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Abstract
The ability to determine an upcoming action or what decision a human is about to take,
can be useful in multiple areas, for example during human-robot collaboration in manufac-
turing, where knowing the intent of the operator could provide the robot with important
information to help it navigate more safely. Another field that could benefit from a system
that provides information regarding human intentions is the field of psychological testing
where such a system could be used as a platform for new research or be one way to pro-
vide information in the diagnostic process. The work presented in this thesis investigates
the potential use of virtual reality as a safe, measurable, and customizable environment to
collect gaze and movement data, eye tracking as the non-invasive system input that gives
insight into the human mind, and deep machine learning as one tool to analyze the data.
The thesis defines an experimental procedure that can be used to construct a virtual reality
based testing system that gathers gaze and movement data, carry out a test study to gather
data from human participants, and implement artificial neural networks in order to analyze
human behaviour. This is followed by two studies that gives evidence to the decisions that
were made in the experimental procedure and shows the potential uses of such a system.

Keywords: Virtual reality (VR), time series analysis, human intention prediction, eye
tracking, deep machine learning, uncertainty estimation, collaborative robots, psychological
testing.
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CHAPTER 1

Introduction

The ability to determine what actions or decisions a human is about to make can be useful
in multiple areas, for example, in manufacturing where humans working with collaborative
robots is becoming increasingly more popular [1]. The advantages of having humans and
robots in the same workspace interacting with each other are many, such as; increased flex-
ibility [2] and increased productivity for complex tasks [2]. However, the robots are still not
that interactive since they cannot yet interpret humans and adapt to their swift changes in
behaviour in a way that another human would do. The main reason is that the collabora-
tive robots today are limited in their sensory input, which makes it the responsibility of the
human to stay out of the way.

Another field that could benefit from a system that provides information regarding hu-
man intentions is the field of psychological testing. Testing of mental capacity has been
around since the early 1900s and has been greatly extended since then [3]. These tests
can be used, for example, to evaluate special abilities, intelligence, and social attributes as
described in [3]. There is, however, potential to improve these methods even further using
the technology that is at hand today. It is often, during certain tests where the participant
is asked to complete a specific task, as important to observe the person’s behavior during
the experiment as to obtain the actual test results [4]. The authors of [4] further describe
that the results will be affected if the person taking the test is anxious, showing signs of
speech or language difficulties, or has difficulties concentrating.

Other fields that have been rapidly expanding and that may be used to provide an
understanding of human behaviours and intentions are; virtual reality (VR), eye tracking
(ET), gathering and management of large datasets, and artificial intelligence (AI).

Eye-tracking (ET) is an objective, painless, and noninvasive [5] way to gather more in-
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Chapter 1 Introduction

sight into how a person is reasoning from measurements and analysis of where the person
is directing their gaze [6]. It is possible to gain insight into the alternatives a person is
considering or what strategy is used while performing a task. ET has, for example, been
used in industrial contexts with gaze as a machine control input [7], to evaluate new ways
to facilitate human–robot communication [8], to analyze the navigational intent in humans
and how they interact with autonomous forklifts [9], and to investigate pedestrians’ under-
standing of an autonomous vehicle’s intention to stop at a simulated road crossing [10]. It
has also been used as a tool to diagnose autism [11], where children participated in different
games and social activities on a tablet while their gaze was observed.

VR can be described as a technology through which visual, audible, and haptic stimuli
is able to give the user a real world experience in a virtual environment [12]. Benefits
such as being able to provide more relevant content and present it in a suitable context
are reasons [13] uses to promote the use of VR in neuropsychological testing. The authors
highlight the possibilities and benefits of measuring data using VR, such as accuracy, timing,
and consistency to enhance the analysis. VR has proved a useful tool, for example when
observing the level of distraction in children with ADHD [14], [15]. It can also be used in
an industrial context; when making prototypes [16], to train operators in assembly [17], and
improve remote maintenance [18].

The use of modern technologies such as ET and VR makes it possible to collect larger
amounts of data, with higher accuracy, and at a higher pace than before [19]. These large
volumes of data, created at high speed, and with great variety [20] is referred to as Big
Data. One area of AI that can be used to process these huge datasets is called deep
machine learning [21]. Big data and AI has been shown to be important tools for the future
to improve industrial manufacturing [22]–[24], as well as providing benefits in the field
of psychology, for example, when analyzing how students perform on cognitive diagnostic
assessments [25] and to determine if a person has ADHD [26].

Human intention prediction can be achieved using camera images and probabilistic state
machines [27] with the goal of determining between explicit and implicit intent. It can also
be achieved using 3D-vision, speech recognition, and wearable sensors with the objective
of predicting intention in hand-over tasks [28]. It was proposed by [29] to use a Gaussian
Mixture Model and data from a Kinect camera to predict human motion, reporting about
80% classification accuracy, on 8 movement classes, after 60% of the trajectory has been
observed. Other ways are to monitor eye gaze to predict an upcoming decision [30] for
robot control or analyze bioelectric signals, such as electromyography, to predict human
motion [31]. In the paper by [32] it is shown that monitoring human eye gaze can be used
to recognize actions related to pouring and mixing a powder based drink. [33] presents a way
of using Earth Mover’s Distance to calculate the similarity score between the hypothetical
gazes at objects and the actual gazes to determine if the human visual intention is on the
object or not. It was shown by [34] that it is possible to use a Kinect camera to capture eye
gaze and arm movements, and use that information to predict the goal location of a reaching
motion, reporting a success rate of above 80% after 40% of the trajectory has been observed.
The work by [35] shows that it is possible to use an artifical neural network, together with
wearable ET, to predict intention regarding which object is about to be picked out of three
objects in a VRE. They achieve an accuracy between 70-80% for test sequences that are
3-14 s long, using the gaze projected on the surface where the objects are placed.
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1.1 Research Questions

1.1 Research Questions
The ability to determine an upcoming action or what decision a human is about to take,
can be useful in multiple areas, for example, in manufacturing where humans are working
with collaborative robots and in psychological testing where such a system could be used as
a platform for new research or be one way to provide information in the diagnostic process.
A way to gather more insight into how a person is reasoning is to measure and analyze
where the person is looking [6] using ET. There are multiple ways of tracking gaze and one
of them is through VR. The data that is collected needs to be analyzed and one area of AI
that can be used to process these datasets is called deep machine learning [21] (DML). This
is the basis for the following research questions:

RQ1: Is it possible to analyze and predict human intention through the study of eye gaze?

Understanding human intention is becoming increasingly important, as described
earlier. There are several ways of achieving this, for example, using camera images,
electromyography, or a combination of eye gaze and movement tracking. The eye
gaze can reveal what alternatives a person is considering or what search strategy is
used while performing a task. The goal of RQ1 is to investigate if it is possible to
analyze and predict human intention through the study of eye gaze.

RQ2: Is DML a suitable tool to analyze the connection between eye gaze and intention in
humans?

DML has shown to be a powerful tool to analyze large amount of complex data in
multiple research fields, including industrial applications and psychological research.
RQ2 aims at exploring if the combination of eye tracking and DML could be used as
a flexible tool to analyze the connection between eye gaze and human intention as
different tasks are being carried out.

RQ3: How can a VRE-test be designed to gather the necessary eye gaze and movement
data to be used for human intention analysis?

VR has successfully been used in both industry and psychological research. The
benefits of using a VRE includes, for example, being able to continuously gather
data from both the user and the environment, and it gives the developer of the test
full control over all events in the VRE while providing the user with an experience
that is similar to a real world application. RQ3, therefore, aims at determining a
procedure for how a VRE can be designed to gather eye gaze and movement data,
from human participants, that can be analyzed to improve the understanding of
human intention.
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Chapter 1 Introduction

1.2 Thesis Outline
The thesis consists of two parts, Part I features an overview of the research and Part
II contains the publications that constitute the basis of the first part. Part I starts off in
Chapter 1 with an introduction to the field that has been researched, followed by theoretical
introductions to the areas of psychological testing, virtual reality (VR), eye tracking (ET),
and supervised machine learning (ML) in Chapter 2, Chapter 3, Chapter 4, and Chapter 5
respectively. The experimental procedure of using VR, ET, and ML for a data-driven
problem is introduced in Chapter 6, followed by Chapter 7 that covers the presentation of
two studies of human intention. The summary of the included papers is given in Chapter 8
and the thesis ends with concluding remarks and suggestions for future work in Chapter 9.
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CHAPTER 2

Psychological Testing

In [36] the aim of a psychological test is described as a method to measure different abilities
and conditions that cannot be directly observed, such as intelligence, psychopathology or
neuropsychological disorders. Psychological tests are often standardized to ensure validity
and reliability.

A psychological test is usually designed with a particular population in mind. An individ-
ual’s result on the test is always presented in relation to that population, on an appropriate
scale, for example IQ in cases where intelligence is measured. In a process called stan-
dardization, the test is used with a representative sample of the population [4]. From this
group’s mean values and variance, you then generate a function from raw points to the
desired scale.

The reliability and validity of the test, i.e. if the same results are achieved as the measure-
ments are performed multiple times and how well it measures what it intends to measure [4],
also has to be calculated. One way to ensure reliability is to standardize the test procedure,
for example making sure that the instructions given to the test person are always the same
and that the environment in which the test is performed is the same [4], i.e. there is no
external interference.

Another key element is to inform the participants about the premise of the testing and
what their information will be used for to make them feel comfortable before giving their
consent to participate [4]. There are additional factors, described by [4], that might af-
fect the test results and/or the behaviour of the individual being tested such as anxiety,
difficulties to concentrate or to communicate.

When collecting data for psychological research through the use of psychological testing
this is mostly done manually. This means that researchers are often limited in the amount
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and types of data that can be collected. Observations of behaviour are, for example, made
in real-time or through watching video recordings [37] of the test participant.

2.1 Digitalization in the Field of Psychology
Virtual Reality (VR) is a technology that has proved useful within psychology, for example
as a tool to observe the level of distraction amongst children with ADHD [14], [15]. The
authors of [13] highlights the possibilities and benefits of measuring data using VR, such as
accuracy, timing, and consistency, to enhance the analysis. The research in [38] shows that
VR can be used to interact with children through facial emotions and expressions. It can
also be of great use in the process of treating and rehabilitating arachnophobia [39].

Another field of technology, that is already part of psychological research today, is the
study of eye gaze movement. The eyes contain multiple levels of information, for the sender
as well as the receiver, about the environment, emotional states, and mental states [40].
Assessing eye movement through ET is already widely used today. It is, for example, used
for research purposes, in areas such as theory of mind [41] (the ability to imagine other
peoples feelings and perspective), diagnosing autism [11], as an assistive tool for people
with mobility difficulties [42], evaluating responsiveness to joint attention in infants, as well
as in diagnosing Williams syndrome, ADHD, and reading disabilities [43]–[45].

Previous research has also shown that ML has potential within psychology to predict and
increase our understanding of behaviour [46]. Furthermore, a study has shown that ML is
efficient in facial recognition to determine facial expressions [47]. Consequently this could
provide another parameter towards the purposes of analyzing an individual’s behaviour
since facial expressions are closely tied to emotion [48]. Another study by [25] shows that
both supervised and unsupervised artificial neural networks (ANNs) can be used to analyze
how students perform on cognitive diagnostic assessments. It has also been shown in [26]
that ANNs can be used to determine if a person has attention deficit hyperactivity disorder
(ADHD) and results by [49] indicate that ML can be used for automated test scoring of a
novel story recall task.

2.2 Raven’s Progressive Matrices
The concept of general cognitive ability, the g factor, was first introduced by the English
psychologist Charles Spearman in 1904 [50]. To distinguish the differences between general
intelligence and specific abilities while performing different tasks, [50] also states a second
factor named s. The g factor has two main components; the capacity to think clearly and
make sense of complex data, called educative ability, as well as the capacity to store and
reproduce information, called reproductive ability [51]. The s factor is often represented by
a circle with four elements; spatial, logical, mechanical and arithmetical abilities [52].

Raven’s Progressive Matrices (RPM) are a set of tests designed to measure abstract
reasoning and g factor [53]. They are well known and widely used since they are easy to
administer and to interpret in a clear way [54]. The RPM are graphically easy to implement
in a virtual environment, and are thus well suited to implement in VR. These tests are
available in three different forms; Standard Progressive Matrices (SPM), Colored Progressive
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2.2 Raven’s Progressive Matrices

Figure 2.1: A figure that shows an item from Raven’s Standard Progressive Ma-
trices (SPM).

Matrices (CPM) and Advanced Progressive Matrices (APM). These different versions are
intended to be used for testing people with varying cognitive and physical abilities where
SPM is the most widely used and was intended to be used once the intellectual capacity
to reason has developed, age 8 and above. The CPM, on the other hand, was designed to
be used before this ability has developed [55], age 5-11, and the APM was developed to be
used on adults and adolescents with over-average intelligence.

The SPM test consists of 60 items divided into 5 sets (A-E) of increasing difficulty and
was first published in 1938 [51]. Each set follows a different logic that progressively increases
in difficulty [56] with each set becoming more difficult than the previous. Each item has a
logical pattern where one piece is missing and the task is to select the correct alternative
amongst a given set of alternatives, which varies from six to eight depending on the item
and level of difficulty. An example from SPM of how these items may look can be seen in
Figure 2.1.

In the summer of 2022, Raven 2 was launched, which is a revised version [57]. A unified
version of the test that replaces all previous versions - Standard, Coloured and Advanced,
and both classic, parallel, and plus versions. All tasks in Raven’s 2 are newly designed.
The test can be administered as a traditional pen-and-paper test but is also available in a
digital, i.e computerized version. As the revised version of RPM was not yet available at
time of data collection the previous version was used in the thesis.
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CHAPTER 3

Virtual Reality

Virtual Reality (VR) is the technique of 3D immersion in a computer created environment.
A device that can be used to visualize the VR environment (VRE) to the user is a head
mounted display (HMD) [12]. The HMD is equipped with sensors that measure the user’s
head motions and a display that is responsible for providing the user with the visual content.
The system also provides the user with audible and haptic stimuli to immerse the user in
a real world experience [12] of the VRE. An example of a person wearing an HMD can be
seen in Figure 3.1a and the user’s view of the VRE from Paper A is shown in 3.1a. There
are other ways that can be used to visualize a VRE, e.g. CAVE [58] that projects images
on the walls of a physical room.

VR technology is spreading to new areas with a steady increase in overall usage [59],
for example, in the field of psychological testing [60]. It has been used to measure the
distraction level of children with attention deficit hyperactivity disorder (ADHD) [14], [15],
in a virtual classroom. The research by [38] shows that VR can be used to interact with
children through facial emotions and expressions and it can also be used in the treatment
of phobias, e.g., arachnophobia [39]. Benefits such as being able to provide more relevant
content and present it in a suitable context [13] are other reasons to promote the use of
VR. It can also be used in other areas, for example; when making prototypes [16], to train
operators in assembly [17], and to improve remote maintenance [18].
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(a) A figure showing a person wearing a VR-headset consisting of
an HMD and two hand-held controllers.

(b) The user’s view of the VRE from Paper A.

Figure 3.1: An example of a VR-headset and the view from inside the HMD.
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CHAPTER 4

Eye Tracking

Eye tracking (ET) is defined by [61] as the technique of measuring what a person is looking
at, in what order the objects are gazed upon, and for how long the eye gaze stays fixed
on that object. The eye gaze is an interesting biological marker because it is possible
to analyze underlying neurophysiology based on the movement of the eyes [5]. Tracking
gaze is therefore an appealing test method and also because it is objective, painless, and
noninvasive [5]. ET can give an insight into the individual’s problem solving, reasoning,
and search strategies [61]. However, ET is only capable of tracking visible movements of
the eye and not the hidden mental processes of visual attention [62]. This makes for the
simplified assumption, when using ET for attention analysis, that attention is associated
with gaze direction [62] even though that is not always the case.

One way of tracking the eyes, as described in [61], is achieved by illuminating them with
infrared light, which is used to prevent the user from being dazzled, to get a clear reflection
that is captured using a camera. The reflections are then used to calculate a vector of the
relationship between the cornea and the pupil [61], which in turn is used to calculate the
gaze direction.

ET has, for example, been used to analyze the navigational intent in humans and how
they interact with autonomous forklifts [9], to analyze the prospective memory for delayed
intentions in children [63], to investigate pedestrians’ understanding of an autonomous ve-
hicle’s intention to stop at a simulated road crossing [10], to allow people with severe speech
and motor impairments to move a robotic arm [64], and to predict which one out of four
tasks, where the participants aligned two cubes in various ways in a VRE, that was carried
out [65].
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Chapter 4 Eye Tracking

4.1 Eye Movements
The way humans react to a visual stimuli is dependent on many factors [66], e.g. for a
simple task we may be interested in determining if something is present or what it is, called
detection and identification respectively, and for a more complex situation the goal might
be to detect a target in a larger visual field of many targets.

In order for us humans to observe an object in the real world, we have to fixate our gaze
at it for long enough time so that the brain’s visual system is able to perceive it [67]. We
are only able to see a very narrow visual scene with high acuity at any point in time [67]
and to observe a larger area with acuity we need to continuously scan it with small rapid
movements so called saccades. The fovea is a small area on the retina that is responsible
for providing this high-acuity vision [67] using the lens that focuses the light coming from
the pupil on this area that is densely populated with a type of photoreceptive cells, called
cones, that are sensitive to small objects, color, and contrast [62]. However, the density of
these cells decreases rapidly in the periphery, reducing acuity. The periphery on the other
hand mostly contains another type of cells called rods, these are sensitive to light, shade,
and motion [62], [67]. The peripheral vision is, instead of providing high-acuity, giving us
information [67] about where to look next and what changes or movements that occur in
the visual field.

There are three types of positional eye movements that are of interest when observing
the visual attention [62]: fixation, saccades, and smooth pursuits. These movements are
defined as follows:

• Fixations are tiny movements resembling random noise no larger than 5◦ visual
angle that are stabilizing [62] over a specific area of interest and are said to correspond
to one’s desire to maintain the gaze on a specific object. These movements range
between 150–600ms in duration and about 90% of the viewing time is spent on
them [62].

• Saccades are [62] rapid eye movements, ranging between 10-100ms in duration, that
are used to reposition the fovea to a new location such that a new area of the environ-
ment can be visualized. These movements occur as both corrective adjustments of
the eye as well as voluntarily controlled eye movements [62] that are used to change
the focus of attention.

• Smooth pursuits are movements that are used to visually track a moving target [62]
and refers to the fact that the eyes, depending on the target movement range, are
able to keep up with the velocity of the target.

Other, nonpositional, eye movements are adaptation and accommodation [62] (i.e., pupil
dilation, lens focusing).

Detection of Fixations and Saccades
The main goal of ET is, according to [62], to distinguish between the three positional
movement types mentioned above. This is done through the localization of regions where
the ET signal switches between two stationary values, i.e. fixations, where the sharp edges
of the changes are the saccades. There are several metrics that can be used to extract
further information from the fixations and saccades, e.g. [62] fixation duration, fixation
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4.1 Eye Movements

count, saccade amplitude, and saccade count.
There are mainly two automatic ways [62] to perform this analysis, the first one being

averaged summations and the second one is through differentiation. The first one, also
referred to as the “dwell-time” method, averages the ET signal over time and if it remains
within what can be seen as low variance for longer duration than a specific threshold it is
classified as a fixation [62]. The second method, on the other hand, subtracts consecutive
data points to estimate the velocity of the eye movements [62], which requires that the ET is
performed using a fixed sampling rate. Fixations are extracted from these velocities either
as the segments that occur between saccades, or as the segments where the velocity falls
below a predefined threshold [62]. There are indications that the second method is better
for real-time detection of saccades [62] due to faster calculations. The thresholds, for both
methods, are often determined through empirical studies [62].

One of the main issues of ET analysis it that the recorded signal is inherently noisy [62]
due to the eye’s constant movements and also as a result of eye blinks. Filtering the data
before it is used is therefore of importance. Eye blinks should, according to [62], generally
be easy to distinguish since they create a large disturbance in most eye trackers.

I-VT filter
The velocity-threshold identification (I-VT) filter is a spatial (velocity-based) algorithm [68]
that is used to distinguish fixations from saccades in eye gaze data. The intuition behind
the algorithm is that fixations have low velocities (< 100◦/sec) while saccades have high
velocities (> 300◦/sec) [68]. The I-VT algorithm works as follows [68];

1. Calculate point-to-point velocities.

2. Classify each point as either a fixation, if its below a specified threshold, or as a
saccade if its above it.

3. Group consecutive fixations together and calculate the center point of each group
based on the center of mass.

4. Set the start time for the fixation as the time of the first point in the group and the
duration of the fixation as the time between the first and last point in the group.

The velocity threshold that is used is the only parameter that needs to be specified [68] and
it can be set to what is considered a reasonable angular velocity based on computation of
angular velocities (requires the distance from eye to visual stimuli to be known) or simply
using the sampling frequency in conjunction with empirical data. A study by [69] shows
that a threshold between 20 − 40◦/s are suitable values to try for specific eye trackers
whereas a threshold of 30◦/s may be a suitable trade-off when working with a multitude of
eye trackers.

Other things to consider for the use of the I-VT filter, apart from the selection of the
threshold, are [70]:

• Lack of smooth pursuit detection - There is no distinction between fixations, or
saccades, and smooth pursuits [70] and the latter will therefore always be classified
as either a saccade or a fixation, depending on the velocity threshold.

• Noisy data requires filtering - All systems that are designed to perform measure-
ments are generally noisy to some extent [70], these disturbances may come from the
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equipment as well as from the environment. The way the eye movement velocities
are calculated in the I-VT filter, as the fraction between the difference in angular
position and the sampling frequency [70], means that if the eye tracker makes even
the smallest miscalculations this will introduce significant noise in the velocities cal-
culated from data collected at a high frequency. On the other hand, with eye trackers
sampling at lower frequency, the noise introduced by measurement issues will typi-
cally still have the same amplitude as for higher frequencies, but as the time between
each sample is greater, applying a filter introduces the risk of distorting [70] the orig-
inal gaze data. Noise generally appears as random spikes in the data [70] and since
it has a higher frequency than the signal the I-VT filter aims to detect, it is possible
to reduce the noise using a low pass filter [70] that smooths the data by removing
signals of high frequency. An alternative to the low pass filter is to calculate the
average eye movement velocity over several samples, which is less sensitive to noise
than using just two measurements [70].

• Gap fill-in - Another issue is that some loss of data is almost always present in
digital measurement systems [70] occurring when a sample cannot be collected as
the measurement is performed. When it comes to ET in a worn eye tracker this
is mostly caused by the participant blinking, resulting in gaps of a few hundred
milliseconds. Other reasons that gaps appear, for shorter durations, include delays
in data transfers, temporary reflections caused by prescription glasses [70], etc. This
could potentially split a fixation in two [70] if the data is not replaced by valid
information and one does, therefore, need an algorithm that fills in the gaps.

• Eye selection - The eyes are often behaving slightly different when it comes to the
start and end time of fixations and eye blinks [70]. This may lead to gaps in the data
from one of the eyes and this requires a decision to be made regarding how the data
from both eyes should be merged into a single data set for the I-VT filter [70]. Two
examples are; averaging between eyes or using only the left or the right eye as the
base for calculating fixations.

• Close fixations - Imperfections, such as short gaps or noise, results in data points
being misclassified [70], which in most cases means that long fixation gets separated
into two shorter ones with a saccade in between them that is short in both travelled
distance and duration. This can be countered thorough a post-processing procedure
that merges fixations [70] that are close in time and space.

• Short fixations - The basic I-VT filter does not limit how short a fixation can
be [70], but due to the cognitive processes that processes the visual information, that
occurs during fixations, there is a limit to how short these can be. This requires the
implementation of a filter that removes data points [70], labeled as fixations, that
last too short time.
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CHAPTER 5

Supervised Machine Learning

The use of modern technology, such as sensors and computer programs, makes it possible
to collect more data at a higher accuracy and a higher pace than previously. It is, however,
difficult to analyze these large datasets, sometimes referred to as Big Data [20], using
traditional methods.

Machine learning (ML) is a tool that can be used to process these huge datasets and
solve practical problems using statistics and probability theory [71]. Supervised ML and
unsupervised ML are the two most common types of algorithms [72]. The former means
that the algorithm learns from examples of the output that is expected from a given input,
i.e. it is given labels or targets for each input [72]. The latter type lacks this information,
for example in the task of clustering, where the goal is to retrieve information on underlying
patterns or to group data into categories [73].

An ML algorithm generally consists of the following components; a model, a cost function,
and an optimization algorithm [72]. These are then coupled with a dataset to solve a
specific problem. Different types of learning tasks are, for example, classification, regression,
machine translation, anomaly detection, and denoising.

The main challenge in the field of ML, according to [72], is to train a model that performs
well on previously unseen inputs, which is called generalization, and not just on the samples
that were used during training, called training dataset. This dataset is used to determine
the model’s performance, called training error, and the parameters of the model are then
altered in order to reduce the error [72]. This can be seen as an optimization problem, and
what separates ML from optimization is that the goal is to also obtain a small generalization
error [72], i.e. the estimated performance on the test set, a dataset collected separately from
the data used in training. The performance of an ML model is, therefore, dependent on the
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model providing a small training error while it at the same time keeps a small difference
between training and test error. The two factors corresponds to two important challenges
in ML [72]: the first one, underfitting, occurs when the model is not able to achieve a low
enough training error and the second one, overfitting, occurs when the discrepancy between
the training and test error is too large. The likelihood of a model to under- or overfit can be
managed through the alteration of its capacity [72], which can be seen as its ability to fit a
large variety of functions, for example by adjusting the width and/or depth of an artificial
neural network (ANN). Models with a low capacity may experience difficulties learning the
training set whereas the ones with high capacity memorizes properties of the training set
that are not transferable to the test set.

The following sections in this chapter will cover some ML approaches in the realm of
ANNs and some of their areas of application.

5.1 Feedforward Neural Networks
Feedforward neural networks (FNNs) are the basic building blocks for deep learning mod-
els [72]. The goal of an FNN, as described in [72], is to approximate some function f∗, for
example, y = f∗(x) that maps an input x to a category y. An FNN defines a mapping
y = f(x; θ) [72] and learns the value of the parameters θ that gives the best approximation
of f∗. Feedforward comes from the fact that the information in these models only flow in
one direction [72], from the input x, through the intermediary computations that define f ,
and finally to the output y. No information from the outputs [72] is fed back into the model
again, when FNNs are extended to include feedback connections, they are called recurrent
neural networks (RNNs), further described in Section 5.3.

The “network” component in FNN comes from the models typically being composed of
many different functions. One example, given by [72], is the chain of the three functions
f (1), f (2), and f (3), that forms f(x) = f (3)(f (2)(f (1)(x))). This is a common structure in
ANNs [72] where f (1), in this case, is called the first layer, f (2) is called the second layer,
and so on. The total length of the chain is what determines the depth of the model and
this is what inspired the “deep” part of deep learning [72].

During the training of ANNs, the goal is to make f(x) match f∗(x) as closely as possi-
ble [72] using the training data that provides noisy, approximate examples of f∗(x) evaluated
at different training points. Each data point, x, has a corresponding label y ≈ f∗(x) [72]
and the model shall, for each x, produce a value from the output layer that is close to
y. The algorithm must learn to decide how to combine the intermediary layers, and the
output layer, to approximate f∗(x) as accurately as possible [72]. However, the training
data does not contain any information regarding the desired output from the intermediary
layer, the reason for why they are called hidden layers [72], and the dimensions of these
hidden layers determines the width of the model. Each layer is composed of several units,
acting in parallel, each representing a function that transforms a vector to a scalar [72]. The
units are similar to neurons in the way that they take inputs from multiple other units and
uses that to compute their own activation value [72]. This, and the fact that the networks
contain features loosely inspired by neuroscience, is why they are called neural networks.
However, FNNs should be seen as ways to approximate functions rather than as models of
how the human brain operates [72].
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5.2 Convolutional Neural Networks
CNN:s are a type of feedforward neural networks that are more robust to shift, scale, and
distortion invariance [74] than fully connected neural networks, and therefore better at
detecting spatial and temporal features. This is achieved by convolving or sub-sampling
the input to the layer with local receptive fields [74] (filters) of a given size [n x m]. Each
filter has n · m number of trainable weights + a trainable bias and these are shared [74] for
all filter outputs.

5.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a subgroup of ANNs that are used to process se-
quences of data [72]. An RNN shares its weights across several timesteps [72], whereas a
fully connected neural network would have separate weights for each part of a sequence. In
an RNN, the current timestep is not only computed as a function of its input, which is the
case for regular feedforward neural networks, but also previously output states [72]. This
gives the network access to historical data and how it changes over time. RNNs generally
also allow for processing of sequences of variable length.

Long-Short Term Memory
Traditional RNN:s tend to suffer from problems with exploding or vanishing error gradi-
ents [72], [75], which prohibits proper learning over longer time instances. Long Short-Term
Memory (LSTM) cells [75] are designed to provide a solution to this problem using a con-
stant error flow [75] through the network, together with three gates that open and close in
order to access the error flow [75]. The input gate decides when the internal state of the
LSTM cell should be affected by the input to the cell, the forget gate determines when the
cell’s internal memory should be reset, and the output gate controls whether the current
state of the cell should influence the error flow or not [75]. An LSTM network may contain
multiple cells and the network learns to control each individual gate [75] in each cell. The
GRU-unit [76] is another type of gated cell that is similar to the LSTM, however, it uses
only two gates, a reset gate that determines when to ignore the previous state and an update
gate that decides if the state shall be updated or not.

5.4 Dropout
Dropout is a deep machine learning method that is used to reduce overfitting [77]. This
is done by randomly ignoring, with probability p, each neuron in a network every time a
training case is presented to the network. The goal of randomly excluding some neurons for
every training case is to make sure that the network learns generalized features instead of a
co-adaptation between neurons [77]. The probability to be used for fully connected layers,
suggested by [77], is p = 0.5. However, there exist other types of dropout [78] and suitable
values for p varies with both the dropout type and the architecture.
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Dropout as a Bayesian Approximation
The dropout method described above can, according to [79], be used to approximate
Bayesian inference. This is done by enabling dropout at all times, not only during the
training of the network, which means that the network will randomly omit some neurons
also when making predictions causing variation. The mean prediction as well as the model
uncertainty can be obtained by making N number of predictions [79] on the same data and
collect the results. [79] claims that N ∈ [10, 1000] should give reasonable results. Using this
approach is useful since it provides a way to reason about model uncertainty that is easy to
implement and less computationally expensive [79] than alternative methods. [79] suggests
that the probability p for dropping a neuron should be in the range of p ∈ [0.1, 0.5].

5.5 Transformers - Encoder
The original Transformer by [80] is an attention-based neural network architecture with an
encoder-decoder structure, mapping one set to another, to solve natural language processing
tasks. Since then, the Transformer has been adjusted in order to perform image classification
with the Vision Transformer (ViT) [81], which only uses the encoder part. The first part of
the ViT splits the image into a sequence of non-overlapping patches [81] and each patch is
projected to a hidden dimension C that acts as the linear trainable embedding. A learnable
positional encoding is then added to the embedding [81], in order to learn the ordering of
patches since self-attention inherently lacks this capability. A class token that is used to
obtain a classification that does not favor any one of the particular inputs is also added.
This is then fed into the first encoder, the ViT is made up of Nx number of encoder blocks
that are identical in size, that consists of a multi-head attention that performs self-attention
in H parallel tracks followed by two position-wise feed forward layers separated by a non-
linear activation. Self-attention is, according to [80], a function that maps a query and a set
of key-value pairs to an output, computed as a weighted sum of the values. The particular
attention function used in the Transformers encoder is called Scaled Dot-Product Attention
and it computes the dot products of a set of queries Q with all keys K, divide this by
the square root of the dimension of the queries and keys,

√
dk, and then apply a softmax

function in order to get the weight for the values V , which can be summarized as follows:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V (5.1)

The network ends with a hidden fully connected layer and a linear classifier [81]. The ViT
also utilizes skip-connections [82] and layer normalization [83].

5.6 “Multi-Layer Perceptron”-Mixer
The “Multi-Layer Perceptron”-Mixer (MLP-Mixer) by [84] was proposed as an alternative
to using CNN:s or Transformers-based architectures for image classification. Two selling
points are that the Mixer network is able to achieve mostly comparable prediction results
while using less memory and having less computational complexity. This gives a faster

20



5.7 Alternative Neural Network Architectures

training procedure and a higher throughput (number of predictions per second) at inference.
The main idea of the MLP-Mixer is to provide a simple architecture that performs two
operations, mixing of features at a given spatial location and mixing between different
spatial locations, in a separated way [84]. These two types of mixing are present in both
CNN:s and attention-based networks but in a way that is less distinct. The input to the
Mixer is a sequence of non-overlapping patches that represents one image and each patch
is projected to a hidden dimension C using the same projection matrix. The Mixer is made
up of Nx number of Mixer-blocks that are identical in size, where each block consists of
two MLP-blocks [84]. The first one performs mixing between different spatial locations on
the rows of the transposed input X and the second one mixes features at row of the input
X. The weights of each MLP are shared for all rows and the MLPs consist of two fully-
connected layers with a non-linear activation in between [84]. The parameters DS and DC

are the hidden sizes for the two MLPs respectively. The network ends with global average
pooling and a linear classifier, a common way of performing classification [84]. The Mixer
network also utilizes skip-connections [82] and layer normalization [83].

5.7 Alternative Neural Network Architectures
There exists a wide range of other network architectures that can be used to analyze se-
quences of data. A few examples are; auto-regressive neural networks such as PixelCNN [85]
and Wavenet [86] that have been used to generate images pixel-by-pixel or raw audio respec-
tively and graph CNNs, e.g. STGCN [87], that has been used in human action recognition
tasks that model the human body using skeleton key positions.
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CHAPTER 6

Experimental Procedure

This chapter defines an experimental procedure that can be used to analyze human be-
haviour using VR, ET, and ML. It starts off with the formulation of the objective, what
data is needed, and how the performance of the ML solution will be evaluated. This is
then followed by three steps that describes how VR with ET can be used to collect human
movement data, namely the experimental setup that covers the hardware, the test develop-
ment that describe how a VRE can be designed in order to collect gaze and movement data,
and then the test study and the selection of participants will be covered. The test related
sections are followed by suggestions for ways to preprocess the data before use with ANNs,
the design of an ANN architecture that may solve the objective, and what to consider when
the results are obtained. Each section will also provide a brief description of what has been
used in Paper A-E.

6.1 Objective - What is of interest and why?
The first thing to consider is what problem(s) is(are) of interest, how these may be solved
through an ML approach, and what the end goal is or what the final product will look like.
Once the objective is clearly defined it might be useful to identify possible subgoals that can
be used to explore the overarching objective through an iterative process that may provide
partial solutions. Both the main objective and its subgoals need to be measurable in such
a way that they can be evaluated in a meaningful way. Evaluation will be further explored
in Section 6.3.

The objective in Paper A was to investigate whether human eye gaze data can be
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used to classify which object out of 5 boxes that was selected after the test procedure was
completed. The objective from Paper A provides the foundation for Paper B, which had
the objective to continuously classify, ahead of time, which out of 18 possible boxes, that the
test participant is about to reach for, utilizing the ANN’s notion of uncertainty. Paper C
had the same objective since the goal was to compare the results against Paper B.

The objective for Paper D was to explore the possibilities to further standardize cognitive
testing through the use of a VRE with ET to increase the amount of information that is
available after a test and gather that information in a automatically generated report.
Lastly, the goal of Paper E was, in a similar way to Paper A, to classify what alternative
a person selected on an item based on where the participant had been looking.

6.2 Data - What data is needed?
Once the objective is clearly specified it is time to figure out what data is needed to build
the ML model in order to provide a solution to the problem. This involves the following
steps:

• If the data is not already available, it has to be gathered somehow and this is both
a time consuming and possibly costly procedure if it involves, for example, human
participants.

• The amount of data required to develop a working ML solution varies and one must
determine the minimum number of data points that gives a working solution. How-
ever, the quality of the data is also of importance and this requires good equipment,
a suitable test design that accurately represents the objective that is to be solved,
and that the data points with the most valuable information are collected. In order
to make the most of the data during the training procedure one might also want to
employ some type of data augmentation, further described in Section 6.7.

• The next step is to figure out what measurements are of interest, how and to what
degree these capture the different aspects of the problem, and how these may be used
to solve the objective.

• The available architectures and the possible problem formulations are also affected by
the type of data that is collected and how it is arranged, e.g. sequences of numerical
data, matrices, images, etc. The formatting of data will be covered in Section 6.7.

• The problem formulation will also affect the required data, for example a many-
to-many sequence problem might require as many labels as input data, whereas a
many-to-one classification problem might be solved with a single label for each set
of data points.

The data that is used in the two studies in Chapter 7 has been collected from volunteer
test participants and in most cases with the author of the thesis as the test leader. The
dataset in Paper A features 720 data points collected from 24 participants and the dataset
used in Paper B-C contains 3192 data points from 21 participants. Paper D did not
involve any data collection beyond continuous testing throughout the development process.
Finally, Paper E contains data from 27 participants that each have answered the 60 items
in SPM. These datasets can be seen as quite small in ML context, however, the results
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shows that small datasets might be sufficient to develop proof of concept, especially for
tasks of lower complexity.

The type of data is almost the same for all studies. It involves eye gaze, HMD movements,
controller movements, and test specific data, such as selected boxes or alternatives, which is
were the differences come into play. Paper A and Paper E employ a many-to-one problem
formulation whereas the networks in Paper B-C were trained as a many-to-many problem
used in a many-to-one context.

6.3 Evaluation - How will the network results be
evaluated?

In order to accurately determine whether the ML solution successfully solved the objective
or not it is important to know beforehand how to evaluate the network’s performance.
Depending on the problem to be solved there may be different ways of doing the analysis,
for example if it is a common or previously tried experiment one should first consider to use
the same metrics or benchmarks in order to make it possible to quickly do comparisons. In
other applications the use of common metrics such as mean squared error or classification
accuracy etc., may falsely evaluate the network due to a system dynamic that is not clearly
captured in the metric. An example of this could be to incorporate slack in the error
measurement if the system itself does not require pinpoint precision.

Paper A used a traditional classification accuracy score in conjunction with prediction
filtering based on the standard deviations of the predictions that allows the system to be
evaluated according to its certainty as well as performance. Paper B-C was evaluated
slightly different in order to simulate the performance on a continuous stream of data.
Paper D contains no ML and thus lack evaluation metrics. Paper E used a traditional
classification accuracy score using the mean values of the UE.

6.4 Experimental Setup - What hardware can be
used to collect the data?

There are several ways of measuring eye gaze, e.g. camera-based ET methods [88] and wear-
able eye-tracking glasses [89], as well as human movements, e.g. camera-based methods [90]
and wearable inertia based methods [91]. One way to merge gaze and movement tracking
into one system is through the use of a VR-headset with hand controllers and built-in ET.
It is possible to design a fully controllable VR environment (VRE) that gives access to
information about where the user has been looking, moving their head and hands, while
simultaneously limiting visual distraction through the immersion that the headset gives.
Performing various experiments in VR is also much safer than in the real world since there
is no risk that the operator is hurt nor that the equipment, inside the VRE, is damaged.
There is also an endless supply of material since new parts can be generated from a piece
of code.

Paper A-E all use the same setup, namely a consumer grade VR-headset, “Tobii Eye
Tracking VR Devkit” [92], that has built-in ET and utilizes two handheld controllers to
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navigate the VRE. The system is capable of tracking the position and orientation of the
HMD and the hand held controllers. The eye gaze is tracked with Binocular dark pupil
tracking at a frequency of 120 Hz. This type of eye-tracking is achieved by illuminating
the eyes, off-axis compared to the cameras that are used to capture images of the reflected
light as it bounces off the retina and exits the eye, causing the pupil to appear darker than
the rest of the eye. The images are used to calculate a gaze direction vector based on the
positional relationship between the cornea and the pupil. The ET can be performed in the
entire 110◦ field of view of the HTC-Vive HMD [92], with an accuracy of ∼0.5◦ and a delay
of ∼10 ms from the illumination of the eye until the data is available in the SDK. The eye
tracker is individually calibrated to each test participant using a 5-point calibration strategy
available in the SDK. The calibration is based on the user being instructed, visually and
audibly, to focus her/his gaze on 5 pre-defined points in the VRE and that gaze data is
used in the SDK to calculate a 3D-model of the eye.

6.5 Test Development - How can the test be
designed with regards to the data objective
and available hardware?

Developing a VRE test can be broken down into the following steps:

• Language - Choose one or multiple language options that can be used to present
written instructions during the test procedure and make sure that the test leader
is able to deliver the spoken instructions in the chosen languages. The instructions
should preferably be customized to fit the target group that is going to perform the
test.

• Design the test in a way that makes it as clear as possible to follow the different steps
of the tests including for example; language selection, calibration of the equipment,
input of extra information such as age, gender, etc. (to use for basic demographics),
and the start of the test itself. It is also convenient if the test is easy to restart if
something goes wrong, the participant has additional questions during the test, or
simply to make it easy to move on to the next participant.

• Consider using anonymous participant IDs in order to store the collected data in a
way that preserves the privacy of the participants.

• Limit distraction - Limiting or controlling distractions from the test itself is good
way to reduce or introduce noise in the data depending on what is desired. Visual
stimuli is easily controlled in a VRE and this is an important strength that should
be utilized to make the test as standardized as possible. Adding audible and haptic
stimuli is also possible.

• Warm-up - If the test procedure is unfamiliar to the participant then it might be
useful, in order to reduce the bias from inexperience with for example the equipment,
to have a warm-up segment that ensures that the participant gets some experience
regarding what is to be done.
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• Finally, consider developing the VRE in a modular fashion such that modifications
can be made if necessary or in order to be able to reuse the parts of the environment
in a different context.

The main VRE structure for Paper A-E uses Swedish and English as the two instruc-
tional languages, it incorporates anonymous participant ID:s that are randomly generated
as the test is launched, the ET calibration steps and the gathering of general information
follows the same procedure, and its ET, movement tracking, and visual distraction limiting
features are the same. This makes for a modular design that is slightly modified as the
objective changes through the papers.

The test stage in Paper A features a table in the form of half a circle where cubes will
appear at random in 5 different zones with 45◦ spacing. The test stage has been designed
in a way that is meant to force the test participant to look in the direction of the cube,
make a movement towards the cube, and acknowledge that movement by touching the cube.
The zone that gets a cube is randomly selected every time a new cube is to be created and
the positioning of the cube is also randomized, in the interval x ∈ [−xs, xs], y ∈ [−ys, ys],
where xs, ys are the maximum deviations allowed around the center of each zone. The test
has a 1s time delay between each cube appearing that helps to slow down the pace of the
test execution.

Paper B-C use the same test environment featuring two even distributions of 9 cubes,
each at two different heights and radii. The cubes appear at two different radii, based on
the participant’s arm length, and requires the test person to touch it while simultaneously
pressing a button on the controller to make the cube disappear. After a cube has disap-
peared, and a delay of 0.2s, the next cube in the randomized sequence is lit. The delay is
used as a way to force a slower pace throughout the test and data is collected during this
time.

The VRE in Paper D is designed to model a subset of 10 different items from SPM and
takes place in a sparsely furnished, square space with calm colors to prevent the user from
being distracted. The user can move freely in the room throughout the test, both in the
real world and in the virtual, but it is recommended to remain seated/standing still.

The test stage in Paper E starts with three simple training items that are used to make
the participant more accustomed to the VR-part of the test. The training items are inspired
by the first difficulty level (A) of SPM. The decision to add training items was based on the
fact that new participant during the development of the VRE spent an unreasonable amount
of time on the first item despite its simplicity. Note that the data from the training items
is not included in the final dataset. The actual test contains the 5 levels of progressively
higher difficulty with 12 items each from the SPM, 60 items in total. The test takes place
in a VRE that consists of a room-like space with a gray and blue color scheme without
any extra cosmetics apart from a window and a door. The limited aesthetics were chosen
to prevent the user from being distracted by the VRE. The main feature of the room is
a black “screen” that presents all the information. The dark colors of the room and the
screen were chosen to reduce eye strain from the bright displays of the HMD and to provide
contrast to the Raven items that are white with black features. The user can move freely
in the room throughout the test, both in the real world and in the virtual, however, it
is recommended to remain seated. The items were created as two different 3D-models in
Blender, with 6 or 8 alternatives respectively. The paper-based SPM was scanned using a
printer and the images were cut into pieces corresponding to the item and all the different
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alternatives generated automatically using a Python-script. The images were transformed
into textures suitable for 3D-models in Unity and are continuously coupled with the correct
model during the test. The 3D-models are light grey instead of white in order to further
reduce eye strain caused by an otherwise too bright environment. There is also a separation
segment between each test item achieved using a +-sign that appear in the middle of the
screen, as the previous item is removed. The +-sign decreases in size for the duration of
1.5 seconds until it disappears and the next item is displayed. This serves the purpose of
resetting the user’s attention to the middle of the screen.

6.6 Test Study - How will the data collection take
place and who will participate?

• Limit external distractions - External distractions or disturbances may have a nega-
tive impact on the quality of the data since that could give some of the participants
unfair disadvantages. It is, therefore, crucial to limit these (the ones that have not
already been taken care of during the test development) as much as possible, for
example by using a room with low noise levels or making sure that the participants
does not feel stressed about the upcoming task. The latter may be reduced by clearly
explaining the goal of the test, going through what is expected of them, and answer
any questions.

• Standardized instructions - Make sure to use the same instructions for every partic-
ipant in order to reduce bias from the instructional phase, however, keep in mind
that some people may need some additional help in order to be able to carry out the
test as intended.

• Feedback - Ask the participants if they are willing to give some feedback that can be
used to improve the test procedure and/or the VRE.

• Selection of participants - In order to create a robust system that works in various
conditions and for as many users as possible one needs to consider the test group
diversity. It could be possible to design a system that successfully learns how a few
participants behave, that is not transferable to others. A larger test group mitigates
this as well as other biases towards, for example, age or gender. The importance of
this may, however, vary depending on whether the goal is to create a system as a
proof of concept or if it is supposed to be production ready.

The data in Paper A-E has been gathered at mostly quite places, however, there have
been occasions where there have been other people present. The instructions, for each
test study, have been given in the same way to every participant. The test procedures
and the VREs have successfully been improved through feedback, from early participants,
before the actual test studies were carried out and between the studies. Paper A-E are all
simplified test studies that are designed as a proof of concept. The selection of participants
is, therefore, limited to volunteers and mainly people who work or study at Chalmers. All
participants volunteered and gave their consent orally.
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6.7 Preprocessing - How will the data be
processed to fit the ML solution?

In order to train the ANN with the most useful information possible it is important to
preprocess the data such that it is presented in its most usable format. This includes
selecting the appropriate labels to be used for both training and evaluation to determine
the success of the network. The following steps should be considered:

• Filtering of outliers - If the data consists of unwanted outliers these should be removed
before training in order to reduce the likelihood that these guide the training of the
network in the wrong direction.

• Selection of features - The features are the input to the ANN and selecting these
will greatly influence the success of the training of the network. Features that are
too similar may, for example, drive the training of the network into a local optimum
due to an over-representation of redundant information. Analyzing the correlation
between different features or utilizing domain knowledge are two possible ways of
determining which ones that provide valuable information.

• Data augmentation - Training ANNs generally requires a lot of data and if it is
difficult and/or expensive/time consuming to gather more data, for example when
dealing with human test participants, it may be possible to augment the training
data in order to achieve a better performance. Ways of augmentation could be
to add duplicates of the data, with or without noise, shuffling of the data, and
other transformations that slightly perturbs the data such that it aids the networks
generalization capabilities.

• Network specific preprocessing - Depending on the task and the network architecture
the data may need to be formatted in a specific way in order to solve the objective. If
sequences require equal length one may consider for example zero-padding the data
or applying some kind of up- or downsampling to give them equal length. Other
contexts could require that the data is parsed using a sliding window.

• Normalization/standardization - The network may over emphasize the importance of
some features over others if they are of different magnitude. This can be countered
through feature wise normalization or standardization of the data. The former refer-
ring to re-scaling the data, for example between its minimum and maximum value,
and the latter to re-scaling the data to have zero mean and unit variance.

• Simplifying the problem - Before it is time to select the labels for the supervised
learning problem one may consider reformulating the problem to reduce the number
of different variations that the network has to learn. One example of this in a
classification problem could be if there are 2 classes that contain 10 similar subclasses.
This could either be formulated as a multi-class problem with 2*10=20 classes or as
a binary classification problem coupled with a multi-class problem with 10 classes.

• Selecting labels - Supervised ML requires suitable labels to learn how to solve the
objective. Selecting the appropriate labels is the difference between a successful and a
failed project. A clearly defined objective and evaluation procedure should, therefore,
be the starting point for the selection of labels along with a careful analysis of the
available data.
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• Class re-balancing - The data that is collected may sometimes be unbalanced, i.e.
there are one, or a few, classes that constitute the majority of the data. This may
cause the network to become biased towards guessing these classes and in worst case
rendering the network useless since it learns to always guess the majority class, as the
cost of a wrong guess is small compared to all the right answers. Class unbalances
can be mitigated through re-weighting the loss of being wrong during training, such
that the loss of guessing wrong is higher for rare classes. It could also be possible to
collect more data that is targeted towards the minority classes or, if it is possible,
redesign the test procedure to ensure balanced data.

• Train/validation/test split - The last step of the data preprocessing is to split the data
between training and test data. The size of these may vary but the important thing is
that the test set is large enough to determine that the network generalizes well, while
on the other hand a larger training set usually improves the training procedure and
reduces the risk of overfitting, thereby providing a better generalization. A common
strategy when experimenting with network parameters is to also split the data a third
time into a validation set. This is useful both during the training phase to monitor
the loss on unseen data, but also to mitigate the risk that repeated experiments make
the solution tailor-made towards the test set, which should only be used for the final
evaluation.

Paper A-C use the same way of discovering and removing outliers. The datasets have
been approximated using Beta-distributions and then a maximum threshold, maximum
duration (samples) of a test segment, has been set according to the mean plus three stan-
dard deviations of this distribution. All data points that contained more samples than the
threshold were discarded. Paper E filtered the data based on a threshold determined from
observations.

The next step filters out each sample, within each data point, that contained NaN values.
These data points were discarded in Paper A whereas they were replaced with the previous
valid sample for Paper B, C & E. NaN values occur when the ET fails to read the eye
properly, most commonly as a result of the participant blinking.

In Paper A, one of the goals was to investigate the neural network’s ability to handle
raw gaze data and the features that were used are, therefore, left and right gaze direction
vector, left and right pupil diameter, and a variable that contains the duration of the test.
The features that were used in Paper B are the combined eye gaze direction vector (x, y, z),
obtained as an average of the separate gaze vectors from each eye, the y- and z-coordinates
of the HeadPosition, and the pupil diameter, averaged between left and right eye. The
x-coordinate of the HeadPosition was removed as it corresponds to the participant’s height,
which is constant during the entire duration of the test due to the fact that they remain
standing and does, therefore, not provide much information to the network since the boxes
are individually calibrated to the participant’s height and reach. The HeadRotations were
removed since the focus point of the gaze is more interesting and because of the fact that the
head is often rotated in conjunction with the eyes, therefore, providing limited information
to the network. The reason that information such as EyeHitPoint and EyeHitObject are not
used is because they require specific knowledge of all objects in the environment, something
that is possible to know in a VRE but would limit the possibility to implement the system
in a real-world scenario. The same features were used for the comparison in Paper C. The
features for Paper E that were selected are the two coordinates in the plane of the item,

30



6.8 Neural Network Design - What network architecture(s) can be used to
solve the task?

calculated as a projection on to the plane using the average gaze direction vector and the
HMD-position vector together with the distance from origo to the plane. One additional
feature is a boolean value that is true for difficulties A & B (that always have 6 answers)
and false for C-E that have 8. This supports the network’s ability to distinguish between
the amount of possible answers.

Paper B-C are the only studies where data augmentation was added and it is achieved
by stacking copies of movements after each other in the creation of the training dataset.

The data in Paper A was featurewise normalized in the range of [0, 1] and the data
points that were of shorter length than the decided threshold were padded with zeros (ZP)
at the end to guarantee the structure of the data point that is fed to the network. Paper A
also evaluates using linear upsampling (US) of the data points to achieve the desired length.
US is, however, not an alternative for a continuous data and since ZP performed better, it
was chosen as the preferred method. The data in Paper B-C was featurewise normalized
in the range of [-1, 1]. The data in Paper E was featurewise normalized in the range of [0,
1] and the sequences that were shorter than the maximum length were padded with values
of -1 such that all sequences have the same length. The value of -1 was chosen arbitrarily
outside the range of the normalized data and it can, therefore, be masked (ignored) in the
ANN.

The problem formulation for Paper A is a multi-class classification problem that uses
the id of the boxes as labels. Paper B was rewritten from a 19 class classification problem
to a 10 class problem, with the ids of the boxes at the lower level as the labels. Nine of
these classes, the box in the centre is excluded, are also binary classified as either 0 or 1,
corresponding to the lower or the upper level of boxes. The same problem formulation was
used in Paper C. Paper E is a multi-class classification problem that uses the different
alternatives to the test as labels.

Neither of the papers use any class re-balancing. Paper A-C used a data split of roughly
45%/5%/50% (train/validation/test). Paper E used k-Fold cross-validation (kFCV), k =
10, in order to adjust for the fact that the dataset is small. kFCV is an iterative way of
training and evaluating the network on all parts of the data to reduce bias from a lucky
initial selection of data for evaluation. k = 10 means that the data was split into 10 non-
overlapping subsets and for each iteration one subset is selected for testing and the other
9 are used for training. The process is then repeated, re-training the network for each
iteration, until all subsets have been used for testing exactly once. Finally, an average
accuracy score from the k iterations is obtained.

6.8 Neural Network Design - What network
architecture(s) can be used to solve the task?

Once the data is formatted in a proper way it is time to create the ANN that will perform
the analysis of the data. A first step is to consider if there are any specific ANN properties
that are suitable for the specific task, such as CNNs for images or fixed time series, or
RNNs for more complex time series problems. Start off with a simple network and add
more complex structures later, this makes the network easier to analyze if it is not working.
It trains faster, and lowers the computational cost. This is also when one may consider
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whether there are any hardware limitations that come into play when using the trained
network in its live environment. Fast online predictions are easier to achieve using a smaller
network since it requires less computational resources. The choice of intermediary activation
functions may affect the performance of the network [72] and a few common alternatives
are; ReLU [93], GELU [94], and tanh.

When the network architecture is in place one needs to apply an output activation that
transforms the network output to its desired format [72] and then couple it with the ap-
propriate loss function that controls the learning process of the network. A softmax output
is commonly used for multi-class classification and is often paired with a categorical
crossentropy loss whereas a sigmoid activation is paired with binary crossentropy loss
for binary classification, etc.

The training of the network also requires an optimizer that is used to find the appropri-
ate error gradients to learn from [72] and some optimizers may work better for a specific
architecture than others. It is also important to determine when the network should be
considered fully trained. One approach is to monitor the networks performance on the vali-
dation data and terminate the training once the validation loss stops decreasing, sometimes
referred to as early stopping. The reason that the performance on the validation data is
considered is because the objective is to train a network that works well with unseen data
and not only optimize towards known data.

Paper A uses a CNN approach, inspired by the inception modules from Inception-v3 [95],
adapted to 1D time-series data as the basis for the classification coupled with the uncer-
tainty estimation described by [79]. The architecture, Figure 6.1, is utilizing ReLU activation
functions, a softmax output activation, and is trained with categorical crossentropy loss.
This structure is then reused for Paper B in a time distributed way with the addition of
an LSTM-layer, Figure 6.2, and the intermediary activations have been swapped from ReLU
to tanh. The network has two outputs, the first one uses a softmax activation together with
a categorical crossentropy loss whereas the second one uses a sigmoid activation paired
with a binary crossentropy loss.

There are two networks in Paper C, one that is based on the encoder part of the Trans-
former architecture and one based on the MLP-Mixer. The attention encoder, based on the
ViT [81], can be seen in Figure 6.3 and works as follows: it starts with a Conv1D-layer that
is responsible for formatting the input data into subwindows. It simplifies the preprocessing,
by moving the subwindowing of the data into the network, and enables the network to learn
from this stage, compared to Paper B, where the subwindows were formatted during the
preprocessing. The positional encoding is a layer of trainable parameters that are responsi-
ble for learning the order of the data since that information is otherwise lost in the following
attention layers. The first encoder block starts with a multi-head attention layer (MHA)
that performs self-attention in parallel heads/tracks followed by two Conv1D layers, which
processes the output from the attention calculations. Both of these Conv1D-layers apply
a Gaussian Error Linear Unit (GELU) [94] activation. The encoder also contains two skip
connections as seen in Figure 6.3. A skip connection is a summation of the output from
a layer and the output from a previous layer. The encoder layer is repeated Nx number
of times (including the first block) before the network ends with the TimeDistributed UE
and the two outputs, the first one uses a softmax activation together with a categorical
crossentropy loss whereas the second one uses a sigmoid activation paired with a binary
crossentropy loss. The Mixer network, based on the MLP-Mixer by [84], can be seen in
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Figure 6.4 and works as follows: it starts with a Conv1D-layer that has the same function as
the one in the encoder network above. The output from this layer is fed to the first Mixer-
block that consists of two MLP-blocks and two T-blocks that transposes their respective
inputs. The first MLP-block performs mixing between different spatial locations on the
rows of the transposed input X and the second one mixes features at row of the input X.
The MLPs consists of two fully-connected layers, with dropout, and a non-linear activation,
tanh, in between. Each mixer block also features two skip connections followed by a layer
normalization [83] - not illustrated in the figure. The mixer block is repeated Nx number
of times (including the first block) before the network ends with the TimeDistributed UE
and the two outputs, the first one uses a softmax activation together with a categorical
crossentropy loss whereas the second one uses a sigmoid activation paired with a binary
crossentropy loss.

The ANN from Paper E, Figure 6.5, uses masking such that all padding values are
ignored. The masked input is then fed to a convolutional (Conv1D) layer that transforms
the input into subwindows of non-overlapping patches of size 10. These patches are the input
to the LSTM layer that tries to find patterns regarding the time aspect of the data. This
is followed by the implementation of the uncertainty estimation by [79]. The architecture,
Figure 6.5, is utilizing GELU activation functions, a softmax output activation, and is trained
with categorical crossentropy loss.

Paper A-C & E were all trained with the Adam optimizer [96] until the validation loss
stopped decreasing.
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Figure 6.1: A flowchart that describes the network architecture used in Paper A.
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Figure 6.2: A flowchart that describes the network architecture used in Paper B.
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Figure 6.3: A flowchart that describes the Transformers encoder architecture used
in Paper C.
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Figure 6.4: A flowchart that describes the MLP-Mixer architecture used in Pa-
per C.
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Figure 6.5: A flowchart that describes the LSTM architecture used in Paper E.
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CHAPTER 7

Human Intention Analysis

This chapter will present the results that were obtained from the two test scenarios explained
in Paper A-B that investigates the ability to determine human movement intention, in
two steps of complexity, based on eye gaze. These results are accompanied by a comparison
between three different ANN architectures Paper C using the same data as in Paper B.
The movement prediction is followed by two other test scenarios, detailed in Paper D-E
that utilizes the same tools to perform intention analysis in a different context, namely in
the realm of psychological testing where the task, for the participant, is to provide an answer
to a logical pattern. The main takeaways include that it is possible to analyze human intent
in similar ways regardless of application as long as the eye gaze is used as the input data.
It is also clearly visible that modelling the uncertainty of the ANN is greatly improving
the analysis and discussion of the networks performance, both from safety and usability
perspectives.
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7.1 Study 1 - Intended Human Arm Movement
Direction Analysis

This section will provide the combined results from Paper A-C and show the progression
from a simple classification task, through the addition of uncertainty estimation (UE), to
prediction of human arm movement direction.

The classification results from Paper A without UE can be seen in Figure 7.1. The graph
shows the largest contributor from the softmax output for each sample that was classified.
The samples are sorted in increasing order, left to right, based on this value. A green bar
represents a correctly classified sample whereas a red bar indicates that the sample was
incorrectly classified.

Figure 7.1: A graph of the classification results without UE.

These results can be improved through the addition of UE as explained in Paper A.
The difference when making predictions for UE is that many predictions are done on the
same data such that it is possible to obtain a mean value and a standard deviation of the
prediction. The pseudo code for this is shown in Algorithm 1.

The results obtained from the network using UE, with nrOfP redictions = 1000 as
suggested by [79] to ensure good plots, can be seen in Figure 7.2. The graph shows the
largest contributor from the softmax output for each sample that was classified. The samples
are sorted in increasing order, left to right, based on this value. The black interval displays
two standard deviations of the prediction around its mean value. A green bar represents
a correctly classified sample whereas a red bar indicates that the sample was incorrectly
classified.
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Algorithm 1 Pseudo code for predicting with UE.
Input: X, nrOfPredictions
Output: Ŷ , ŶST D

1: predictions = []
2: for i = 0 to nrOfPredictions do
3: predictions[i] = model.predict(X)
4: end for
5: Ŷ , ŶST D = mean(predictions), std(predictions)
6: return Ŷ , ŶST D

Figure 7.2: A graph of the classification results with UE.

Once the mean and standard deviation has been obtained from the network these can be
used to determine if the network is confident enough, high mean and low standard deviation,
to make an accurate prediction. This was implemented as shown in Algorithm 2 where a
prediction is accepted if the mean minus two standard deviations is larger than a chosen
lower limit, later referred to as T hL.

The classification results for different lower limits can be seen in Table 7.1. It is clear
that the classification accuracy can be increased with this approach, however, at the cost
of the network not being able to classify all samples.
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Algorithm 2 Pseudo code that accepts or discards a prediction.

Input: Ŷ , ŶST D, lowerLimit
Output: Ŷ

1: if Ŷ − 2 ∗ ŶST D > lowerLimit then
2: Accept Ŷ as the prediction for this sample.
3: else
4: Discard Ŷ , the network is not confident enough.
5: end if

Table 7.1: Comparison of classification results for different levels of filtering using
UE and zero padding (ZP).

T hL Accuracy % samples classified

0 93.28% 100.00%
0.10 93.52% 99.74%
0.20 93.73% 98.97%
0.30 93.70% 98.45%
0.40 94.44% 97.67%
0.50 95.39% 95.35%
0.60 95.59% 93.80%
0.70 96.31% 90.96%
0.80 96.76% 87.60%
0.90 98.33% 77.26%

These classification results were the foundation for the work in Paper B-C where the
objective shifted from classification of a direction after a movement completed, to continuous
prediction of movement direction without the notion of start or finish. The movement
prediction was achieved using three network architectures suitable for time-series namely
LSTM, Transformers encoder, and MLP-Mixer. All of the networks also utilized the concept
of UE.

The performance of the networks has been evaluated using the following custom metrics:
• AP = Accuracy of predictions that are above UE threshold,

• AM = Accuracy of how many movements are correctly classified at least once,

• AV P = Vertical accuracy, evaluated whenever there is a box prediction.
These are more suitable to use to evaluate the network on how well it is able to utilize its
notion of UE in order to predict the intended movement direction, compared to a standard
accuracy metric that does not capture the aspect of UE. The reason to consider these metrics
can be described as follows: AP is the metric that keeps track of the accuracy of predictions
that are being made, however, it is possible to achieve an accuracy of AP = 100% for a very
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high threshold with just a single correct prediction. A result of this kind is not considered
valuable since such a network would not sufficiently solve the primary objective. AM on the
other hand keeps track of how many movements that were correctly classified at least once.
However, one way to achieve AM = 100% is through a network that makes predictions all
the time, without regard for the accuracy of each prediction, eventually one will through
randomness be correct. This type of result is, on its own, not useful either for the same
reason. Through the combination of the two metrics, AP and AM , it is possible to evaluate
how well the network is able to handle this contradictory task of being both fast to predict
and correct in its prediction. AV P is the accuracy score for the secondary classification
objective. One way to select the threshold, T hL (called lowerLimit in Algorithm 2), where
a network gives the best compromise between a high accuracy and covering all movements
(high AP and high AM ) is to calculate the intersection of these, illustrated in Figure 7.3, on
the validation set using thresholds varied between [0, 1] with a step size of 0.01. Due to the
fact that predictions are filtered out based on an increasing threshold, once it reaches above
the highest certainty of the network, all predictions will be filtered out i.e. no predictions
are made, and the accuracy therefore goes to zero, as seen in Figure 7.3.

Figure 7.3: A figure showing the selection of the optimal threshold for a network.

In addition to the metrics described above, the comparison also includes the number of
parameters, P , that make up the networks and the execution time (T ) of each network,
defined as the time in milliseconds that it takes to perform a single prediction. All networks
were trained and evaluated on the same hardware in order to ensure that the execution times
are comparable. The experiments were performed on a laptop with an Intel(R) Core(TM)
i7-8650U CPU and 16GB of RAM.

The best performing networks from Paper B-C, LSTM , Enc1 , and Mix3 , were evaluated
on the test set and the results are presented in Table 7.2. It is shown that the Enc1 network
is the best performing one overall with a prediction accuracy AP = 82.74%, movement
accuracy AM = 80.06%, and vertical accuracy AV = 89.10%. A good alternative to Enc1
is Mix3 with balanced and slightly lower accuracy scores, both of them outperformed LSTM
in terms of accuracy. The execution time for a single prediction was measured using the
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python function time.perf_counter() and the measurement was repeated n = 105 times
to obtain a fair estimate. The results are presented as a mean and a standard deviation in
Table 7.2 for each network. It is clear that the difference is, in this case, negligible since the
variance is larger than the difference between the fastest and the slowest network. However,
larger networks with more trainable parameters might show more clear differences.

Table 7.2: Table showing a performance comparison between the top performing
network from each network type, evaluated on the test set.

Best network from each architecture - Test set

Network T hL AP AM AV P P T [ms]

Enc1 0.53 82.74% 80.06% 89.10% 7.02k 31.43 ± 4.05
Mix3 0.25 76.97% 77.86% 87.61% 4.99k 29.42 ± 3.88

LSTM 0.38 70.70% 67.89% 81.29% 6.99k 30.39 ± 4.10

A segment of predictions on the test set for LSTM , Enc1 , and Mix3 are shown in Fig-
ure 7.4-7.6 respectively. The black lines with squares correspond to the true label for an
entire movement, the blue dots are the unfiltered predicted labels at each timestep, the
green X’s are the predicted labels when the certainty is above T hL, and finally the black
line with the dotted black lines in the bottom graph corresponds to the mean softmax output
plus/minus two standard deviations. It can be seen that all of the networks, after filtering
on certainty, makes few mistakes and manages to correctly classify most of the movements
for this segment. The bottom part of the figure displays the certainty fluctuating over time
and it shows that Enc1 often rapidly rises and falls in certainty for each movement, which
indicates that the network is swift to update its certainty once it receives a new data sample.
The certainty of Mix3 fluctuates more aggressively than the other two networks and there
is no clear pattern in the unfiltered predictions, however, once filtered it still predicts most
movements correctly. The LSTM has the smoothest certainty plot but larger confidence
bounds than the Enc1 . The comparison of this segment indicates that the behaviour of the
certainty is not that important as long as the predictions are filtered. The fact that both
the Mix3 and the LSTM have larger confidence bounds is likely the reason that they have
lower thresholds that gives the highest AI .
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Figure 7.4: A figure that shows a prediction segment from LSTM obtained on the
test set.

Figure 7.5: A figure that shows a prediction segment from Enc1 obtained on the
test set.
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Figure 7.6: A figure that shows a prediction segment from Mix3 obtained on the
test set.

The accuracy of the predictions are not all that matter, how early a movement can be
predicted is also of high importance and to evaluate that, it is essential to know what
the hand movements look like. Figure 7.7 shows an aggregation of all hand movements
from the test set (Paper B) created in order to further evaluate the performance of the
networks with regards to time. The upper graph shows the normalized distance, di, that
the controller travelled from the moment the previous box was clicked until the next one,
calculated at each sample i for each movement as:

di = 1 −
|pend − pi|

|pend − pstart|
(7.1)

where pstart is the coordinate (x, y, z)T of the controller for the first sample of the movement
and pend is the last one. The normalized distance was then plotted with an alpha of
0.03 ∈ [0, 1] and normalized time in order to show the characteristics of all movements on
the same scale. The lower graph shows the velocity, vi, towards the target, pend, at each
sample i for each movement, calculated as:

vi = fs · (pi − pi−1)T ·
pend − pi

|pend − pi|
(7.2)

where fs is the sample frequency of the eye tracker. The velocity towards the target was
then plotted with the same alpha and the same normalized time as described above. The
results from the velocity calculations sometimes, due to positional tracking errors, result in
unreasonable values. The velocity vi was therefore removed if it exceeded 2.5 m/s.
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Figure 7.7: The figure shows an aggregation of all hand movements from the test
set, with respect to distance left to target and velocity towards target,
plotted with normalized time.

From the figure it is clear that the data is noisy and with some variation, however, a few
trends are clearly emerging as well. The figure shows that there is little to no movement in
the beginning of each time series followed by a segment with varying amount of movement,
both towards and away from the target, up until about the halfway point. Around the
halfway point the combination of the distance and the velocity graph shows a stationary
segment followed by a new segment of movement that slows down towards the end. However,
during the second movement segment almost all movements have positive velocity towards
the target the entire time.

The normalized distance data from Figure 7.7 was used in Figure 7.8-7.10 to further
investigate how early the movements were first correctly predicted, referred to as time ahead
of movement completion (TAMC). The figures shows the first correct prediction from each
of the movements that were correctly classified at least once. The histograms, top and
right, shows the distributions of correct predictions with regards to the normalized time
and normalized distance respectively. The 5th, 25th, 50th, 75th, 95th, and 99th percentiles
were added in order to give a more nuanced description of the TAMC and the normalized
time values for these are summarized in Table 7.3. The distributions of LSTM are more
spread out, for both time and distance, compared to the other two networks and it is slightly
faster than the other two since the concentration of points are shifted lower to the left. Enc1
has the most compact distribution of points, concentrated to the upper right. This means
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that it is slightly slower at detecting movements. Mix3 looks like a combination of the other
two networks since its time distribution is similar to LSTM and the distance distribution is
more concentrated to the upper half as in Enc1 . The results in Table 7.3 shows that LSTM
is the fastest at detecting movements for the lower percentiles, followed by Mix3 , and then
Enc1 . However, the differences between the three networks decrease towards the end of the
movement durations.

The first 5% of the correct predictions of the LSTM are most likely “lucky-shots”. These
network predictions occur as the network sticks to the same prediction for the next move-
ment, which due to the random box sequence sometimes was the same target twice in a row.
They are called lucky since the test person, and therefore the network, can not know the
next target for the first 0.2 s, i.e. first 5.4% to 27.0% of the movements for the max/min du-
ration, due to the delay that was inserted between each task in the VRE. The “lucky-shots”
are less prominent in both Enc1 and Mix3 .

Figure 7.8: A figure that shows the first correct prediction for all hand movements
from LSTM on the test set, plotted with normalized time and distance
to target.
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Figure 7.9: A figure that shows the first correct prediction for all hand movements
from Enc1 on the test set, plotted with normalized time and distance
to target.

Figure 7.10: A figure that shows the first correct prediction for all hand movements
from Mix3 on the test set, plotted with normalized time and distance
to target.
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Table 7.3: A table that summarizes the normalized time values for the percentiles
of all the evaluated networks.

Percentile 5 25 50 75 95 99

Enc1 - Normalized time [0, 1] 0.45 0.66 0.74 0.81 0.91 0.97

Mix3 - Normalized time [0, 1] 0.31 0.6 0.72 0.8 0.92 0.98

LSTM - Normalized time [0, 1] 0.03 0.55 0.66 0.76 0.88 0.96
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7.2 Study 2 - Digitization of Raven’s Progressive
Matrices for Gaze Based Analysis using Virtual
Reality and Eye Tracking

This section will provide the combined results from Paper D-E and show how gaze data
from a psychological test can be visualized and analyzed. This is followed by an attempt
at classification with the goal of investigating whether it is possible to determine what
alternative a person selected based on where he/she was looking.

Paper D presented a way of gathering data in VR from a subset of Raven’s Standard
Progressive Matrices (SPM). The data was automatically processed and used to generate
a report that displays the test results with detailed information about the performance on
each item after the completion of the test. Table 7.4 shows an example of a test result
summary.

Table 7.4: A summary of test results for a participant.
Answer Correct Answer Is Correct Time [s]

Item 1 4 4 True 9.53
Item 2 5 5 True 5.15
Item 3 1 1 True 4.17
Item 4 2 2 True 2.22
Item 5 2 6 False 4.01
Item 6 5 1 False 2.85
Item 7 8 8 True 1.69
Item 8 2 3 False 1.61
Item 9 6 3 False 2.68
Item 10 2 4 False 1.98

The report also contains information about the eye gaze movements for each item, pre-
sented as a trajectory that shows the path that the gaze travelled and a heatmap that shows
the aggregated intensity of the gaze. An example of a trajectory can be seen in Figure 7.11
and the corresponding heatmap is presented in Figure 7.12.

The VR implementation was then extended in Paper E to include all 60 items in SPM
and additional tools for visualization and analysis were added.

Each item can be separated into two parts, the board where the pattern is presented and
the alternatives to chose from. This has been used to define areas of interest (AOIs), i.e.
areas that contain information valuable to the test participant. The board, with the pattern
to be completed, was divided into 9 zones in a 3x3 grid, Figure 7.13, due to the fact that
the later difficulties of SPM are structured this way. These 9 zones, labeled Z1-Z9, together
with the alternatives to choose from, T1-T6/8 (depending on difficulty level), where deemed
the AOIs and all other areas (non-AOIs) were labeled as Background. The fixation points
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Figure 7.11: A trajectory that shows the path where the user’s eye gaze was di-
rected during the test. The x-axis is flipped because of the room
placement in the VRE.

Figure 7.12: A heatmap that shows the intensity of the user’s eye gaze during the
test. The x-axis is flipped because of the room placement in the VRE.

52



7.2 Study 2 - Digitization of Raven’s Progressive Matrices for Gaze Based
Analysis using Virtual Reality and Eye Tracking

were projected onto the plane of the item in the VRE and were labeled according to within
which AOI-borders they lie.

Figure 7.13: A graphical illustration of the 9 zone allocations used together with
the item alternatives to define AOIs.

An analysis toolbox, summarized in Table 7.5, with a graphical interface was developed
for analysis and visualization of data. The toolbox consists of two different views; an item
view where a participant can be analyzed in detail on one specific item at a time and a
participant view where it is possible to view a participant’s test metrics for the entire test.
The item view consists of the following analysis tools: the trajectory that shows the path
that the gaze travelled and the heatmap that shows the aggregated intensity of the gaze
from Paper D, the fixation points plotted as an overlay to the item, the ability to change
how much of the trajectory that is shown at a time, a directed graph obtained using AOIs
(Figure 7.14), and a Gantt chart that shows the AOIs as time allocations across the span
of an item (Figure 7.15). The second view is the participant view where it is possible to
view a participant’s test metrics for the entire test, such as score per item, time spent per
item, and amount of fixations on the board vs the alternatives for each item (Figure 7.16).
Each of these metrics also provides a comparison to the population mean of the data set.
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Table 7.5: A summary of the analysis toolbox with explanations of the different
tools.

Tool Explanation

Trajectory An overlay to the item image that shows the path
that the gaze travelled during an item, obtained
using raw gaze data.

Heatmap An overlay to the item image that shows the ag-
gregated intensity of the gaze during an item, ob-
tained using raw gaze data.

Fixation overlay An overlay to the item image that shows all the
fixation points.

Fixation graph A directed graph that shows the cumulative time
spent fixating on AOIs and how the gaze was
moved between these.

Fixation time allocation A Gantt chart that shows how much time was
spent fixating on AOIs, at what time, and in what
order these were gazed upon.

Score per item A line chart that shows the score on each item,
including the maximum obtainable score, for the
participant and the population mean.

Time per item A line chart that shows the time spent on each
item for the participant and the population mean.

Fraction of fixation time on
the board

A line chart that shows how large percentage of
the total fixation time that was spent fixating on
the board.

The two tools, fixation graph and fixation time allocation, are new ways of visualizing
fixations that are particularly interesting because they are less visually complex than, e.g.
scanpaths, while at the same time providing a lot of the same information. The key differ-
ence is that they both use predefined AOIs to aggregate the fixations, thereby limiting the
number of nodes in the graph and rows in the Gantt chart to a fixed amount. This sacrifices
some level of detail, since it does not distinguish between different fixation locations on the
same AOI. However, this simplification makes it possible to more easily observe the spatial
and temporal order of the fixations for longer sequences of data. The directed graph in
Figure 7.14 presents an overview of the gaze fixations of a participant in the process of
deciding which alternative to choose when completing the pattern on the board. The graph
was calculated using each switch in AOI during an item. Note that the points labeled as

54



7.2 Study 2 - Digitization of Raven’s Progressive Matrices for Gaze Based
Analysis using Virtual Reality and Eye Tracking

Background were excluded from the graph to improve readability since they mostly occur
when the participants switch between AOIs as seen later in Figure 7.15. A larger node
means that it was visited more and the percentage within the node shows how large a
fraction of time was spent here. A small node without arrows means that the node was
not visited. The circles correspond to the zones of the board and the rectangles are the
alternatives. A transition between two nodes occurred in the direction of the arrow (edge)
and the thickness of the arrow shows how many times that edge was travelled. The green
node is the first visited node of the graph and the blue is the last one. Using Figure 7.14
as an example we can see that this particular individual on this specific item started out
by looking at alternative 5, then moved to Z8, followed by Z5, and so on, spending most of
his/her time on alternative 6. This way of visualizing data thus gives us a very clear and
concise overview of the result, however, the exact ordering of the events is sometimes lost
for graphs with more transitions.

The Gantt chart in Figure 7.15 shows the AOIs as time allocations across the time span
of an item, measured in number of ET samples. The duration of an allocation is determined
by the fixation duration for that particular fixation point. The ones that are just a sample
or two wide are more likely transitions between AOIs than actual fixations. Note that the
chart only displays the AOIs that were fixated upon at least once. This chart also has the
added benefit of being able to display the precise amount of time spent fixating on each
alternative, for each fixation, and the correct order of the fixations. Using Figure 7.15, the
same observations as in Figure 7.14 can be made, however, this time it becomes clear that
the time spent on alternative 6 is actually separated into three different segments.

These ways of visualizing a participant’s eye gaze makes it possible to analyze the be-
haviour during the entire duration of an item from the participant’s perspective, compared
to using a traditional pen-and-paper or a digitized version without ET that relies on exter-
nal observation and the final score. Monitoring eye gaze makes it possible to, for example,
investigate whether the correct alternative, to a wrongly answered item, was considered at
all, if it was discarded early, or if it was observed a lot even though it did not end up being
the final answer. This introduces more nuances to the analysis in an objective way since it
does not disturb the participant nor require any additional questions to be answered.
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Figure 7.14: A figure that shows a directed graph corresponding to the path of
AOIs travelled by the gaze during the test.
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Figure 7.15: A figure that shows the participant’s fixation time allocation on an
item with the number of ET samples as the x-axis.

57



Chapter 7 Human Intention Analysis

In the toolbox there are also graphs for visualizing data on group level. The fraction of
fixation time spent on the board versus the alternatives on each item for the population
mean is shown in Figure 7.16. The solid line is the average time values of the participant
and the dotted line is composed of two averages one from 1-19 and the other one from 20-60.
The plot shows that there is a lot of variation between items, however, it is clear that the
average participant suddenly spend a larger portion of their fixation time on the board from
item 20 and onward.

Figure 7.16: A figure that highlights the mean behaviour for the fraction of the
total fixation time that occurred on the board for each item. It also
shows the possible strategy shift that happens in B-VII.

Two interesting observations were made once the population mean (of the quite small
and homogeneous dataset) was plotted. First, there is a clear jump after item 19 indicating
that there is some change in how the average participant solves the items from this point
onwards. Secondly, the average time spent on each item can be seen in Figure 7.17. The solid
line shows the average time values plotted with a logarithmic y-axis. This highlights three
things: the first item takes an unexpectedly long time to solve, even though the participants
had time to “warm-up” on a few similar items, the trend of a steadily increased time per
item is even more pronounced, and finally, it is clear that the time drops significantly at the
start of every difficulty level (item 13, 25, 37, and 49) except from the first one. Observing
the results on a group level thus also shows interesting characteristics of the test itself.
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Figure 7.17: A figure that shows a saw-like pattern of the mean total time spent
on each item with a logarithmic y-axis. It highlights the varying and
increasing difficulty of the test.

An interesting question to investigate is whether artificial neural networks (ANNs) could
aid in providing even more insights into the decision-making processes and strategies that
precede the choices during a problem-solving task. A starting point could be to use ANNs to
be able to classify what alternative a participant selected as an answer to an item from the
SPM, based only on where he/she had been looking. A successful classification would prove
that the eye gaze contains the information that leads to a decision to select a particular
answer. This is the first step into investigating at what point in time a person selected an
answer and possibly what other alternatives that were considered.

The results from the kFCV show that the network is able to use eye gaze data to classify
what alternative a participant chose as an answer for an item with an accuracy of 47.81% ±
8.39. The different levels of difficulty for SPM (A-E) had slightly varying levels of accuracy:
A = 45.99%, B = 54.32%, C = 45.37%, D = 50.63%, and E = 42.63%. This shows that
level B was slightly easier to classify than the others and E slightly more difficult.

59





CHAPTER 8

Summary of included papers

This chapter provides a summary of the included papers.

8.1 Paper A
Julius Pettersson and Petter Falkman
Human Movement Direction Classification using Virtual Reality and Eye Tracking
Published in Procedia Manufacturing, Volume 51, (pp. 95-102), 2020.

Combining the areas of virtual reality, eye-tracking and machine learning can be one
way to increase the intelligence of collaborative robots. This could be broken down into
three stages, Stage One: Movement Direction Classification, Stage Two: Movement
Phase Classification, and Stage Three: Movement Intention Prediction, described in the
introduction. This paper gives a solution to the first stage and shows that it is possible to
collect eye gaze data and use that to classify a person’s movement direction. The results
clearly shows that it is possible to combine virtual reality and eye tracking into a platform
for testing and analysis of human behaviour, which can be beneficial in multiple areas
of research. It is also shown that the implementation of uncertainty estimation improves
the network and provides a way to improve the classification accuracy, at the cost of the
percentage of samples classified, to obtain a more confident network.

61



Chapter 8 Summary of included papers

8.2 Paper B
Julius Pettersson and Petter Falkman
Intended Human Arm Movement Direction Prediction using Eye Tracking
Re-submitted to: IJCIM International Journal of Computer Integrated Manufactur-
ing, 2022.

The goal of this paper was to provide a system for intended human arm movement pre-
diction and the two classification objectives, Primary - determine the discrete horizontal
direction corresponding to the box that was clicked and Secondary - distinguish between
whether the movement occurred on the upper or lower level of boxes. The best network
reached an accuracy of 70.70% for the primary objective, correctly classifies 67.89% of the
movements at least once, and an accuracy of 81.29% for the secondary objective. These
results might seem far from 100%, however, it is important to remember that human be-
haviour is complex and difficult to capture. It is, therefore, perhaps impossible to reach
100% and maybe not a requirement for intention prediction to provide value. Considering
that the system predicts upcoming movement directions, before the completion of these
events, solely based on eye gaze and without knowing the directions specifically only the
number of directions (10) it becomes easier to see the benefits of the system. A robot could
receive warnings regarding in which direction an operator is likely to move and adjust its
behaviour accordingly.

8.3 Paper C
Julius Pettersson and Petter Falkman
Comparison of LSTM, Transformers, and MLP-Mixer Neural Networks for Gaze
Based Human Intention Prediction
Accepted in: Frontiers in Neurorobotics, 2023.

This paper builds upon the work presented in Paper B where eye gaze and movement
data was gathered and used to train an LSTM network to perform gaze based arm move-
ment prediction. Using the same data, this paper has provided two additional solutions
to the classification objectives: Primary - determine the discrete horizontal direction cor-
responding to the box that was clicked and Secondary - distinguish between whether the
movement occurred on the upper or lower level of boxes. A comparison with respect to
accuracy for a given uncertainty threshold, time ahead of movement completion, and the
execution time of a single prediction using the three methods is also presented.

8.4 Paper D
Julius Pettersson, Anton Albo, Johan Eriksson, Patrik Larsson, Kerstin W. Falk-
man, and Petter Falkman
Cognitive Ability Evaluation using Virtual Reality and Eye Tracking
In 2018 IEEE International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (CIVEMSA), (pp. 1-6),
2018.
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8.5 Paper E

The aim of this paper was to implement a simplified version of Raven’s Progressive Ma-
trices in a virtual reality environment where the eye gaze data is saved and compiled to
a document that can be used by psychologists during a diagnostic process or in research.
The data has potential to indicate how the test persons reason while solving the different
problems and could be implemented as an extension of the psychologists current toolbox.
Furthermore, it has been found that test participants are less distracted by external dis-
turbances due to the virtual environment implementation. The virtual environment could
also be extended, as part of future work, to include external disturbances that could be ma-
nipulated by the test conductor in order to investigate how the different test participants
respond to different types of disturbances.

8.5 Paper E
Julius Pettersson, Kerstin W. Falkman, and Petter Falkman
Exploring the usability of Virtual Reality and Eye Tracking for Psychological Testing
using Raven’s Progressive Matrices
Submitted to: Frontiers in Psychology, 2023.

The paper provides a full implementation of Raven’s Standard Progressive Matrices in
VR with ET. It presents the execution of a pilot study and the data that was obtained.
Finally, the data was used to investigate what information can be extracted from monitoring
the gaze during the test and presents a toolbox with examples of possible ways to analyze
the data. The different tools incorporated in the toolbox show that it is possible to use
VR and ET to visualize data in a way that gives an immediate, clear, and concise overview
of the results on several levels, both for each individual participant and on a group level,
as well as for each item and for the test as a whole. It is also possible to compare these
individual results with the group mean. Visualizing a participant’s eye gaze using these
tools makes it possible to analyze the behaviour of a participant, from her/his perspective,
during the entire duration of an item, compared to using a traditional pen-and-paper or a
digitized version without ET that relies on external observation and the final score.
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CHAPTER 9

Concluding Remarks and Future Work

The ability to determine an upcoming action or what decision a human is about to take,
can be useful in multiple areas, for example during human-robot collaboration in manufac-
turing, where knowing the intent of the operator could provide the robot with important
information to help it navigate more safely. Another field that could benefit from a system
that provides information regarding human intentions is the field of psychological testing
where such a system could be used as a platform for new research or be one way to provide
information in the diagnostic process. The work that was presented in this thesis inves-
tigated the potential use of virtual reality as a safe, measurable environment suitable to
gather gaze and movement data, eye tracking as the non-invasive system input that gives
insight into the human mind, and deep machine learning as one tool to analyze the data.
The thesis defined an experimental procedure that can be used to construct a virtual real-
ity based testing system that gathers gaze and movement data, carry out a test study with
human participants, and implementation of artificial neural networks in order to analyze
human behaviour. This was followed by two studies that gave evidence to the decisions
that were made in the experimental procedure and demonstrated the potential use cases of
such a system.

It is possible that the VREs that are used in Study 1, Chapter 7, contain biases. For
example, the nature of the tasks that have been implemented guarantees that the participant
has to direct the gaze towards interesting areas to complete most of the movements. The
randomness that is present in Paper A-C is also inhibiting a learning process that could
potentially move participants from using the foveal vision to utilizing more of the periphery
as, for example, the stationary placement of parts in a picking station is learnable. The
goal with the simplicity of the tasks was, however, to enable a discussion regarding the
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performance of the different systems and the behaviour of the participants.
In Chapter 4, the concept of fixations and how these can be calculated was explained.

From experimental results these showed little to no performance gain in Study 1. However,
this should be investigated further since the lack of importance might either be due to
that the network learns to calculate these on its own or that the tasks that was used are
not complex enough to make the fixations provide any additional information to solve the
objective. Finding, for example, a box that has been lit may mostly rely on peripheral
vision, which excels at detecting changes in brightness whereas a more complex search task
would probably rely more on using foveal vision to distinguish between objects or patterns.
One other important aspect to consider is that a system based on eye gaze will always have
limited abilities to analyze decisions made from peripheral vision since the ET hardware is
only capable of measuring the direction of the foveal vision.

The eye tracker used in the presented studies collects data at 120 Hz, which means that it
should capture most eye movements, including the faster saccades that typically range from
10-100 ms in duration. A faster tracker, up to maybe 200 Hz, could give some additional
information regarding the fastest eye movements. However, it is not certain that it will
improve the results of the intention prediction as it will also give more data samples that
are similar to each other for the slower movements, i.e. there will be a trade-off between
new information and overflow of data, and this problem is likely becoming more prominent
for even faster tracking systems. A slower tracker would deal with the issue of too much
data, however, due to the nature of the eye and the rapid movements, saccades, the lower
limit to capture the majority of eye movements is probably around or slightly above 1

10 ms ,
i.e. about 120 Hz.

RQ1: Is it possible to analyze and predict human intention through the study of eye gaze?

It was shown in Paper B that it is possible to predict the intended arm movement
direction the reaches an accuracy of 70.7%, for predictions with high certainty, on a
continuous stream of eye gaze data. These results were further improved in Paper C
where the best ANN network achieved an accuracy of 82.74%, for predictions with
high certainty, on continuously incoming data and correctly classifies 80.06% of the
movements at least once. The movements are, in 99% of the cases, correctly predicted
the first time, before the hand reaches the target and more than 19% ahead of
movement completion in 75% of the cases, which corresponds to about 239 ms for
the median movement duration of the task.

RQ2: Is DML a suitable tool to analyze the connection between eye gaze and intention in
humans?

In Paper A and Paper E, it is shown that DML can be used to identify behavioural
patterns in eye gaze data for classification of movements and answers to psychological
tests respectively. However, the complexity of the objective in Paper B-C, continu-
ously predict the discrete horizontal direction that a human is about to/is moving, is
what really shows the capabilities of DML. Paper B-C also demonstrates that there
are multiple ways of reaching the same goal using different network architectures.
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RQ3: How can a VRE-test be designed to gather the necessary eye gaze and movement
data to be used for human intention analysis?

Paper D showed that it is possible to use VR to gather eye gaze and movement
data from humans performing the task of solving a logical pattern. This formed the
basis for Paper A-C, where this concept is transferred from logical patterns to tasks
involving reaching for specific objects in the VRE and the data is successfully used
to first classify and then predict human intention. Finally, in Paper E it is shown
that gaze data from a psychological test, obtained using VR, can be used to classify
what answer a participant selected.

9.1 Future Work
The test studies described in Chapter 7 are somewhat limited in the way the data has
been collected. In order to fully ensure that the methodology works on a more generalized
scale one should redo these tests, or similar tests, with groups that are larger and where
the participants have been selected by people that are experts in creating diversified test
groups.

The VREs used to achieve the results in Paper A-C contains simplified tasks that are
similar to the ones present in, for example, a pick-and-place station in a manufacturing
environment. In order to further evaluate the described procedure and the results from
Paper B-C, the implementation of a VRE with more complex tasks would be of interest.
This could include an assembly station were the operator collaborates with a virtual robot
with an external control system that receives the predicted intentions and makes the robot
adapt accordingly.

A natural extension to the suggestion above, if the results are determined successful,
would be to implement the system in a real world application, preferably similar to the
industrial application that is used for the step above. This would include using safety
glasses with built-in ET instead of a VR-headset and the evaluation of the validity of using
such a system in a real-time environment.

Another topic to explore would be to use the full version of RPM from Paper E to gather
data in a study formed by researchers in the field of psychology, and together with them
determine a few interesting objectives that may be solved using the procedure described in
this thesis, for example to implement the functionality from Paper B to perform analysis
on continuous data and use that to determine when the participant decided on what to
answer.
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