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Abstract
Battery lifetime prediction using early degradation data is crucial for optimiz-
ing the lifecycle management of batteries from cradle to grave, one example is
the management of an increasing number of batteries at the end of their first
lives at lower economic and technical risk.
In this thesis, we first introduce quantile regression forests (QRF) model to

provide both cycle life point prediction and range prediction with uncertainty
quantified as the width of the prediction interval. Then two model-agnostic
methods are employed to interpret the learned QRF model. Additionally,
a machine learning pipeline is proposed to produce the best model among
commonly-used machine learning models reported in the battery literature
for battery cycle life early prediction. The experimental results illustrate that
the QRF model provides the best range prediction performance using a rela-
tively small lab dataset, thanks to its advantage of not assuming any specific
distribution of cycle life. Moreover, the two most important input features are
identified and their quantitative effect on predicted cycle life is investigated.
Furthermore, a generalized capacity knee identification algorithm is developed
to identify capacity knee and capacity knee-onset on the capacity fade curve.
The proposed knee identification algorithm successfully identifies both the
knee and knee-onset on synthetic degradation data as well as experimental
degradation data of two chemistry types.
In summary, the learned QRF model can facilitate decision-making under

uncertainty by providing more information about cycle life prediction than sin-
gle point prediction alone, for example, selecting a high-cycle-life fast-charging
protocol. The two model-agnostic interpretation methods can be easily ap-
plied to other data-driven methods with the aim of identifying important
features and revealing the battery degradation process. Lastly, the proposed
capacity knee identification algorithm can contribute to a successful second-
life battery market from multiple aspects.

Keywords: Lithium-ion battery, lifetime early prediction, uncertainty quan-
tification, interpretable machine learning, capacity knee.
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CHAPTER 1

Introduction

1.1 Motivation

For the purpose of further improving the energy efficiency of road transporta-
tion, reducing reliance on fossil fuels, and mitigating carbon emission, the
commercialization of xEVs, i.e., all types of battery electric vehicles (BEVs),
hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs),
continues accelerating in the global market despite the economic repercussions
of the pandemic [1]. Lithium-ion batteries have been the most widely used
as the power source in xEVs and stationary energy storage systems, thanks
to their key characteristics, such as high power and energy density, rapid re-
sponse, and long lifetime [2]. However, as a result of complex interactions of
underlying physical and chemical degradation mechanisms, their performance
(e.g., available energy and available power) degrades over their service lives [3].
In some particular cases, an occurrence of sudden acceleration of capacity fade
(called capacity knee) can result in accelerated performance degradation and
even safety issues [4]. Therefore, understanding battery degradation processes,
and providing lifetime prediction using early degradation data would enable
many new possibilities throughout the battery life cycle. Four examples of
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Chapter 1 Introduction

such possibilities are rapid validation of new cell manufacturing processes and
formation processes [5], early battery replacement planning [6], early battery
repurposing planning [7], selection of high-cycle-life fast-charging protocol [8].
However, it is challenging to provide accurate battery lifetime prediction

with only limited early degradation data. The main reason is that the degra-
dation process of lithium-ion batteries is highly nonlinear with possibly little
capacity fading at early cycles, under the impact of battery design (e.g., bat-
tery chemistry and battery geometry), battery manufacturing processes, and
operating conditions in applications [5]. The significance and complexity of
battery lifetime prediction using early degradation data have made itself an
intensive research problem [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19].
The battery lifetime prediction methods can be roughly divided into three

categories, i.e., model-based methods, data-driven methods, and hybrid meth-
ods. Model-based methods typically start with developing a mathematical
model (e.g., a physics-based, a semi-empirical, or an empirical model) that
captures the battery degradation process, which is then incorporated into a
recursive Bayesian filter framework, such as a particle filter [9] [10] [11]. More
specifically, the battery model parameters are selected as a state vector be-
ing recursively updated with measured capacity data. The future capacity is
then predicted and the battery lifetime is obtained when the predicted future
capacity reaches a predefined end-of-life (EoL) threshold. Although battery
lifetime prediction performance using model-based methods has been success-
fully demonstrated in the aforementioned studies, the methods still struggle to
predict battery lifetime with high accuracy at an early stage, not only because
of the limited data available in early life, but also because of the two-stage
degradation process separated by the knee.
Instead of developing an explicit mathematical model to capture the battery

degradation process in the first place, data-driven methods that are used in
some studies directly learn a mapping function from input features extracted
from battery early degradation data to the battery lifetime, given a training
set of input-output pairs [12] [13] [14]. While in some other studies that also
employ data-driven methods [15] [16], the degradation process is firstly divided
into a fixed number of time windows, and then a mapping function is learned
from input features extracted from time windows to corresponding capacity
changes so that the whole future capacity fade trajectory can be forecasted.
The battery lifetime is then obtained when the forecasted future capacity
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1.1 Motivation

reaches a predefined EoL threshold. Additionally, the uncertainty associated
with battery lifetime prediction is quantified as the width of a confidence
interval in some of the aforementioned studies, with a Gaussian distribution
of battery lifetime assumed. However, the Gaussian distribution assumption
of battery lifetime does not necessarily hold in practice [12].
The objective of hybrid methods is to leverage the strengths of several dif-

ferent models to provide superior lifetime prediction performance. Typically
with the hybrid data-driven and model-based approach, a degradation model
is incorporated into a recursive Bayesian filter framework (e.g., particle filter
[17] [18], Kalman filter [19]), in which the data-driven model can be used for
estimating the internal states of the battery from measurements [17], predict-
ing the future measurements [17] [19] and as a replacement of a degradation
model [18] in the model-based prediction case. The hybrid data-driven and
model-based approach may potentially provide better prediction performance
but is challenging to use in online applications due to its high computational
effort.
Although advanced data-driven methods provide superior lifetime predic-

tion performance, with possibly quantified uncertainty, in spite of minimum
knowledge of underlying battery degradation mechanisms, the interpretabil-
ity of learned data-driven models that are used for battery lifetime prediction
is still under-explored in the existing literature. It could, though, facilitate
degradation diagnostics and prognostics, and discoveries of new degradation
mechanisms and their resulting pathways. Similarly, a generalized battery
capacity knee identification method that leverages battery degradation prior
knowledge to improve knee identification performance remains underdevel-
oped.
This thesis work aims to narrow the gaps indicated above by addressing the

following research problems:

• battery lifetime prediction using early degradation data.

• battery capacity knee identification.
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Chapter 1 Introduction

1.2 Thesis Contributions
This thesis is based on three papers and major contributions are summarized
as follows:

• With the advantage of not assuming any specific distribution of cycle
life, a quantile regression forests (QRF) model is introduced to provide
cycle life range prediction with uncertainty quantified as the width of the
prediction interval, in addition to point predictions with high accuracy.
The learned QRF model is later used in an example application for
selecting the high-cycle-life fast-charging protocol (see Paper A).

• To interpret the learned QRF model for cycle life prediction, two model-
agnostic interpretation techniques are employed to first rank individual
feature importance and then quantitatively show the marginal effect
each feature has on the predicted battery cycle life. The rationalization
of the underlying battery degradation process agrees with what has been
revealed by these two interpretation techniques (see Paper A).

• To make model selection easier prior to online deployment, a machine
learning pipeline is proposed for automating the process of producing
the best model among commonly-used machine learning models for both
battery cycle life point prediction and range prediction. Simulation re-
sults show that quantile regression models are not only capable of pro-
viding cycle life point prediction with high accuracy but also cycle life
range prediction with high reliability (see Paper B).

• As the concept of the capacity knee is largely related to the degradation
rate of the capacity fade, we first use approximated curvature to mea-
sure the rate of change of degradation rate in discrete time, and then
formulate the knee identification problem as an unsupervised time se-
ries segmentation problem given an assumption of three discrete states
in the whole degradation process. By adopting the regime extracting al-
gorithm, the locations of the state changes are found as the knee-onset
and the knee itself on the capacity fade curve, respectively (See Paper
C).

6



1.3 Thesis Outline

1.3 Thesis Outline
This thesis is divided into two parts, Part I provides motivation, an intro-
duction, methodology, and conclusions; Part II includes papers on which this
thesis is built. To be more specific about Part I,

• Chapter 1 motivates research problems that this thesis is addressing and
provides background information;

• Chapter 2 reviews rechargeable lithium-ion automotive batteries;

• Chapter 3 reviews existing battery cell degradation diagnostics methods,
capacity knee identification methods, and lifetime prediction methods;

• Chapter 4 provides a summary of papers on which this thesis is built;

• Chapter 5 concludes this thesis and recommends future work.
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CHAPTER 2

Lithium-ion Batteries

Various types of rechargeable batteries have been used in electric vehicles
(EVs). For example, lead-acid batteries are commonly used for starting, light-
ing, and ignition applications, nickel-metal hydride batteries have been used
as the primary energy storage choice for hybrid electric vehicles (HEVs). To-
day lithium-ion batteries are the exclusive energy sources for the propulsion of
plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs)
[20].
Lithium-ion batteries have been widely used in different types of EVs,

thanks to their outstanding characteristics, such as high energy and power
density, high Coulombic efficiency (99%) and energy efficiency (up to 95%),
as well as a wide range of different power to energy ratios [2]. In this chapter,
only lithium-ion batteries used in different types of EVs will be discussed.

2.1 Battery Cell Materials
The lithium-ion battery cell consists of four major components [21]:

• The anode (or negative electrode): the reducing electrode that releases
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Chapter 2 Lithium-ion Batteries

electrons to the external circuit and undergoes oxidation during the
electrochemical reaction (discharge).

• The cathode (or positive electrode): the oxidizing electrode that accepts
electrons from the external circuit and undergoes reduction during the
electrochemical reaction (discharge).

• The electrolyte: the ionic conductor that provides the medium for the
transfer of ions between the negative and positive electrode inside the
cell.

• The separator: a porous membrane that is placed between the negative
and positive electrode to prevent short circuits.

The electrochemical reaction of a cell during discharge is also illustrated in
Fig. 2.1.

Load

Electron flow

Anode CathodeSeparator

Electrolyte
Li+

Figure 2.1: Electrochemical reaction of a cell during discharge [21].

Anode Materials
Currently, state-of-the-art negative electrode materials used in lithium-ion
batteries are synthetic and artificial graphites, natural graphites, and amor-
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2.1 Battery Cell Materials

phous carbons [22]. Synthetic and artificial graphites are the most commonly
used negative electrode materials in EVs due to their high levels of purity and
consistent quality [2]. A small amount of silicon is also added to the anode in
some commercial cells in order to increase cell energy further [22]. Lithium
titanate is used in some commercial cells, which makes these cells more suit-
able for power applications, such as in electric buses [22]. Lastly, lithium
metal is considered as an ideal anode material for applications, especially in
all-solid-state batteries that utilize ceramic or polymetric electrolytes [2].

Cathode Materials
The cathode has been a bottleneck in terms of specific capacity since the
commercialization of lithium-ion batteries. The most widely used positive
electrode materials in EVs are lithium nickel manganese cobalt oxide (NMC),
lithiummanganese oxide (LMO), lithium nickel cobalt aluminum oxide (NCA),
and lithium iron phosphate (LFP) [2]. Fig. 2.2 illustrates the energy density
versus the specific energy of different cell chemistries at the positive electrode.
Generally, a higher amount of Ni content implies a higher capacity. Therefore,
a commonly employed strategy to maximize the energy content of NMC cath-
odes is to maximize the Ni content [23]. With outstanding rate capability at
an affordable price, LMO is often blended with Ni-rich layered cathodes with
the aim of increasing power density and safety [2]. While reducing the LMO
content in cathode material blends will improve energy density further [2].
Currently, the state-of-the-art cathode materials are NCA which has the ad-
vantage of capacity retention, along with NMC-532 and NMC-622 [2]. Despite
the relatively low volumetric capacity of LFP, its robustness offers a promising
prospect in heavy-duty vehicle applications like buses and trucks, where its
extended cycle life and excellent rate capability become advantageous [2].

Electrolytes
Commercial lithium-ion batteries generally contain electrolytes that are based
on lithium hexafluorophosphate (LiPF6) as conducting salt [24]. This con-
ducting salt is dissolved in mixtures of cyclic and linear organic carbonate
solvents which typically consist of ethylene carbonate (EC), dimethyl carbon-
ate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and
propylene carbonate (PC) [25]. In carbonate-based electrolytes, the primary
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Figure 2.2: Energy density versus specific energy of different cell chemistries at the
positive electrode [2].

cost driver is LiPF6 whose price depends on the purity and composition [2].

Separators
When employing a liquid organic electrolyte in a lithium-ion battery cell, it is
essential to place a porous membrane as a separator between the positive and
negative electrode to avoid any electrical short circuits [26]. Currently, there
are four main types of separators that are available, which vary in terms of
chemistry and production process, i.e., microporous membranes, non-woven
mats, ceramic-coated separators, and solid inorganic, polymeric or hybrid
electrolytes [26]. The solid electrolytes that function as both a separator and
an electrolyte are considered safer than the conventional setup of a separator
and a liquid organic electrolyte [27]. Therefore, solid electrolytes are gaining
more and more attention. However, major challenges such as high production
costs remain to be overcome by technology breakthroughs [27].

2.2 Battery Cell Characterization Tests
The continuous advances in lithium-ion cell technology (e.g., new electrode
material, cell design, and manufacture) motivate the need for non-invasive
cell characterization tests in the lab, in which three parameters are typically
measured, i.e., capacity, internal resistance/impedance, and open circuit volt-
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2.2 Battery Cell Characterization Tests

age (OCV) [28]. These tests can be used for both characterizing initial cell
performance and cell-to-cell variations, and tracking the evolution of cell per-
formance (i.e., cell degradation) through reference performance tests (RPTs)
[29]. Notably, there are different ways of conducting characterization tests,
and consequently, capacity, resistance, and OCV measurements may vary from
one to another depending on the specific experimental setup.

Capacity Tests
Depending on ambient temperature and charge-discharge C-rate, the mea-
sured capacity of the same cell can be different, which captures different degra-
dation information. Note that C-rate is defined as the current value which
discharges a battery from a fully charged state to a fully discharge state in
one hour [28]. Lower C-rates (≤ C/10) provide thermodynamic information
through loss of lithium inventory (LLI) and loss of active material (LAM),
which enables incremental capacity analysis (ICA) [30] and differential volt-
age analysis (DVA) [31]. Higher C-rates (≥ C/10) provide a combination of
both thermodynamic information and kinetic information through impedance
growth.
The experimental data obtained from constant-current capacity tests can

be used for two purposes, i.e., modeling the battery degradation process us-
ing physics-based models, (semi-)empirical models, or machine learning mod-
els; understanding the causal relationship between battery usage profile (e.g.,
static cycling aging, dynamic cycling aging, storage aging) and capacity fade.

Internal Resistance/Impedance Tests
Intrinsically, the power capability of a battery cell is associated with its
impedance characteristics. The impedance of a cell determines the voltage
response to a given current load, characterized by its amplitude, frequency,
and time duration [28]. The resistive part (i.e., the real part of the complex
impedance) directly contributes to the dissipative heat generation of a cell,
and the resulting cell temperature increase while in use [32]. Moreover, the
resistive part consists of pure ohmic resistance, charge transfer resistance, and
entropy change [28]. Therefore, the cooling system design mainly depends on
the resistive values of cell impedance.
Two well-established cell impedance measurement techniques are introduced
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here.

Pulse Power Tests

The pulse power tests were initially proposed by the United States Advanced
Battery Consortium (USABC) [33], and are also known as hybrid pulse power
characterization (HPPC). The tests measure the voltage response to a square-
wave current load that is applied to a cell. The resistance is then obtained
as the ratio of the measured voltage response to the applied current, which
consists of three parts, i.e., ohmic resistance, charge transfer resistance, and
polarization resistance [28]. The experimental data obtained from pulse power
tests can be utilized to parameterize equivalent circuit models (ECMs) that are
used to estimate the state of power (SoP) [34], and state of charge (SoC) of a
cell [35]. Moreover, pulse power tests have also been employed to parameterize
cell electro-thermal models [36], and characterize cell degradation through
resistance rise [37].

Electrochemical Impedance Spectroscopy Tests

Electrochemical impedance spectroscopy (EIS) tests were introduced to inves-
tigate the electrochemical behavior of a cell over a wide range of frequencies
[28]. In EIS tests, a small amplitude sinusoidal potential as input stimulus
is applied to an electrochemical cell. As a result, the current response in a
linear or pseudo-linear system is a sinusoid with the same frequency but with
a different amplitude and a phase shift relative to the input. The current
response and the input voltage are then used to calculate the impedance of
the cell in the frequency domain. The impedance spectrum of a cell is typ-
ically represented by a Nyquist plot that consists of the real and imaginary
parts of the impedance. The experimental data obtained from EIS tests can
be used to characterize the electrochemical dynamics of a cell [38], estimate
cell temperature [39], parameterize ECMs [40], and identify cell degradation
mechanisms [41] [42].

OCV Tests
OCV tests measure the equilibrium voltage of a cell as a function of the SoC.
At the cell level, the OCV curve is defined by OCV curves of two electrodes,
the loading ratio between two electrodes, and an SoC offset between two
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electrodes [43], while at the electrode level, the OCV curve is defined as the
potential difference between the electrode and the reference [44]. An example
of the impact of changes of loading ratio and SoC offset on capacity loss is
given in Ref. [28].
To understand the OCV curves, the definition of SoC is of equal importance.

However, the definition of SoC in the literature varies from one to another.
There are mainly four different SoC definitions in the literature, which are
listed as follows:

• USABC definition: The ratio of the Ampere hours remaining in a cell
at a given rate to the rated capacity under the same specified conditions
[33].

• Thermodynamic definition: The ratio of the remaining intercalation
sites for lithium ions to the total number of available intercalation sites
[45].

• Low-rate definition: The ratio of the remaining exchangeable lithium
ions to the maximum number of exchangeable lithium ions at a low rate
(e.g., C/25) for a given potential window. [46].

The low-rate definition is generally applicable to half cells, full cells, and
battery packs.
Two commonly used OCV measurement techniques are introduced here.

Galvanostatic Intermittent Titration Technique

One test procedure is proposed by USABC, i.e., after resting for one hour,
the cell is discharged at 10% SoC increments and the voltage is recorded [47].
More accurate measurements of OCV can be achieved by reducing the SoC
increments to less than 10% and increasing rest periods to longer than one
hour [28]. However, to avoid prohibitively long test time, there is a trade-
off between the accuracy of OCV measurements and the cost of longer rest
periods and shorter SoC increments. The OCV curves obtained from GITT
tests can be used to characterize cell performance (e.g., rate capabilities of
a cell [48]), study OCV hysteresis of different chemistries [49], parameterize
OCV models [44] and ECMs [50], and identify degradation mechanisms [51].
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Pseudo-OCV Tests

Depending on the required accuracy of OCV measurements, the long test
time of a GITT test may hinder its wide adoption in battery studies. In this
regard, pseudo-OCV provides an alternative solution to obtain OCV curves
with significantly less time, i.e., cycling a cell at a low charge and discharge
rate (typically ≤ C/25) and then averaging the charge and discharge curve
in order to address the cell hysteresis issue [30] [52]. The reason for the low
current rate is to reduce the kinetic effects, electrode polarization, and heat
generation due to ohmic resistance. The OCV curves obtained from pseudo-
OCV tests can be used to identify and quantify degradation modes after taking
their derivatives (e.g., incremental capacity analysis [30], differential voltage
analysis [31]), improve model-based voltage estimation accuracy by including
hysteresis effects [53], and estimate SoC [54].

2.3 Battery Cell Degradation Mechanisms and
Modes

As a result of an intricate interplay of various physical and chemical degra-
dation mechanisms, the performance of lithium-ion battery cells degrades, for
example, cell capacity fade and cell resistance/impedance rise. Inside the
cell, degradation mechanisms occur at different components, i.e., the anode,
the cathode, the electrolyte, the separator, and the current collectors [55] [3].
However, considering the influence of the electrolyte and its own degradation
mainly occurs in interaction with the electrodes, the degradation mechanisms
of the cell are therefore discussed at the anode and cathode separately.

Degradation Mechanisms at the Anode
Graphite, an allotrope of carbon, is the primary material used for anodes
in lithium-ion battery cells (see Subsection 2.1). As a result, degradation
mechanisms at the graphite anode have been better studied than those at
the cathode in the literature. However, it is generally difficult to generalize
those degradation mechanisms that have been reported in the literature as
each lithium-ion battery cell has its own cell design (e.g., chemistry and ge-
ometry) [43] and manufacture [56], which intrinsically has an impact on the
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cell degradation. Moreover, most of the literature focuses on the whole cells
without investigating the anode and cathode respectively. Therefore, only the
dominant degradation mechanisms at the anode are listed as follows [55]:

• solid electrolyte interphase (SEI) growth;

• SEI decomposition;

• electrolyte decomposition;

• binder decomposition;

• graphite exfoliation;

• lithium plating/dendrite formation;

• loss of electric contact;

• electrode particle cracking;

• corrosion of current collector.

Degradation Mechanisms at the Cathode
Similarly, cathode materials (see Subsection 2.1) have a significant impact on
the performance of lithium-ion battery cells. In the literature, lithium man-
ganese oxides with spinel structure and lithium nickel cobalt mixed oxides with
layered structures have been intensively studied. The dominant degradation
mechanisms at the cathode of these materials are listed as follows [55]:

• electrolyte decomposition;

• binder decomposition;

• loss of electric contact;

• corrosion of current collector;

• structural disorder;

• electrode particle cracking;

• transition metal dissolution/dendrite formation.

17



Chapter 2 Lithium-ion Batteries

The aforementioned dominant degradation mechanisms that occur at the
anode or the cathode are illustrated in Fig. 2.3. Moreover, these degradation
mechanisms are clustered into three degradation modes, which have unique
and measurable effects on the OCV of lithium-ion cells and electrodes [3]. The
three degradation modes are as follows:

• loss of lithium inventory;

• loss of active material of the negative electrode (LAMNE);

• loss of active material of the positive electrode (LAMPE).
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Figure 2.3: Cause and effect of dominant degradation mechanisms and their asso-
ciated degradation modes [3] [55] [43].
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Methods

In this chapter, battery cell degradation diagnosis methods, capacity knee
identification methods, and lifetime prediction methods are reviewed.

3.1 Battery Cell Degradation Diagnostics
The goal of battery cell degradation diagnostics is to identify and quantify
degradation modes in a lithium-ion battery cell. Currently, diagnostic meth-
ods can be divided into three categories, i.e., post-mortem analysis, model-
based analysis, and curve-based analysis [57].

Post-mortem Analysis
Post-mortem analysis involves safely disassembling aged battery cells in a
well-controlled clean environment and then carefully examining each of their
components through material analysis, in order to identify and then quantify
dominant degradation mechanisms [58] [59] [60]. According to the physico-
chemical aspect, the post-mortem analysis can be further divided into three
subcategories,
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Morphology Analysis

The morphology analysis is to examine the morphology of the electrode sur-
face. Depending on different resolution requirements, optical microscopy [61],
scanning electron microscopy [62], and transmission electron microscopy [63]
are commonly used in morphology analysis.

Composition Analysis

The composition analysis is to examine the element composition of active
materials and their concentration distribution on the electrode surface and at
different depths. Techniques such as energy dispersive X-ray spectroscopy [59],
X-ray photoelectron spectroscopy [64], inductively coupled plasma- atomic
emission spectroscopy [65] have been reported to be used in the composition
analysis.

Structure Analysis

The structure analysis is to examine the crystal structure on the surface, for
which X-ray diffraction is commonly used [63].

Model-based Analysis
The model-based diagnostic methods mainly involve electrochemical models
derived from first principles using porous electrode theory (e.g., the Doyle-
Fuller-Newman (DFN) model [66]) and equivalent circuit models [67].

Electrochemical Models

Some of the electrochemical model parameters are important health indica-
tors, which are closely related to the degradation of lithium-ion battery cells
[68]. Therefore, identifying these aging parameters in electrochemical mod-
els and then correlating them with underlying degradation mechanisms and
modes would facilitate battery degradation diagnosis. Some aging parameters
in electrochemical models that have been identified in the literature are the
volume fraction of active material at the anode [69], SEI resistance [69], the
resistance of deposit layer [69], the diffusion coefficient of electrolyte [69], the
diffusion coefficient of the solid phase [68], the electrochemical reaction rate
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constant [68], the cathode particle surface area [70], stoichiometry limits [70],
and porosities of the cathode, separator, and anode [70].

Equivalent Circuit Models

The experimental data obtained from electrochemical impedance spectroscopy
(EIS) tests contains rich information about cell degradation caused by internal
resistance/impedance (see Subsubsection 2.2) and can therefore be used to
identify cell degradation mechanisms [41] [42].
Typically, the impedance spectrum of a cell is represented by a Nyquist

plot, which is often modeled by an equivalent circuit model (ECM). As a
commonly-used model, the adapted Randles-equivalent circuit model (AR-
ECM) is illustrated in Fig. 3.1, in which changes of four resistances (ohmic
Rohm, SEI RSEI, charge-transfer Rct, and Warburg Rw) are tracked to identify
and quantify degradation mechanisms, i.e., ohmic resistance increase (ORI),
loss of lithium inventory (LLI), and loss of active material (LAM) [41].
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Figure 3.1: Using EIS impedance spectrum and ECM to identify degradation
mechanisms [41].
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Curve-based Analysis

As it is illustrated in Fig. 3.2, most physics-based models generally capture
the most dominant degradation mechanisms at the micro-scale [71] or even
nano-scale [72]. However, previous studies have illustrated that meso-scale and
macro-scale inhomogeneities in the structure of the electrodes caused by cell
manufacture can have a significant impact on safety (e.g., thermal runaway
[73]) and cell degradation in the long term (e.g., capacity knee occurrence
[56]), which may not be captured by bottom-up physics-based models.
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Figure 3.2: Mechanical properties of lithium-ion batteries at different length scales
[74].

Curve-based analysis methods that utilize measurements from cell charac-
terization tests (see Section 2.2) provide an alternative solution to cell degra-
dation diagnosis. Examples of utilizing different measurements from cell char-
acterization tests are:

• EIS impedance spectrum [42];

• discharge voltage curve [12];

• pseudo open circuit voltage (OCV) [3];

• derivatives of OCV or cell capacity, such as incremental capacity analysis
(ICA) [30] and differential voltage analysis (DVA) [31].
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3.2 Capacity Knee Identification Methods
As a result of a complex interplay of various physical and chemical degrada-
tion mechanisms (see Section 2.3), the performance of lithium-ion battery cells
degrades over their lives, for example, capacity fade and resistance/impedance
rise. In some cases, sudden acceleration of capacity fade (so-called capacity
knee) is observed to occur, which results in accelerated performance degra-
dation and even safety issues of a cell [4]. Therefore, avoiding or at least
delaying the occurrence of the knee is essential to guarantee a long battery
lifetime within safety constraints.
The IEEE Standard 485TM-2020 defines the capacity knee as the transition

when "the capacity slowly declines throughout most of the battery’s life, but
begins to decrease rapidly in the latter stages" [75]. However, this definition
only qualitatively describes what a capacity knee is, and therefore, is not
applicable to knee identification. A mathematical definition of curvature is
provided in Ref. [76], in which the knee is defined as the point of maximum
curvature where a continuous function deviates the most from a straight line.
For a continuous function f , the curvature κ(x) of f at any point, is defined
as

κ(x) = f ′′(x)
(1 + f ′(x)2)1.5 . (3.1)

The curvature ((3.1)) at a point x can be either positive, negative, or 0,
depending on the second derivative of the function f .

Although a knee can be mathematically well defined for continuous func-
tions, it is challenging to identify the knee using Eqn (3.1) in practice. The
reasons are as follows:

• Realistic battery capacity data is obtained as discrete data, either from
direct measurements in the lab (see Subsection 2.2) or from real-time es-
timations in the field. Moreover, battery capacity data that is estimated
in the field is also expected to be noisy due to highly varying battery
usage profiles and fluctuating environmental conditions, and sometimes
unevenly sampled if capacity data is only obtained from periodic diag-
nostic cycles [77].

• The curvature calculation using Eqn (3.1) requires both the first and
second derivatives. Numerical differentiation amplifies the noise in the
capacity data, which is especially problematic in the field where capacity
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data may be noisier than in the lab. Interpolating or extrapolating
capacity data due to uneven sampling may introduce additional errors
that are subsequently amplified by numerical differentiation as well.

Therefore, it is not possible to identify the knee as the point of maximum
curvature using Eqn (3.1) in practice.
To date, only few studies in the battery literature have attempted to iden-

tify the knee on the capacity fade curve, both in offline scenarios [76] [78] [79]
[16], and online scenarios [76] [80]. In offline scenarios, the knee is identified
given the complete capacity fade data of a cell with knee occurrence; while
in online scenarios, the knee has to be identified on the fly whenever new
capacity fade data is available during battery usage. A curvature-inspired
algorithm is proposed in Ref. [76] for both online and offline knee identifica-
tion, which is applicable to a wide range of systems including battery capacity
knee identification. In Ref. [78], an empirical model that characterizes the
capacity fade curve with consideration of knee point occurrence is first pro-
posed. After fitting the empirical model with experimental data, the knee is
identified offline as the intersection of two tangent lines at two points, i.e.,
the points with minimum and maximum absolute slope, respectively. In Ref.
[80], a strip-shaped safety zone is first learned from experimental data (the
height of IC curve versus cycle number), and the knee can be identified online
as the last cycle of four consecutive cycles beyond the safety zone using the
quantile regression method. In a more recent work [79], by directly fitting the
Bacon and Watts model [81] to the complete capacity fade data, the knee is
identified offline as the intersection of two straight lines. Finally, in Ref. [16]
the capacity fade gradients at the early and late life are first fitted using linear
regression, and their angle bisector is then calculated. The knee is identified
offline as the intersection of their angle bisector and the complete capacity
fade curve.

3.3 Lifetime Prediction Methods
Historically, battery lifetime prediction has been restricted to using relatively
small lab data under well-controlled operating conditions. This section first
reviews lifetime prediction methods using lab data and then discusses the chal-
lenges of lifetime prediction methods using field data, and potential second-life
applications.
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Lifetime Prediction Methods Using Lab Data

In the context of an electric vehicle, the reduction of cell capacity can be trans-
lated into the reduction of maximum driving distance, while the impedance
characteristics of a cell have a direct impact on the power capability. There-
fore, cell capacity and cell resistance are commonly used for defining the state-
of-health (SoH) of a lithium-ion cell. In this thesis, cell capacity as the primary
SoH metric is investigated.
The battery degradation models in lifetime prediction methods using lab

data can be roughly divided into four categories, i.e., physics-based models,
semi-empirical models, empirical models, and machine learning models.

Physics-based Models

Broadly defined, physics-based models include electrochemical models derived
from first principles using porous electrode theory (e.g., the Doyle-Fuller-
Newman (DFN) model [66], single particle model (SPM) [82]), and equivalent
circuit models (ECMs) [67].
The electrochemical models may be coupled with multiple mechanical or

chemical degradation models that capture underlying degradation mecha-
nisms, such as the SEI growth model [83] [84], lithium plating model [83]
[85] [86] [87], and particle cracking [83] [71] [88]. After model parameteri-
zation and validation with experimental data of a specific cell, these models
could be used to forecast the future capacity fade trajectory via model simula-
tion under certain operating conditions [89] [90]. Then the battery lifetime is
predicted as the time when the forecasted capacity reaches a predefined EoL
threshold.
ECMs are lumped-element models with fewer parameters than those in

electrochemical models, with the aim of capturing the electrical behavior of
battery cells [91]. To achieve lifetime prediction, observers are first designed
to estimate the internal states (e.g., state-of-charge (SoC) and internal resis-
tance) of ECMs. Then the estimated internal states are used to identify an
empirical health degradation model, which is lastly used to predict battery
lifetime [92] [93] [94].
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(Semi-)empirical Models

To achieve onboard battery lifetime prediction in a battery management sys-
tem (BMS), empirical or semi-empirical models may be the most commonly
used model type to capture the direct relationship between the operating con-
ditions and the battery SoH with affordable computational cost. It is common
in the literature that only cycling aging as the function of cycle number, or
equivalent full cycle number, or Ah-throughput, is considered in empirical
models, such as polynomial [95], exponential [9], logarithmic [10], and hybrid
[96] models, while semi-empirical models often consider both calendar aging
and cycling aging with square-root-of-time dependency due to SEI growth [97]
and Arrhenius temperature dependency [98]. To develop a (semi-)empirical
model for a specific type of lithium-ion cell, relevant stress factors need to be
first identified for both calendar aging and cycling aging, for example, storage
temperature [99] [100] [101], storage voltage [99], and storage SoC [100] [101]
in calendar aging; charge and discharge C-rate [102] [100], average voltage
[99], average SoC [100] [101], depth-of-discharge (DoD) [99] [102] [101], and
ambient temperature [102] [100] [101] in cycling aging.
After parameterizing and validating these (semi-)empirical models with

experimental data of a specific cell, they are incorporated into a recursive
Bayesian filter framework, such as a particle filter [9] [10] [11]. The model pa-
rameters are then recursively updated with onboard measured capacity data.
Lastly, the battery lifetime is predicted by identifying the point at which the
predicted capacity reaches a predefined EoL threshold.

Machine Learning Models

Generally, machine learning models that have been used for battery lifetime
prediction in the literature can be either non-probabilistic or probabilistic.
Non-probabilistic machine learning models include autoregression based mod-
els [103] [104], elastic net [12], support vector regression [105] [106], random
forest regression [107], gradient boosting regression tree [108], long short-term
memory [109] [110], and recurrent neural network [111]. Probabilistic machine
learning models include Gaussian process regression [15], relevance vector ma-
chine [112] [113], quantile regression forest [114], and Bayesian Neural Network
[115].
Different from the aforementioned explicit health degradation models that
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capture the battery degradation process in the first place, some studies use
machine learning models to learn a mapping function directly from input fea-
tures, extracted from early degradation data to the battery lifetime, given a
training set of input-output pairs [12] [13] [14]. While in some other studies,
the degradation process is firstly divided into a fixed number of time windows,
and then a mapping function is learned from input features extracted from
usage patterns (e.g., the time spent within certain voltage, current, and tem-
perature ranges) to capacity changes in the corresponding time windows [15]
[16]. In this way, the whole future capacity fade trajectory can be forecasted,
and the battery lifetime is then predicted as the time when the forecasted
capacity reaches a predefined EoL threshold.

Lifetime Prediction Methods Using Field Data
In contrast to high-quality lab data under well-controlled operating condi-
tions, battery lifetime prediction using field data that contains realistic bat-
tery usage profiles in first-life in-vehicle applications and second-life stationary
applications faces several issues:

• The field data is expected to be noisy due to highly varying battery usage
profiles and fluctuating environmental conditions, sometimes missing
due to long time parking, and even corrupted because of faulty hardware
or software.

• Unlike lab data, which is usually measured at the cell level, field data
is measured at multi-levels, and therefore contains heterogeneity infor-
mation within a module or a pack. It is therefore challenging for a
pre-estimated model using lab data at the cell level to make accurate
lifetime predictions using field data at multi-levels.

• To track the evolution of cell degradation throughout its life in the lab,
regular reference performance tests (RPTs) are usually conducted, in
which three parameters are typically measured, i.e., capacity, internal
resistance/impedance, and OCV (see Section 2.2). However, the afore-
mentioned ground truth is lacking in the field, which is required to ver-
ify lifetime prediction methods and validate lifetime prediction perfor-
mance.
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In comparison to a large number of studies about battery lifetime predic-
tion using lab data, existing studies that achieve battery lifetime prediction
using field data are scarce due to the lack of publicly available battery data
in the field that includes battery usage data and health data. Nevertheless,
machine learning models with input features that are independent of bat-
tery chemistry, usage, or history (e.g., from partial SoC windows [116] [16],
or (partial) charging phase [117] [118] [119] [120] [121], or histogram data
[15] [16] [122]) have shown great promise for battery lifetime prediction us-
ing field data. Alternatively, it is hypothesized that the hybrid data-driven
and physics-based approach can potentially lead to performance improvement
for lifetime prediction by leveraging the advantages of both. Parameterizing
physics-based models requires a relatively small amount of data, which can be
used to generate synthetic data for machine learning models. Health-related
model parameters can be inferred online and provide physics-informed input
features to machine learning models. In contrast, machine learning models are
relatively easy to implement and can discover degradation mechanisms and
their resulting pathways [114]. Therefore, machine learning models can be ad-
vantageous in enhancing and complementing the capability of physics-based
models [123]. In this regard, some exemplary architectures include physics-
informed neural networks [124], neural ordinary differential equations [125],
and universal differential equations [126]. The development of these hybrid
architectures is expected to accelerate thanks to their key advantage of extrap-
olating outside the training data much more accurately than machine learning
models.

Lifetime Prediction Methods at Repurposing
With the accelerated uptake of xEVs, i.e., all types of pure electric vehicles
(BEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles
(PHEVs), in the global market despite the economic repercussions of the pan-
demic [127], a growing number of retired xEV batteries need to be handled
properly. Instead of being recycled, an ideal scenario would be that a fraction
of retired xEV batteries can be repurposed to less-demanding second-life ap-
plications in stationary battery energy storage systems (BESSs). At the same
time, some revenue could be fed back to the xEV manufacturers, which may
reduce xEV prices, and thereby make xEVs more competitive [128].
As one of the technical barriers of repurposing, battery lifetime prediction

28



3.3 Lifetime Prediction Methods

for its intended second-life application faces two major issues:

• Although the Global Battery Alliance has taken the initiative to enable
battery data sharing using the battery passport [129], historical battery
data that may contain information on its degradation pathway caused by
first-life usage may still be unavailable or limited due to, for example,
proprietary reason. Without additional battery characterization tests
(see Section 2.2), battery lifetime prediction for its intended second-life
application may therefore be highly uncertain.

• The operating conditions for batteries will most likely differ significantly
between their first lives in xEVs and their second lives in stationary
BESSs. Representative load profiles may need to be extracted from
different types of second-life applications and then used in lab tests to
characterize second-life battery degradation in each type of second-life
application.
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CHAPTER 4

Summary of Included Papers

This chapter provides a summary of the included papers.

4.1 Paper A
Huang Zhang, Yang Su, Faisal Altaf, Torsten Wik, Sébastien Gros
Interpretable Battery Cycle Life Range Prediction Using Early Cell
Degradation Data
Accepted in IEEE Transactions on Transportation Electrification, Dec.
2022 .

Battery lifetime prediction using early degradation data has many appli-
cations throughout the battery product life cycle. To address this research
problem, the quantile regression forests (QRF) model is introduced in this
paper to provide cycle life range prediction with uncertainty quantified as the
width of the prediction interval, in addition to point predictions with high
accuracy. The prediction performance of the QRF model is demonstrated
on a publicly available battery dataset under realistic fast-charging protocols.
Using two model-agnostic interpretation techniques, the two most important
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input features are identified and their effect on predicted battery cycle life
is quantitatively investigated. An important advantage of this method com-
pared to others is that no assumptions on the statistical distribution have to
be made, which otherwise easily corrupts uncertainty estimates.

4.2 Paper B
Huang Zhang, Faisal Altaf, Torsten Wik, Sébastien Gros
Comparative Analysis of Battery Cycle Life Early Prediction Using Ma-
chine Learning Pipeline
Accepted in 22nd IFAC World Congress, Yokohama, Japan, Jul. 2023 .

Lithium-ion battery system is one of the most critical but expensive com-
ponents for both electric vehicles and stationary energy storage applications.
In this paper, to produce the best model for both battery cycle life point
prediction and range prediction (i.e., confidence intervals or prediction inter-
vals), a pipeline-based approach is proposed, in which a full 33-feature set is
generated manually based on battery degradation knowledge, and then used
to learn the best model among five machine learning (ML) models that have
been reported in the battery lifetime prediction literature, and two quantile
regression models for battery cycle life prediction. The calibration and sharp-
ness property of battery cycle life range prediction is properly evaluated by
their coverage probability and width respectively. The experimental results
show that the gradient boosting regression tree model provides the best point
prediction performance, while the quantile regression forest model provides
the best range prediction performance with both full 33-feature set and the
MIT 6-feature set extracted by Severson et al. [12].

4.3 Paper C
Huang Zhang, Faisal Altaf, Torsten Wik, Sébastien Gros
Battery Capacity Knee Identification Using Unsupervised Time Series
Segmentation on Degradation Curvature
Manuscript for submission, May. 2023 .

Battery capacity knee occurrence can have a significant impact on safety
and profitability in battery usage. To address potential concerns regarding
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possible capacity knee occurrence, a generalized capacity knee identification
algorithm is proposed in this paper. With one experimental battery dataset of
NMC cells, it is demonstrated that our proposed capacity knee identification
algorithm successfully identified the knee while the state-of-the-art algorithm
fails to identify it. The method also provides an estimate of the knee-onset,
which can give an early warning of accelerated degradation and thus have
significant economic impact in early battery replacement planning, and also
battery repurposing to second-life applications. Lastly, the capacity knee-
onsets and capacity knees that are identified using our proposed algorithm
on lab data can also be used to systematically evaluate the knee prediction
performance of both model-based methods and data-driven methods.
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Concluding Remarks and Future Work

Lithium-ion battery lifetime prediction using early degradation data offers
many new possibilities throughout the battery lifecycle. However, it is chal-
lenging to provide accurate battery lifetime prediction with only small amounts
of degradation data at early cycles due to the complex degradation process
with the possible accelerated degradation rate at late cycles. At the same time,
battery capacity knee occurrence can have a significant impact on safety and
profitability in battery usage. In this thesis, we address the problem of bat-
tery lifetime prediction using early degradation data, the quantile regression
forests (QRF) model is introduced for battery cycle life prediction with uncer-
tainty quantified. Additionally, two model-agnostic interpretation techniques
are employed to interpret the learned QRF model for cycle life prediction.
Lastly, a machine learning pipeline is proposed for automating the process
of producing the best model among commonly-used machine learning models
for battery cycle life prediction. We also propose a generalized capacity knee
identification algorithm that leverages battery degradation prior knowledge
to address concerns arising from possible capacity knee occurrence in battery
usage.
The prediction performance of the QRF model is demonstrated on a pub-
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licly available battery dataset under realistic fast-charging protocols. In addi-
tion to battery cycle life point prediction with high accuracy, the QRF model
also provides range prediction with uncertainty quantified as the width of the
prediction interval, without assuming any specific distribution of battery cy-
cle life. The learned QRF model is then used in an example application for
selecting the high-cycle-life fast-charging protocol. Using model-agnostics in-
terpretation techniques, the two most important input features are identified
and their effects on predicted battery cycle life are quantitatively investigated.
It is worth mentioning that these model-agnostic interpretation techniques
can be easily used for other advanced machine learning models with the aim
of finding important features and revealing battery degradation mechanisms.
Further comparative analysis of battery lifetime prediction using the proposed
machine learning pipeline shows that quantile regression models, such as QRF,
are capable of providing both cycle life point prediction with high accuracy
and cycle life range prediction with high reliability. The proposed capac-
ity knee identification algorithm is benchmarked to the state-of-the-art knee
identification algorithm on both experimental degradation data of both LFP
and NMC cells, and synthetic degradation data. The capacity knee-onsets
identified using our proposed algorithm can give a much earlier warning of
accelerated degradation, which can have significant economic value in early
battery classification, early battery replacement planning, and even early bat-
tery repurposing to second-life applications.
Finally, there are several improvements that can be made in future work.

Firstly, the battery dataset used in this work is relatively small with cells
tested at an ambient temperature of 30 ℃. A larger battery dataset with cells
tested at ambient temperatures other than 30 ℃ is desired for validating the
consistent prediction performance of the QRF model and effectiveness of the
two interpretation techniques. Secondly, calendar aging during any dedicated
resting period for a long time (e.g., during storage) is not considered in this
work. Its impact on the prediction performance of the QRF model also needs
to be investigated. Thirdly, it would be interesting to compare the prediction
performance of a hybrid model that claims to leverage the strength of both
physics-based degradation models and data-driven models with that of the
QRF model only, as in this work. Fourthly, based on a relatively small lab
dataset under well-controlled operating conditions, a full 33-feature set was
manually extracted in this work. However, this feature set may be difficult
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to extract from the field data due to the fact that battery usage in real-world
applications has less controlled conditions, less accurate sensors, and possible
data corruption. A new feature set that enables battery lifetime prediction in
the field as a function of a realistic battery usage profile will be needed. Lastly,
the effectiveness of our proposed capacity knee identification algorithm has
been successfully validated on experimental datasets of two chemistry types
under a well-controlled lab environment. It is recommended that battery
degradation data obtained from dynamic cycling tests under realistic driving
profiles should also be explored.
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