function L is, in expectation
with respect to the stochastic gradients, strongly convex with parameter C
with L-Lipschitz continuous gradients and that the second momentum of the
stochastic gradient is upper bounded.

E
[
(θ1 − θ2)T

(
∇f(θ1)−∇f(θ2)

)
| θ1, θ2

]
≥ C∥θ1 − θ2∥2 (A.19)

E
[
∥∇F (θ1)−∇F (θ2)∥] | θ1, θ2

]
≤ L∥θ1 − θ2∥ (A.20)

E
[
∥∇F (θ)∥2 | θ

]
≤M2 (A.21)

The assumption (A.19) is standard in convex optimization and ensures that
gradient-based methods will converge to a global optimum. Lipschitz continuity
(A.20) is a type of strong continuity which bounds the rate with which the
gradients can vary. Due to that E[∇L(θ∗)] = 0, (A.21) can be interpreted as
bounding the variance of the gradient norm around the optimum θ∗.

In addition to our system model in Section A.2, we make the following
assumption on the staleness process:

Assumption A.5.2. The staleness process (τi) is non-anticipative, i.e., mean-
independent of the outcome of future states of the algorithm (e.g. future delays
and gradients). In particular, we have:

E[τi | τj ] = E[τi] for all i < j

Assumption A.5.2 is justifiable considering that the staleness (i.e., sched-
uler’s decisions) at iteration i should not be considered to be influenced by
staleness values τj of gradients yet to be computed.

Under Assumptions A.5.1 and A.5.2 above, we give a general bound on the
number of iterations sufficient for expected ϵ-convergence in the following:

Theorem A.5.3. Consider the unconstrained convex optimization problem of
(A.3). Under Assumptions A.5.1 and A.5.2, for any ϵ > 0, there is a sufficiently
large number T of asynchronous SGD updates of the form (A.4) such that:

T ≤
(
2
(
C − LMϵ−1/2E [τη]

)
E [η]−

ϵ−1M2E
[
η2
])−1

ln (∥θ0 − θ∗∥2ϵ−1)
(A.22)

for which we have E[∥θT − θ∗∥2] < ϵ
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Proof.

∥θi+1 − θ∗∥2 = ∥θi − ηi∇L(vi)− θ∗∥2

= ∥θi − θ∗∥2 + η2i ∥∇L(vi)∥2 − 2ηi(θi − θ∗)T∇L(vi)
= ∥θi − θ∗∥2 + η2i ∥∇L(vi)∥2 − 2ηi(θi − θ∗)T∇L(θi)
+ 2ηi(θi − θ∗)T

(
∇L(θi)−∇L(vi)

)
Under expectation, conditioned on the natural filtration

FX
i =

(
(τj)

i
j=0,

(
∇L(vj)

)i
j=0

)
of the past of the process, we have

E
[
∥θi+1 − θ∗∥2 | τi,FX

i−1
]
= ∥θi − θ∗∥2

− 2ηiE
[
(θi − θ∗)T

(
∇L(θi)−∇L(θ∗)

)∣∣FX
i−1
]

+ 2ηiE
[
(θi − θ∗)T

(
∇L(θi)−∇L(vi)

)∣∣FX
i−1
]

Applying the assumptions (A.19)-(A.21) gives

E
[
∥θi+1 − θ∗∥2

∣∣τi,FX
i−1
]
≤ ∥θi − θ∗∥2 +M2η2i

− 2ηic∥θi − θ∗∥2 + 2ηiL∥θi − θ∗∥∥θi − vi∥
= (1− 2cηi)∥θi − θ∗∥2 +M2η2i

+ 2ηiL∥θi − θ∗∥∥θi − vi∥
= (1− 2cηi)∥θi − θ∗∥2 +M2η2i

+ 2ηiL∥θi − θ∗∥
τi∑
j=1

θi−j+1 − θi−j∥

≤ (1− 2cηi)∥θi − θ∗∥2 +M2η2i

+ 2ηiL

τi∑
j=1

∥θi − θ∗∥ηi−j∥∇L(vi−j)∥

The gradient process does not influence the expected delays, so we first con-
sider the expectation conditioned on the gradient process (∇)i0 :=

(
∇L(vj)

)i
j=0

E
[
∥θi+1 − θ∗∥2

∣∣τi, (∇)i0]
≤ (1− 2cηi)E

[
∥θi − θ∗∥2

∣∣τi, (∇)i0]+M2η2i

+ 2Lηi

τi∑
j=1

E
[
ηi−j∥θi − θ∗∥

∣∣τi, (∇)i0]∥∇L(vi−j)∥
From the non-anticipativity of the delay process we have

E
[
ηi−j∥θi − θ∗∥ | τi, (∇)i0

]
= E

[
E [ηi−j∥θi − θ∗∥ | θi] | τi, (∇)i0

]
= E

[
∥θi − θ∗∥E [ηi−j | θi] | τi, (∇)i0

]
= E [ηi−j ]E

[
∥θi − θ∗∥ | (∇)i0

]
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Since the delays and gradients are identically distributed, we have E[ηi] =
E[ηj ] for all i, j. Taking expectation conditioned on the last delay τi and
applying Hölder’s inequality gives

E
[
∥θi+1 − θ∗∥2 | τi

]
≤ (1− 2cηi)E

[
∥θi − θ∗∥2

]
+M2η2i

+ 2LτiηiE [ηi]
√

E [∥θi − θ∗∥2]
√

E [∥∇L(vi)∥2]

and the full expectation satisfies

E
[
∥θi+1 − θ∗∥2

]
≤ (1− 2cE [ηi])E

[
∥θi − θ∗∥2

]
+M2E

[
η2i
]
+ 2LME [τiηi]E [ηi]

√
E [∥θi − θ∗∥2]

As long as the process has not converged, i.e., E
[
∥θi − θ∗∥2

]
> ϵ, we have

E
[
∥θi+1 − θ∗∥2

]
≤ E

[
∥θi − θ∗∥2

]
(1− 2cE [ηi]

+ ϵ−1M2E
[
η2i
]
+ 2LMϵ1/2E [τiηi]E [ηi])

=: E
[
∥θi − θ∗∥2](1− δ)

⇒ E
[
∥θi − θ∗∥2

]
≤ E

[
∥θ0 − θ∗∥2

]
(1− δ)T

⇒ T ≤ − ln(1− δ)−1 ln
E
[
∥θ0 − θ∗∥2

]
E
[
∥θi − θ∗∥2

]
< δ−1 ln

(
E
[
∥θ0 − θ∗∥2

]
ϵ−1
)

for any T such that E
[
∥θi − θ∗∥2] > ϵ. Equivalently, expected convergence is

implied by T exceeding the bound above, which concludes the proof.

Corollary A.5.4. Under the same conditions as in Theorem A.5.3, there exists
a choice of a step size η such that the convergence time T is in the magnitude
of O (E [τ ]) (remember E [τ ] is denoted by τ̄). In particular, letting η be

η = ρ
CϵM−1

M+ 2L
√
ϵτ̄

(A.23)

for a tunable factor ρ ∈ (0, 2), there exists a T such that

T ≤ M+ 2L
√
ϵτ̄

ρ(2− ρ)C2M−1ϵ
ln(ϵ−1∥θ0 − θ∗∥2) (A.24)

Proof. Let ρ = cϵM−1

M+2L
√
ϵτ̄

. From Theorem A.5.3 we have the improvement
factor

δ = 2
(
c− LMϵ1/2E [τη]

)
E [η]− ϵ−1M2E

[
η2
]

= 2cη − ϵ−1M
(
M + 2L

√
ϵτ̄
)
η2

= cρ−1η(2ρ− η)

so δ > 0 when 0 < η < 2ρ, and the improvement is maximized for ρ = 1. Now,
using the choice (A.23) of step size, we have

δ = cρ−1θρ(2ρ− θρ)

= θ(2− θ)cρ

Substituting for ρ, the convergence bound of Theorem A.5.3 rewrites to (A.24)
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The results in Theorem A.5.3 and Corollary A.5.4 are related to the results
presented in [44] and [45]. The main differences are that in our analysis we
tighten the bound with a factor (2−ρ)−1, expand the allowed step size interval,
as well as relax the maximum staleness assumption and reduce the magnitude
of the bound from linear in the maximum staleness O(τ̂) to the expected O(τ̄).

In the following corollary, we give a general bound assuming any non-
increasing step size function η(τ).

Corollary A.5.5. Under the same conditions as Theorem A.5.3, let ηi = η(τi)
be a non-increasing function of τi. Then we have the following bound on the
expected number of iterations until convergence:

T ≤
(
2CE [η]− ϵ−1M

(
M+ 2L

√
ϵτ̄
)
E
[
η2
] )−1

· ln(ϵ−1∥θ0 − θ∗∥2)
(A.25)

Proof. Since ηi is a non-increasing function in τi we have:

E [τiη(τi)] = E [τiη(τi)]−E [τ̄ η(τi)] +E [τi]E [η(τi)]

= E [(τi − τ̄)(η(τi)− η(τ̄))] +E [τ ]E [η]

≤ E [τ ]E [η]

Using this property, (A.22) rewrites to (A.25).

Corollary A.5.5 describes a general convergence bound for any step size
function η(τ) which decays in τ . We see that such step size functions also
achieve the asymptotic O(τ̄−1) bound, as the one for a constant η (A.24).

A.6 Evaluation
In this section we evaluate the results derived in section A.4 in a practical setting.
This is achieved by (i) measuring the accuracy and scalability of the proposed
τ -models (ii) evaluating the convergence properties of MindTheStep-AsyncSGD
with an adaptive step size function derived under the CMP/Poisson τ models.
Setup. We apply MindTheStep-AsyncSGD for training a 4-layer Convolu-
tional Neural Network (CNN) architecture (see Fig. A.1) on the common image
classification benchmark dataset CIFAR10 [70]. The performance of the CNN
is measured as the cross entropy between the true and the predicted class distri-
bution. The algorithm is evaluated on a setup with a 36-thread Intel Xeon CPU
and 64GB memory. The implementation is in Python 2.7 and uses the Python
multiprocessor library as well as TensorFlow [67] for gradient computation.
CMP/Poisson τ . We evaluate the τ models (Poisson, CMP) proposed
in section A.4 by comparing with the τ distribution observed in practice
for different number of workers. We compare our proposed τ models with
distributions proposed in other works, namely the geometric τ model [40] and
the bounded uniform τ model [53].

The distribution parameters in Table A.1 are found through an exhaus-
tive search where we aim to minimize the Bhattacharyya distance to the τ
distribution observed in practice. Note that: (i) For the Poisson τ model, as
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Figure A.1: CNN architecture; Four convolutional layers with 3 × 3 kernels,
with intermediate MaxPool layers. The first two convolutions have 32 filters,
the last two 64. The architecture has two fully connected layers, one with 256
neurons, and the output layer with 10 neurons.

Figure A.2: Bhattacharyya distance of different τ models compared to the
observed distribution. The graph shows that the CMP τ model is the most
accurate in all tests, with the Poisson τ model as a close second. The uniform
and geometric τ models are persistently less accurate and show poor scalability
in comparison.

hypothesized in Section A.4, the distribution parameter λ indeed corresponds
well to the number of worker nodes. From Fig. A.2 we see that the proposed
CMP and Poisson τ models by far outperforms the geometrical and uniform
τ models, in particular for larger number of workers. (ii) As mentioned in
Footnote 2, we confirm in Table A.1 that P[τ = 0], i.e., p, decays as the
concurrency level increases. (iii) We see in Fig. A.2 that the CMP τ model
outperforms the others in terms of accuracy and scalability. The CMP distri-
bution parameter ν is found through a 1-d search and using the assumption
(A.13) the other parameter λ is calculated. The result in Fig. A.2 therefore
validates the assumption (A.13).

Convergence with τ -adaptive η. We evaluate MindTheStep-AsyncSGD
compared with standard AsyncSGD by measuring the number of epochs re-
quired until a certain error threshold is reached, epochs being the number
of passes through the dataset. The number of SGD iterations in one epoch



A.6. EVALUATION 45

τ model 2 4 8 16 20 24 28 32
p (Geom) 0.34 0.21 0.12 0.06 0.05 0.04 0.04 0.03
τ̂ (Unif) 2 5 11 22 31 37 48 48
λ (Pois) 2.0 4.0 8.0 16.0 19.7 23.8 26.5 32
ν (CMP) 6.28 5.26 4.18 3.48 0.93 0.95 0.39 0.87

Table A.1: Optimal distribution parameters for different number of workers.

Figure A.3: AsyncSGD vs. MindTheStep-AsyncSGD comparison. The plot
shows the n.o. epochs required until sufficient performance (cross-entropy loss
≤ 0.05). The statistics are computed based on 5 runs, and the bar height
corresponds to the standard deviation.

is ⌈|D|/b⌉ where |D| is the size of the dataset and b the batch size. In our
experiments we have ⌈|D|/b⌉ = 469. We consider performance in terms of
statistical efficiency, i.e., the statistical benefit of each SGD step. In practice,
the approach can be applied to any orthogonal work focusing on computational
efficiency, such as efficient parameter server architectures [23] [65] and efficient
gradient communication and quantization [59] [66].

We compare standard AsyncSGD with constant step size ηc = 0.01, b = 128
to MindTheStep-AsyncSGD with an adaptive step size function according to
(A.18) with η = ηc, K = 1, and λ = m. In addition, we bound the step size
η(τ) ≤ 5 ·ηc to mitigate issues with numerical instability in the SGD algorithms,
and (very infrequent) gradients with τ > 150 are not applied.

In principle, given a sufficiently small ηc, speedup can always be achieved
by using an adaptive step size strategy η(τ) which overall increases the average
step size. To ensure a fair comparison, the adaptive step size function η(τ) is
normalized so that:

Eτ [η(τ)] = ηc (A.26)

where the expectation is taken over the real τ distribution observed in the system.
Enforcing (A.26) ensures that any potential speedup is achieved due to how the
step size function η(τ) adaptively changes the impact of gradients depending
on their staleness, and not because of the overall magnitude of the step size.

Fig. A.3 shows how MindTheStep-AsyncSGD exhibits persistently faster



46 Chapter A Convergence of Staleness-adaptive SGD

convergence for different number of workers. For many workers (m = 28, 32)
MindTheStep-AsyncSGD requires significantly fewer epochs compared to stan-
dard AsyncSGD to achieve sufficient performance. Observe that for m = 32
the average speedup is ×1.5 while the worst-case is ×1.7.

A.7 Related work

Orthogonal to this work, there are numerous works dedicated to optimizing the
effectiveness of SGD by utilizing data sparsity, topology of the search space, and
other properties of the problems. One example is introducing momentum to the
updates, originally proposed in [71], however not in the context of SGD. Apart
from this, there are several variations of SGD in the sequential case introducing
adaptiveness to aspects of the problem topology, such as Adagrad, Adadelta,
RMSprop, Adam, AdaMax, and Nadam (cf. [72] and references therein).

In [40] Mitliagkas et al. show that under certain stochastic delay models,
asynchrony has an effect on convergence similar to momentum, referred to
as asynchrony-induced or implicit momentum, where more workers imply a
larger magnitude of the effect. In [73] these similarities are investigated further,
and it is shown that AsyncSGD and momentum shows different convergence
rates in general and that AsyncSGD is in fact faster in expectation. Since
it has been seen [15] that the magnitude of momentum can have significant
impact on convergence, the result by Mitliagkas et al. would imply a harsh
scalability limitation of AsyncSGD . In this paper, we show that under the
same τ model as in [40], MindTheStep-AsyncSGD can in theory mitigate this
issue, and even allow the expected asynchrony-induced momentum to be tuned
implicitly by the rate of adaptation. In addition, in this work we propose a
new class of τ distribution models and show how they better capture the real τ
values observed in a deep learning application. From our proposed models we
derive an adaptive step size function η(τ) which we show significantly reduces
the number of SGD steps required for convergence.

Below we give a brief overview of works on synchronous distributed SGD.
Under smoothness and convexity assumptions, in [22] and [74], synchronous
distributed SGD with data-parallelism was observed and proven to accelerate
convergence. This was implemented on a larger scale by Dekel et al. [75] where
the convergence rates were improved under stronger analytical assumptions.
In [23] the synchronization is relaxed using a Stale Synchronous Parameter
Server with a tunable staleness threshold in order to reduce the waiting-time,
which is shown to outperform synchronous SGD. In [27] Gupta et al. give a
rigorous empirical investigation of practical trade-offs the number of workers,
mini-batch size and staleness; the results provide useful insights in scalability
limitations in synchronous methods with averaging. We address this issue in
this paper from a theoretical standpoint and explain the results observed in
practice. This is discussed in detail in Section A.3.

The study of numerical methods under parallelism is not new and sparked
due to the works by Bertsekas and Tsitsiklis [33] in 1989. Recent works [25] [39]
show under various analytical assumptions that the convergence of AsyncSGD
is not significantly affected by asynchrony and that the noise introduced by
delays is asymptotically negligible compared to the noise from the stochastic
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gradients. This is confirmed in [25] for convex problems (linear and logistic
regression) for a small number of cores. In [39] Lian et al. relax the theoret-
ical assumptions and establish convergence rates for non-convex minimization
problems, assuming bounded gradient delays and number of workers. Lock-
free AsyncSGD in shared-memory, i.e. Hogwild!, was proposed by Niu et
al. [20] and was shown to achieve near-optimal convergence rates assuming
sparse gradients. Properties of AsyncSGD with sparse updates have since
been rigorously studied in recent literature due to the performance benefits of
lock-freedom [42] [44]. The gradient sparsity assumption was relaxed in the
recent work [45] which magnified the convergence time bound in the order of
magnitude ∼

√
d, d being the problem dimensionality.

Delayed optimization in completely asynchronous first-order optimization
algorithms was analyzed initially in [51], where Agarwal et al. introduce step
sizes which diminish over the progression of SGD, depending on the maximum
staleness allowed in the system, but not adaptive to the actual delays observed.
In comparison, in this work we relax the maximum staleness restriction and
derive a strategy for adapting the step size depending on the actual staleness
values observed in the system in an online fashion. Adaptiveness to delayed
updates during execution was proposed and analyzed in [52] under assumptions
of gradient sparsity and read and write operations having the same relative
ordering. A similar approach was used in [76], however for synchronous SGD
with the softsync protocol. In [24] speedup in statistical efficiency is observed in
some cases for a limited number of worker nodes, however by using momentum
SGD, which is not the case in their theoretical analysis.

The work closest to ours is AdaDelay [53] which addresses a particular
constrained convex optimization problem, namely training a logistic classifier
with projected gradient descent. It utilizes a network of worker nodes computing
gradients in parallel which are aggregated at a central parameter server with
a step size that is scaled proportionally to τ−1. The staleness model in [53]
is a uniform stochastic distribution, which implies a strict upper bound on
the delays, making the system partially asynchronous. In comparison, in this
work we analyze the convergence of MindTheStep-AsyncSGD for non-convex
optimization, relax the bounded gradient staleness assumption, as well as
evaluate more delay models both theoretically and empirically. Moreover,
we validate our findings experimentally by training a Deep Neural Network
(DNN) classifier using real-world dataset, which constitutes a highly non-
convex and high-dimensional optimization problem. In addition, we provide
convergence analysis in the convex case for MindTheStep-AsyncSGD , where
we show explicitly a probabilistic time bound for ϵ-convergence, for any step
size function decaying in the staleness τ .
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A.8 Conclusions
In this paper, we first analytically confirm scalability limitations of the standard
SyncSGD , which were observed empirically in other works; we thus motivate
the need to further investigate asynchronous approaches. We propose a new
class of τ -distribution models, show analytically how the parameters can be
efficiently chosen in a practical setting, and validate the models empirically, as
well as compare them to models proposed in other works.

We derive and analyze adaptive step size strategies which reduce the im-
pact of asynchrony and stale gradients, using our framework MindTheStep-
AsyncSGD . We show that the proposed strategies enable turning asynchrony
into implicit asynchrony-induced momentum of desired magnitude. We provide
convergence bounds for a wide class of τ -adaptive step size strategies for convex
target functions. We validate our findings empirically for a deep learning
application and show that MindTheStep-AsyncSGD with our proposed step
size strategy converges significantly faster compared to standard AsyncSGD .

The concept of staleness-adaptive AsyncSGD has been under-explored, de-
spite the fact that, as shown here, it significantly improves scalability and helps
maintain statistical efficiency. Continuing to investigate asynchrony-aware SGD
is therefore of interest. Future research directions also include further studying
the nature of staleness, i.e., effect of schedulers and synchronization meth-
ods, for understanding the impact of asynchrony and for choosing appropriate
adaptive strategies.
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Abstract
Stochastic gradient descent (SGD) is an essential element in Machine Learning
(ML) algorithms. Asynchronous parallel shared-memory SGD (AsyncSGD),
including synchronization-free algorithms, e.g., Hogwild!, have received in-
terest in certain contexts, due to reduced overhead compared to synchronous
parallelization. Despite the fact that they induce staleness and inconsistency,
they have shown speedup for problems satisfying smooth, strongly convex
targets, and gradient sparsity. Recent works take important steps towards
understanding the potential of parallel SGD for problems not conforming to
these strong assumptions, in particular for deep learning (DL). There is however
a gap in current literature in understanding when AsyncSGD algorithms are
useful in practice, and in particular how mechanisms for synchronization and
consistency play a role.

We contribute by answering questions in this gap by studying a spec-
trum of parallel algorithmic implementations of AsyncSGD , aiming to under-
stand how shared-data synchronization influences the convergence properties
in fundamental DL applications. We focus on the impact of consistency-
preserving non-blocking synchronization in SGD convergence, and in sensitivity
to hyper-parameter tuning. We propose Leashed-SGD , an extensible algo-
rithmic framework of consistency-preserving implementations of AsyncSGD ,
employing lock-free synchronization, effectively balancing throughput and la-
tency. Leashed-SGD features a natural contention-regulating mechanism, as
well as dynamic memory management, allocating space only when needed. We
argue analytically about the dynamics of the algorithms, memory consumption,
the threads’ progress over time, and the expected contention. The analysis
further shows the contention-regulating mechanism that Leashed-SGD enables.

We provide a comprehensive empirical evaluation, validating the analytical
claims, benchmarking the proposed Leashed-SGD framework, and comparing
to baselines for two prominent deep learning (DL) applications: multilayer
perceptrons (MLP) and convolutional neural networks (CNN). We observe the
crucial impact of contention, staleness and consistency and show how, thanks to
the aforementioned properties, Leashed-SGD provides significant improvements
in stability as well as wall-clock time to convergence (from 20-80% up to 4×
improvements) compared to the standard lock-based AsyncSGD algorithm and
Hogwild!, while reducing the overall memory footprint.
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B.1 Introduction
The interest in Machine Learning (ML) methods for data analytics has peaked
in the last decade due to their tremendous impact across various applications.
Parallel algorithms for ML, utilizing modern computing infrastructure, have
gained particular interest, showing high scalability potential, necessary in ac-
commodating significant growing data demands as well as data availability.
Parallelization schemes for Stochastic Gradient Descent (SGD) have been of
particular interest, since SGD serves as a backbone in many widely used ML
algorithms and has proven effective on convex problems (e.g., linear, logistic re-
gression, SVM), as well as non-convex (e.g., matrix completion, deep learning).

The first-order iterative minimizer SGD follows the simple rule (B.1) of mov-
ing in the direction of the negative stochastic gradient ∇̃f with a step size η, of a
differentiable target function f : Rd → R, quantifying the error of a ML model:

θt+i = θi − η∇̃f(θi) (B.1)

where θi contains the learned parameters of the model at iteration i, typically
encoding features of a given dataset. Iterations, calculating over batches of one
or multiple data samples each, typically repeat until ϵ-convergence, i.e., reaching
a sufficiently low error threshold ϵ. As in SGD each update relies on the outcome
of the previous one, data parallelization is challenging. Still, several approaches
have been proposed, distinguished into synchronous and asynchronous ones:
Synchronous SGD (SyncSGD) is a lock-step parallelization scheme where
the gradient computation is delegated to threads/nodes, then aggregated
by averaging before taking a global step according to eq. (B.1) [22]. In its
original form, SyncSGD is statistically equivalent to sequential SGD with
larger data-batch [27], as also established in Chapter A. This method is
well-understood and widely used, e.g., in federated learning [26]. However,
its scalability suffers as every step is limited by the slowest contributing
thread. In addition, higher parallelism implies an impact on the convergence,
inherent to large-batch training [31]. Semi-synchronous variants have shown
improvements [18, 77], relaxing lock-step semantics and requiring only a subset
of threads to synchronize, hence reducing waiting. In the recent [18] it was seen
that requiring only a few, even just one, thread at synchronization, implies
significant speedup due to less waiting and higher throughput, motivating
further study of asynchronous parallel SGD.
Asynchronous SGD (AsyncSGD) on the other hand employs parallelism on SGD
algorithm level, allowing threads to execute (B.1) on a shared vector θ with less
coordination, and has shown superior speedup compared to SyncSGD in several
applications [20,78]. It was first introduced for distributed optimization with a
parameter server sequentializing the updates. In this context it was proven that
the algorithm converges for convex problems [51] despite the presence of noise
due to stale updates. A relaxed variant, Hogwild! [20], allowing completely
uncoordinated component-wise reads and updates in θ, showed substantial
speedup, however only on smooth convex problems with sparse gradients. This,
besides staleness, also introduces inconsistency incurred by non-coordinated
concurrent reads and writes on θ, penalizing the statistical efficiency. Only if
parallelization gains counterbalance the latter penalty, will there be an actual
improvement in the wall-clock time for convergence.
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Challenges. There are substantial analytical results and empirical evidence
that AsyncSGD [20,25,51,79] provides speedup for problems satisfying vary-
ing assumptions on convexity, strong convexity, smoothness and sparsity as-
sumptions, e.g., Logistic regression, Matrix completion, Graph cuts and SVM
training. Recently, a target of study is parallelism in SGD for wider class of
more unstructured problems, not conforming to strict analytical assumptions,
such as Artificial Neural Network (ANN) training, or Deep Learning (DL) in
general. Recent works [28,80] explore aspects of data-parallelism in the context
of distributed and parallel SGD for DL. However, for empirical results using
abstraction libraries, such as TensorFlow and Keras, in Python implementa-
tions, with its inherent limitations in parallelism and performance, makes time
measurements unreliable. As a consequence, the existing literature addresses
the topic mostly from an analytical standpoint, and empirical convergence rates
are almost exclusively measured in statistical efficiency, i.e., n.o. iterations,
as opposed to actual wall-clock time. With new methods that potentially
affect the computational efficiency, i.e., time per iteration, such results can be
delusive, with unclear usefulness in practice. Moreover, such implementations
have limited capability of fine-grained exploration of aspects of synchronization
mechanisms and consistency, the critical impact of which on the convergence
properties has been observed analytically; (i) It was shown in [44] that the
number of iterations until convergence increases linearly in the magnitude of
the maximum staleness and (ii) in [45] that inconsistency due to Hogwild!-
style updates further increases the same bound with a factor of

√
d, d being

the size of θ. There is a need for further exploration of how synchronization,
lock-freedom and consistency impact the actual wall-clock time to convergence,
to facilitate work in development of standardized platforms for accelerated DL.

For DL applications, convergence of sufficient quality is challenging to
achieve, requiring exhaustive neural architecture searches and careful tuning of
many hyper-parameters. Unsuccessful such tuning typically results in models
never converging to sufficient quality, or even executions which crash due to
numerical instability in the SGD steps [81]. The step size η is among the most
important hyper-parameters, while data-batch size, momentum, dropout, also
play a significant role. Tuning is vital for the convergence and end performance
and is a time-consuming process. On one hand, parallelism in SGD is crucial
for speedup, but it introduces new hyper-parameters to tune, such as number of
threads, staleness bound and aspects of synchronization protocol. In addition,
AsyncSGD introduces noise due to staleness, further impacting convergence
and potentially causing unsuccessful executions. There is hence a need for
methods enabling speedup by parallelism tolerant to existing parameters and
avoiding the overhead of tuning additional ones related to parallelism.

Focal point and contributions In summary, there are challenges in un-
derstanding the dynamics of asynchrony and consistency on the SGD conver-
gence [46] in practice as outlined in Fig. B.1, in particular for applications as
DL. Understanding better the tradeoff between computational and statistical
efficiency is a core issue [16]. It is known that consistency helps in Async-
SGD [45]. However, whether it is worth the overhead to ensure consistency
with locks or other synchronization means, to improve the overall convergence,
is a research question attracting significant attention, as we describe here and
in the related work section.



52 Chapter B Framework for Lock-freedom and Consistency

Figure B.1: Convergence rate is the product of computational and statistical
efficiency, sensitive to hyper-parameter tuning. We show the significant impact
of lock-free synchronization on these factors and on reducing the dependency
on tuning, enabling improved convergence.

We study asynchronous SGD in a practical setting for DL. In a system-level
environment, we explore aspects of synchronization, lock-freedom and consis-
tency, and their impact on the overall convergence. In more detail, we make
the following contributions:

• We propose Leashed-SGD (lock-free consistent asynchronous shared-memory
SGD), an extensible algorithmic framework for lock-free implementations of
AsyncSGD , allowing diverse mechanisms for consistency and for regulating
contention, with efficient dynamic memory allocation and recycling.

• We analyze the proposed framework Leashed-SGD in terms of safety, memory
consumption and we introduce a model for estimating thread progression
and balance in the Leashed-SGD execution, estimating contention over time
and the impact of the contention-regulation mechanism.

• We perform a comprehensive empirical study of the impact of synchronization,
lock-freedom, and consistency on the convergence in asynchronous shared-
memory parallel SGD. We extensively evaluate Leashed-SGD , the standard
lock-based AsyncSGD and its synchronization-free counterpart Hogwild!
on two DL applications, namely Multi-Layer Perceptrons (MLP) and Con-
volutional Neural Networks (CNN) for image classification on the MNIST
dataset. We study the dynamics of contention, staleness and consistency
under varying parallelism levels, confirming also the analytical observations,
focusing on the wall-clock time to convergence.

• We introduce a C++ framework supporting implementation of shared-
memory parallel SGD with different mechanisms for synchronization and
consistency. A key component is the ParameterVector data structure,
providing an abstraction of common operations on high-dimensional model
parameters in ANN training, providing a modularization facilitating further
exploration of aspects of parallelism.

The chapter is structured as follows: In section B.2 we outline preliminaries
and key notions for describing Leashed-SGD , as well as its contention and
staleness dynamics in sections B.3 and B.4. The comprehensive empirical study
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is presented in B.5, followed by further discussion of related work in section B.6,
after which we conclude in section B.7.

B.2 Preliminaries
Here we give a brief background, along with a more refined description, for the
questions and the metrics in focus.
Optimization problem. We target the optimization problem of (1.2), in
the same context as in Section 1.2, where the aim is to find θ, representing
parameters of an ANN (see Section 1.2.2), that minimize a loss function
L : Rd → R+. The collective set of ANN parameters θ is referred to as the
parameter vector and defines the associated AI model, and the loss function
L quantifies the error of θ. The metrics of interest are (i) statistical and
(ii) computational efficiency, as well as the (iii) overall convergence rate, as
defined in 1.2.3.
System model. We consider a system with m concurrent asynchronous
threads, with access to shared memory through atomic operations to read,
write and read-modify-write, e.g., CompareAndSwap (CAS), FetchAndAdd
(FAA) [21] on single-word locations. Each thread A computes SGD updates
(B.1) according to a pre-defined algorithm, in the context outlined in the previ-
ous paragraphs. Since A must read the current state θi prior to computing the
corresponding stochastic gradient ∇L(θi), before A’s updates take place, there
can be intermediate, referred to as concurrent updates, from other threads, The
number of such updates, between A’s read of the θi vector and A’s update
to apply its calculated gradient ∇L(θi), defines the staleness τ of the latter
update. When there is lack of synchronization, as in Hogwild!, a total order
of the updates is not imposed, and the definition of the staleness of an update
is not straightforward; we adopt a definition similar to [45]. We refer to Section
(B.3) for details on how the staleness is calculated for the different algorithms,
and thereby the total order of the updates. Under the system model above, we
have that the asynchronous SGD updates according to (B.1) instead will follow

θi+1 ← θi − η∇L(vi) (B.2)

where vi = θi−τi is the thread’s view of θ.
Synchronization methods and consistency. For consistency on concur-
rently accessed data, different methods for thread synchronization exist, the
most traditional one being locks for mutually exclusive access. Non-blocking
synchronization avoids the use of locks. [21]. A common choice is lock-free
synchronization, ensuring that in the presence of concurrent object accesses,
some are able to complete in a bounded number of steps, thus guaranteeing
system progress. Such synchronization mechanisms usually implement a retry
loop involving CAS or equivalent, in which a thread might need to repeat, in
case another thread has succeeded.

Besides progress guarantees, to argue about concurrent data accesses, we
consider data consistency. The most common is atomicity (aka linearizability,
with non-blocking synchronization), and it implies that concurrent object op-
erations act as if they are executed in sequence, affecting state and returning
values according to the object’s sequential specification [21].
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Problem overview. In the following, we focus on exploring the effectiveness
of asynchronous parallel algorithms for SGD, for training Deep Neural Networks
(DNNs). We study the computational and statistical efficiency for different appli-
cations, and the overall time to ϵ-convergence. We explore in particular the effect
of different synchronization mechanisms on consistency, contention and stale-
ness, and the resulting impact on the convergence and memory consumption.

B.3 The Leashed-SGD framework

In the following we define Leashed-SGD along with the proposed Parame-
terVector data structure’s common interface, containing the values of the
parameter vector, as well as metadata used for memory recycling. We also
express AsyncSGD and Hogwild! using this interface; both are well estab-
lished versions of parallel SGD implementations [20, 51]. Modified versions,
optimized for specific applications, have been proposed, e.g., in [82], however
not in the context of DL. In the following, we use them as general baselines,
representative of the classes of consistent asynchronous SGD algorithms and
the synchronization-free, inconsistent Hogwild!-style ones.

B.3.1 Introducing ParameterVector object

Considering (B.1), each worker in parallel SGD reads the shared data object θ,
computes a gradient and updates the former. We propose a set of core compo-
nents for this type of data structure, ParameterVector, providing possibili-
ties to get parameter values and submit updates. An instantiation of Parame-
terVector can be local or shared among threads. For concurrent access to it,
its implementation can provide certain consistency and progress guarantees (cf.
section B.2). Hence studying shared memory data-parallel SGD implementa-
tions with synchronization in focus, is to study implications of the properties of
the algorithmic implementations of the parameter vector seen as shared object.

Algorithm B.1 ParameterVector core components
Float(d) θ ▷ Array of dimension d
Int i← 0 ▷ Sequence number of the most recent update of θ
Int n_rdrs ← 0
Bool stale_flag ← false, deleted ← false

procedure rand_init()
θ ← N (0, 0.01)

procedure safe_delete()
if stale_flag ∧n_rdrs = 0 ∧ CAS(deleted, false, true) then

delete θ
procedure start_reading()

n_rdrs.fetch_add(1)
procedure stop_reading()

n_rdrs.fetch_add(-1)
self.safe_delete()

procedure update(δ, η)
i.fetch_add(1)
for d′ = 0, . . . , d− 1 do

θ[d′]← θ[d′]− η · δ[d′]

Algorithm B.1 describes the core components for the algorithmic imple-
mentation of ParameterVector. A main one is the array θ of dimension
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d (typically a very large number in DL applications, e.g., in the well-known
AlexNet [83] CNN architecture there are 62,378,344 parameters). A read of
the parameters can be accomplished by getting a pointer to θ, while function
update(, p)erforms the addition (B.2) on θ. Notice that algorithm B.1 does not
provide specific synchronization for protecting reads of updates, which is instead
left to the algorithmic implementation’s “front-end" to specify, depending on the
demands of consistency. It provides however additional methods and metadata
for keeping track of accesses and for recycling memory, as explained further in
this section. While there is some resemblance with a multi-word register [84,85],
two significant issues here are (i) the nature of the update, which is a bulk Read-
Modify-Write operation and (ii) the very large value of d, posing challenges
both from the memory and from the timing (retry loop size) perspectives.

Algorithm B.2 AsyncSGD
1: GLOBAL ParameterVector PARAM
2: GLOBAL Float η ▷ Step size
3: GLOBAL Lock MTX ▷ For accessing shared parameters
4: Initialization
5: PARAM ← new ParameterVector
6: PARAM.rand_init() ▷ Randomly initialize parameters
7: Each thread
8: local_grad ← new ParameterVector ▷ Local gradient memory
9: local_param ← new ParameterVector

10: repeat
11: MTX.lock()
12: local_param.θ = copy(PARAM.θ)
13: MTX.unlock()
14: local_grad.θ ← comp_rand_grad(local_param.θ)
15: MTX.lock()
16: PARAM.update(local_grad.θ, η)
17: MTX.unlock()
18: until convergence

B.3.2 Baselines expressed using ParameterVector

Algorithm B.2 shows the lock-based AsyncSGD , one of the baselines, achieving
consistency in the reads and the updates of the parameters through locking.
This introduces an overhead, influencing the thread interleaving, with unclear
implications on staleness and statistical efficiency. This is further explored
in Section B.5. There is one shared variable of type ParameterVector,
PARAM, and two local ones to each thread, one with a copy of the latest
state of the shared parameter vector (local_param) and one for storing the
gradient (local_grad). Hogwild!’s algorithmic implementation is similar to
Algorithm B.2, except that the locks are removed, since no synchronization
happens among the threads accessing the parameter vector. Certain overhead
is thus eliminated, however at the cost of inconsistency in the parameter up-
dates. For problems with sparse gradients the lack of synchronization will not
significantly impact the convergence, since the update(·, ·) operation will only
influence a few of the d components in θ. For DL applications though, its
influence is not well understood.
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B.3.3 Leashed-SGD: lock-free consistent AsyncSGD

Algorithm B.3 Leashed-SGD
1: GLOBAL ParameterVector ** P ▷ Address to latest pointer (cf. Fig. B.2)
2: GLOBAL Float η ▷ Step size
3: GLOBAL Int Tp ▷ Persistence threshold
4: function latest_pointer()
5: repeat
6: latest_param ← ∗P ▷ Fetch latest pointer
7: latest_param.start_reading() ▷ Prevent it from being recycled
8: if ¬ latest_param.stale_flag then
9: return latest_param

10: else
11: latest_param.stop_reading() ▷ Avoid returning stale vector, let it be
12: until break
13: Initialization
14: init_pv ← new ParameterVector() ▷ Pointer to initial parameters
15: init_pv.rand_init() ▷ Randomly initialize parameters
16: P ← &init_pv ▷ Address of initial pointer
17: Thread w
18: local_grad← new ParameterVector ▷ Local gradient memory
19: repeat
20: latest_param ← latest_pointer()
21: local_grad ← comp_grad(latest_param) ▷ Allocate new memory

and compute gradient
22: latest_param.stop_reading()
23: new_param ← new ParameterVector() ▷ New parameters
24: Int num_tries ← 0 ▷ Prepare for LAU-SPC
25: repeat
26: latest_param ← latest_pointer()
27: new_param.θ ← copy(latest_param.θ)
28: new_param.i ← copy(latest_param.i)
29: latest_param.stop_reading()
30: new_param.update(local_grad.θ, η)
31: succ ← CAS

(
P , latest_param, new_param

)
32: if succ then
33: latest_param.stale_flag ← true
34: latest_param.safe_delete()
35: else
36: num_tries ← num_tries + 1
37: if num_tries > Tp then
38: delete new_param
39: break
40: until succ
41: until convergence

The key points and arguments supporting Leashed-SGD , which is shown
in pseudocode in Algorithm B.3, using ParameterVector core components
from Algorithm B.1, are as follows:
P1. Local calculation and sharing of new parameter values: Each thread
manages its update locally new_param and attempts to publish the result
in a single atomic CAS operation (line 31), switching a global pointer P to
point to its new instance (Fig. B.2). As a successful CAS replaces the previous
“global" vector, copies of parameter vectors that become global are totally
ordered on their sequence number, i. A vector that has been replaced using the
aforementioned CAS, is labeled as stale through a boolean flag (stale_flag
in ParameterVector) that is one of the data structure’s fields.
P2. Memory recycling: Since a new ParameterVector is needed for each
such update, a simple yet efficient recycling mechanism of stale and unusable
ones ensures that the memory used is bounded. Besides the label for marking
a ParameterVector instance as stale (ensuring no new readers, making it
a candidate for recycling), the field n_rdrs, indicates whether the Parame-
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terVector should persist due to active readers.
P3. Lock-free atomic reads of the shared vector: To access the global Param-
eterVector threads acquire a pointer to the most recent by accessing P .
Through that pointer, the thread can access and use the θ and metadata of
that ParameterVector, in particular for calculating the gradient without
copying. While a ParameterVector V is in use, V.n_rdrs is non-zero (it is
atomically increment-able and decrement-able in the start_reading() and
stop_reading() functions). Note that the update of the global pointer P , and
the marking of the previous global vector as stale, are two operations. Hence,
for a thread to acquire the latest ParameterVector in a concurrency-safe
manner, this must be done in a retry loop, in latest_pointer(). Due to this
fact and how the global pointers are updated, a read preceded by another read
will not return parameter values older than its preceding read returned.
P4. Conditions for safe recycling: For reclaiming the memory of a Param-
eterVector V , the V.stale_flag must be true and V.n_rdrs must be zero.
The first condition ensures that the ParameterVector instance is not the
most recently published, and its address is no longer available to any thread
(Algorithm B.3, line 31), ensuring no additional future accesses. The second
condition ensures that no thread is currently accessing V , with the exception
when a thread just acquired a pointer that just became stale, which subse-
quently will repeat after the staleness check that follows in line 8. Note that
stale instances of ParameterVector will be reclaimed by the last thread
to access it, when calling stop_reading().
P5. Lock-free atomic updates of the shared vector: The publish is attempted
through a CAS invoked in a retry loop, and if it fails, another thread must
have succeeded. Update attempts are repeated until CAS succeeds, or until
a persistence bound Tp decided by the user has been exceeded. The loop thus
implies lock-free progress guarantees. For Tp = 0 it implies similar semantics as
the LoadLinked/StoreConditional primitive, hence its name LoadAndUpdate-
StorePersistenceConditional (LAU-SPC ). Note that bounded Tp essentially
implies bounded retries. As formulated in (B.2), due to asynchrony, the gra-
dients can be applied on a different ParameterVector instance than the
one that was used to compute the gradient. Hence, after finishing the gradient
computation, threads acquire the pointer to the most recent published Param-
eterVector instance a second time (Figure B.2), on which the update will
be applied. The result is then a candidate for publishing, the success of which
is decided as described above, implying update atomicity.

Based on the previous paragraphs, (in particular on points P1, P3 and P5,
respectively points P2 and P4) we have:

Lemma B.3.1. Reads and updates of θ in Leashed-SGD (i.e., latest_pointer()
and the LAU-SPC loop) satisfy lock-freedom and atomicity.

Lemma B.3.2. The memory recycling in Leashed-SGD (i) is safe, i.e., will not
reclaim memory which can be used by any thread for reading or updating and (ii)
bounds the memory to max 3m ParameterVector instances simultaneously.

Proof sketch. The first claim (i) follows from the definition of the safe_delete
operation of the ParameterVector, ensuring that the memory of an instance
PCi is reclaimed only if stale_flag = true (P points to a newer instance,
ensuring no new readers of PCi), n_readers = 0 (no readers currently) and
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Figure B.2: Illustration of data access in AsyncSGD and Hogwild! (left)
and Leashed-SGD (right). For AsyncSGD the read and write operations are
protected through mutual exclusion. For Leashed-SGD , each thread accesses
θi only through a read operation, then computes the update at a new memory
location, becoming a candidate for θi+τ .

that the memory has not already been reclaimed. The second claim (ii)
is realized by the fact that the memory recycling mechanism is exhaustive,
i.e., ParameterVector instances that will not be used further by any
thread will eventually be reclaimed through the delete operation in line 10 of
Algorithm 1. The reason is the following: each thread that finishes its use of
a ParameterVector instance will call the stop_reading operation, which
in turn calls safe_delete, which reclaims the memory if safe, according to the
above, i.e., it holds that the instance is currently not in use and will not be in
the future. If that is not the case, then each thread that is currently using the
instance will eventually invoke the safe_delete operation, the last of which will
perform the reclamation. Now, from Algorithm 3 it is clear that in the worst
case each thread has a unique latest_param on which it is an active reader,
and an additional two ParameterVector (new_param and local_grad),
giving in total 3m.

A note on memory consumption. Note that AsyncSGD and Hogwild!
need 2m+ 1 instances of ParameterVector constantly. In Leashed-SGD
threads compute gradients based on a published ParameterVector instance,
which will never be altered by any thread. After the gradient computation is
finished, additional memory is allocated for new parameters. This mechanism
enables an overall reduced memory footprint, in particular when gradient
computation is time consuming. This is confirmed empirically in section B.5.

B.4 Contention and staleness

In the following we analyze the dynamics of the proposed Leashed-SGD , the
effect of the persistence bound, and its impact on the contention and staleness.
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B.4.1 Dynamics of Leashed-SGD

We analyze the dynamics of the threads, their progression under concurrent
execution of Leashed-SGD . The model is similar to a G/G/1 queue, but with
arrival and departure rates λi, µi varying over time, depending on the current
state of the system.

For a single thread executing the gradient computation, the rate of arrival to
the LAU-SPC (retry) loop is λ(1) = 1/Tc, where Tc is the gradient computation
time. For an m-thread fully concurrent execution, the arrival rate scales propor-
tionally to the number of threads currently outside the LAU-SPC loop, hence
λ(m) = (m−n)λ(1) where n denotes the number of threads in the retry loop. Sim-
ilarly, for the departure rate from the LAU-SPC loop we have µ(1) = 1/Tu where
Tu is the execution time the ParameterVector update(·, ·). In summary:

λ
(m)
i =

m− ni

Tc
, µi =

ni

Tu
(B.3)

We then describe the dynamics of how threads enter and leave the LAU-SPC
retry loop of Leashed-SGD as follows:

ni+1 = ni +
m− ni

Tc
− ni

Tu
(B.4)

where ni is the number of threads executing the retry loop at time i. Note that
the system (B.4) has a fixed point n∗ = (Tc/Tu + 1)−1m at which the number
of threads in the retry loop will stay constant. Note that n∗ rewrites to n∗/m =
Tu/(Tu+Tc), i.e., that thread balance at the fixed point depends solely on the rel-
ative size of the update time Tu, highlighting the importance of the ratio Tu/Tc.
In section B.5 we show closer measurements of Tc, Tu for different applications.

In the following, we study how ni progresses for Leashed-SGD , stability
and convergence about the fixed point.

Theorem B.4.1. Assume we have an m-thread system where threads arrive to
and depart from the Leashed-SGD LAU-SPC loop with the rates in (B.3). Then,
we have that the number ni of threads in the retry-loop in iteration i is given by

ni =
1− (1− T−1c − T−1u )i

1 + Tc/Tu
m+ (1− T−1c − T−1u )ino (B.5)

where Tc, Tu denotes the time for gradient computation and update, and n0 is
the initial number of threads in LAU-SPC.

Proof. From (B.4), we have

ni = ni−1 +
m− ni−1

Tc
− ni−1

Tu

= (1− 1/Tc − 1/Tu)ni−1 +m/Tc

= . . .

=
m

Tc

i−1∑
j=0

(1− 1/Tc − 1/Tu)
j + (1− 1/Tc − 1/Tu)

in0

=
m

Tc

1− (i− 1/Tc − 1/Tu)
i

1/Tc + 1/Tu
+ (1− 1/Tc − 1/Tu)

in0
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Corollary B.4.2. The fixed point n∗ is stable, and the system will converge
towards limi→∞ ni = n∗ for any initial n0.

The result is confirmed by taking i→∞ in (B.5).
The above results enable understanding of the dynamics of how threads

progress throughout the execution, in particular that they converge to a balance
between gradient computation and the LAU-SPC , to be used in the following.

B.4.2 Persistence analysis

The persistence bound implies a threshold on the maximum number of failed
CAS attempts in Leashed-SGD , before threads compute a new gradient. This im-
plies an increase, denoted by γ > 0, in departure rate from the LAU-SPC retry
loop, proportional to the number of threads currently in the retry loop as follows:

µi =
ni

Tu
(1 + γ) (B.6)

Corollary B.4.3. Under the same conditions as in Theorem B.4.1, but using
the departure rate (B.6), the fixed point moves to

n∗γ =
( Tc

Tu
(1 + γ) + 1

)−1
m (B.7)

Note that (i) n∗γ < n∗ and (ii) n∗γ vanishes as γ grows, showing the contention-
regulating capability through a persistence bound, i.e., an increased γ.

As pointed out in Chapter A, the complete staleness τi of an update
∇L(vi) according to (B.2) is comprised of two parts: τi = τ ci + τsi where τ ci
counts the number of published updates concurrent to the computation of
∇L(vi), and τsi counts the ones that compete with the update in focus and are
scheduled before it; in particular here, the latter counts the competing updates
in the LAU-SPC loop that succeed before that update. Considering now the
estimation E[τsi ] ≈ n∗γ , it follows that the persistence mechanism described
above for reducing contention effectively regulates the additional staleness
component due to scheduling of ready gradients.

E.g., consider Tp = 0: for each published update there was no failed CAS,
hence no other update was published after the corresponding gradient was
used. Then τsi = 0, which is the maximum staleness reduction possible here.
In section B.5 we study this empirically, showing it holds in practice and is
effective for regulating contention and tune the staleness.

B.5 Evaluation

We present the results from our extended empirical study, benchmarking
the methods in Section B.3, studying influence of consistency and associated
synchronization, on the metrics described in Section B.2: convergence rate,
statistical and computational efficiency, and memory consumption. The algo-
rithms included are sequential SGD (SEQ), Lock-based AsyncSGD (ASYNC),
Hogwild! (HOG), and Leashed-SGD with persistence ∞, 1, 0 (LSH_ps∞,
LSH_ps1, LSH_ps0).
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Implementation. The algorithms and the framework are implemented with
C++, with OpenMP [86] for shared-memory parallel computations, and
Eigen [87] for numerical. The framework extends the MiniDNN [88] C++
library for DL. For implementing the ParameterVector and Leashed-SGD ,
a substantial refactoring was accomplished, extracting all learnable parameters
into a collective data structure, the ParameterVector. This abstraction
forms an interface between SGD algorithm constructions and DL operations,
enabling implementation of consistency of different degrees through various
synchronization methods. The proposed framework Leashed-SGD is general
and can be widely utilized for parallelization of SGD for various optimization
problems, in particular ones of high dimension. For the empirical evaluation
the framework is implemented in conjunction with ANN operations, facilitating
further research exploring algorithms for parallel SGD for DL with various
synchronization mechanisms.

Experiment setup. We evaluate the methods of Section B.3 for two DL
applications, namely MLP and CNN training on the MNIST benchmarking
dataset [89]. The proposed method, however, facilitates generic implementations
of SGD, and is applicable over a broad spectrum of optimization problems.
We choose to focus the evaluation around benchmarking on DL problems in
order to evaluate on relevant applications, as well as to challenge the proposed
method, keeping in mind the non-convex and highly irregular nature of the
target functions such problems constitute. Moreover, it is in this domain where
better understanding of how to support the processing infrastructure is the
most needed. MNIST contains 60,000 images of hand-written digits ∈ {0, . . . 9},
each belonging to one of ten classes, sampled in mini-batches of 512. The details
of the MLP and CNN architectures are shown in Table B.1 and B.2 for MLP
and CNN, respectively. The size of the parameter vector θ are d = 134, 794
and d = 27, 354 for MLP and CNN, respectively.

Layer Layer details
# Type # Neurons Act. fcn.
1-3 Dense 128 ReLU
4 Dense 10 Softmax

Table B.1: MLP Architecture, d = 134, 794.

Layer Layer details
# Type # Filters # Neurons Kernel Act. fcn.
1 Conva 4 - (3,3) ReLU
2 Poolb - - (2,2) ReLU
3 Conva 8 - (3,3) ReLU
4 Poolb - - (2,2) ReLU
5 Dense - 128 - ReLU
6 Dense - 10 - Softmax

aConvolutional layer bMaxPool layer

Table B.2: CNN Architecture, d = 27, 354.
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The experiments are conducted on a 2.10 GHz Intel(R) Xeon(R) E5-2695
system with 36 cores on two sockets (18 cores per socket, each supporting two
hyper-threads), 64GB memory, running Ubuntu 16.04.

Box plots in the figures contain statistics (1st and 3rd quantiles, minimum
and maximum) from 11 independent executions of each setting; outliers are indi-
cated with the symbol +. Where executions fail to reach the required precision ϵ,
the measurement is not included as basis for the box. Such execution instances,
and those that fail due to numerical instability from staleness, are indicated
as ’Diverge’ and ’Crash’, respectively. This information is highlighted because
failing DL training executions due to noise from staleness or hyper-parameter
choices is a common problem in practice [81]. It is vital that training succeeds,
and that the execution time thereby is not wasted. The threshold ϵ is specified
in terms of percentage of the target function at initialization L(θ0) ≈ 2.3.
Experiment outcomes. The steps of our experiment methodology, summa-
rized in Table B.3, are as follows:
S1. Convergence and hyper-parameter selection: We benchmark the conver-
gence of the algorithms considered under a wide spectrum of parallelism, and for
varying step size η. In this step the executions are halted at ϵ = 50% in order to
acquire an overview of the general scalability and relative performance among
the evaluated methods. The results are presented in Fig. B.3-B.4, showing
a complete picture of the convergence rate and computational efficiency under
varying parallelism, the metric of interest being the wall-clock time required
until reaching ϵ-convergence. The baselines are at their best with m = 16
threads and η = 0.005, which we choose as a yardstick for further tests to
ensure a fair comparison, and to stress-test Leashed-SGD . The results of the
step size test appear in Figure B.11, showing higher capability of the proposed
Leashed-SGD to converge for larger η.
S2. High-precision convergence for MLP: Using the setting selected accord-
ing to the above, we benchmark the algorithms for reaching high precision
(ϵ = 2.5%). We pay attention to the staleness τ distribution, to gain under-
standing based also on the results of section B.4. Using m = 16, η = 0.005,
we benchmark Leashed-SGD and baselines to high-precision 2.5%-convergence,
measuring the wall-clock time (Fig. B.5, top). Leashed-SGD shows competitive
performance, with faster convergence and smaller fluctuations. In particular,
LSH_ps∞ reaches ϵ = 2.5% error within 65s median (compared to baselines’
89s and 80s). As hypothesized in section B.4, Fig. B.7 confirms that the
staleness distribution is significantly reduced by the persistence bound.
S3. Convergence rates for CNN: We study the convergence for the CNN
application, benchmarking time to convergence for increasing precision ϵ, study-
ing the staleness and convergence over time. The proposed Leashed-SGD

Table B.3: Summary of experiments.

Experiment overview
Step Architecture Description N.o. threads m Precision ϵ Step size η Outcome
S1 MLP∗ Hyper-parameter selection 1-68 50% 0.01− 0.09 Fig. B.3, B.4
S2 MLP∗ High-precision convergence 16 50%, 10%, 5%, 2.5% 0.05 Fig. B.5-B.7
S3 CNN∗ Convergence rate 16 75%, 50%, 25%, 10% 0.05 Fig. B.8
S4 MLP∗ High parallelism 24, 34, 68 75%, 50%, 25%, 10% 0.05 Fig. B.5-B.7
S5 MLP∗, CNN∗ Memory consumption 16, 24, 34 any 0.05 presented in text
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Figure B.4: Computational efficiency, i.e., wall-clock computation time per
SGD iteration. Computation time remains constant for the baselines under
higher parallelism, although the many executions fail completely to converge,
and would be wasted time in practice. The self-regulative property of Leashed-
SGD on the other hand increases the computation time moderately under high
parallelism, balancing latency and throughput under contention, and can hence
achieve stable convergence in far more instances.

shows fewer diverging executions, with significant improvements in time to
high precision convergence with up to 4× speedup relative to the baselines
AsyncSGD (Fig. B.8). The distribution of the wall-clock time to compute and
apply gradients, respectively, are shown in Figure B.9. Despite having a lower
dimensionality, the gradient computation time Tc is higher for CNN. This is
due to the topological nature of the convolutional layer, where filters stride
along the input image pixel by pixel. This requires in practice a large number
of smaller matrix multiplications, as opposed to MLP which instead consists
of few but significantly larger ones. However, the time to apply one gradient
Tu is smaller in the CNN application, since the θ vector is smaller. Since
the dimension d of the ParameterVector is significantly smaller for the
CNN (d = 27, 354) compared to the MLP (d = 134, 794), the time Tu to apply
an update is smaller, but due to the topological nature CNNs, the gradient
computation time Tc is relatively high. The detailed measurements appear in
Figure B.9; they are in the order of magnitude Tc = 40ms and Tu = 0.6ms
for MLP, and Tc = 110ms and Tu = 0.3ms for MLP. This results in lower
contention in the LAU-SPC . As a consequence, the contention-regulating effect
of the Leashed-SGD algorithms does not kick in, hence showing similar staleness
distribution as the baselines. The proposed Leashed-SGD nevertheless shows
significant improvement in the convergence rate.
S4. Higher parallelization for MLP: We stress-test the methods, with m = 24,
m = 34 (max. solo-core parallelism) and m = 68 (max. hyper-threading). The
results appear in Fig. B.5-B.7, showing Leashed-SGD provides significantly
improved convergence and stability, with improved staleness.
S5. Memory consumption: We perform a fine-grained continuous measurement
of the memory consumption of all algorithms considered, for MLP and CNN
training. For the CNN application, due to its sparse nature, the gradient
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Figure B.5: ϵ-convergence rate for MLP with m = 16 threads to high precision
(top), m = 34 threads (middle) and maximum parallelism m = 68 threads
(bottom). The baselines (ASYNC, HOG) show an overall slower convergence
and higher number of executions that fail before reaching the high precision
(e.g., ϵ = 10%), especially under maximum parallelism m = 68, where no
baseline execution managed to reach ϵ = 50% of the error at initialization.
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Figure B.6: MLP training progress over time with m = 16 threads (top), with
m = 34 threads (middle) and maximum parallelism m = 68 threads (bottom).
The proposed framework (LSH_psX, persistence bound X) converges signifi-
cantly faster relative to baselines (ASYNC, HOG). Under maximum parallelism,
the baselines completely fail to converge and oscillate around the initialization
point.
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Figure B.7: Staleness distribution over time for MLP with m = 16 threads (top),
m = 34 threads (middle) and maximum parallelism m = 68 threads (bottom).
The effect from the contention-regulating persistence bound (ps∈ {0, 1,∞}) is
clear, and effectively reduces the overall staleness distribution. Under maximum
parallelism m = 68 the ability of the proposed framework (LSH) to self-regulate
the balance between latency and throughput becomes clear, with overall lower
staleness as well as naturally appearing clusters of threads with higher update
rate. The baselines show overall higher staleness distributions, as well as high
irregularity for ASYNC due to contention about the locks.
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Figure B.8: ϵ-convergence rates to different precision for CNN training with
m = 16 threads; LSH_ps0 shows 400s median 10%-convergence time, compared
to ∼ 500s for the baselines, with two executions showing remarkable 10%-
convergence time of below 100s, i.e., a 4× speedup relative to the best baseline
convergence rate of 375s (top) training progress over time (middle) and staleness
distribution (bottom). The proposed framework (LSH) consistently shows
improved convergence rate, as well as solution of lower error.
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Figure B.10: Memory consumption measured continuously on second granular-
ity for MLP (top) and CNN (bottom).
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Figure B.11: Step size tuning (top), confirming the choice η = 0.005, and
statistical efficiency (bottom), showing 50%-convergence.

computation vs. update application time ratio Tc/Tu is high, which enables
Leashed-SGD to reduce the memory consumption by 17% on average thanks
to dynamic allocation of ParameterVector and efficient memory recycling
(Figure B.10). The measurements were acquired using the UNIX ps command,
collected with second granularity.

Summary of outcomes. Leashed-SGD shows overall an improved conver-
gence rate, stable under varying parallelism and hyper-parameters, and signif-
icantly fewer executions that fail to achieve ϵ-convergence. In presence of con-
tention, the lock-free nature enables Leashed-SGD to self-regulate the balance
between throughput and latency and converge in settings where the baselines fail
completely. Even the case that with Tp =∞, i.e., without starvation-freedom,
we see persistent improvements relative to the baselines, demonstrating in this
demanding context too, a useful property, namely that lock-freedom balances
between system-wide throughput and thread-associated latency [90–92].

B.6 Related work

The study of numerical methods under parallelism sparked due to the works
by Bertsekas and Tsitsiklis [33]. Distributed and parallel asynchronous SGD
has since been an attractive target of study, e.g. [25,39,42,79], among which
Hogwild! [20]. In the recent [19] the concept of bounded divergence be-
tween the parameter vector and the threads’ view of it is introduced, proving
convergence bounds for convex and non-convex problems. De Sa et. al [44]
introduced a framework for analysis of Hogwild!-style algorithms. This was
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extended in [45], showing the bound increases with a magnitude of
√
d due to

inconsistency, implying higher statistical penalty for high-dimensional problems.
This strongly motivates studying algorithms which, while enjoying the com-
putational benefits of lock-freedom, also ensure consistency. To our knowledge,
this has not been done prior to the present work.

In [41] the algorithmic effect of asynchrony in AsyncSGD is modelled by
perturbing the iterates with noise. Their framework yields convergence bounds,
but as described in the paper, are not tight, and rely on strong convexity.

In [16], with motivation related to ours, a detailed study of parallel SGD
focusing on Hogwild! and a new GPU-implementation is conducted, focusing
on convex functions, with dense and sparse data sets and comparison of different
computing architectures. In contrast, we propose a framework of consistency-
preserving algorithmic implementations of AsyncSGD together with Hogwild!,
that covers the associated design space of AsyncSGD algorithms, and we focus
on MLP and CNN, which are inherently more difficult to parallelize.

In [46], as in this work, the focus is the fundamental limitation of data
parallelism in ML. They, too, point out that the limitations are due to con-
current SGD parameter accesses, usually diminishing or even negating the
parallelization benefits. To alleviate this, they propose the use of static analysis
for identification of data that do not cause dependencies, for parallelizing their
access. They do this as part of a system that uses Julia, a script language that
performs just-in-time compilation. Their approach is effective and works well
for e.g., Matrix factorization SGD. For DNNs, that we consider in this paper,
as they explain, their work is not directly applicable, since in DNNs permitting
“good” dependence violation is the common parallelization approach.

There are works introducing adaptiveness to staleness [24, 52, 53] and in
particular in Chapter A for a deep learning application. This research
direction is orthogonal to this work and can be applied in conjunction with the
algorithms and synchronization mechanisms considered here.

Asynchronous SGD approaches for DNNs are scarce in the current literature.
In the recent work [47], Lopez et al. propose a semi-asynchronous SGD
variant for DNN training, however requiring a master thread synchronizing
the updates through gradient averaging and relying on atomic updates of the
entire parameter vector, resembling more a shared-memory implementation
of parameter server. In [48] theoretical convergence analysis is presented for
SyncSGD with once-in-a-while synchronization. They mention the analysis
can guide in applying SyncSGD for DL, however the analysis requires strong
convexity. [49] proposes a consensus-based SGD algorithm for distributed DL.
They provide theoretical convergence guarantees, also in the non-convex case,
however the empirical evaluation is limited to iteration counting as opposed to
wall-clock time measurements, with mixed performance positioning relative to
the baselines. In [50] a topology for decentralized parallel SGD is proposed,
using pair-wise averaging synchronization. In the recent [18] a partial all-
reduce relaxation of SyncSGD is proposed, showing improved convergence
rates in practice when synchronizing only subsets of the threads at a time,
due to higher throughput, complemented with convergence analysis for convex
and non-convex problems. In particular, the empirical evaluation shows only
requiring one thread (i.e., AsyncSGD) gives competitive performance due to
the wait-freedom that follows from the lack of synchronization.
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B.7 Conclusions
We propose the extensible generic algorithmic framework Leashed-SGD for
asynchronous lock-free parallel SGD, together with ParameterVector, a
data type providing an abstraction of common operations on high-dimensional
model parameters in ANN training, facilitating modular further exploration of
aspects of parallelism and consistency.

We analyze safety and progress guarantees of the proposed Leashed-SGD , as
well as bounds on the memory consumption, execution dynamics, and contention
regulation. Aiming at understanding the influence of synchronization methods
for consistency of shared data in parallel SGD, we provide a comprehensive
empirical study of Leashed-SGD and established baselines, benchmarking on
two prominent deep learning (DL) applications, namely MLP and CNN for
image classification. The benchmarks are chosen in order to challenge the
proposed model against the baselines and provide new useful insights in the
applicability of AsyncSGD in practice.

We observe that the baselines, i.e., standard implementations of AsyncSGD ,
are sensitive to hyper-parameter choices and are prone to unstable executions
due to noise from staleness. The proposed framework Leashed-SGD outperforms
the baselines where they perform the best, and provides a balanced behavior,
implying stable and timely convergence for a far wider spectrum of parallelism.

The methods are implemented in an extensible C++ framework, interfacing
DL operations with parallel SGD algorithms, facilitating further research of
algorithms for parallel SGD for DL with various synchronization mechanisms.
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Abstract
Concurrent algorithmic implementations of Stochastic Gradient Descent (SGD)
give rise to critical questions for compute-intensive Machine Learning (ML).
Asynchrony implies speedup in some contexts, and challenges in others, as stale
updates may lead to slower, or non-converging executions. While previous works
showed asynchrony-adaptiveness can improve stability and speedup by reducing
the step size for stale updates according to static rules, there is no one-size-fits-
all adaptation rule, since the optimal strategy depends on several factors. We
introduce (i) ASAP.SGD, an analytical framework capturing necessary and desired
properties of staleness-adaptive step size functions and (ii) tail-τ , a method for
utilizing key properties of the execution instance, generating a tailored strategy
that not only dampens the impact of stale updates, but also leverages fresh
ones. We recover convergence bounds for adaptiveness functions satisfying
the ASAP.SGD conditions, for general, convex and non-convex problems, and
establish novel bounds for ones satisfying the Polyak-Lojasiewicz property. We
evaluate tail-τ with representative AsyncSGD concurrent algorithms, for Deep
Learning problems, showing tail-τ is a vital complement to AsyncSGD , with
(i) persistent speedup in wall-clock convergence time in the parallelism spectrum,
(ii) considerably lower risk of non-convergence, as well as (iii) precision levels
for which original SGD implementations fail.
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C.1 Introduction

The ascending interest in concurrent SGD is due to the explosion of data vol-
umes, requiring scalable systems to process them in ML and Artificial Neural
Network (ANN) applications. However, parallelization of the inherently sequen-
tial SGD process is non-trivial since each iteration requires the computation
of the previous one. Besides understanding the dynamics of such executions,
achieving resource-efficiency is a known significant target, since it can imply
significant improvements in energy efficiency.

Traditional synchronous SGD (SyncSGD) conforms to the sequential SGD
semantics by employing iteration-level parallelism, and lock-step-style synchro-
nization. In practice, SyncSGD accelerates updates by data-parallel concurrent
gradient computation, e.g., by GPU-acceleration, or aggregating gradient con-
tributions in distributed settings. SyncSGD improves computational efficiency
up to a point, but suffers limitations, as each iteration is as slow as the slowest
contributing worker. However, from an optimization standpoint SyncSGD is
analogous to sequential SGD, with well-understood convergence properties.

In contrast, asynchronous concurrent SGD (AsyncSGD) introduces a higher-
level parallelism by relaxing the sequential SGD semantics, allowing asyn-
chronous reads/updates on the shared ML model θ. Consequently, AsyncSGD
provides computational benefits, however at the price of asynchrony-induced
noise due to the staleness τ that arises when updates are not applied to the
same states based on which they were computed, but instead on ones that
have been updated τ times in-between. It was within convex optimization,
targeting primarily regression problems [22,93], where it was shown that the
asynchrony-induced noise had small impact on the quality of the updates, and
that the computational benefits of reduced synchronization provided speedup
for certain problems. A relevant example is Hogwild! which, with only
component-wise atomic access to θ (i.e., relaxed consistency by not ensuring
atomicity for the complete vector) showed almost-linear speedup for strongly
convex and sparse problems [20, 43, 45]. Asymptotic bounds for AsyncSGD
were similarly established under strong convexity and smoothness assumptions,
and for non-convex problems, such as matrix completion [44].

However, these analytical confinements make the concluding outcomes
non-applicable for a wider class of applications, including Deep Learning
(DL), characterized by inherent non-convexity. This is confirmed in recent
works [46,47], as well as in Chapter B, showing challenges in achieving stable
and high-quality convergence with AsyncSGD for ANN training, due to stal-
eness. The importance of progress and consistency guarantees of AsyncSGD
is emphasized in Chapter B, where the introduced lock-free and consistent
Leashed-SGD shows major improvements in convergence stability (reduced risk
of non-convergence) compared to lock-based AsyncSGD and Hogwild!.

Recent works show that asynchrony-awareness can reduce negative effects
of staleness by dampening the step size of stale updates [24, 53, 56, 61]. In
particular, staleness-adaptiveness has proven to reduce the statistical penalty
of asynchrony in AsyncSGD , improving its stability and convergence rate.

Challenges. In summary, stable convergence of AsyncSGD is critically sen-
sitive to (i) parallelism degree, (ii) asynchrony-awareness, and (iii) progress
and consistency guarantees of the algorithmic implementation, and the mecha-
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nisms to ensure them, e.g., locking. These factors have been studied mostly in
isolation, and there is an imminent need to evaluate them in conjunction, to
understand how AsyncSGD can be utilized effectively in practice.

Moreover, existing staleness-adaptive methods either (i) statically scale
the overall system step size at initialization or (ii) use a pre-defined heuristic
or staleness model to regulate the step size based on the observed staleness.
An inherent pitfall of adapting the step size during execution is that the
overall magnitude might be altered, which by itself will impact the efficiency.
E.g., previous works employ adaptiveness strategies that almost exclusively
diminish the overall step size [24, 53, 56, 61]. This is problematic for several
reasons, e.g., (i) it may be fatal for applications sensitive to the choice of
the step size (read: Deep Learning), leading to non-converging executions,
and (ii) it introduces ambiguity regarding the source of potential performance
improvements, reducing comparability between methods. Besides, these
approaches take no consideration of the effect of underlying system parameters,
such as hardware, scheduling, synchronization and consistency properties.
These aspects, just like the number of workers, and other hyper-parameters,
significantly influence the convergence rate in general [16], and the staleness
distribution in particular, as shown in Chapter B. and can even result in
multi-modal ones as we show here. Hence, there are inherent challenges in
designing adaptation schemes capable of incorporating the effects of all of these
critical aspects in conjunction.
Contributions. We introduce the instance-based asynchrony-awareness paradigm,
with the execution-dynamic tail-τ staleness-adaptive step size function. We
also establish a framework for adaptiveness to staleness in asynchronous parallel
SGD (ASAP.SGD), capturing key properties of such functions in general. In detail:

• ASAP.SGD captures general staleness-adaptive step size function properties,
(i) necessary for maintaining overall step size magnitudes and ensuring
method comparability, and (ii) desired for prioritizing gradient freshness.

• Within ASAP.SGD, we introduce tail-τ , a dynamic staleness-adaptive step
size function, that (i) utilizes the observed staleness distribution as means to
implicitly take underlying system parameters into consideration, and (ii) gen-
erates an execution-specific adaptation strategy, in the spirit of instance-based
optimization [94]

• We recover asymptotic convergence bounds for tail-τ in particular, and
general ones within the ASAP.SGD framework, for convex and non-convex
applications. We establish novel bounds for functions satisfying the Polyak-
Lojasiewicz (PL) condition, which characterizes the shape of certain non-
convex targets, and holds for several relevant ML loss functions, including
least squares, logistic regression, support vector machines and deep ANNs.

• We implement tail-τ , extending the parallel AsyncSGD implementation
framework of Chapter B, to promote further exploration of general staleness-
adaptiveness within ASAP.SGD. The results show that tail-τ is a vital com-
plement for fast and stable convergence for any AsyncSGD implementation,
across the parallelism spectrum, due to its dynamic instance-based generation
of tailored step size strategies. In particular, the evaluation, capturing several
representative system features associated with synchronization, parallelism,



76 Chapter C Instance-based Step Size Adaptiveness

execution-ordering properties, shows that for image classification training
with LeNet and MLP, on MNIST, Fashion-MNIST, and CIFAR-10, tail-τ
achieves significantly faster convergence persistently (e.g., 60% speedup, on
average, for LeNet training on MNIST), for three fundamentally different
AsyncSGD implementations, and drastically lowers the risk of non-converging
executions, especially to higher precision.

C.2 Background and related work

Adaptive parallel SGD. (cf. also Table C.1) Staleness/asynchrony aware-
ness was first studied for smooth and convex problems in [51], introducing a
step size reduction based on worst-case staleness. Adaptiveness to observed
staleness was studied in [52] assuming convexity, sparse gradients and cer-
tain ordering of reads and updates across threads and evaluated for logistic
regression. [24], with a 1/τ staleness compensation scheme in semi-synchronous
distributed settings, show empirically speedup for ANN training with limited
parallelism. For partial asynchrony, [96] introduced an adaptive scheme for reg-
ulating synchronization frequency, showing convergence bounds in non-convex
Polyak-Lojasiewicz functions. In contrast, our work establishes convergence
bounds for fully asynchronous SGD with unbounded staleness, using staleness-
adaptive step size strategies, for general non-convex functions, as well as ones
satisfying the Polyak-Lojasiewicz condition.

AdaDelay [53] proposed O(1/
√
τ) staleness-adaptive step sizes for smooth,

convex problems, showing scalability improvements. Their analysis was based
on a uniformly distributed staleness model, which Chapter A establishes
to be a simplifying assumption; the latter also introduced the MindTheStep-
AsyncSGD framework, proposing O(C−τ ) and O(C−τ/τ !) schemes based on a
Poisson-based staleness model, showing improved convergence rates for practical
DL. [95] introduced a regret-based delay-adaptive approach for convex, smooth
settings, while in a Federated Learning (FL) context, [56] adopted an exponen-
tial dampening approach (O(C−βτ )), explored initially in [97] (see Chapter A),
where the rate of decay is based on the s-th percentile of the staleness distribu-
tion. The approach of [56] showed practical benefits for online ML applications
at the edge. In [61], a O(i−τ ) staleness-adaptive scheme is proposed, analyzed
under quasi- and star-convex functions, showing improved convergence for pro-
jected GD with artificial noise, under simulated staleness. The aforementioned
works are however mostly static in their strategy, i.e., are either model-based or
based on a heuristic (e.g., 1/τ). Here we study closely the staleness distribution
and explore how to utilize this information to generate the strategy itself, which
(see Section C.6) entails significant improvements in convergence and robustness.

Non-convex asynchronous SGD. The literature on standard, non-adaptive,
convex AsyncSGD is vast, and a useful overview is in [28]. Here we highlight re-
cent relevant AsyncSGD results for practical non-convex applications, including
DL. In [55], linear convergence was established under the Polyak-Lojasiewicz
condition, however assuming bounded staleness; the empirical evaluation fo-
cused on logistic regression, a convex problem. [46] proposed a static method
for ensuring data-disjoint concurrent accesses, showing promising scalability
for the non-convex problem of matrix factorization with SGD; the method
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is however, as they state, not applicable to DL in general. [47] proposed a
semi-asynchronous SGD approach, showing speedup for DL on CPU and GPU
architectures, requiring a synchronizing master thread which averages up-
dates [98] proposed a byzantine-tolerant asynchronous SGD framework, using
a parameter server ensuring quality and relevance of updates. Similarly to
ours, their work covers Polyak-Lojasiewicz problems, however to the best of our
knowledge, our work is the first to do so for instance-based asynchrony-aware
algorithmic implementations of AsyncSGD .
Optimization problem. We consider the optimization problem

minimize
θ∈Rd

LD(θ) (C.1)

where (i) D is the data set to be processed, (ii) θ ∈ Rd is the ML model that
encodes the learned knowledge of D and (iii) the target function L : Rd → R+

quantifies the loss (error) of θ over D. Given some randomly chosen initial θ0,
the first-order iterative optimizer SGD repeats the following:

θi+1 = θi − ηi∇L̃(θi) (C.2)

where θi ∈ Rd is the state of the model θ, and ηi is the step size, in iteration i.
We assume that L̃ = LB where B ⊂ D is a uniformly sampled mini-batch of
data, and that L̃ is an unbiased estimator of LD, i.e., E

[
L̃(θ)

]
= LD(θ) ∀θ ∈ Rd.

We assume that mini-batch samples, and hence the stochastic gradients ∇L̃, are
mutually statistically independent. The loss function LD : Rd → R+, θ 7→ LD(θ)
quantifies the performance of an ANN model, parameterized by θ. SGD is
repeated until θ satisfies ϵ-convergence, defined as ∥L(θ)− L(θ∗)∥ < ϵ, θ∗ being
a global minimum of L.

C.3 System model and problem analysis

Algorithm C.1 Staleness-adaptive shared-memory AsyncSGD
GLOBAL loss function L, iteration counter i, max. n.o. iterations T , shared state θ, step
size function η(τ)

1: Let (i, θ)← (0, rand_init()) ▷ Randomly initialize θ
2: Each thread:
3: while i < T do
4: (ilocal, θlocal)← copy(i, θ)
5: ∇local ← ∇L̃(θlocal) ▷ Compute local random gradient
6: (i′, θ′)← copy(i, θ) ▷ Acquire latest state
7: τ ← i′ − ilocal ▷ Calculate staleness
8: (i, θ)← (i′ + 1, θ′ − η(τ)∇local)

We consider a system with m concurrent asynchronous threads or processes.
Threads follow the SGD rule of (1.1) asynchronously, within the boundaries of
the algorithm which implements it, being responsible for potential guarantees
on consistency and progress. An outline of a standard shared-memory par-
allel AsyncSGD implementation is provided in Algorithm C.1, showing also
how a staleness-adaptive step size is introduced. In direct shared memory
communication, threads have atomic access to single-word locations for read
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and modify operations; in arbitrary contexts, steps 4 and 8 in Algorithm C.1
can be executed through the help of a parameter server, through requests to
read and update θ. Due to asynchronous reads and updates of θ there can be
intermediate updates, hence, the progression of θ follows:

θi+1 = θi − ηi∇L̃(vi) (C.3)

where vi = θi−τi is the view of the updating thread in iteration i, and τi is the
staleness, defined as the number of intermediate updates. When atomicity is
not guaranteed, e.g., Hogwild!, a total ordering of the updates is not naturally
imposed and has to be defined. Here, we assume a total ordering as in [45]
and define the staleness thereafter. By staleness distribution we refer to the
distribution of all observed staleness values throughout a particular execution of
AsyncSGD . We consider staleness (τi) to be a stochastic process, the elements of
which, unlike the stochastic gradients, are not necessarily mutually independent.
However, we assume E[τi] = τ̄ ∀i and that the execution is non-anticipative in
the sense that states are mean-independent of future instances of the staleness,
in particular:

E[τi | τi′ ] = E[τi] ∀i < i′ (C.4)

since the expected staleness is not influenced by future staleness. Note that
this implies E[τiτi′ ] = E[τi]E[τi′ ]. Similarly, we assume that the staleness
is mean-independent of θ, since the statistical properties of the convergence
progress are not expected to influence the delays of individual threads, which
are related to hardware and scheduling.

The step ηi of iteration i will, unless stated otherwise, is considered a func-
tion of the staleness τi in the same iteration; the details appear in the subsequent
section. In the analysis section, we will generally use the notation E[x] = x̄.
Dampening is not sufficient. The primary focus of previous approaches
has been to dampen the step size of stale updates (cf. Table C.1). However,
the overall staleness distribution changes with higher parallelism [53] (see also
Chapter B), in particular for m threads E[τ ] ≈ m− 1 holds in practice, as
discussed in Chapter A. An adaptive step size which merely diminishes stale
updates, will consequently tend to very small values as m increases. This
introduces a scalability issue, especially for non-convex problems, such as DL,
which are step size sensitive, requiring updates of sufficiently coarse granularity
to retain the level of stochasticity necessary for convergence. In fact, the
commonly adopted O(τ−1) scaling, as well as the FLeet O(e−βτ ) exponential
dampening, were evaluated in our study, and compared with both constant
step size AsyncSGD , as well as the staleness-adaptive function tail-τ proposed
here. The results show convergence rates orders of magnitude slower than just
the corresponding non-adaptive variant, and especially when compared to the
proposed tail-τ function (see Section C.6).

C.4 Method

Here we present the ASAP.SGD framework, the staleness-adaptive tail-τ step
size function, and their properties.
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C.4.1 The ASAP.SGD framework
We start by formalizing the concept of a staleness-adaptive step size, and its
connection to the overall base step size.

Definition C.4.1. A staleness-adaptive step size function η : N→ R+, τ 7→
η(τ : η0), given some base step size η0 ∈ R+, maps the stochastic staleness τi
of the update at time i onto a step size η(τ : η0) to be used for that update.

The base step size η0 is typically the “best known” step size for the problem
at hand for standard sequential SGD. A staleness-adaptive function then alters
this step size online, based on observed staleness. Definition C.4.1 implies in
particular that the step size, as a function of the staleness, is consequently also
considered stochastic. The step size ηi at iteration i is however influenced only
by the staleness τi.

A challenge with staleness-adaptive step sizes is that they may alter the
overall magnitude of the updates, which is undesirable since (i) it induces
deviation from the expected step size magnitude, with unpredictable impact
on the convergence, and (ii) makes it inherently different to compare the
convergence impact of different strategies. We introduce the mean-preservation
property to address this.

Definition C.4.2 (Mean-preservation). A staleness-adaptive step size function
η is referred to as mean-preserving if

E
[
η(τ : η0)

]
= η0 (C.5)

Definition C.4.2 ensures that the average step size used throughout an
execution of AsyncSGD is exactly η0. Performance benefits due to a mean-
preserving adaptive step size can hence be assured to be due to the adaptation
strategy, as opposed to using a step size of an overall different magnitude. In
the following, in the context of mean-preserving step sizes, we use notation η0

and η̄ interchangeably.
Lastly, we introduce the priority-preservation property:

Definition C.4.3 (Priority-preservation). A staleness-adaptive step size func-
tion η is referred to as priority-preserving if η is non-increasing with respect
to τ , i.e.

η(τ + 1 : η0) ≤ η(τ : η0) ∀τ (C.6)

Definition C.4.3 implies not only that stale updates are lower prioritized,
but also that fresh updates can be emphasized. With the above in mind, we
now define the ASAP.SGD framework for staleness-adaptive step size functions:

Definition C.4.4 (ASAP.SGD). A function η is an ASAP.SGD step size function,
iff η is staleness-adaptive, mean-preserving and priority-preserving.

C.4.2 The tail-τ function
Next, within the ASAP.SGD framework we define the instance-based staleness-
adaptive tail-τ step size function, which considers the overall staleness dis-
tribution, to dynamically compute an execution-tailored adaptation strategy.
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Figure C.1: The scaling factor CA(τ) of tail-τ , relative a staleness distribu-
tion, with properties from Lemma C.4.7. Fresh updates (low staleness) are
emphasized, stragglers are dampened.

Definition C.4.5. A tail-τ function is a staleness-adaptive step size function
η which is of the form

η(τ : η0) = CA(τ) · η0 (C.7)

where the scaling factor CA is given by

CA(τ) = 1 +A · (1− 2Fτ̃ (τ))

Here, Fτ̃ (τ) = P[τ̄ ≤ τ ] is the cumulative distribution function (CDF) of the
stochastic staleness.

The amplitude parameter A of the tail-τ function specifies the maximum
deviation of η from the base step size η0. The scaling factor CA(τ) of the tail-τ
function (C.7) utilizes the CDF of τ , implicitly taking the system staleness
distribution into consideration for generating a dynamic adaptive step size
function, tailored to the specific execution. This is visualized in Figure C.1,
showing the response of CA(τ) to different ranges of stochastic staleness. E.g.,
it enables tailored treatment of multi-modal staleness distributions, which may
emerge under hyperthreading or congestion for accessing shared resources. The
name tail-τ relates to the 1− Fτ̃ (τ) = P[τ̄ > τ ] component, which is known
as the tail distribution function.

Practical note. The tail-τ function is straight-forward to apply to any
implementation of AsyncSGD , since it requires only measuring the distribution
of the staleness and computing the corresponding CDF Fτ̄ (τ) = P[τ̄ < τ ], to be
used in the step size (C.7). tail-τ introduces negligible overhead, as measuring
τ is a small, constant-time operation, independently of e.g., architecture size.

Next, we verify that tail-τ satisfies properties of the ASAP.SGD framework.

Theorem C.4.6. A tail-τ function η according to (C.7) is an ASAP.SGD step
size function, according to Definition C.4.4

The proof of Theorem C.4.6 is the same as of C.4.8 and appears below.
In the following lemma we show several core properties of the tail-τ

function, to be used in subsequent analysis.
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Lemma C.4.7. For a tail-τ adaptive step size η(τ : η0) = CA(τ) · η0, we
have

max
τ

η(τ : η0) = (1 +A)η0 (i)

min
τ

η(τ : η0) = (1−A)η0 (ii)

V ar[η(τ)] = (Aη̄)2/3 (iii)
CA(τ) ≤ 1 + (2(m− 1)/τ − 1)A (iv)

Proof. (i)-(ii) follow directly from Definition C.4.5.

(iii): V ar[η(τ)] = E
[
η(τ)2

]
− η̄2

=

∞∑
τ=1

(1 +A(1− 2F (τ))η̄)
2
pτ̄ (τ)− η̄2

=

(
1

6A
(1 +A(1− 2F (τ)))

3
∣∣∣0
τ=∞

− 1

)
η̄2

=

(
1

6A

(
(1 +A)3 − (1−A)3

)
− 1

)
η̄2 =

1

3
(Aη̄)2

(iv): CA(τ) = 1 +A(1− 2F (τ))

= 1 +A (2 (1− F (τ))− 1)

Markov’s inequality now gives

CA(τ) ≤ 1 +A

(
2
E[τ ]

τ
− 1

)
Now, assuming E[τ ] ≈ m− 1, m being the number of threads, concludes the
proof. Based on empirical studies, it has been observed that such an assumed
condition is reasonable, generally holding in practice (see [24], Chapter A).

Lemma C.4.7 provides useful criteria for deciding the parameters η0 and
A in practice, for ensuring that η(τ : η0) stays within desirable magnitudes
suitable for the given problem.

tail-τ can be extended in the same spirit as Definition C.4.5, to allow a
higher degree of flexibility in design choices, still satisfying the properties of
Lemma C.4.7, and enjoying the convergence guarantees established in Section
C.5. In particular, the degree with which the CDF of τ influences the scaling
factor CA, and how much variations of τ values are reflected in the step size,
can be customized as follows:

Theorem C.4.8. Let a staleness-adaptive step size function η be

η(τ : η0) = Cs,ϕ(τ) · η0

where the scaling factor is given by

Cs,ϕ(τ) = 1 +A · (1− 2 ϕ(Fτ̃ (τ)))

for some amplitude factor A ∈ [0, 1] and some non-decreasing function ϕ : [0, 1]→
[0, 1]. If ϕ satisfies ∫ 1

0

ϕ(x) dx =
1

2
, ϕ(0) = 0, ϕ(1) = 1 (C.8)

then η is (i) mean-preserving and (ii) priority-preserving.
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The choice of the function ϕ now allows customizing the rate with which η
adapts to different ranges of staleness.

Proof. (i) Mean-preservation follows from

E[Cs,ϕ(τ)] =

∞∑
τ=1

(1 +A · (1− 2 ϕ(Fτ̃ (τ)))) pτ̃ (τ)

= 1 +A ·

(
1− 2

∞∑
τ=1

ϕ(Fτ̃ (τ))pτ̃ (τ)

)

Let f extend p so that fτ̃ (ρ) = pτ̃ (τ) for ρ ∈ (τ − 1, τ). Then we have

E[Cs,ϕ(τ)] = 1 +A ·
(
1− 2

∫ ∞
τ=0

ϕ(Fτ̃ (τ))fτ̃ (τ) dτ

)
= 1 +A ·

(
1− 2

∫ 1

0

ϕ(Fτ̃ (τ)) dFτ̃ (τ)

)
= 1

(ii) Priority-preservation follows directly from that Fτ̃ (τ) is a CDF, hence
non-decreasing, and the assumptions on A and ϕ.

C.5 Convergence analysis
In this section we establish asymptotic convergence bounds of the method
proposed in the previous section, considering:

Assumption C.5.1. Expected Lipschitz-continuous gradients

E
[
∥∇L(θ1)−∇L(θ2)∥

]
≤ LE

[
∥θ1 − θ2∥

]
∀θ1, θ2 (C.9)

Assumption C.5.2. Expected bounded gradient moment

E
[
∥∇L(θ)∥2

]
≤M2 ∀θ (C.10)

These provide the problem additional structure, hold for a wide set of loss
functions in practice, and are widely adopted in the literature [24,45,51].

The following lemma shows the expected progression of the SGD iterates
for arbitrary staleness-adaptive step sizes.

Lemma C.5.3. Consider the optimization problem of (1.2), and follow the
SGD step (C.3). Let ηi = η(τi; η̄) be a staleness-adaptive step size function
(according to Definition C.4.1). Then we have the following expected iterative
progression:

E[L(θi+1)− L(θi)]

≤ LM2 (E[
η2]/2 +E[τη]E[η]

)
−E[η]E

[
∥∇L(θi)∥2

]
Proof. From assumption C.5.1 we have in particular

L(θi+1)− L(θi)− ⟨∇L(θi), θi+1 − θi⟩ ≤
L
2
∥θi+1 − θi∥2
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From the SGD step we have

L(θi+1)− L(θi)− ηi

〈
∇L(θi),−∇L̃(θi) +

(
∇L̃(θi)−∇L̃(vi)

)〉
≤ L

2
η2i ∥∇L̃(vi)∥2

⇒L(θi+1)− L(θi) + ηi

〈
∇L(θi),∇L̃(θi)

〉
− ηi∥∇L(θi)∥∥∇L̃(θi)−∇L̃(vi)∥

≤ L
2
η2i ∥∇L̃(vi)∥2

We have by assumption C.5.1, and the triangle inequality

∥∇L̃(θi)−∇L̃(vi)∥ ≤ L∥θi − vi∥

= L

∥∥∥∥∥∥
τi∑
j=1

θi−j+1 − θi−j

∥∥∥∥∥∥ ≤ L
τi∑
j=1

ηi−j∥∇L̃(θi−j)∥

⇒L(θi+1)− L(θi) + ηi

〈
∇L(θi),∇L̃(θi)

〉
− ηiL∥∇L(θi)∥

τi∑
j=1

ηi−j∥∇L̃(θi−j)∥

≤ L
2
η2i ∥∇L̃(vi)∥2

Take expectation conditioned on the last staleness τi. From mean-independence,
we have

E[L(θi+1)− L(θi) | τi] + ηiE
[
∥∇L(θi)∥2

]
− ηiL

τi∑
j=1

E[ηi−j ]E
[
∥∇L(θi)∥∥∇L̃(θi−j)∥

]
≤ L

2
η2iE

[
∥∇L̃(vi)∥2

]
≤ L

2
M2η2i

Applying Hölder’s inequality, and that E[τi] = E[τ ] ∀t

E[L(θi+1)− L(θi) | τi] + ηiE
[
∥∇L(θi)∥2

]
− ηiE[η]L

τi∑
j=1

√
E[∥∇L(θi)∥2]E

[
∥∇L̃(θi−j)∥2

]
≤ L

2
η2iE

[
∥∇L̃(vi)∥2

]
≤ L

2
M2η2i

⇒E[L(θi+1)− L(θi) | τi] + ηiE
[
∥∇L(θi)∥2

]
− τiηiE[η]LM2 ≤ L

2
M2η2i

Now, take full expectation

E[L(θi+1)− L(θi)] +E[η]E
[
∥∇L(θi)∥2

]
−E[τη]E[η]LM2 ≤ L

2
M2E

[
η2
]

which concludes the proof.
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The following lemma establishes the expected iterative progression of Async-
SGD with ASAP.SGD step sizes:

Corollary C.5.4. Under the same conditions as Lemma C.5.3, let in addition
η(τi; η̄) be mean- and priority-preserving, hence an ASAP.SGD step size. Then
we have:

E[L(θi+1)− L(θi)] ≤ LM2 (E[
η2]/2 + η̄2τ̄

)
− η̄E

[
∥∇L(θi)∥2

]
Corollary C.5.4 follows directly from mean-preservation, and from that

E[τη] ≤ E[τ ]E[η] by priority-preservation. Corollary C.5.4 serves as a common
starting point for convergence analysis of a wide range of ASAP.SGD step size
functions. Using the specifics of the step size function, lemma C.5.3 can be
used to derive explicit convergence bounds, as we demonstrate in the following
for tail-τ .

Corollary C.5.5. Assume the conditions of Lemma C.5.3 and let η(τi; η̄) =
CA(τ) · η̄ be a tail-τ step size function. Then:

E[L(θi+1)− L(θi)] ≤ LM2η̄2 (A2/6 + τ̄
)
− η̄E

[
∥∇L(θi)∥2

]
Corollary C.5.5 follows from Corollary C.5.4, utilizing the tail-τ properties

from Lemma C.4.7, and shows the iterative improvement for tail-τ , to be used
in subsequent results.

In the following theorem we establish expected time until convergence to an
approximate critical point of SGD for general non-convex, smooth functions,
using tail-τ .

Theorem C.5.6. Assume L(θ0)− L(θ∗) < δ, and let η(τi; η̄) = CA(τ) · η̄ be a
tail-τ step size function. Then we have a O(1/

√
T ) convergence bound, to an

approximate critical point, after T AsyncSGD iterations. Specifically, if

η̄ =
√
δ/LM2T (A2 + τ̄) (C.11)

then mint E
[
∥∇L(θi)∥2

]
≤ 2
√
LM2(A2 + τ̄)δ/T

Proof. From Corollary C.5.5, we have

E
[
∥∇L(θi)∥2

]
≤ E[L(θi)− L(θi+1)]

η̄
+ LM2η̄

(
A2

6
+ τ̄

)
⇒ 1

T

T−1∑
t=0

E
[
∥∇L(θi)∥2

]
≤ δ

η̄T
+ LM2η̄

(
A2

6
+ τ̄

)

which implies in particular that mini E
[
∥∇L(θi)∥2

]
satisfies the above upper

bound as well. The bound now rewrites as in the statement by substituting η̄
for (C.11), which concludes the proof.

Theorem C.5.6 shows that tail-τ recovers the standard bound O(1/
√
T ) of

SGD on smooth non-convex problems [99]. However, this is rather pessimistic
as it applies to general non-convex functions. We consider the following to
provide more structure to the problem:
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Assumption C.5.7. Polyak-Lojasiewicz (PL) condition. A function L is
referred to as µ-PL if, for some µ > 0:

E
[
∥∇L(θ)∥2

]
≥ µE[L(θ)− L(θ∗)] ∀θ (C.12)

PL is a geometric condition characterizing the shape of non-convex functions.
It can be regarded as a generalization of strong convexity, however without
requirements on e.g., uniqueness of minimizers. Several ML loss functions
satisfy the condition, including least squares, logistic regression, support vector
machines [62] and certain types of deep ANNs [63].

Next, we establish asymptotic convergence of AsyncSGD with tail-τ step
size function for smooth, µ-PL functions.

Theorem C.5.8. Let L be µ-PL, and L(θ0)−L(θ∗) < δ. Further, let η(τi; η̄) =
CA(τ) · η̄ be a tail-τ step size function. Then we have expected ϵ-convergence
in T = O

(
1
ϵ log

(
2δ
ϵ

))
iterations. More precisely, let

η̄ =
µϵ

LM2(A2/3 + 2τ̄)
(C.13)

Then we have E[L(θT )− L(θ∗)] < ϵ for

T >
LM2(A2/3 + 2τ̄)

µ2ϵ
log

(
2δ

ϵ

)
Proof. With Corollary C.5.5 as a starting point, we have by assumption C.5.7

E[L(θi+1)− L(θi)] + η̄µE[L(θi)− L(θ∗)] ≤ LM2η̄2
(
A2

6
+ τ̄

)

⇒E[L(θT )− L(θ∗)] ≤ (1− η̄µ)E[L(θT−1)− L(θ∗)] + LM2η̄2
(
A2

6
+ τ̄

)
= (1− η̄µ)

T
δ + LM2η̄2

T−1∑
i=0

(1− η̄µ)i
(
A2

6
+ τ̄

)
≤ (1− η̄µ)

T
δ +
LM2η̄

µ

(
A2

6
+ τ̄

)
<

ϵ

2
+

ϵ

2
= ϵ

The reason for the O(A2) term in Theorems C.5.6 and C.5.8 (negligible
compared to the O(τ) additive term) is due to the analytical estimation of the
variance of tail-τ (Lemma C.4.7, (iii)), which must be considered (Cor. C.5.5),
specifically when expanding the E[η2] term. As we make no assumptions
on PDF(τ), the bounds reflect the expected worst-case convergence over all
possible τ distributions. Additional information on the τ distribution can (using
Corollary C.5.4 as a starting point) derive tighter algorithm-specific bounds.

For the sake of self-containment, we establish fundamental convex conver-
gence bounds for (i) arbitrary staleness-adaptive step size functions, (ii) ones
satisfying the ASAP.SGD properties, as well as (iii) the tail-τ function. For this,
we will require also strong convexity:
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Assumption C.5.9. L is strongly convex with parameter C

E
[
(θ1 − θ2)T

(
∇L(θ1)−∇L(θ2)

)]
≥ C∥θ1 − θ2∥2 ∀θ1, θ2

Theorem C.5.10. Consider the unconstrained optimization problem of (1.2).
Under Assumptions C.5.1, C.5.2, and C.5.9, for any precision ϵ > 0, and for
any staleness-adaptive step size function η (Definition C.4.1), there is a number
T of AsyncSGD iterations, of the form (C.3) such that E[∥θT − θ∗∥2] < ϵ,
where T is bounded by:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)
2
(
C − LMϵ−1/2E[τη]

)
η̄ − ϵ−1M2E[η2]

Corollary C.5.11. Under the same conditions as Theorem C.5.10, let ηi be
ASAP.SGD adaptive step size function. Then we have the following bound on the
expected number of iterations until expected convergence:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)
2Cη̄ − ϵ−1M (M + 2L

√
ϵτ̄)E[η2]

(C.14)

Corollary C.5.12. Under the same conditions as Theorem C.5.10, let addi-
tionally ηi be tail-τ step size function. Then we have the following bound on
the expected number of iterations until expected convergence:

T ≤ ln (∥θ0 − θ∗∥2ϵ−1)
2Cη̄ − ϵ−1M (M + 2L

√
ϵτ̄)
(
1 + A2

3

)
η̄2

(C.15)

The proofs for Theorem C.5.10, and Corollary C.5.11, C.5.12 build on and
extend the results in Chapter A and follow from the properties of ASAP.SGD
and tail-τ , specified in Section C.4.

C.6 Evaluation
We complement the analysis with benchmarking the tail-τ function, for im-
plementations of AsyncSGD representative of a variety of system-execution
properties relating with scheduling and ordering. We evaluate tail-τ , com-
paring to standard constant step size executions, for relevant DL benchmark
applications, namely training the LeNet [100] architecture, as well as a 3-layer
MLP, for image recognition for image recognition on both MNIST and Fashion
MNIST. The evaluation focuses on convergence rates, primarily wall-clock time
to ϵ-convergence (which is the most relevant in practice), as well as number of
successful executions, for various precision levels ϵ. We include a broad spec-
trum of parallelism, giving a detailed picture of the capability of the methods
to scale in practice. We also study the staleness distributions, the adaptive
response of the tail-τ function, and its impact on the convergence.
Implementation. We evaluate the tail-τ for three AsyncSGD algorithms,
representing fundamentally different synchronization mechanisms and guar-
antees on progress and consistency, and in this way capturing a variety of
scheduling and ordering system-execution properties: (i) lock-based Async-
SGD [22,51,93] (ii) lock-free, but inconsistent, Hogwild! [20,44,45] and (iii) the
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lock-free and consistent Leashed-SGD algorithm, introduced in Chapter B,
denoted ASYNC, HOG and LSH, respectively. Executions using our tail-τ func-
tion are indicated by the suffix _TAIL. The implementation extends the open
Shared-Memory-SGD [101] C++ library, connecting ANN operations to low-
level implementations of parallel SGD, and is free to use for research purposes.

Experiment setup. We tackle the problem of ANN training for image
classification on the datasets MNIST [89] of hand-written digits, CIFAR-10 [70]
of everyday objects, and Fashion-MNIST [102] of clothing article images. All
datasets contain 60k images, each belonging to one of ten classes ∈ {0, . . . , 9}.
For this, we train a LeNet CNN architecture, as well as a 3-layer MLP, with
128 neurons per layer (denoted MLP in the following), for 100 epochs. We
use standard settings and hyper-parameters; For MNIST and Fashion-MNIST
training we use a base step size of η0 = 1e−4 and mini-batch size 128, while
for CIFAR-10 we use η0 = 5e−3 and a mini-batch size of 16. The multi-class
cross-entropy loss function is used in all experiments. For Leashed-SGD , we
use the default setting of an infinite persistence bound. We use a tail-τ step
size function (as in Definition C.4.5), that adapts to each unique execution,
based on the measured staleness distribution, with an adaptation amplitude of
A = 1, due to its role in emphasizing fresh updates and dampening stragglers.
The experiments are conducted on a 2.10 GHz Intel(R) Xeon(R) E5-2695
two-socket 36-core (18 cores per socket, each supporting two hyper-threads),
64GB non-uniform memory access (NUMA), Ubuntu 16.04 system. Plots show
averaged values from 5 executions for each setting, unless otherwise stated.
ϵ-convergence is achieved when L(θ) < ϵ, expressed as % of the initial loss L(θ0).
The number of executions that fail to reach ϵ-convergence is indicated by ∞ at
the top, if such executions occurred. This is important, since such executions
result in models of insufficient accuracy, and thereby are wasted work.

Convergence speedup and scalability. We measure convergence time to
first 50% of the initial error (i.e., 50%-convergence), and then to higher precision
(5% for MNIST, and 15% for Fashion-MNIST to enable clearer comparison,
since baselines rarely converge to this level of precision) across the parallelism
spectrum. The results (Figure C.2) show that the tail-τ step size function
yields persistent and substantial speedup in convergence time (12% in the
worst-case, 100% in the best), for all combinations of datasets, architectures
and AsyncSGD implementations (see Table C.2 for details). Training plots,
showing loss progression over time, are shown in Figure C.3, demonstrating the
convergence speed being orders of magnitudes faster than standard AsyncSGD .
Similar speedup is observed for training on the CIFAR-10 dataset, shown in
Figure C.5. For higher-precision convergence, non-converging executions are
frequent among the standard AsyncSGD algorithms, especially under higher
parallelism. Their ability to converge varies, demonstrating the impact of
underlying synchronization and progress guarantees. We observe in particular
that Hogwild! achieves the fastest overall convergence, while Leashed-SGD
provides higher reliability, i.e., lower risk of non-convergence. However, inde-
pendently of the properties of the AsyncSGD implementation, we observe, in
addition to persistently faster convergence, also that the tail-τ step size ensures
a significantly lower risk of non-convergence, hence higher reliability (see Table
C.2). Staleness-based dampening according to the commonly adopted ×τ−1
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Figure C.2: Convergence rates for LeNet (left) and a 3-layer MLP (right)
for MNIST and Fashion-MNIST recognition training with AsyncSGD , with
Hogwild! (HOG), Leashed-SGD (LSH), and traditional lock-based (ASYNC)
implementations. Executions using the instance-based tail-τ staleness-adaptive
step size are indicated with the suffix _TAIL.
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Figure C.3: Loss over time for Hogwild! (HOG), Leashed-SGD (LSH), and
traditional lock-based (ASYNC) AsyncSGD with parallelism m = 20, with and
without the tail-τ staleness-adaptive step size (suffix _TAIL) for LeNet (left)
and a 3-layer MLP (right).

scheme, as well as the FLeet 3 exponential dampening [56], are evaluated for
MLP and LeNet training on MNIST, compared to standard AsyncSGD with
constant step size. The results (Figure C.6, C.7) show, as conjectured in Section
C.3, convergence of significantly slower rate compared to a constant step size,
which in addition (as opposed to tail-τ , as well as constant step size) decays
with higher parallelism due to the reduced overall step size magnitude. The
speedup of tail-τ compared to constant step size is shown in Figure C.2 and
C.3. Figure C.11, C.6-C.7 show convergence rates and training plots under
varying parallelism for the ×τ−1 scheme which, with some variation, appears
often in previous works [24, 53, 61], compared to standard AsyncSGD with
constant step size. For both LeNet and MLP training for MNIST recognition,
we observe significant challenges with achieving convergence rates within the
same order of magnitude as traditional, constant step size, AsyncSGD . This, in
contrast with tail-τ which, as shown in Section C.6, provides persistent, and
significant, speedup in convergence rates. The straight-forward ×τ−1 step size
suffers significant challenges in achieving convergence, especially under higher
parallelism, as explained in Section C.3.
Instance-based adaptiveness. Figure C.4 shows the staleness distribution
of the AsyncSGD algorithms for LeNet and MLP, along with the corresponding

3As in the original paper, we use the dampening factor Λ(τ) = e−βτ , where β satisfies
(τthres/2+ 1)−1 = e−βτthres/2, where τthres is the beginning of the staleness distribution tail,
which we consider to be τthres = m + 1 here, based on observation. The similarity-based
boosting option was not considered here.
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Figure C.4: Staleness distribution (left), and the tail-τ scaling factor (right)
for LeNet (top) and a 3-layer MLP (bottom), for MNIST and Fashion-MNIST.
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tail-τ scaling factor (bottom right) for LeNet training on CIFAR-10.
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Figure C.6: LeNet training with AsyncSGD on MNIST with Hogwild!
(HOG), Leashed-SGD (LSH), and traditional lock-based (ASYNC) implementa-
tions, comparing executions using the FLeet exponential dampening approach
(suffix: _FLEET) and the ×τ−1 staleness-adaptive scheme (suffix: _Tau−1)
against standard, constant step size.

tail-τ step size scaling factors, generated dynamically based on the staleness dis-
tribution of the particular execution. We observe, as expected from Section C.4,
that the staleness-adaptive step size strategies, generated by tail-τ , emphasize
fresh updates and diminishe the impact of stale ones, taking into consideration
the underlying execution-specific staleness distribution. This, as shown above,
results in increased stability, i.e., lowered risk of non-convergence, as well as
significant increase in convergence rates. Note that considering standard SGD
eliminates side-effects of ‘add-ons’, enabling clearer comparisons. Other step-
size-altering methods (e.g., ADAM or schedules) can be used in conjunction,
by applying them to η0 (Def. C.4.4) and is a relevant target for future studies.
Higher parallelism. Figure C.8 provides an overview of the scalability of all
algorithms evaluated here for MNIST and Fashion-MNIST, respectively, over a
large parallelism spectrum. We observe speedup until around 32 threads, at
which the system saturates and does not benefit from higher parallelism. The
different algorithms perform differently at different parallelism levels. In partic-
ular, under hyper-threading (m > 36), the AsyncSGD implementations suffer
a slower convergence due to increased computational overhead and asynchrony-
induced noise. However, in all instances, tail-τ provides significant speedup,
independently of the algorithm, dataset, and parallelism level. Figure C.9 and
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Figure C.7: MLP training with AsyncSGD on MNIST with Hogwild! (HOG),
Leashed-SGD (LSH), and lock-based (ASYNC) implementations, comparing exe-
cutions using the FLeet exponential dampening approach (suffix: _FLEET) and
the ×τ−1 staleness-adaptive scheme (suffix: _Tau−1) against constant step size.

C.10 show staleness distributions of the considered AsyncSGD algorithms for
LeNet and MLP training, respectively, together with the corresponding scaling
factors CA of the staleness-adaptive tail-τ step size functions. The AsyncSGD
implementations have fundamentally different staleness distributions, due to
the underlying algorithmic mechanisms for progress and consistency. Moreover,
we observe multi-modality in some executions, in particular for lock-based
AsyncSGD due congestion about the locks, and under hyper-threaded paral-
lelism (m > 36). The emergence of multi-modal staleness distributions in the
presence of hyper-threading is due to that threads are mapped to the same core,
and need to share that computing resource. This results in a subset of threads
that share computing cores pair-wise, and another consisting of threads with
exclusive access to such cores. The threads of the former subset will naturally
compute at about half the speed as the threads of the latter portion, resulting
particularly in a bimodal staleness distribution with modes at around (i) the
number of cores and (ii) the maximum number of hyper-threads, as can be
observed in Figure C.10.

The execution-specific staleness distributions are utilized by tail-τ to
generate an instance-based adaptiveness strategy, accommodating for algorith-
mic differences and underlying system aspects, enabling the improvements in
convergence rates and stability that are observed in Section C.6.



94 Chapter C Instance-based Step Size Adaptiveness

Le
N

et
M

N
IS

T

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

10
20
30
40
50
60
70
80
90

100

Ti
m

e 
(s

) t
o 

co
nv

er
ge

nc
e

= 50%

Fa
sh

io
n-

M
N

IS
T

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

10
20
30
40
50
60
70
80
90

100
110

Ti
m

e 
(s

) t
o 

co
nv

er
ge

nc
e

= 50%

M
LP

M
N

IS
T

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

0

10

20

30

40

50

60

Ti
m

e 
(s

) t
o 

co
nv

er
ge

nc
e

= 50%

Fa
sh

io
n-

M
N

IS
T

4 8 12 16 20 24 28 32 40 48 56 64
N.o. threads

0

10

20

30

40

Ti
m

e 
(s

) t
o 

co
nv

er
ge

nc
e

= 50%

Figure C.8: AsyncSGD convergence rates over a wide parallelism spectrum,
including hyper-threading (m > 36), for Hogwild! (HOG), Leashed-SGD
(LSH), and lock-based (ASYNC), comparing executions using the staleness-
adaptive tail-τ (suffix: _TAIL) against standard, constant step size.
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Figure C.9: Staleness distributions for the considered AsyncSGD algorithms
(left) and the corresponding scaling factors CA of the generated staleness-
adaptive tail-τ step sizes, as in Definition C.4.1 (right) for LeNet training on
MNIST and Fashion-MNIST.

System-related insights. The emerging τ distribution of an AsyncSGD
execution is influenced by many underlying factors, including (i) the compute
infrastructure (UMA/NUMA, hyper-threading), (ii) consistency guarantees,
and the associated synchronization mechanisms (e.g., loose consistency as
in Hogwild!, lock-based, or Leashed-SGD etc.), (iii) gradient computation
vs application time, (iv) number of threads. Several works are dedicated to
studying this [28], explored also in Chapter B, however the nature of this
dependency is an open problem. Although this is not the main scope here, we
see that implicitly adapting to the aforementioned aspects, through the PDF(τ)
signature, yields significant practical benefits, as we show with tail-τ .
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Figure C.10: Staleness distributions for the considered AsyncSGD algorithms
(left) and the corresponding scaling factors CA of the generated staleness-
adaptive tail-τ step sizes, as in Definition C.4.1 (right) for MLP training on
MNIST and Fashion-MNIST.

Table C.2: Results overview - speedup across the parallelism spectrum achieved
by the tail-τ step size, relative a standard constant one.

Speedup 50%-convergence 5% (15%)-convergence
Dataset Architecture min max avg success∗ min max avg success∗

MNIST LeNet 1.12 1.75 1.51 1.0 1.16 1.92 1.6 1.0
MLP 1.30 2.0 1.66 1.0 1.42 1.99 1.82 3.53

Fashion-MNIST LeNet 1.13 1.90 1.48 1.0 ∞ ∞ ∞ ∞
MLP 1.25 1.8 1.56 1.0 ∞ ∞ ∞ ∞

CIFAR-10 LeNet 1.03 1.45 1.29 1.0 - - - -
∗Ratio between n.o. executions that reached the desired precision for tail-τ executions vs. standard AsyncSGD
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Figure C.11: Convergence rates on MNIST for LeNet and a 3-layer MLP with
AsyncSGD , with Hogwild! (HOG), Leashed-SGD (LSH), and traditional
lock-based (ASYNC) implementations, comparing executions using the ×τ−1
staleness-adaptive scheme (suffix: _Tau∧-1) against standard, constant step
size.
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C.7 Conclusion
We introduce ASAP.SGD - a framework for capturing essential properties of gen-
eral staleness-adaptive step size functions for AsyncSGD , providing structure to
the domain of staleness-adaptiveness, and can guide the design of new adaptive
step size strategies. Within ASAP.SGD, we introduce the first instance-based
dynamic step size function, tail-τ , which generates a tailored adaptiveness
strategy for each unique execution. We analyze general ASAP.SGD functions for
AsyncSGD , as well as tail-τ in particular, and recover convergence bounds
for both convex and non-convex problems, as well as establish new bounds for
ones satisfying the Polyak-Lojasiewicz condition.

We implement tail-τ , extending existing AsyncSGD implementations, to
provide a platform for further research in the domain. The evaluation covers
three implementations of AsyncSGD , with fundamentally different algorithmic
properties, for training LeNet and an MLP for image recognition on MNIST
and Fashion-MNIST. The results show that tail-τ is a vital component for
AsyncSGD practical deployments, due to its ability to, based on the properties of
the unique execution, generate an adaptiveness strategy tailored to the specific
execution, yielding persistent speedup across the entire parallelism spectrum,
and tremendous increase in reliability to converge, in particular to high precision.
Efficiency is important not only for timeliness, but also for resource utilization,
especially when considering highly energy-consuming ANN training [103].
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Abstract
Parallel algorithms for Stochastic Gradient Descent (SGD) have gained signif-
icant interest due to their speed-up capabilities. In particular, Asynchronous
SGD (AsyncSGD) has become a standard part in most modern deep learning
(DL) frameworks and associated applications. However, contrary to traditional
Synchronous parallelization, AsyncSGD breaks the original SGD semantics,
since the applied gradients are based on a stale state of the model parameters.
This gives rise to a well-known phenomenon, referred to as asynchrony-induced
noise (AIN). While AsyncSGD is unmatched in computational efficiency, the
presence of staleness and AIN impedes the statistical convergence properties
of the execution. The trade-off that emerges requires careful tuning of the par-
allelism level m; under-parallelism implies unnecessarily slow executions, and
over-parallelism causes non-convergence, oscillations, and crashes, all the while
consuming excessive computational resources at a higher energy consumption.

We show that the optimal parallelism is not constant but varies throughout
the execution. We present ElAsyncSGD , an elastic extension of AsyncSGD ,
which frees and deploys workers dynamically during the execution to balance
the trade-off between computational and statistical efficiency. In addition, we
introduce an explicit definition of AIN, and an efficient algorithmic implemen-
tation to measure it in real-time. We establish novel convergence bounds for
non-convex problems, showing in particular the influence of AIN and m on the
convergence of AsyncSGD . The extensive evaluation of ElAsyncSGD in the
paper, on several relevant DL benchmark datasets, architectures and synchro-
nization methods, shows improvements in convergence speed and stability, as
well as crucial savings in computational resources, with reductions between
30-67%. The latter is particularly useful, given the increasing awareness of the
need to utilize efficiently resources and energy on tasks of this type.
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D.1 Introduction
The interest in concurrent algorithms for Stochastic Gradient Descent (SGD) is
at an all-time high, due to their critical role in accelerating Machine Learning
(ML), particularly Deep Learning (DL), applications.

SGD is a first-order iterative optimization algorithm, which follows:

θi+1 = θi − η∇L̃(θi) (D.1)

given an optimization problem

minimize
θ∈Rd

LD(θ) (D.2)

where (i) D is the data set to be processed, (ii) θ ∈ Rd is the ML model that
encodes the learned knowledge of D and (iii) the target function L : Rd → R+

quantifies the loss of θ on D, and (iv) η is the step size; θ0 is chosen randomly,
and (D.1) is repeated until a convergence criterion is met.

Parallelization of the inherently sequential SGD algorithm is non-trivial,
and in order to adhere to the sequential semantics, parallelism can be allowed
only within individual iterations, with strict synchronization before the next.
Traditional Synchronous SGD (SyncSGD), which employs strict gradient-
averaging synchronization after every iteration, falls into this category, and
consequently maintains the broad set of convergence results that are known for
sequential SGD. Modern ML deployments that benefit from this fact range
from GPU-accelerated DL jobs on nowadays standard desktop computers, to
wide networks of computing devices that jointly solve complex data analytics
problems using distributed data, e.g., Federated Learning (FL). However,
SyncSGD suffers two fatal drawbacks, namely that (i) straggling workers cause
global slow-down, and (ii) gradient averaging multiplies the effective mini-batch
size, both contributing to limited scalability.

Asynchronous SGD (AsyncSGD) relieves both aforementioned drawbacks
of SyncSGD by relaxing the sequential SGD semantics, allowing threads to
individually follow (D.1), coordinating only access to the shared state θ. The
lack of synchronization drastically reduces waiting, which can provide significant
speedup. However, gradients are no longer necessarily applied to the same
state as they were computed based on, and instead the execution follows:

θi+1 = θi − η∇L̃(vi) (D.3)

where vi = θi−τi is the view of the updating worker in iteration i, and τi is the
staleness, i.e., the number of intermediate iterations from the moment of reading
the state θ until the corresponding update is applied. Higher staleness in an
AsyncSGD execution implies larger deviation from the sequential semantics,
the magnitude of which is referred to as asynchrony-induced noise (AIN). AIN
has been discussed in connection to AsyncSGD , however current literature on
the topic lacks formal definitions of the same, as well as methods for measuring
it, and consequently actual experimental measurements are lacking.
Motivation and Challenges. While the impact of the parallelism degree is
well-known for SyncSGD , it is unpredictable and problem-specific for its asyn-
chronous counterpart AsyncSGD . For AsyncSGD , it has been established that
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over-parallelism leads to higher staleness and AIN, with unstable, fluctuating
loss values as a consequence, and even diverging and crashing executions in the
worst case [51,56], also observed in Chapter B. Thus, using appropriate paral-
lelism is important for ensuring high convergence quality, as well as for avoiding
unnecessary consumption of computational resources, especially considering
the energy consumption due to modern deep learning research [7]. Nonetheless,
the computational benefits of asynchrony cannot be dismissed, and must be
weighed against its impact on the statistical convergence properties, i.e., the
computational vs. statistical efficiency trade-off.

Given any ML job, it is notoriously difficult to know the appropriate
asynchronous parallelism degree in advance, and finding it generally requires
costly exhaustive searches [47,55] (see also Chapter B). However, in practice
only a small number of executions to reach a model of sufficient quality can be
tolerated, and exhaustive searches 4 are excessively time consuming, and require
significant computational resources. This implies a fatal idea-implementation
gap, where on the one side AsyncSGD can provide tremendous acceleration
of DL jobs, but it is agonizingly difficult to apply in practice. Moreover,
computational resources necessitate analogous energy consumption, sometimes
disproportionately high to common belief, cf e.g. [7, 8]. There is hence a
need for more robust, instance-adaptive AsyncSGD methods, that balance
the computational vs. statistical trade-off, while retaining the computational
benefits of asynchrony and utilizing computational resources in smart ways.
Such methods should enable single executions with fast and stable convergence,
automatically balancing the computational vs. statistical efficiency trade-off
by regulating the parallelism level. To this end, the notion of AIN must be
formally defined, so that it can be measured, and its impact on the convergence
of AsyncSGD understood.
Contributions. This work takes crucial steps toward understanding and
utilizing dynamic parallelism in AsyncSGD in practical applications, targeting
resource efficiency and implied gains.

• We provide a formal definition of asynchrony-induced noise (AIN), denoted by
ξ, which applies for asynchronous semantic relaxation in numerical iterative
algorithms in general, and AsyncSGD in particular. In addition, we introduce
a generic algorithmic extension of AsyncSGD for efficiently measuring the
AIN in real-time in such algorithms, which we use to report its magnitudes
for several relevant DL benchmarking problems.

• We establish several novel convergence bounds, focusing particularly on the
impact of ξ and the parallelism degree, on the statistical performance of
AsyncSGD . We analyze the convergence of AsyncSGD and ElAsyncSGD
on general non-convex problems, as well as problems satisfying the Polyak-
Lojasiewicz criterion, which applies for several relevant DL problems.

• We introduce ElAsyncSGD , an extension of AsyncSGD , which dynamically
deploys and frees workers in real-time based on the execution instance,
continually balancing the computational vs. statistical efficiency trade-off
for optimal convergence speed, while striving for minimal consumption of
4Models of sufficient quality are typically found under sub-optimal parallelism level before

such exhaustive searches complete, however after a large number of unfruitful trials.
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computational resources. We formally argue for the ability of ElAsyncSGD
to track and actualize the time-varying approximate optimal parallelism m∗.

• We present an extensive evaluation of the proposed ElAsyncSGD , benchmark-
ing against standard AsyncSGD with tuned optimal constant parallelism,
on several DL benchmarks, including LeNet and MLP training on MNIST,
Fashion-MNIST and CIFAR-10. The evaluation reveals that the intelligent
parallelism regulation of ElAsyncSGD entails drastic reduction of thread-
seconds, and hence overall energy consumed by computational resources
(reductions ranging between 30− 67%). Due to improved balance between
computational vs. statistical efficiency, ElAsyncSGD additionally exhibits
more stable convergence trajectories, and converges to higher precision.

D.2 Literature review

The study of numerical methods under parallelism sparked due to the works
by Bertsekas and Tsitsiklis [33]. Distributed and parallel asynchronous SGD
has since been an attractive target of study, e.g. [25, 39, 42], among which
Hogwild! [20] and Leashed-SGD of Chapter B.

The literature on parallelism and AsyncSGD in particular is vast, and a
useful extensive overview is provided in [28].While it is emphasized in [7, 8]
that resource utilization is a crucial factor in the deployment of associated
applications and that we “should prioritize computationally efficient hardware
and algorithms", to the best of our knowledge the literature on parallelization
falls short in addressing the problem form the point of view of adaptiveness in
computational resources.

Other approaches that target elasticity in AsyncSGD are present in the liter-
ature, however not targeting resource adaptation; here we give an overview of the
most relevant works addressing asynchrony-awareness for improved convergence.

In [104] the framework ADAM is proposed, which combines semi-synchronous
and model partitioning across nodes for boosting computational efficiency, which
results in overall lower consumption of computational resources. The trade-off
between computational and statistical efficiency was highlighted in [47], where
a semi-asynchronous SGD approach was proposed, showing speedup for DL on
CPU and GPU architectures. The same trade-off is described in [105], where a
system that dynamically adapts momentum and mini-batch size parameters is
proposed, based on the dynamics of asynchronous multi-worker DL, targeting
overall reduced training time.

There are several works dedicated to staleness-adaptiveness, originating
from [51], where a theoretical maximum staleness was used to decide the
overall step size. Subsequently, several works utilize the actual observed
staleness during execution to adapt the step size. In [52], convergence bounds
for staleness-adaptive step sizes were established, assuming convexity, sparse
gradients, and relative ordering of read and update operations. AdaDelay [53]
proposed a O(1/

√
τ) staleness-adaptive step size for smooth, convex problems,

showing improved scalability. Chapter A proposes a O(C−τ ) and O(C−τ/τ !)
schemes based on a staleness model, and in Chapter C a generic instance-
based framework ASAP.SGD was proposed for generating execution-tailored
staleness-adaptive step size functions. In [96], an adaptive scheme for regulating
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synchronization frequency was proposed, in order to reduce communication
overhead. In [106], the notion of elastic training is attributed to dynamically
adjusting the step size and mini-batch size throughout the execution, in order
to tune the momentum parameter.

In [41] the algorithmic effect of asynchrony in AsyncSGD is modelled by
perturbing the stochastic iterates with bounded noise. Their framework yields
convergence bounds, but as described in the paper, are not tight, and rely
on strong convexity. It is useful to point out that the asynchrony-induced-
noise (defined and denoted by ξ in our work) may also have positive effects
in convergence of non-convex problems; however the understanding of the
boundaries is limited; here we provide insights to this question, through the
analysis of the correlation of ξ, the convergence rate and the degree of parallelism.
In [107], an analysis framework, elastic consistency, is introduced and utilizes
deviation between the true state and the perceived (in the spirit of asynchrony-
induced noise) for establishing convergence of AsyncSGD .

While the above works utilize asynchrony-awareness for analysis and regula-
tion of various system parameters, none of them propose elasticity in the sense
of dynamically deploying and releasing computational resources. To the extent
of the authors’ knowledge, the proposed work is the first to do so, i.e., introduce
resource elasticity for AsyncSGD by dynamically regulating the number of
workers in order to continually and optimally balance the computational vs.
statistical efficiency trade-off.

D.3 Preliminaries

Optimization problem. We consider the unconstrained optimization prob-
lem of (D.2), and the AsyncSGD optimizer of (D.3). We assume that L̃ = LB

where B ⊂ D is a uniformly sampled mini-batch of data, and that L̃ is an
unbiased estimator of LD, i.e., E

[
L̃(θ)

]
= LD(θ) ∀θ ∈ Rd. We assume that

mini-batch samples, and hence the stochastic gradients ∇L̃, are mutually sta-
tistically independent. The loss function LD : Rd → R+, θ 7→ LD(θ) quantifies
the performance of an ANN model, parameterized by θ. SGD is repeated
until θ satisfies ϵ-convergence, defined as ∥L(θ)− L(θ∗)∥ < ϵ, θ∗ being a global
minimum of L, or until a pre-defined time limit elapses.
System model. We consider a system with maximally m̂ asynchronous
workers. We generally refer to workers as parallel, as in a shared-memory
context, however the methods apply to general distributed contexts as well, such
as asynchronous federated learning. The workers follow the SGD rule of (D.1)
asynchronously, hence the system progress follows (D.3). The instantaneous
n.o. workers, i.e., the parallelism degree, is generally denoted by m. Access to
the shared model parameters θ is regulated by the implementing algorithm, e.g.,
standard lock-based AsyncSGD , lock-free inconsistent Hogwild!, or consistent
lock-free Leashed-SGD of Chapter B. By staleness distribution we refer to the
distribution of all observed staleness values throughout a particular execution of
AsyncSGD . In the case of Hogwild!, where updates are non-atomic, iterations
have no natural total order, which is required to calculate staleness. For this,
we define a total ordering of updates similarly as in [45]; details appear in
Section D.4.3. The staleness (τi) is considered to be a stochastic process, where
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Figure D.1: Computational vs statistical efficiency trade-off.

instances are not necessarily mutually independent. In the case of constant
parallelism, we assume that (τi) are identically distributed. We generally
consider the executions to constitute non-anticipative processes, since future
states do not influence the past, implying in particular that past states are
mean-independent from them.

D.4 Method

In the following, we introduce an elastic extension to AsyncSGD , namely the
ElAsyncSGD , as well as an efficient algorithm for measuring ξ, and argue for
their correctness.

D.4.1 Problem analysis

The goal of iterative optimization for solving (D.2) is to optimize the overall
convergence rate ∂L

∂t , where t denotes wall-clock time. In particular, the
convergence rate is a product of the computational and statistical efficiency of
the implementing algorithm:

∂L

∂t
=

∂L

∂i

∂i

∂t
(D.4)

according to the chain rule, where i denotes the iteration number. In the case
of a minimization problem, we are naturally also interested in minimizing ∂L

∂t .
Now, higher parallelism generally ensures higher computational efficiency ∂i

∂t ,
however it also induces noise due to staleness, with worse statistical efficiency
∂L
∂i as a consequence. Hence, a trade-off emerges, which requires choosing an
appropriate parallelism level that balances the two factors.

Note that ∂i
∂t depends on the parallelism degree m, but is not dependent on

the state θ, hence we write ∂i
∂t (m). The same does not hold for ∂L

∂i , why we write
∂L
∂i (θ : m). In fact, ∂L

∂i (θ : m) is typically heavily influenced by the current state
θ, i.e., the reduction in loss for each iteration varies depending on the current
stage of the convergence. Since this is likely to disrupt the computational vs.
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statistical efficiency balance throughout an AsyncSGD execution (D.4), it is
likely that a constant-parallelism approach is not optimal.

Instead, we hereby hypothesize that there is an optimal, potentially non-
constant, parallelism level trajectory m∗i , that minimizes (D.4) for each iteration
i throughout an AsyncSGD execution, as illustrated in Figure D.1.

m∗i = argmin
m

∂L

∂i
(θ : m)

∂i

∂t
(m)

With the above in mind, we pose the following:

Hypothesis D.4.1. There is a time-varying optimal parallelism m∗i that
outperforms the optimal constant parallelism, in overall better convergence
rate (D.4), or in terms of computational resources consumption, or both.

We hence propose ElAsyncSGD , an elastic extension of AsyncSGD , that is
designed to maintain a close-to-optimal balance between computational and
statistical efficiency, dynamically, throughout the entire AsyncSGD execution.
In particular, we want to enable speedup through asynchronous parallelism,
avoiding over-parallelization with its associated wasted computational resources
and instability, as well as avoiding under-parallelization with unnecessarily
slow convergence. We are particularly interested in how an elastic parallelism
strategy (i) balances the trade-off (D.4), (ii) affects the overall asynchrony-
induced noise, and (iii) affects the overall computing resources used during an
AsyncSGD execution.

D.4.2 Defining asynchrony-induced noise
In the following, we formally define the asynchrony-induced noise (AIN):

Definition D.4.2. The asynchrony-induced noise (AIN), denoted by ξ, con-
stitutes a d-dimensional time series (ξi), where for each iteration i, ξi is the
component-wise difference between the update ∇L(vi) that is applied by a
worker w and the correct update ∇L(θi) according to the sequential semantics,
scaled by the step size:

ξi = η (∇L(vi)−∇L(θi)) (D.5)

where vi = θt−τi is w’s view of the state used to compute the applied update.

Note that the AIN (ξi) constitutes a time series, where we generally do not
assume mutual independence. The above definition of AIN is a natural one, in
particular since it has the following property:

θi+1 = θi − η∇L(vi)
= θi − η∇L(θi) + ξi

From the above, we see that at iteration i, ξi is exactly the deviation between
the update that is applied in an AsyncSGD execution and the update that
should have been applied according to the sequential semantics. In the following,
we frequently mention AIN in terms of its magnitude, i.e., ∥ξ∥, partly as means
to reduce its dimension (which is considerable in DL problems), and in particular
due to the importance of the term for analyzing the convergence of AsyncSGD .
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Figure D.2: Probing-based elastic parallelism control.

The significance of ∥ξi∥ on the analytical convergence properties of Async-
SGD in non-convex problems will be established in Section D.5, an efficient
algorithm for its measurement is presented in Section D.4.3, and its overall
magnitude serves as a metric for quantifying the influence of asynchrony on
the convergence in practical DL applications (Section D.6).

D.4.3 ElAsyncSGD

The proposed ElAsyncSGD , an elastic extension of AsyncSGD , dynamically
frees and deploys workers based on the time-varying dynamics of the optimiza-
tion problem at hand. ElAsyncSGD finds an estimated optimal parallelism
degree by actively probing relevant parallelism levels, and keeping track of their
respective convergence rates, at different points in time. Specifically, ElAsync-
SGD will regularly, with a certain frequency, probe parallelism levels adjacent to
the current one, by executing AsyncSGD at those parallelism levels for a certain
amount of sampling time (Figure D.2). Note that, while mentioning primarily
parallel settings here, the methods disclosed in the following apply also to gen-
eral asynchronous distributed and federated learning settings, with for instance
a central parameter server which communicates with worker nodes through
message passing. The relevant parameters of ElAsyncSGD are the following:

• IP - Inter-probing interval, n.o. iterations between probes

• DP - Probing duration, n.o. iterations per parallelism level during probing

• WP - Parallelism-level exploration (also called m-window size in the al-
gorithm); it defines maximum deviation from the previously best-known
parallelism level.

In order to ensure reliable online measurements of the instantaneous con-
vergence rate we make sure each worker performs several read-compute-update
rounds during each measurement time window. To this end, the parameters
IP and DP are used in multiples of the instantaneous parallelism level m.

Next, we show an outline of the main steps of ElAsyncSGD . Following
the algorithm outline, the remainder of this section describes in detail the
algorithmic structure of ElAsyncSGD :

[a] Parallelism level is initialized at some mE
0

[b] First probing phase; adjust parallelism with best estimated convergence
rate.
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(a) Estimate convergence rate for adjacent parallelism levels m ∈ {mE +
1,mE − 1}

(b) Choose next mE as parallelism with best known estimated convergence
rate. If an improved mE is found, repeat.

[c] Repeat until ϵ-convergence is achieved, or time elapses.

(a) Execution phase. Execute IP iterations of AsyncSGD according to
(D.3) with mE workers. Terminate if ϵ-convergence is achieved, or
time elapses.

(b) Probing phase.
i. Estimate convergence rate for parallelism levels m ∈ {mE −

WP ,m
E +WP } by executing DP AsyncSGD iterations at each

level.
ii. Choose next mE with best estimated convergence rate, among
{mE −WP ,m

E +WP }.

Algorithmic structure. The core of ElAsyncSGD appears in Algorithm
D.4, which implements the Regulator procedure in particular, responsible for
measuring ξ and regulating the parallelism level. The algorithm runs alongside
a pool of workers, who execute an implementation of AsyncSGD . Algorithm
D.2 implements traditional lock-based AsyncSGD and Hogwild!, with the
adaptations needed to utilize ElAsyncSGD in conjunction. For convenience,
the AsyncSGD implementations use the ParameterVector structure of
Chapter B for managing θ. The ElAsyncSGD adaptations constitute commu-
nication of workers’ states to the Regulator, which is structured through the
dedicated interface RegulatorInterface (Algorithm D.1). The Regula-
tor relies on the ProbeState data structure (Algorithm D.3) for organizing
measurements during probing phases, to be used for taking control actions for
adjustments in parallelism level.

The probing and parallelism control is the responsibility of the dedicated
Regulator procedure. In particular, the Regulator sets the elastic paral-
lelism level mE , which is accessed by asynchronous workers to check whether
they should be active. Considering workers being enumerated by their IDs,
any worker w checks this every iteration simply by evaluating w < mE , and
proceeds to be active whenever that condition is true. This behavior is denoted
by the whenever keyword in Algorithm D.2.
Measuring AIN. Computing ξi, defined in (D.5), of iteration i under asyn-
chronous parallelism is not straight-forward since the correct (according to the
sequential semantics) update ∇f(θi) is not available at update-time, i.e., when
∇f(vi) is applied.

The solution presented here is based on the observation that the correct
update ∇f(θi) of iteration i (as opposed to the actually applied ∇f(vi)) will
be computed, and applied eventually in the future, by any worker w that reads
the state θi in iteration i. By making ∇f(θi) available to w by the time w has
finished computing ∇f(θi), ξi can be computed at that time. This observation
is summarized in the following:

Statement D.4.3. The update ∇f(vi) of any iteration i, applied by some
worker w, is the semantically correct update of some earlier iteration, namely
i− τi. By making ∇f(θi) available to w, ξi−τi can consequently be computed.
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This is solved in ElAsyncSGD by workers reporting, through the dedicated
RegulatorInterface, whenever they are viewers of a state θi (which is then
their individual latest view of θ) as well as when they finish computing updates
(see Algorithm D.2). In addition to the pointer to the actual update, workers
also report their unique worker IDs, as well as the current iteration number
(see Table D.1). This information is summarized by RegulatorInterface
(Algorithm D.1) and communicated, through a FIFO queue, to the Regula-
tor (Algorithm D.4), which performs the computations for estimating ξ and
regulating parallelism.
Parameter choice. Note that higher values of the probing duration DP

mean longer sampling time, hence higher measurement reliability. Similarly,
larger parallelism exploration window size WP implies increased visibility, and
potentially broader basis for the parallelism choice. However, too large of either
DP or WP may be misleading since the instantaneously optimal m∗ changes
over time. In practice, an inter-probing interval of approximately IP = 10 ·DP

is a useful rule of thumb that has been found empirically to work across various
optimization problems, as will be seen in Section D.6.

D.4.4 Approximating m∗

In the following, we outline the main arguments for the estimation of m∗ by
the proposed ElAsyncSGD , which rely on the following:

Assumption D.4.4. m∗ drifts maximally WP within an execution and probing
cycle, i.e., IP +DP (2WP + 1) iterations.

Assumption D.4.4 entails particularly that it is possible to choose the
parameters IP , DP ,WP such that it holds. In practice, as we shall see in
Section D.6, this is realistic, as straight-forward parameter choices satisfy this
for several DL problems.

Note that ElAsyncSGD essentially follows an iterative active binary search
principle, regularly probing the convergence rate ∂L

∂t at adjacent parallelism
levels. Further considering ∂L

∂t (m), as a function of parallelism, having an opti-
mum m∗, and monotonically decreasing and increasing, respectively, on either
side of m∗, we outline the following arguments for that ElAsyncSGD actualizes
the time-varying optimal m∗ through its regulated elastic parallelism mE :

[a] The first probing phase will converge to m∗. This follows from the assump-
tions on ∂L

∂t (m), and from that the first probe loop does not terminate
until mE

i = m∗i is observed.

[b] At the end of each probing phase, the algorithm will have caught up to new
mE = m∗. This follows recursively from that mE = m∗ at the start of the
phase, and by applying the argument from Assumption D.4.4 inductively.

Now, the above two points inductively entail in particular that the actual,
by ElAsyncSGD , parallelism mE will, as often as probes occur, assume the
optimal time-varying m∗.
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Algorithm D.1 RegulatorInterface
GLOBAL FIFOQueue Q
views(m̂) ← [false, . . . , false]

procedure mark_viewer(w)
views[w]← true

procedure submit_grad(w, ∇, i) ▷ Worker w is the writer at iteration i
v_i← {j for views[j]= true} ▷ All viewers threads of the current θ
views ← [false, . . . , false] ▷ Reset the views array
job← {

iteration: i
write_thread: w
update: ∇
viewer_threads: v_i

}
Q.enqueue(job)

Table D.1: Structure of tuples arriving at the regulator.
Description

i Current iteration number

wi ID of updating worker

δi Pointer to update that was applied by wi

vi Set of workers that viewed the current state

Algorithm D.2 Adapted Lock-based AsyncSGD and Hogwild!
GLOBAL RegulatorInterface REG_INTERF
GLOBAL ParameterVector PARAM ▷ Shared model parameters
GLOBAL Float η ▷ Step size
GLOBAL Lock MTX ▷ For synchronizing access to θ

Initialization
PARAM.rand_init() ▷ Randomly initialize parameters
Each worker w

whenever w ≤ mE ▷ mE is the elastic n.o. active workers
if Lock-based then MTX.lock()
local_param ← copy(PARAM.theta) ▷ Allocate new memory and copy θ
REG_INTERF.report_viewer(w) ▷ For the current i, worker w is one of

the viewers at iteration i, i.e., w ∈ vi

if Lock-based then MTX.unlock()
local_grad ← comp_rand_grad(local_param) ▷ Allocate new memory and com-

pute gradient
if Lock-based then MTX.lock()
REG_INTERF.submit_grad(w, local_grad, PARAM.i)
PARAM.update(local_grad, η)
delete local_param
if Lock-based then MTX.unlock()
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Algorithm D.3 ProbeState
conv_rate(m̂)← [null, . . . , null]
first_probe ← true
pre_probe_m, probe_start_t, probe_start_loss ← null

procedure start_measure(m, δ)
if m ̸= null then pre_probe_m ← mE

▷ Set only once every probing phase
probe_start_t ← System.now()
probe_start_loss ← δ_i.loss()

function stop_measure(δ)
conv_rate[mE-1] ← (δ.loss() - probe_start_loss) / (System.now() - probe_start_t)
if first_probe then

window_center ← argmin (conv_rate) + 1
else

window_center ← pre_probe_m
next_mE ← null
for m_probe = -WP ; m_probe ≤ WP ; m_probe += 1 do

if conv_rate[window_center + m_probe - 1] == -1 then
next_mE ← window_center + m_probe
break

if next_mE = null then ▷ Probing phase finished
first_probe ← false
done ← true
next_mE ← argmin (conv_rate) + 1
conv_rate← [null, . . . , null] ▷ Reset probe state
pre_probe_m, probe_start_t, probe_start_loss ← null

else ▷ Probing window not fully explored yet
probe_start_t ← System.now()
probe_finish_at ← i+next_mE ·DP

return next_mE , done
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Algorithm D.4 ElAsyncSGD - main Regulator procedure
GLOBAL FIFOQueue Q
ProbeState probe_state
frozen_grads(M) ← [nullptr, . . . , nullptr]
next_probe_start ← 0
probe_finish_at ← null
repeat

Q.deque({i, w_i, δ_i, v_i})
Parallelism regulation
if i = next_probe_start then

probe_state.start_measure(mE , δ_i)
probe_finish_at ← i + mE ·DP

else if i = probe_finish_at then
mE , final ← probe_state.stop_measure(δ_i)
if final then ▷ This probing phase is completed

next_probe_start ← i + mE ·DE

else ▷ Probing phase continues
probe_state.start_measure(null, δ_i)
probe_finish_at ← i + mE ·DP

Measure ξ
if vi = ∅ then ▷ No thread will eventually use δi for computing ξ

delete δ_i
else

for viewer_i ∈ v_i do ▷ Leave pointer to δ_i for all reading threads rt
frozen_grads[viewer_i] ← δ_i

if frozen_grads[w_i] = nullptr then ▷ w_i was a reader ∈ ri−τi
. Check if some

δi−τi
has been left for w_i

continue
δ_(i− τi)← frozen_grads[w_i]
for j = 0, . . . ,m− 1 do ▷ w_i is the first reader of θi−τi

to finish com-
puting an update. Clear the pointer to δi−τi
for all in ri−τi

if frozen_grads[j] = δi−τi
then

frozen_grads[j] ← nullptr
ξ_(i− τi)← ∥δ_i− δ_(i− τi)∥
delete δ_(i− τi) ▷ Delete update and reclaim memory

until convergence
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D.5 Analysis
In the following, we establish asymptotic convergence for ElAsyncSGD , and
general AsyncSGD , executions, studying especially the impact of the overall
magnitude of AIN (∥ξ∥).

We make the following assumptions on the loss function L:

Assumption D.5.1. The loss function L has Lipschitz-continuous gradients;
there exists a constant L such that:

E
[
∥∇L(θ1)−∇L(θ2)∥

]
≤ LE

[
∥θ1 − θ2∥

]
∀θ1, θ2 (D.6)

Assumption D.5.2. The loss function L has bounded expected gradient
moment; there exists a constantM such that:

E
[
∥∇L(θ)∥2

]
≤M2 ∀θ (D.7)

Assumptions D.5.1 and D.5.2 provide additional structure, hold for a wide
set of practical applications, and are widely adopted in the literature [24,45,51].

First, we establish the linear dependency between the AIN and overall
execution staleness in the following:

Lemma D.5.3. The expected asynchrony-induced noise E[∥ξ∥] in iteration i
is linearly upper-bounded by the average staleness E[τ ]

E[∥ξi∥] ≤ ηLME[τi]

Proof. From the definition of ξ and Assumption D.5.1:

∥ξi∥ = ∥∇L(vi)−∇L(θi)∥

≤ L∥
τi∑
j=i

θi−j+1 − θi−j∥ ≤ ηL
τi∑
j=1

∥∇L(θi−j)∥

Considering an AsyncSGD execution as non-anticipative, since the future does
not influence the past, implies historic states are mean-independent of future
states. In particular:

E[∥ξi∥ | τi] ≤ ηL
τi∑
j=1

E[∥∇L(θi−j)∥]

≤ ηLMτi

by Assumption D.5.2. Now, taking the full expectation, the above rewrites to
the Lemma statement.

Corollary D.5.4. The asynchrony-induced noise ∥ξ∥ in iteration i is linearly
upper-bounded by the parallelism level mi

E[∥ξi]∥ ≤ ηLMmi

Corollary D.5.4 follows directly from Lemma D.5.3, since E[τi] ≈ mi is
generally known to hold [24] (see also Chapter A and Chapter C).

Next, we establish expected statistical progress per iteration:
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Lemma D.5.5. Consider the optimization problem of (D.2) and follow the
SGD step (D.3). Then we have the following expected iterative progression:

E

[
∂L

∂i

]
≤− ηE

[
∥∇L(θi)∥2

]
+

ηM
(
E[∥ξi∥] +

1

2
LMη

)
Proof. From assumption D.5.1 we have in particular

E

[
∂L

∂i

]
≤ L

2
E
[
∥θi+1 − θi∥2

]
+E[⟨∇L(θi), θi+1 − θi⟩]

From the SGD step we have

E

[
∂L

∂i

]
≤ −ηE

[
∥∇L(θi)∥2

]
+ ηE[∥∇L(θi)∥∥ξi∥] +

L
2
M2η2

Assumption D.5.2, and historic states’ mean-independence of future states, now
gives:

E

[
∂L

∂i

]
≤ −ηE

[
∥∇L(θi)∥2

]
+ ηE[∥∇L(θi)∥]E[∥ξi∥] +

L
2
M2η2

≤ −ηE
[
∥∇L(θi)∥2

]
+ ηM

(
E[∥ξi∥] +

1

2
LMη

)

With Lemma D.5.5 as a starting point, next we derive explicit convergence
bounds for AsyncSGD executions in general, and ElAsyncSGD in particular,
focusing on the influence of ∥ξ∥, as well as the ranges of ∥ξ∥ and η for which
convergence is guaranteed:

Theorem D.5.6. Assume L(θ0)− L(θ∗) < δ. Then, for general non-convex
target functions L, expected convergence to within ϵ of stationary point is
guaranteed after

I >
L(θ0)− L(θ∗)

η(ϵ+ 1
2LM

2η −ME[∥ξ∥])

iterations, for step sizes η within

0 < η <
2

LM

( ϵ

M
−E[∥ξ∥]

)
iff the asynchrony-induced noise is sufficiently low:

E[∥ξ∥] < ϵ

M
(D.8)
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Proof. From Lemma D.5.5, we have

E
[
∥∇L(θi)∥2

]
≤ L(θi)− L(θi+1)

η

+M
(
E[∥ξi∥] +

1

2
LMη

)
⇒ 1

I

I−1∑
i=0

E
[
∥∇L(θi)∥2

]
≤ δ

ηI
+M

(
E[∥ξ∥] + 1

2
LMη

)
which implies in particular that the same bound applies for mini E

[
∥∇L(θi)∥2

]
as well. Now, the right-hand side of the inequality is ≤ ϵ iff

I ≥ δ

η

(
ϵ−M(E[∥ξ∥] + 1

2
LMη

)−1
from which the restrictions on η and E[∥ξ∥], and the theorem statement,
follow.

Corollary D.5.7. The bound of Theorem D.5.6 is tightest for

η∗ =
ϵ−ME[∥ξ∥]
M2L

for which expected convergence to within ϵ of stationary point is achieved after

I >
2M2L

(ϵ−ME[∥ξ∥])2
(L(θ0)− L(θ∗))

AsyncSGD iterations.

Note that (D.8) ensures positive denominators in the convergence bounds
of Theorem D.5.6 and Corollary D.5.7, which implies that, in its allowed range,
higher precision (smaller ϵ) requires overall smaller E[∥ξ∥], and that larger
magnitude of E[∥ξ∥] implies longer time to ϵ-convergence.

Next, we show explicitly the influence of the overall parallelism degree on
the convergence of AsyncSGD :

Theorem D.5.8. Let L(θ0)− L(θ∗) < δ. Then:

min
i

E
[
∥∇L(θi)∥2

]
≤ δ

ηI
+ ηM2L(m̄+

1

2
)

where m̄ = 1
I

∑
i mi is the overall average parallelism level.

Proof. From Lemma D.5.5 and Corollary D.5.4, we adopt a proof approach
similar to the one of Theorem D.5.6, and yield:

E

[
∂L

∂i

]
≤ −ηE

[
∥∇L(θi)∥2

]
+ η2M2L(mi +

1

2
)

⇒ 1

I

I−1∑
i=0

E
[
∥∇L(θi)∥2

]
≤ δ

ηI
+ ηM2L(m̄+

1

2
)

why the bound holds also for mini E
[
∥∇L(θi)∥2

]
, from which the theorem

statement follows.
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Next, we study AsyncSGD convergence under the following:

Assumption D.5.9. Polyak-Lojasiewicz (PL) condition. A function L is
referred to as µ-PL if, for some µ > 0:

E
[
∥∇L(θ)∥2

]
≥ µE[L(θ)− L(θ∗)] ∀θ (D.9)

The PL condition is a generalization of convexity, without the requirement
of optimum uniqueness, and geometrically characterizes a relevant class of ML
loss functions. Examples of such are least squares, logistic regression, support
vector machines [62] and certain types of deep ANNs [63]. The convergence of
AsyncSGD , and in particular ElAsyncSGD , is guaranteed PL loss functions in
the following:

Theorem D.5.10. For target functions L satisfying the µ-PL condition of
Assumption D.5.9, let

0 < η ≤ µϵ− 2M2E[∥ξ∥]
2M2L

Then we have expected ϵ-convergence after

I ≥ 2M2L
µ(µϵ− 2M2E[∥ξ∥])

log

(
2(L(θi)− L(θ∗))

ϵ

)
iterations.

Proof. With Lemma D.5.5 as a starting point, and applying Assumption D.5.9,
we have

E

[
∂L

∂i

]
≤ −ηE

[
∥∇L(θi)∥2

]
+ ηM

(
E[∥ξi∥] +

1

2
LMη

)

⇒ E[L(θi+1 − L(θ∗)] ≤ (1− ηµ)E[L(θi)− L(θ∗)]

+ ηM
(
E[∥ξi∥] +

1

2
LMη

)
⇒ E[L(θI)− L(θ∗)] ≤ (1− ηµ)Iδ

+
1

µ
M2

(
E[∥ξi∥] +

1

2
LMη

)
≤ ϵ

2
+

ϵ

2
= ϵ

D.6 Evaluation
We evaluate the proposed ElAsyncSGD for LeNet and MLP training on several
DL benchmark datasets, namely MNIST [89], Fashion-MNIST [102], and
CIFAR-10 [70]. We compare the performance of ElAsyncSGD to standard
static constant parallelism AsyncSGD baselines, using both the standard
lock-based consistent implementation, as well as the lock-free inconsistent
Hogwild!. The evaluation focuses on overall convergence properties of the
algorithms considered, final loss value achieved, convergence stability, savings
in computational resources, as well as magnitudes of the AIN.
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Selecting challenging baselines. In order to ensure a relevant comparison,
and to maximally challenge the proposed ElAsyncSGD , we perform exhaustive
scalability tests in order to select the best static parallelism level for the
AsyncSGD baselines, for all settings (Figure D.9), denoted by mS . The
constant-parallelism AsyncSGD baselines execute until 50%-convergence is
achieved for each setting (combination of DL architecture, benchmark dataset,
and AsyncSGD algorithm), over a wide parallelism spectrum, after which the
parallelism level that gave the fastest convergence is chosen as baseline for that
particular setting.
Baselines in practice. Note that the above tuning process, although it
gives the best-performing static-parallelism baselines, is utterly infeasible in
practice. In any practical context, the goal is to find a model θ of sufficient
quality (ϵ-convergence) utilizing as little time and computing resources as
possible. Hence, such settings tolerate maximally a few executions of AsyncSGD ,
where unnecessarily slow, or unstable, parallelism levels are eliminated, and
the problem is considered solved, however at (most likely) a sub-optimal
parallelism level. In contrast, ElAsyncSGD is a single-execution solution,
which automatically regulates the parallelism for optimal convergence speed, as
well as avoiding the instability associated with over-parallelism. This implies in
particular that ElAsyncSGD is drastically more applicable in practice compared
to state-of-art.
Metrics of interest. The relevant metrics relate to loss, AIN, and computing
resources. More specifically:

Loss — We measure and report ϵ-convergence rates, final loss values, and loss-
over-time plots which show the overall convergence trajectory stability.

AIN — We report overall AIN magnitudes throughout executions, meaning
∥ξ∥ as in Definition D.4.2.

Computing resources — Quantified by worker-seconds, i.e., total work
time of workers, defined in detail below.

Computing resources consumption. Analogous to the notion of man-
hours spent in manual work, the concept of worker-seconds is used here to
quantify the computing resources consumption by the proposed ElAsyncSGD
and the best static parallelism AsyncSGD baseline, denoted by RE and RS ,
respectively. The worker-seconds of ElAsyncSGD is computed by integrating
the parallelism level:

RE(t) =

∫ t

t′=0

mt′ dt
′ (D.10)

The computing resources consumption of the static parallelism AsyncSGD
baseline rewrites to:

RS(t) = t ·mS (D.11)

Now we define the excess computing resources as the savings achieved by
ElAsyncSGD relative to the static baseline.

RE−S(t) = RE(t)−RS(t)
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Whenever RE−S < 0 the cumulative computing resources of the proposed
ElAsyncSGD are lower than the best static parallelism AsyncSGD baseline, and
we are interested in the t for which this is the case. It is however theoretically
possible, although rare in practice, that RE−S(t) oscillates and has many
zero-crossings. We therefore consider, and compute, a break-even time:

tbreak-even = min{t | t′ > t⇒ RE−S(t′) < 0}

which hence signifies the time at which ElAsyncSGD has consumed equal
computing resources as the baseline and will have resulted in savings of such
at every later point in time.
Implementation. We implement ElAsyncSGD for lock-based AsyncSGD
and Hogwild!, extending the open Shared-Memory-SGD [101] C++ library,
connecting ANN operations to low-level implementations of parallel SGD.
Experiment setup. We benchmark ElAsyncSGD on DL benchmarks, par-
ticularly for image classification on MNIST [89] of hand-written digits, Fashion-
MNIST [102] of clothing article images, and CIFAR-10 [70] of everyday objects.
All datasets contain 60k images, each belonging to one of ten classes ∈ {0, . . . , 9}.
For this, we train a LeNet CNN architecture, as well as a 4-layer MLP, with
128 neurons per layer (denoted MLP in the following), for a specific time
period relevant to the particular problem setting. We use standard settings
and hyper-parameters; for MLP training we use η = 5e−3 and mini-batch size
256, for LeNet η = 1e−3, and for CIFAR-10 η = 1e−2 and a mini-batch size of
8. The multi-class cross-entropy loss function is used in all experiments. The
experiments are conducted on a 2.10 GHz Intel(R) Xeon(R) E5-2695 two-socket
36-core (18 cores per socket, each supporting two hyper-threads), 64GB non-
uniform memory access (NUMA), Ubuntu 16.04 system. Note that, while the
above describes a shared-memory context with parallel threads, the method,
and its analysis in Section D.5 in particular, hold for a system of distributed
worker nodes as well. The ElAsyncSGD parameters used are mE

0 = m̂/2, and
IP = 100 ·mE , DP = 10 ·mE ,WP = 1. Plots show averaged values from 5
executions for each setting, unless otherwise stated. ϵ-convergence is achieved
when L(θ) < ϵ, expressed as % of the initial loss L(θ0).
Outcome. For each of the aforementioned benchmarks, the best static paral-
lelism AsyncSGD baseline, tuned according to above, and ElAsyncSGD , are
evaluated and compared. Measurements appear in Figures D.3-D.7, where
loss trajectory, parallelism level, AIN, and break-even points are visualized.
Corresponding measurements for standard sequential SGD are included for
reference. The overall performance differences between ElAsyncSGD and the
baselines for all tests are summarized in Table D.2. There is a clear corre-
lation between the parallelism level and the AIN, as defined in Section D.4.3
(Definition D.4.2), observable in all tests (Figure D.3-D.7). In addition, spikes
in the AIN coincide with setbacks in the convergence progress, i.e., spikes in the
loss trajectory. Such setbacks are especially apparent in the static parallelism
baselines, which indicates how active parallelism control for keeping the AIN
at reasonable levels may be beneficial for the convergence rate, which is indeed
confirmed here. Figure D.8 shows how the staleness distributions change to
overall lower magnitudes when utilizing the proposed ElAsyncSGD extension.
Overall, ElAsyncSGD exhibits more stable convergence, with significantly
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Figure D.8: Staleness distributions of standard constant-parallelism AsyncSGD
(Static) and the proposed ElAsyncSGD (Elastic).

less oscillations. Despite the occasional deficit in 50%- and 15%-convergence,
ElAsyncSGD persistently achieves a low final loss value, and overall lower
∥ξ∥ across the board, due to its elastic parallelism control. Moreover, the
overall computational resource consumption of ElAsyncSGD is drastically re-
duced (ranging from 30%− 67%), compared to the best constant parallelism
AsyncSGD baselines (see Figure D.3-D.7).
Discussion. It can be observed that ElAsyncSGD typically accelerates in
early stages of the execution, where the convergence rate is evidently gener-
ally less susceptible to AIN. The acceleration is particularly substantial for
Hogwild! executions, compared to Lock-based . This is likely due to that
ElAsyncSGD detects an increasing impact of lock-related bottlenecks on the
convergence rate with higher parallelism, the influence of which Hogwild!
lacks. As a consequence, the computational break-even time occurs later in the
Hogwild! executions. In addition, note that since ElAsyncSGD persistently
achieves lower loss values, with more stable convergence trajectories, at a lower
consumption of computing resources, we conclude that Hypothesis D.4.1 holds
in the context of the evaluated applications. Note that the aforementioned
results are achieved immediately by ElAsyncSGD , as opposed to the base-
lines, which have been carefully tuned in order to maximally challenge the
proposed ElAsyncSGD .
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Figure D.9: Complete scalability evaluation of AsyncSGD for training MLP
and LeNet on MNIST, Fashion-MNIST, and CIFAR10 to 50%-convergence,
with the purpose of finding the optimal constant parallelism levels, used as
baselines for benchmarking ElAsyncSGD .
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D.7 Conclusions
We introduce ElAsyncSGD , an elastic extension of AsyncSGD , which dynami-
cally regulates the parallelism level based on the execution instance, in order
to balance the computational vs. statistical efficiency trade-off, as well as
reduce the computational resources consumption. We formalize the notion of
asynchrony-induced noise (AIN), we provide an efficient method to measure
it accurately in real-time and establish analytically its crucial impact on the
statistical convergence properties of AsyncSGD on general non-convex, as well
as Polyak-Lojasiewicz, target functions. The proposed ElAsyncSGD exhibits
far more stable, less volatile, convergence properties, compared to even the
optimally tuned constant-parallelism static AsyncSGD baselines. ElAsync-
SGD entails drastic reduction in computational resources consumption, where
the reduction in worker-seconds ranges between 30 − 67%, with the associ-
ated energy savings. Moreover, due to improved computational vs. statistical
efficiency balance, ElAsyncSGD ensures overall lower staleness distributions,
overall lower magnitudes of asynchrony-induced noise, and hence achieves more
stable convergence, and converges to higher precision.
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