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A Holistic Take on Simulating Battery Electrolytes
Fabian Årén
Department of Physics
Chalmers University of Technology

Abstract
As powering a sustainable future is a global goal, interest in battery research and
technology is at an all-time high. In order to enable a transition to green-tech,
many industries, such as the automotive industry, urge for batteries with higher
power and energy densities, longer life-times, and that are safer. All these properties
are fundamentally limited by the materials employed. Hence humanity’s ability to
create new energy storage materials need to improve.
The way energy storage materials have been developed up until now have mainly
been in the lab. With many other industries benefiting from IT tools the battery
industry is seeing a need for new better computational tools to aid in developing
new materials. Many put their faith in machine learning algorithms to provide
the solution, but those methods are not flawless, and are especially hard to work
with when modeling electrolytes. This thesis focuses on physics-based methods
to model battery electrolytes, such as DFT, AIMD, and classical MD, and makes a
holistic retake on how these methods could be used in unison to better help material
developers screen their materials.
Novel electrolyte concepts such as highly concentrated electrolytes and localized
highly concentrated electrolytes, both for lithium and calcium batteries, are studied
using the aforementioned tools. This thesis also presents how the newly developed
CHAMPION software and methods can be used to tie the di�erent methods together
and possibly also extend their use by mapping forces on identified interatomic
interactions, which may enable much faster turn-around in the simulation protocols.

Keywords: machine learning, multi-scale modeling, electrolytes, DFT, AIMD, MD,
lithium-ion batteries
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1
Introduction

The source of everything separating someone born in the 21st Century and someone
born during the neolithic era has been argued to be the technology available to
them [1]. Whether or not this is true is not a discussion for this thesis, however, at
the basis of technological advancement is advancement in materials science. Hence
the study of materials science is fundamental to making all technological innovation
possible. The idea that technology is merely an extension of human capabilities has
been prevalent since the late 19th, early 20th Century with thinkers such as Ralph
Waldo Emerson [2] and Henry Ward Beecher [3] popularising the idea with quotes
such as "All the tools and engines on earth are only extensions of man’s limbs and
senses" - Emerson and "A tool is but the extension of a man’s hand and a machine
is but a complex tool." - Beecher.

Hence, if we want to advance as a society we must at some point first advance the
technology at our disposal, which starts with the materials we can make use of.
The mid 20th and early 21st Centuries have been filled with advances in materials
science and humanity’s understanding of the world around us has leapt forward
unprecedentedly. This development culminated with the period between ≥ 1970 and
2020 which have been dominated by an exponential development in semi-conductor
materials. This exponential development pattern was made famous by the founder
of Intel, Gordon E. Moore in 1965, and is commonly referred to as Moore’s law.
The adherence of semi-conductor materials to Moore’s law has set the expectation
for all materials development to follow this trend.

Materials science in general however cannot be expected to follow the same speed,
which is exemplified in e.g. the energy storage materials field. With the increased
need for clean energy one of the most important research fields is the development
of energy storage materials, such as materials for batteries [4]. Currently the
state-of-the-art battery technology, the lithium-ion battery (LIB) has come a long
way since its introduction in the 1990’s by Sony [5]. Having an energy density of 200
Wh/l or 80 Wh/kg enabled the widespread adoption of handheld electronics. Today
the energy densities have more than tripled, which is an excellent development, but
nowhere near an exponential increase. To address this and try to improve the
development speed of materials one must first address one of the major problems of
material research which is the trial and error process used to discover new materials,
popular both within academia and industry. Looking at other fields [6], [7], it is clear
that computational approaches have a great potential to be an alternative solution
making the process more e�ective. However, even though it is possible to exactly
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1. Introduction

solve any system in theory, in the words of Paul Dirac [8]:

"The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the di�culty is
only that the exact application of these laws leads to equations much too complicated
to be soluble.",

material simulations at the molecular level are di�cult, even if far from practically
impossible to perform. One of the most e�ective techniques to simulate systems at
the molecular scale is density functional theory (DFT) [9]. Being able to simulate
molecules accurately to achieve understanding quickly breaks down as the system
size increases due to DFT lacking the ability to simulate dynamics, which becomes
more important for explaining properties emerging at larger system sizes. Hence
an additional tool in our computational tool box is needed; one able to simulate
dynamics of systems of any composition at a mesoscopic scale with quantum accuracy.
In this thesis DFT is used in Paper I to identify the origins of spectroscopic observations
and showcase the value of simulation to explain experimental data determined by
static properties.

Studying systems larger than a few molecules, however, requires a di�erent tool.
Molecular dynamics (MD) simulations have been a functional tool since the 1950’s
[10], [11] and the method was the grounds for the 2013 Nobel Prize in Chemistry
[12]. However, even though MD simulations have been shown numerous times to aid
materials scientists in their work [13]–[15], the method has several drawbacks. One
of the most significant challenges is the methods used to evaluate inter-particular
forces, which is where two distinct methods, ab initio MD (AIMD) and classical
MD (simply referred to as MD), mainly di�er. Paper II, III, and IV display a
proof-of-concept for our patented method of analysing MD trajectories. Specifically,
AIMD is used to propagate the systems, generating realistic structures, showcasing
the power of AIMD for understanding battery materials in particular cases, and in
general displaying the potential of MD for studying batteries.

In order to enable MD simulations of non-conventional electrolytes at nano-scale,
a system for generating accurate force fields (FF’s) has to be developed, with the
development of a universal FF being the holy grail. Many attempts have been made
and in general these attempts have been quite successful, using di�erent machine
learning (ML) approaches, mainly neural networks (NN) of di�erent types [16]–[18].
Even though ML techniques have many advantages there are certain drawbacks,
such as the large data-sets needed and the long times needed for training, as well
as the lack of an understanding of the underlying physical phenomenon causing the
predicted behaviour, colloquially called a "black box" [19]. In paper V a method
to easily generate accurate FFs on the go for specific systems is presented, based
upon a generalisation of the methods developed by Åvall and Johansson to extract
e�ective pair-wise forces and interaction energies from AIMD [20] combined with
the method for structural detection developed in papers II - IV. These generalised
FFs makes away with most of the problems of ML methods presented above and

2



1. Introduction

can be used as a stepping stone towards universal FFs.

This thesis show how simulation methods at multiple scales can be used to model
electrolytes and e�ectively predict important material properties, but foremost it
finally proposes a novel method to generate FFs with low computational cost and
DFT accuracy. All in order to help streamline the development of materials in
a rapidly changing landscape of modern battery electrolytes. Being able to obtain
properties such as transport numbers, partial conductivity, partial electrical mobility
etc. accurately through computations open up a whole new world of screenings and
smarter approaches to materials development.

3



2
Methods for Molecular Level

Modelling of Battery Electrolytes

This thesis aims to holistically look at how battery electrolytes are modelled today,
and propose a novel way to set up simulations from bulk, all the way down to
local DFT structure calculations (Fig 2.1). Simulations are capable of predicting
several properties of interest when designing battery electrolytes, such as: ionic
conductivity, di�usivity, electrochemical stability, thermal stability, just to name a
few, which should make them important tools in every battery engineers arsenal.
Having such a split focus on the use of computational methods at multiple scales,
a natural start is with a description of the methods in isolation, which will be
provided in this section. However, for electrolytes it is important to also study the
interconnectivity between the physics ranging from molecules and up. This concept
is called multi-scale modelling, a field of science dedicated to studying and solving
problems which have important features at multiple temporal and spatial scales [21].
In paper V an attempt is made to marry the di�erent scales and will be discussed
further.

Figure 2.1: A sketch of some computational methods and the length and time
scales they operate on. The red area visualises the limits of this thesis.

4



2. Methods for Molecular Level Modelling of Battery Electrolytes

Figure 2.2: Number of academic papers between 2000-2022 that have both the key
words "DFT" and "Batteries". [search 2023-05-01 using www.webofscience.com].

2.1 Density Functional Theory
In paper I the local bulk structures in electrolytes were studied at the molecular level
using DFT calculations, in order to supplement and explain experimental data. For
battery research purposes, especially for electrolytes, and in this thesis in particular,
DFT is the method that is used to simulate the smallest scale of interest. The interest
in using DFT to study batteries more or less started for real in the early 2000’s (Fig
2.2) [22] and has since then manifolded.
The basis of DFT and similar methods can be described as follows: in order to
describe a system from first principles we have to solve the Schrödinger equation:

H�(r, t, ‡) = i~ˆ�(r̨, t, ‡)
ˆt

where � is the wavefunction describing the system, H is the system’s Hamiltonian,
r̨ = (x, y, z) all coordinates describing the system, and ‡ is the spin of the system.
Neatly packaged like this it is easy to think that all physics is solved, but as
previously stated the many-body-interactions necessary to describe a system quickly
become too complex to be solved for systems larger than the hydrogen atom. Hence
if we want to understand complex materials from first principles approximations of
both the Hamiltonian and the wavefunction are needed to perform these calculations
e.g. the Born-Oppenheimer (BO) approximation.
Since a true representation of the wavefunction cannot be replicated on a classical
computer due to the inability to store a true representation of the wavefunction in
memory of a reasonable size [23], the first hurdle to overcome is to find an accurate
representation of a wavefunction that we can work with. Oftentimes single-electron

5
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2. Methods for Molecular Level Modelling of Battery Electrolytes

wavefunctions, and molecular orbitals �n are written using a basis set of functions
Ïµ centred on the nuclei. The basis set functions are often a linear combination of
Gaussian functions

Ïµ =
ÿ

µ

dµg(›, r)

where dµ is a scale factor and

g(›, r) = Cx
niy

miz
lie

≠›ir2

where C is a normalisation constant, ni, mi, li determines the type of orbital the
function represent (s, p, d, etc.). Following the creation of a basis set ({Ïµ})
molecular orbitals can be defined as:

�k =
ÿ

µ

ck,µÏµ

Solving the Schrödinger equation is done through iteratively making better guesses
for the wavefunction �(r1, r2, . . . , rn; R1, R2, . . . , RN) = q

k ak�k. What is solved for
are the values of all coe�cients ak, enabling the energy ‘ = È�|H|�Í to be calculated.
Since the variational principle states that E0 < ‘, where E0 is the system’s ground
state energy, it is possible to systematically find solutions of the wavefunction better
able to recreate the ground state using an array of methods.

In this thesis DFT in a broad sense has been used to evaluate the energy and
interaction forces in all systems studied. A quick introduction to the machinery;
DFT utilises two theorems postulated by Hohenberg and Kohn [9], and is capable
of identifying a system’s ground state through the electron density rather than its
wavefunction, reducing the number of coordinates needed to describe the system
from 3(n + N) ≠ 6 to 3.

The two Hohenberg-Kohn theorems are:

1. The ground state electron density uniquely determines the external potential of
the system, and thus the whole Hamiltonian.

2. A universal functional, valid for any external potential, can be defined in terms
of only the electron density.

Using these two theorems the energy of the ground state of a system can be calculated
from the electron density, and from the energy the force on all particles in the
system follows. Important to understand how to evaluate system energy is the
exchange-correlation potential Vxc[n(r)] which is approximated by various functionals
[24]. In paper I the Minnesota functional M06-2X [25] has been used in conjunction
with the B3LYP functional [26]. The Minnesota functionals are a group of
parametrised exchange correlation energy functionals, based on the meta-GGA
exchange-correlation functional approximation meaning they include terms including
the energy density, its first and second derivatives as well as being a hybrid functional
meaning they also include parts of the exact exchange. B3LYP on the other hand
is a less complex, GGA correlation function, simply containing information of the

6



2. Methods for Molecular Level Modelling of Battery Electrolytes

energy density and the first derivative. Eventually in the final version of paper In
papers II - V the PBE [27] functional has been used, which is a nonempirical GGA
functional, making the approach truly general.

Even though DFT is considered accurate the method has drawbacks; The computational
cost scales near cubically with the number of atoms in the system, making simulations
of a single solvation shell the most common in the field of electrolytes. These
typically target properties such as HOMO/LUMO levels, vibrational modes and
frequencies, and their associated IR intensities as well as Raman activities etc. If
we want to examine larger systems other methods are needed.

2.2 Molecular Dynamics
When large scale molecular bulk simulations are of interest MD is a great tool to
both explain and predict electrolyte properties. Using a similar method as for DFT,
we find that MD has been of interest to battery scientists since the mid 1990’s [28].
MD in its most basic form is the solving of Newtons equations of motions for a
many body system, which sounds simple enough. The interesting science lies in
understanding how the atomic positions should be updated. One of the most
common algorithms for updating positions in MD methods is the Velocity-Verlet
algorithm [24]. Updating positions with a half-step the algorithm looks as follows:

1. v̨(t + 1
2�t) = v̨(t) + 1

2 ą(t)�t

2. x̨(t + �t) = x̨(t) + v̨(t + 1
2�t)�t

3. Derive ą(t + �t) for the updated positions x̨(t + �t)
4. v̨(t + �t) = v̨(t + 1

2�t) + 1
2 ą(t + �t)�t

Where step 3 is non-trivial. In order to update the atomic positions the force acting
on the atom has to be identified. Classical MD calculate the interatomic forces
using a FF, which is a set of parameters and functions, together forming a potential
energy surface where the total system energy is determined by the atomic positionsÓ
R̨j

Ô
. The energy is most often given by, but not limited to the form:

Etot = 4
ÿ

ij

‘ij

S

U
A

‡ij

rij

B12

≠
A

‡ij

rij

B6T

V + 1
4fi‘0

ÿ

ij

qiqj

rij

+
ÿ

bonds

kb(l ≠ l0,b)2

2 +
ÿ

bond angles

ka(◊ ≠ ◊0,a)2

2 +
ÿ

dihedrals

ÿ

n

kn,d cos(nÏ + Ï0,n).

where the first term is the Lennard-Jones (LJ) approximation describing the Pauli
exclusion principle and the van der Waals interactions, the second term is the
Coulomb interaction between all pairs of atoms. Term three to five are all bonded
interactions modelled as Hooke’s law for two body objects, an angle potential defined
by the angle between three bound bodies, and a proper/improper torsion potential
defined by the angle between the planes formed between four bonded atoms. This
form for the energy term (Fig. 2.3) is used in common FFs such as Amber [29],

7



2. Methods for Molecular Level Modelling of Battery Electrolytes

Figure 2.3: Schematic of bonded and non-bonded parameters making up a classical
FF.

CHARMM [30], and GROMACS [31]. From this form the FF parameters are the
set of {‘i, ‡i, qi, kb,i, l0,b,i, ka,i, ◊0,b,i, kn,d,i, Ï0,n,d,i} where ‡ij = ‡ii+‡jj

2 , ‘ij = Ô
‘ii‘jj,

and ‡ii is the distance at which the particle-particle potential energy is zero, ‘ii is
the depth of the potential well. Conventionally FF parameters are developed using a
combination of quantum chemistry computations of single molecules in vacuum, and
experimental data, often of thermodynamic nature. However, since FF parameters
are often validated by their ability to predict thermodynamical properties through
experimentally obtained values it is not guaranteed that a given FF accurately
represents local dynamics, even if the parameter set accurately recreates experimental
values.

Conventional FFs as the ones discussed here also come with the drawback that all
molecules are fixed, hence it is impossible to model chemical reactions this way,
limiting for example the study of SEI formation. There are reactive FFs such as
ReaxFF [32], whose parameter set can be extended to suit battery electrolytes [33].
However this is time consuming and this type of methodology also demands an
extensive training set fully covering the relevant chemical space including activation
and reaction energies, equations of state, surface energies, bond and angle stretches,
and much more [34].

2.2.1 Ab Initio Molecular Dynamics
As mentioned above the most important step in an MD simulation is the identification
of the forces acting on all particles in a system. An alternative method to the
previously discussed FFs which is suitable when a higher level of accuracy is needed
or when such FFs simply does not exist is to evaluate the forces acting in the system
through quantum mechanical means.
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The Hellmann-Feynman theorem shows that the force acting on a particle i is simply
determined by the electron density as well as the Coulomb interaction between the
nuclei:

F = ≠ ˆE

ˆRi
= ≠

K

�
-----
ˆH

ˆRi

----- �
L

= Zi

Q

a
⁄

n(r) r ≠ Ri

|r ≠ Ri|3
dr ≠

Nÿ

j ”=i

Zj(Rj ≠ Ri)
|Rj ≠ Ri|3

R

b .

Therefore using similar methods for identifying the electron density as in DFT
all forces acting within the simulation system can be identified. Knowing all the
forces, the system can be propagated through time by solving Newtons second law,
and updating all particles position, exactly as in the classical case. Deriving new
accelerations at each iteration means solving a conventional matrix diagonalisation
for an updated electron density with each updated position, as is done when using
Born-Oppenheimer molecular dynamics (BOMD). This is computationally expensive
when done at every time step, making this approach risible for even moderate scale
systems [24].

An alternative approach to combine the quantum mechanical way to derive the
forces acting in the system with classical MD was done by Car and Parrinello in
1985 (CPMD) [35]. This methodology has been used extensively in this thesis.
However there are many other methods in between BOMD, and classical MD that
solve a similar problem as CPMD such as Density Functional Tight Binding (DFTB)
[36], Extended Tight Binding (xTB) [37], and Gaussian Plane Wave method (GPW)
[38] just to name a few.

When running CPMD the total energy in a system is treated as a functional of the
electronic wave function and nucleic positions:

Etot = Etot[{Âi}, {R̨j}].

From this separation, in combination with the fact that the electronic wavefunctions
are orthonormal ÈÂi|ÂjÍ = ”ij Car and Parrinello were able to compute the total
energy using the variational principle. Hence Etot[{Âi}, {R̨j}] is minimized by varying
the nucleic position simultaniously as the electronic orbitals, instead of computing
the electronic structure at every MD step. In order to propagate the system in time
and give the electrons a kinetic energy, a fictitious time dependence is given to the
wavefunction, which allows the following classical Lagrangian to be constructed:

L({Âi}, {R̨j}) = µ

2

nÿ

i=1
|Â̇i|2 + 1

2

Nÿ

j=1
Mj

˙̨
R

2
j + Etot[{Âi}, {R̨j}] +

ÿ

kl

�kl ÈÂk|ÂlÍ

where µ is a fictitious electron mass. The fictitious mass should be small enough such
that the Born-Oppenheimer approximation still holds and the electronic wavefunction
adapts to the position of the nuclei, whilst at the same time being large enough
to allow for relatively large time steps. A typical choice for µ = 400 me, which
is what have been used in the calculations performed for this thesis. Beyond the
introduction of a fictitious mass, Lagrangian multipliers �kl are introduced as to fulfil

9



2. Methods for Molecular Level Modelling of Battery Electrolytes

any external constraints, e.g retaining orthonormality of the Kohn-Sham orbitals at
each time step. Solving for the classical equations of motion yield:

µÂ̈i = ≠”Etot

”Âi
+ 2

ÿ

j

�ijÂj (2.1)

Mj
¨̨
Rj = ≠”Etot

”R̨j

+
ÿ

kl

�kl
” ÈÂk|ÂlÍ

”R̨j

(2.2)

which are implemented in CPMD [39], the software used to generate data for analysis
in paper III–IV and to generate training data in paper V.

2.3 CHAMPION
Even though MD techniques have been around for a long time there has not been a
standard way of analysing the results. As stated by Hollingsworth and Dror [40]:

"The analysis process generally demands a careful combination of visual analysis
using molecular rendering software and quantitative analysis. A number of common
analyses are “pre-packaged” in readily available software, but most simulation projects
benefit substantially from writing customized analysis programs or scripts, a task
simplified by several analysis software frameworks."

There are some analysis tools that are used out there but in the author’s personal
opinion none has been su�cient to provide complex information about structure,
transport properties, and similar, and too much time has been spent writing "customized
analysis programs". In paper II we present a bottom-up, generalised approach to
analysing MD trajectories based on dynamic structure discovery (DSD). The DSD
method works on finding out what species move together, and from those create
a time dependent bond graph. This output can then be analysed based on the
identified structures using graph theory and calculate physicochemical properties of
said structures using statistical physics (Fig. 2.4 ).
The first step of the DSD is to automate bond detection. Our algorithm (pat. [41])
detect these by first identifying a list of candidate bonds, and then subjecting these
candidates to a series of tests. The candidate bonds are identified through locating
the pairs of atoms which are closer than a scaled sum of their atomic radii. The
candidate bonds are only considered during the time while this criteria is fulfilled.
During this time window the average atomic distance is computed, and if the pair is
indeed bonded one would expect that their average distance over the bond lifetime
is close to the pair types equilibrium bond length. The equilibrium bond length is
also expected to be the most probable distance between two atom types. Hence we
substitute the equilibrium bond distance by computing the partial radial distribution
function (pRDF)

gij(r) = 1
n0

n(r)
4fir2 (2.3)

and recognising that the first peak corresponds to the most probable distance. n(r)
is the number density of neighbours of atom type j on a distance r from atoms of
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Figure 2.4: A schematic process of how the CHAMPION algorithm works [II].

Figure 2.5: The basic criteria used by CHAMPION to detect and eliminate bonds
[II].

type i, and n0 is a normalisation factor corresponding to the average bulk number
density.
The second test to determine a bond is whether or not the average distance is within
a tolerance of this peak:

(1 ≠ –)rpeak Æ 1
T

⁄ t+T

t
dij(t)dt Æ (1 + –)rpeak (2.4)

with – being the tolerance is proportional to the width of the pRDF peak.
Lastly the third and final requirement on a candidate bond we define in paper II is
that the bond might not fall within an exclusion cone of a centrally bound species, e.g
H-H in H2O might fulfil the two first criteria, whilst we know they are both bonded
to the O. Hence this is designed to eliminate false positives among the candidate
bonds (Fig. 2.5).
When a candidate bond is accepted as a true bond the time for its formation and
breakage times are recorded. These times are determined by measuring the time
when the amplitude of the sinusoidal oscillation around the bond length equilibrium
goes below, for formation, and above for breakage, the furthest distance during
oscillation. The furthest distance is the equilibrium bond length plus the amplitude
of the oscillation (Fig 2.4).
Using this bond detection algorithm provides all the information needed to create
a time-dependent global bond graph, uniquely describing a systems bond topology.
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The bond graph is an undirected labelled graph, with atoms describing the vertices,
labeled either by atom type, or atom index, and the bonds represent edges. Worth
noting however is that the edges are unlabelled since the algorithm does not make
any distinction between bond order.
However having access to only the global bond graph does not allow one to compute
physical properties. To identify the species in the global bond graph a modified
version of the subgraph isomorphism algorithm presented by Bonnici et al. [42] is
implemented in this thesis, expanding CHAMPIONS functionality. The subgraph
isomorphism algorithm consists of four criteria that has to be fulfilled and applied
to a search space tree (fig 2.6):

• Neither vertex ui nor the matched vertex M(ui) are already matched in the
current path.

• ui and the matched vertex M(ui) are of the same type, e.g. both ui and M(ui)
are labelled as carbon.

• The number of edges connected to M(ui) in the list of vertices in the target
graph, is equal to or greater than the number of edges connected to ui in the
list of vertices in the pattern graph.

• The topological constraint so far in the matched pattern are fulfilled.

Figure 2.6: Showcasing a ACN pattern graph, a target graph, and a subset of the
search space tree.

By treating a molecule as a subgraph it is possible to map all bonds and edges in
the global bond graph to molecules. Hence we can automatically analyse all clusters
based on the composing species. This facilitates calculating material properties
using common statistical physics methods.

2.4 Machine Learning Techniques
With this strong push to understand complex materials such as new electrolytes
another type of methods used to tackle this problem and a contender to simulations
and CHAMPION has been machine learning (ML). With a recent surge in methods
bridging the realm between AIMD and classical MD simulations, ML used to describe
materials structure began in 2007 when Behler and Parinello [43] developed symmetry
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functions (SF), creating transferable neural network (NN) potentials through the
chemical locality around an element. Similarly in 2013, Bartók et al. developed
the Smooth Overlap of Atomic Position (SOAP) directly defining the similarity
between any two atomic neighbourhood environments, enabling the development of
interatomic potentials through the GAP framework [44], [45]. Other alternatives to
develop interatomic potentials have been through di�erent NN approaches, such as
SchNet [46]. More concretely relevant for electrolyte
applications, Wang et al. for example have developed a NN based on SchNet,
learning chemical embeddings for elements in ionic liquids and new electrolytes [47].
Alternatively NN such as PiNet [48] can be used to learn electronic multipoles of
atomistic simulated liquids [49]. Worth noting is that most common ML approaches
work best for structured materials such as crystals, where it is much easier to locate
a good descriptor of the local structure. Comparatively it is much harder to get
equally good results for amorphous materials such as electrolytes due to the non
periodic behaviour of these materials. Anyhow, notable progress have been made in
recent years [50], [51].

2.4.1 Neural Networks
As noted above, NN are a popular choice when attempting to predict materials
properties since it has a good ability to find patterns in data that is hard to analyse
by humans. This thesis will not attempt to be a be all end all source of information
regarding NN’s, however it is important that we all have a basic understanding of
the fundamentals.
At its’ core NN attempt to replicate the way the human brain functions through
replicating the behaviour of biological neurons. The artificial neuron takes one or
more inputs and produces a single output. To produce this output a weighted
sum of all the inputs is taken and then a bias term might be added. This sum is
sometimes referred to as the activation. The activation is then passed through an
activation function, which in its’ simplest form can be linear, but usually is not.
The inputs to a neuron is oftentimes outputs from other neurons, forming a network
of connected neurons with an input layer and an output layer, and one or several
hidden layers in between. Concretely for the interest of material scientists NN used
in this way is a great tool to identify a connection between a chemical environment,
as e.g. described by SOAP [45] and forces for atomic modelling as has been done
previously in literature [52].
To train a NN the weights and biases of all the neurons are updated based upon
how well they fit data and training is considered done when additional data does
not significantly lower the error. Common for almost all ML approaches, especially
those based on NN is the need for extensive amounts of data for training and testing
of models, making the need for available data more important than ever. This need
can be seen in contemporary projects such as BIG-MAP [53] as well as the Materials
Genome Initiative [54] trying to standardise data presentation as well as making it
available to a wider audience.
The use of NNs to aid the development of MD methods have been a topic of interest
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for material scientists in recent years. One example of how this can be done is found
in Wang et al. [55] where, using di�erentiable simulations, they are able to obtain
interaction potentials, through the use of gradient decent. This aim is similar to the
one which we are trying to solve later on in this thesis using our own method.

2.4.2 Genetic and Evolutionary Algorithms
Another interesting ML technique is Genetic Algorithms (GA). Like NN GA also
tries to replicate a biological phenomenon, this time replicating the process of
natural selection [56]. Hence GAs belong to a larger class of ML techniques called
Evolutionary Algorithms (EAs). Like in the case of NN, this thesis will only present
the reader with a short introduction to the topic.
EAs are good optimisation heuristics for problems where an optimisation has to be
done involving conflicting objectives or a high-dimensional search space [57]. Due
to a large search space of solutions to such a problem it is often extremely hard to
find an optimal solution. Nevertheless in practice it is often viable to simply find a
solution that is similar enough to the optimal solution to be a feasible approximation,
or in laymens terms “good enough”.
EAs are implemented by initialising a population of possible solutions to the problem.
Each solution is re�ered to as an individual. Every individual is evaluated according
to some cost function and the n individuals with lowest cost are selected for ”breeding”.
There are several di�erent methods for generating the next generation, but in general
it involves some kind of crossing over or other recombination of “parents” genes. This
is done with the hope that some of the recombined o�spring will yield a result with
an lower cost than the previous generation. It is however impossible to cover the
full search space by just recombining the initial population set [58]. To enable the
method to cover all possible solutions and prevent ending up in local minimum the
concept of mutation, a small perturbation to one of the "genes" in the individual is
introduced. A gene here refers to one of the values making up the individual, and
this perturbation slightly alters the solution enough to cover the full search space.
The consecutive generation generated is then evaluated against the cost function
in turn, and the process is repeated iteratively until a su�cient answer is provided
according to some cost function.
It is worth noting that this thesis is sprung from the author’s failed attempts to
generate classical FF parameters from AIMD simulation data during his master
thesis. These attempts were substituted by the approach presented in 2.6.

2.4.3 Gaussian Process Regression
A final ML method I want to touch upon in this chapter which is good for interpolation
of data given a sparse set of data points is Gaussian Process (GP) regression,
commonly known as Kriging, which is used to supplement the method elaborated
upon in 2.5. Given a suitable choice of prior GP regression gives the best linear
unbiased prediction at unsampled locations. GP regression is used to predict a
function value at a given point by computing the weighted average of the known
values of the function in the neighbourhood of the point. This means that a GP is
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completely specified by a mean function and a positive definite covariance function.
Given a set of inputs x

(1) · · · x
(n), a mean function Èf(x)Í = 0, and a covariance

function Kp,q = Cov
1
f(x(p)), f(x(q))

2
= K

1
x(p)

, x(q)
2
, a joint distribution may be

defined
f(x(1)) · · · f(x(n)) ≥ N (0, K).

Given this knowledge a GP can be obtained using Bayesian linear regression:

f(x) = xT w

where the weights w ≥ N (0, �p). Hence the mean function is given by:

E [f(x)] = xT E[w] = 0

and the covariance function is given by:

E [f(x)f(xÕ)] = xT E[wwT ]xÕ = xT �pxÕ
.

The Bayesian linear regression is based on Bayes theorem:

P (y|X, ◊) Ã P (◊)P (◊|X, y)

Where P (◊) is known as the prior, representing the assumption of the probability
of a set of parameters ◊ prior to knowledge of data, and P (◊|X, y) is known as
the likelihood, representing the probability of observing the parameters ◊ given
knowledge about the data X, y, and P (y|X, ◊) is the posterior of the given hypothesis
explaining the data. Commonly ◊ is chosen by optimising the marginal log-likelihood:

log P (y|X, ◊) = ≠1
2 log |K(X, X) + ‡

2| ≠ 1
2yT (K(X, X) + ‡

2)≠1y

through sampling the probability space of possible ◊.

2.4.3.1 Choice of Priors

The prior, or prior probability distribution, is the assumed probability of a data set
before any observations is taken into account. There are many ways to determine
a prior, it can be constructed from past experiments or samplings if information is
available, or from the subjective assessment of a researcher. With no information
available it can also be based on the principle of indi�erence giving an equal prior
probability to every possibility.
A informed prior assumes explicit information about the variable studies. A good
example is to assume a process is a Gaussian distribution around some known
mean. On the other end of prior knowledge, the uninformed prior makes little
to no assumption about the variable, but can still make general statements such
as "the variable is positive". Oftentimes this just assigns equal probability to every
possibility.

15



2. Methods for Molecular Level Modelling of Battery Electrolytes

2.4.3.2 Kernels

At the heart of the GP regression is the GP kernel. The kernel function K(Xi, Xj)
essentially tells the model how close two points (Xi, Xj) are. There are several kernel
functions available and the choice should be made based on what data is studied.
The default kernel used by many machine learning libraries (e.g. scikit-learn as used
in this work [59]) is the radial basis function kernel (also known as the quadratic
exponential kernel, the squared exponential kernel or the Gaussian kernel) with the
form:

K(Xi, Xj) = e≠
||Xi≠Xj ||2

2L (2.5)
where L is the length scale of the system, and is popular because of its ready
interpretation as a similarity measure ranging from one when Xi = Xj and zero in
the limit. Generally this model will not be able to make predictions further than a
distance L away from the training data which limits its applicability if the sample
space is small.
Other notably common kernals are the white noise kernal (K(Xi, Xj) = ”ij‹, where
‹ is some noice level) and the constant kernal (K(Xi, Xj) = Ÿ, where Ÿ is some
constant). In the work done throughout this thesis, and more specifically the work
done in 2.5 the Rational Quadratic kernel (RQK) has been used.
The RQK is equivalent to the summation of multiple radial basis function kernels
of di�erent length scales:

K(Xi, Xj) =
A

1 + ||Xi ≠ Xj||2

2–L

B≠–

(2.6)

where L is yet again the kernel length scale, and – is the weighting of importance
of di�erent length scales in the kernel. The RQK was chosen since it is a simple
enough function to use on this data set where we do not expect any discontinuities
and it is commonly used to great success in a vide variety of cases [60].

2.5 Curve Smoothing via Kernel Smoothing
An alternative way of obtaining a curve from data is using a smoothing function,
especially a kernel smoothing. A kernel smoothing is a moving average smoother
using a kernel weight function, to give an average estimate of a real valued function
in every observable point. There are many di�erent kernels, some of the more
common ones being Gaussian, squared exponential, and nearest neighbour kernel.
Within this thesis kernel smoothing is used as an alternative approach to GPR.
Kernel smoothing is based on:

Ŷ (X0) =
qN

i=1 K(X0, Xi)Y (Xi)
qN

i=1 K(X0, Xi)
,

where K(X0, Xi) is a kernel, N is the number of observed points, and Y (Xi) are
the observation at point Xi, which gives us the smoothed function Ŷ (X). From this
the advantages of a non-parametic function estimator emerge which can uncover
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structural features in data which a parametric model might not reveal. The main
drawback is that this type of model does not provide any parametric model to
describe the data.

2.6 Automated Force Field Finder

2.6.1 Background
To tie all of this together I now want to present the original idea for CHAMPION,
which was a two pronged spear, one part consisting of the DSD functionality, the
second part was to enable longer and more accurate MD simulations. To allow this
one must be able to describe a Hamiltonian that can be parametrized to reproduce
empirical data as well as possible, whilst still being parametrized in a way that
makes it computationally inexpensive.
The first attempt was to match classical FF parameters to AIMD forces using GAs.
However, it was discovered that the parameter space, with a roughly fifty or more
parameters, seemed too large for a GA to fit, or the cost function space to shallow
to find a good solution. This was exemplified by that the algorithm identified widely
di�erent solutions at the same cost (Table 2.7) [61].

Table 2.7: The Hooke’s force constant kij with the interaction force centre types.

Force Centre Type FF1 [kJmol≠1nm≠2] FF2 [kJmol≠1nm≠2] FF3 [kJmol≠1nm≠2]
0,2 916.48 5451.75 3807.14
1,3 13848 18981.5 12150.5
0,1 3510.6 3614.1 2263.55
5,7 2075.4 5390.7 6766.7
5,6 2403.6 123.001 2686.92
6,9 4079.5 8629.06 6526.38
6,8 6603.7 10432.2 14607.4

In paper V we propose a new light-weight method for generating system specific
FFs. Being inspired from the work of Åvall and Johansson (2020) [20] where they
investigated the force distribution between a solvation shell and a central atom
in terms of centre-of-mass coordinates, we herein develop a similar method by
generalising the Åvall method of binning central forces depending on distance to
binning the interaction strength related to each interaction type. We are able to
use this method to develop a FF due to the fact that a system can be completely
determined by knowledge of all correlation functions g

(n)(x1, ..., xN) [62].
The interaction types used are the same as in conventional FFs, with 2-, 3-, and
4-body bonded interactions, as well as an electrostatic term and a Lennard-Jones like
term. In this method however the long range electrostatic and dispersion interactions
are treated together and will henceforth be referred to as the pairwise interaction.
By first running small first principle MD simulations, the forces acting between all
particles of a system type can be found.
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Then projecting the generalised force acting on all particles partaking in an interaction
type based on a CHAMPION bond graph, against a generalised coordinate q describing
said interaction, a 2D histogram of distributions (Fig. 2.8) are formed.
The force projection is obtained through the virtual work, giving us the following
conversion between a general force Qj and the carthesian force F̨i:

Qi =
Nÿ

jÕ=0
F̨j ·

ˆr̨
Õ
j

ˆqi
, (2.7)

, qi is described by the internal coordinates displayed in fig. 2.3.

2.6.2 Wilson Theory
The object ˆr̨i

ˆqj
is hard to calculate. However the context of internal molecular

coordinates, the derivation of internal coordinates with respect to Cartesian coordinates
are well defined and this transformation matrix is called the Wilson’s B matrix [63]:

Bij = ˆqi

ˆRj
(2.8)

where qi, i = 1 . . . M are still the internal coordinates and Rj, j = 1 . . . 3N are
the Carthesian atomistic displaysment coordinates. These internal coordinates are
the same as the ones discussed in 2.2, known as the natural internal coordinates,
and unlike the coordinates of the Z-matrix this coordinate system is redundant.
This allows us to perform a transformation from cartehsian coordinates, to internal
coordinates, and back, making this method easy to automate.
From the Wilson’s B matrix and it’s pseudo inverse it is possible to generate a
transformation between Carthesian coordinates and the redundant internal coordinates:

A = BT (BBT )≠1 (2.9)

or
A = (BT B)≠1BT (2.10)

depending on if B is full row rank, or full column rank, where BA = I/AB = I
(from here on out we will concider B to be full row rank). It follows that eq 2.7 can
be rewritten as:

Q = FA (2.11)

where F is a flattened (1 ◊ 3N) vector of F̨i.

2.6.3 The Åvall Method
These 2D histograms contain all information about said e�ective interaction, e.g.
between two carbon atoms, where e�ective interaction denotes the distributions
of interactions in the presence of environmental noise assumed to be normally
distributed with zero mean. Having this method based upon the CHAMPION
bond-graph identifying method [II] also enables a FF that treats di�erent bond
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Figure 2.8: Schematic Åvall plot linking the probability distribution of generalised
forces to a generalised coordinate describing a interaction. Orange: Occupied bins.
Blue: Empty bins

types separately, e.g. separating linearly bonded carbon from cyclically bonded
carbon. Such distinctions have been shown to be useful in other, more conventional,
FFs such as AMBER and GROMACS [29], [31].

From the positions of and forces acting on each atom, both the generalised coordinates
and forces can be computed and sampled. The statistical distributions of generalised
forces as functions of the corresponding generalised coordinates result from a combination
of the e�ective interaction between the atoms involved, and e�ects of the background.
The approach taken here is based on assuming the background e�ect to be unbiased
noise, so that the mean of the sampled distributions estimates the true e�ective
interaction.

Knowing the positions and forces acting on each particle within a trajectory, generalised
coordinates and generalised forces can be computed and sampled. The distributions
of generalised forces as function of the corresponding generalised coordinates give
rise to a 2D histogram similar to an Åvall plot. These histograms contain the
information about the e�ective interaction between all particles involved, as well as
the e�ective background.

Given a force distribution F|q of generalised forces {Fi(q)} as seen in Fig. 2.8, where
i œ {0, number of samples of interaction type} one can show that the specific force
Fi(q) can be written as:

Fi(q) = F (q) + �f

where F (q) is the true generalised interaction strength and �f is a stochastic
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background noise. Assuming that the noise is Gaussian:

Nÿ

i

F (q) =
Nÿ

i

Fi(q) ≠
Nÿ

i

�f

∆
NF (q) = N ÈFi(q)Í ≠ N È�f)

…
F (q) = ÈFi(q)Í .

Hence on a global level the background of forces along a generalised coordinate
q cancel out. From this we make the assumption that the true force of q can
be described by the mean force curve. Hence any interaction described using the
generalised Åvall method should be reproducible given the mean force value at any
point along the generalised coordinate axis.

Given the sparse but spread out nature of the data produced this way, a smooth
function filling the space between data points can be generated using GP regression.
This pairs well with the reactive capability provided by having the method based
upon the CHAMPION method. The FF identified can be made reactive through
computing bond likelihood functions as a function of distance. Hence it is possible
to determine on a snapshot-by-snapshot basis which atoms in the system are bonded
in, one, two, three, or even four of the four bond types previously discussed. This
possibility enables the look-up tables to be dynamically chosen during the simulation,
enabling a great amount of customiseability to the interactions.
Hence we have proposed a novel system building on the descriptors identified by
CHAMPION that enables a quick and lightweight way to evaluate interatomic forces
using a conventional FF parameter model.
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Battery Electrolytes

In a battery the role of the electrolyte is to transport ions from the positive to
the negative electrode, and back during cycling. In order to do this e�ectively
the electrolyte is required to have a high ionic conductivity in the temperature
range of the application [64]. In order to allow for electrochemical cycling the
electrolyte also has to be electronically insulated, forcing electrons to pass through
an external circuit instead of through the electrolyte. Beyond these criterion a
general "good" electrolyte also has to be thermally, chemically, and electrochemically
stable within the operating voltage window, which normally lies between 0-5 V
vs. Mx+/Mÿ[65]. Then comes the wish list that takes more humane values into
account where we want an electrolyte to be non-toxic, using raw materials that are
cheap and available, as well as being obtained from a non destructive production.
Unfortunately there is as of 2023 no commercially available electrolyte that fulfils
all criteria listed here. There are several di�erent electrolyte concepts such as liquid
electrolytes (LEs), solid state electrolytes, polymer electrolytes, and many more.
All with their own advantages and disadvantages. In this thesis we will discuss
LEs, highly concentrated electrolytes (HCEs), and localised highly concentrated
electrolytes (LHCEs), a quick and non-comprehensive overview of some advantages
and disadvantages are presented in Table 3.1.

Table 3.1: A list of the di�erent electrolyte types touched upon in this thesis and
a non-comprehensive summary of their advantages and disadvantages.

Electrolyte Type Advantages Disadvantages

LE Low Viscosity, Good Wettability,
Conductivity, ESW High Flammability

HCE Low Flammability, ESW,
Rate Capabilities

High Viscosity,
Low Conductivity

LHCE ESW, Low Flammability,
Low Viscosity Highly fluorinated

3.1 Conventional Liquid Electrolytes
In a LIB the electrolyte, e.g. LP30, consists of solvents and a solute with the main
purpose to transport charge carriers from one electrode to the other. Beyond the
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general properties listed above it is important for a LE to have a low vapour pressure
to ensure safety, and low cost etc. [65].
When designing a LE the choice of solvent is important in order to fully dissolve
the salt. Hence important properties to keep in mind are a dielectric permittivity
and a low viscosity, since a high permittivity is crucial in order to dissociate the
salt, and a low viscosity correlates with good transport properties. In order to fulfil
both these criteria several solvents are usually used, such as in the case of LP30,
where equimolar parts of ethylene carbonate (EC), and dimethyl carbonate (DMC)
are used. Worth noting however is that despite being one of the most popular
commercial electrolytes available, there are still safety concerns regarding LP30,
with both EC, and DMC being organic solvents, and being flammable and volatile
[66]–[68]. Hence studies into other electrolyte concepts are needed.

In order to understand the charge transport in electrolytes, and hence being able to
select for good properties, it is important to study the mechanisms that facilitate
transport, and what structures enable transport. The net transport of charges is
driven by the di�erence in electrochemical potential between the electrodes. Even
though this is the driving force on a macroscopic scale it is important to keep in
mind the importance of both time and length scale. Herein we will discuss the
importance of understanding the electrolyte structure at di�erent scales in order to
explain behaviour. In a LE the local scale surrounding the cation is made up of the
first and second solvation shells (Fig 3.2). The solvation shell is the result of solvent
molecules arranging themselves around the positively charged ion. Since the cation,
oftentimes Li+ is small and spherically symmetrical the resulting electrical field is
also spherically symmetrical, causing the nearby solvent molecules to align. Since
the strength of the electric field decrease exponentially with the distance from the
cation this ordering e�ect usually only works on one, max two layers of molecules,
with the second layer being much less ordered than the first. These solvation shells
are strongly cohesive and have long lifespans. In paper IV we study how the local
solvation shell structure depend on salt concentration moving from LE to HCE
using AIMD simulations and CHAMPION analysis. The results obtained using this
method are more or less directly comparable with experimental structure studies,
such as nuclear magnetic resonance (NMR) studies, and di�erent scattering studies,
e.g. using small-angle X-ray scattering (SAXS) [69], [70].

The work done in this thesis also touches upon the problem of finding a good
electrolyte for calcium systems. Currently Ca(BF4)2 salt and carbonate solvent
electrolytes show a large ESW. However these system require temperatures above
100 ¶C in order for the battery operation to be reversible [71]. Close to room
temperature THF based electrolytes can used to produce operating Ca cells. These
types of electrolyte come with the drawbacks that the anodic stability is low (≥ 3
V vs Ca2+/Ca) which limits the selection of high voltage cathode materials [72],
in turn lowering the cell energy density. Hence a viable middle ground has to be
developed in order to make Ca-metal batteries a commercial reality.
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Figure 3.2: A schematic drawing of the first and second solvation shell in a lithium
based LE. The red ring mark the border between the first and second solvation shell,
and outside the second shell there is a homogeneous background medium.

3.2 Highly Concentrated Electrolytes
Conventional electrolytes, such as LP30, use salt concentrations around 1 M in
order to maximise conductivity. However since the early 2010’s the interest for
much higher salt concentrations in battery electrolytes have increased dramatically,
despite the dropp in conductivity seen above 1 M. The increased interest is due to
some interesting properties displayed such as; a lower solubility of transition metals
dissolving from cathodes [73], higher rate capabilities [74], [75], and a widened ESW
[74], [76]. All these properties are attributed to the change in solvation shell structure
around the Li-ion [77]. Since HCEs as a class seem to have many of these positive
attributes, which to be achieved for in LE the solvent have to carefully selected,
implies that the safety of HCEs can be increased by selecting less flammable solvents.
These solvents might have been overlooked previously due to being bad electrode
passivators, a property which in HCEs is achieved through the choice of salt. As
an example McOwen et al. showed using a combination of Raman spectroscopy,
electrochemical testing, and computational work that such HCEs are safer than
LP30 [76].

The addition of more salt causes the electrolyte to have high ion density more akin
to solvent in salt, than salt in solvent, making the electrolyte take on behaviour
similar to ionic liquids [78], [79]. This also means that there is a low amount of free
solvent in the liquid, which is one of the major identifiers of HCEs. However, as we
show in paper IV the amount of free solvent molecules might not go to zero, but
rather be caught up in a matrix of cations, anions, and interacting solvent molecules.
Furthermore this structure leads to a higher density, higher viscosity, besides a lower
total ionic conductivity. Using a combination of experimental techniques Nilson et
al. have shown that ionic conductivity depends more strongly on ionicity than
viscosity [80], which is in agreement with the argument by Seo et al. [81]. In paper
III we describe the mechanism behind the lower ionic conductivity for lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) in acetonitrile (ACN) at a 1 : 2 molar

23
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ratio and show that a percolating network form from the anions and cations at
such a high salt concentration whilst the solvent remains free. The lower ionic
conductivity is explained by a decreased amount of transportation being conducted
through a vehicular mechanism, which is defined as a cation in a shell of coordinated
solvent molecules moving freely through the electrolyte (Fig. 3.3a), contrary to a
higher amount of non-vehicular transport, which is all type of transport that is not
vehicular. This could for example be structural deformation, structural rotation, or
jumping (Fig. 3.3b).

(a) How a solvent molecule shell forms
a "vehicle" surrounding the cation
and enabling transport through the
solvent

(b) Rotating a structure containing
cations can lead to a net charge
transfer. This is an example of
non-vehicular charge transfer.

Figure 3.3: Di�erent charge transfer mechanisms at intermediate and high salt
concentrations.

This view is coherent with experiments. Dokko et al. [82] showed through the use of
NMR studies an unusually high lithium self di�usion in a sulfolane based electrolyte.
This study show that lithium di�use faster than both the solvent molecule and the
anion, which clearly cannot happen if transport is vehicular, and they attribute the
increased lithium di�usion to jump di�usion.

3.3 Localised Highly Concentrated Electrolytes
LHCE are designed to retain the positive qualities of HCEs, whilst improving the
reduced ionic conductivity, and high viscosity, causing poor electrode and separator
wetability, that comes with an increased salt concentration. Dilluting a HCE might
sound counter intuitive, but if choosing the correct solvent the local highly concentrated
behaviour can be retained. This is done by introducing a non-solvent, a diluent,
keeping the 1st solvent shell of the cation of the HCE intact by the diluent being
non-coordinating to both the cation and the anion. This, if done properly, lowers
the viscosity, whilst retaining the positive properties from HCEs. Additionally, the
diluent should be stable against other cell components [83]. Hence it is globally
similar to a LE, but locally similar to a HCE. The diluent oftentimes are some kind
of ether, particularly fluoroethers as seen in the works of Qian et al. [84], and Wang
et al. [85], [86]. Given a shared local structure with HCEs the SEI forming abilities
remain [87]. As recently seen the SEI formed from LHCE system are composed
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mainly of species coming from the anion decomposition and (near the surface) from
the decomposition of diluent as well [88], [89]. Hence decomposition will occur
using these systems, and the diluent has to be chosen accordingly, increasing the
complexity of choice for electrolytes. Given the correct choice of diluent a more stable
can be created as shown by Ding et al. [90] where SEIs made from flourinated diluent
decomposition on lithium metal has been shown to increase stability. It has also
been shown that the correct diluent can decrease the dissolution of poly-sulfides into
the electrolyte in Li-S systems [91]. All choices can be aided using computational
means. For example: as preparatory work for paper I we screened many potential
fluoroethers using DFT for their interaction energy against some standard acid in
order to find out how inert their interaction is. Through this method a set of
suitable candidates could be preselected and the scope of testing narrowed down.
Similarly, MD is an additional method that could be used for screening. In 2020
Bouibes et al. [92] utilisedthe generalized AMBER forcefield GAFF to show the
miscibility behaviour of a set of flourinated diluents and their ability to form LHCE
structure. The importance of computational methods for investigating LHCEs
are even higher than for other electrolyte types due to properties of the diluent,
since many diluents contain high amounts of flourine and the F - F interaction
are important for many properties of these types of liquids. These interactions are
hard to probe spectroscopically, leaving computational methods as a more e�ective
choice.

3.4 Ion Transport in Electrolytes
The primary function of a battery electrolyte is to facilitate ion transport, it is
crucial to understand the transport mechanisms occurring within the electrolyte. A
common liquid electrolyte cell works with a cell voltage of the order of magnitude of
< 5 V, meaning that a Li+ experiences an energy contribution of 5 eV. Operating at
room temperature the thermal energy of the surroundings is kBT ¥ 25 meV. Hence,
on a global scale bulk transport is driven completely by the electric field caused
by the voltage di�erence between the electrodes. Focusing on a local scale however,
assuming a thin separator (s 20 µm) we see that linearly approximating cell voltage
over separator thickness ¥ 2.5 · 105 Vm≠1 over a typical distance of inter-molecular
interaction (s 5 Å), E = 0.125 meV (Fig 3.4). As a consequence the local dynamics
is assumed to display motion uniformly distributed over all directions. In practice
however the voltage profile is extremely steep near the electrode interfaces, making
the importance of this potential more substantial there, and even less important
than assumed here within the bulk, but that is outside the scope of this thesis.
The most important property for transport performance in a battery cell is the ionic
conductivity ‡ of the charge carrier, defined by:

J̨
+ = ‡

+
Ę

relating the current density J̨ of the charge carrier to the applied electric field
Ę. Generally ‡ is a tensor, and using the Onsager transport coe�cients, can be
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Figure 3.4: Sketch of a battery cell. Atoms are not to scale.

described as
‡ = ‡

++ + ‡
≠≠ ≠ 2‡

+≠

where ‡
++ is the cationic contribution, ‡

≠≠ is the anionic contribution, and ‡
+≠

is the cation-anion correlation term. For further insight into a materials transport
properties these terms can be decomposed into self correlation, and distinct correlation
contributions:

‡
++ = ‡

+
self + ‡

++
distinct

‡
≠≠ = ‡

≠
self + ‡

≠≠
distinct.

Note that the self correlation is large when ions have high mobility, and the distinct
correlation is positive when ions di�use in the same direction, and negative if they
di�use in opposite directions. In isotropic media such as liquid electrolytes however
the ionic conductivity tensor is reduced to a scalar.
Worth mentioning is that the species ionic conductivity is easy to calculate computationally
it is harder to measure its analogue experimentally. More often the total ionic
conductivity J̨ = (‡+ + ‡

≠) Ę is reported when presenting experimental results,
even though it is of lesser importance for battery performance. However there are
several counter examples to this claim that calculate cationic and anionic contributions
to transport properties based on Maxwell-Stefan theory [93]–[95].
Through the Nernst-Einstein equation, the ionic conductivity can be related to the
di�usivity D

+, which for monovalent electrolytes (which will be used for demonstrative
purposes here) takes the form:

‡
+ = cF

RT
D

+
,
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where c is the salt concentration, F is Faraday’s constant, R is the gas constant,
and T is the temperature. Di�usivities tend to be easier to compute practically
when simulating electrolytes, making this a more useful metric. The di�usivity can
be approximated through the Stokes-Einstein equation, assuming that the di�using
ion moving amongst solvent molecules can be treated as a macroscopic particle
moving through a continuum:

Di = kBT

6fi÷ri
,

where ÷ is the dynamic viscosity of the electrolyte and ri is the hydrodynamic radius
of species i, typically on the order of 1 < ri < 10 Å in typical battery electrolytes
[96]. In practice however the di�usion is calculated through a method such as mean
squared displacement, or a Green-Kubo equation since the assumptions made for
the Stokes-Einstein equation does not hold for all cases, e.g. HCEs.

The assumption breaks down for HCEs due to the altered transport mechanism
once the amount of salt reaches a certain level. In paper IV we show that a
percolating network forms, preventing conventional vehicular transport to occur,
which is the rule for LE [81], [97]. Instead a process of hopping (also known
as a Grotthuss mechanism [98]) is proposed when a proton or positively charged
defect, in the case of LIBs this refers to the Li+ ion, di�uses through a bound
network of molecules.[99]. Throughout papers II-IV we refer to this mechanism
as structural transport, where we include all mass/charge transport that occur
through deformations and changes in the macro-molecular structures identified in
the electrolyte. The transport mechanisms occurring in LHCEs are still unknown to
a large extent, but it is proposed to be a combination between hopping and vehicular
transport occur with research being conducted [100]–[102].

From the di�usivity two related, but distinct, and oftentimes confused concepts
can be defined: the transport number, and the transference number. The transport
number is defined as the fraction of the total current that is carried by the cation, e.g.
Li+, assuming no ion aggregation. Conversely the transference number is defined
as the fraction of the migration current excluding currents due to concentration
gradients, that is carried by the cations regardless of the speciation [103]. The
migration current is defined as the current driven by an electric field. Under anion
blocking conditions, the transference number can be described using our previously
defined ionic conductivity transport coe�cients:

t
abc
trancference = —

2 ≠ 4– + 4–
2

4(1 ≠ –)(— ≠ 1)

where – = ‡++

‡+++‡≠≠ reflect the mobility of the cation relative to the anion, and
— = ‡+≠

‡+++‡≠≠ describes the cation-anion correlation. What can be obtained from MD
simulations however is neither of these concepts, but rather t

+, which is oftentimes
also called the transport number defined as

t
+ = D

+

D+ + D≠ .
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and is identical to the ideal transference number identified by Borodin et al. [104] and
very similar to the parameter – we previously defined. Even though the confusion
in definitions of transport properties cause problems when comparing studies with
each other, concentration trends, etc. seem to be consistent enough across methods.
In paper III we study an array of transport properties using the newly developed
CHAMPION software described in paper II. This computational method is a simpler
way than the experimental methods available to get a measurement of the transference
number, where using the Balsara-Newman method [105]:

Iss

I0
= 1

1 + Ne
(3.1)

Ne = a
‡RT (1 + T+)2

F 2Dc

A

1 + d ln “+
d ln m

B

(3.2)

we have to measure Iss
I0

the steady state current over the initial current, the di�erent
parts of the Newman number Ne; the ionic conductivity ‡, the di�usion coe�cient
D, the "thermodynamic factor"

1
1 + d ln “+

d ln m

2
to finally be able to calculate the true

transference number T+, whereas computationally we can directly measure the net
transfer of a species through CHAMPION.
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Results & Discussion

In this section the results of the appended papers I - V are presented and discussed.
These move from the molecular level results using DFT methods to determine the
Raman spectra of solvation shells (paper I), to the microscopic scale where AIMD is
used to elucidate what structures form in HCEs (papers II,IV), and are finally tied
together through the use of the newly developed CHAMPION bond graph discovery
algorithm (papers II, III) including a deep dive into the e�ects of concentration.
Finally, a method for enabling large scale simulation with quantum accuracy is
suggested using the generalised Åvall method (paper V).

4.1 1st Solvation Shells
In order to understand material properties ranging from phase transitions to transport
and solvation dynamics it is important to have an understanding of the local environment
of a central atom. In paper I we wanted to circumvent the usual problems with CaB
electrolytes by introducing two, for the chemistry, new electrolyte concepts: HCEs
and LHCEs.
The Raman spectra of a wide set of Ca2+ 1st solvation shell structures were measured
in order to elucidate the local structure within Ca2+ HCEs and LHCEs. Artificial
Raman spectra are calculated which show that free PC, [Ca(PC)4]2+, free TFSI,
and [Ca(TFSI)2] all play an important role (Fig. 4.1). The remaining structures
calculated (Tab. 4.2) show that the PC structures of the form
[Ca((TFSI)NPC)M ](N≠2)≠ where N is the number of TFSI ions surrounding a central
Ca-ion, and M is the number of PC molecules surrounding said Ca ion, where
1 < M < 6, are almost indistinguishable experimentally.
By the computations in paper I the main Raman peaks in the region of interest could
be identified. From the combination of experimental Raman data and computational
DFT data we could confirm that the first solvation shell is retained when diluting
a Ca(TFSI)2:PC HCE with a fluorinated solvent, creating a LHCE. Hence, by
understanding the local structure we can make better predictions when searching
for, in this case, CaB-electrolytes that have the potential for SEI formation, meaning
they are more likely to cycle stably at room temperature.
Generalising from paper I and similar studies done in literature [106]–[108] we see
that by understanding the local structure the design of electrolytes can be aided.
DFT works well as a complementary method to Raman spectroscopy, amongst many
other experimental methods. However, even if DFT is a capable descriptive method,
in order to make predictions about structure ,DFT is not the most optimal method.
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(a) Band assignments of HCE and LE
through the use of DFT (symbol key
subFig. 4.1c).

(b) Band assignment when diluting
HCE from 3.256 m to a nominal 0.45
m LHCE (symbol key subFig. 4.1c).

(c) A symbol key to 4.1a and 4.1b
. Free PC (�), [Ca(PC)4]2+ (Y), free

TFSI (D), [Ca(TFSI)2] (I).

Figure 4.1: Use of DFT to elucidate the local bulk structure in electrolytes.
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Table 4.2: Comparison between selected experimental and computational DFT
Raman data. x̄ denotes the average Raman activity of the species.

Computational Experimental
Species Frequency [cm≠1] Raman Activity [Å4amu≠1] Raman shift [cm≠1]

PC 715 6.1 713
[Ca(PC)]2+ 735 7.1 Z

________________________________̂

________________________________\

[Ca(PC)4]2+ 738 12
738 10
739 15
742 15 x̄ = 13

[Ca(PC)5]2+ 736 22

721, 728, 734

737 0.16
739 15
739 8.3
743 17 x̄ = 12

[Ca(PC)6]2+ 732 21
732 19
733 0.52
733 0.21
734 1.9
737 22 x̄ = 11

[TFSI]≠ (C1) 755 2.8 741[TFSI]≠ (C2) 755 2.8
Ca[TFSI]2 (C1) 771 3.1

Z
________̂

________\

787 3.9
Ca[TFSI]2 (C2) 775 2.4 750778 10
Ca[TFSI]2 (D2) 770 1.1

771 5.3

Convention dictates that DFT structures are set up by a researcher according to
what is deemed feasible, with great success might add. However there are stark
limitations, mainly from said researchers imagination. We see in papers III and IV
many non-trivial structures can form (Fig 4.3, Fig 4.10), especially when looking
beyond the first solvation shell.
Hence, to enable large electrolyte screenings, one possible venue is to combine these
methods in the future. The local structures obtained from CHAMPION analyses
of MD data is great input to DFT simulations, and it provides a more replicable
representation of possible structures than an individual researchers intuition.

4.2 From Local to Global Structure
In paper II, III IV we identify how to use the newly developed CHAMPION method
together with AIMD simulations to gain knowledge of both the local and global
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electrolyte structure. AIMD enables simulations where the local interactions are
replicated accurately, as can be observed with the coordination number (CN) for
Li+ ¥ 4, which is common for LIB electrolytes based on small organic molecules,
regardless of composition [109], [110]. In many electrolytes CN is similar to the
solvation number (SN) since almost all coordinations are monodentate. This is,
however, not true for LiTFSI in ACN at higher concentrations where the SN is
closer to 3, even though the CN remains close to 4 due to more bidentate TFSI
coordination by Li+, which concurs with other studies [111]. These results from
paper III, studying LiTFSI:2ACN, are reflected in the common topologies (Fig.
4.3) found in the simulation.

Figure 4.3: The most common topologies around a Li cation in order of probability.
Element colors: purple: Li, red: O, blue: N, grey: C, white: H, yellow: S, green: F.

On a global scale we see that these structures form a percolating network, in a sea of
free solvent (Fig. 4.4), which is in sharp contrast to the common conception about
HCEs, where its unique behaviour is believed to stem from a lack of free solvent [99].
This view is also supported by the distribution of the number of ligands surrounding
both cation and anion (Fig 4.5). We see that a majority of TFSI-ions are coordinated
to two or more Li+, and focusing on the Li+-ion we similarly see that a majority
of these are also coordinated to two or more TFSI-ions, which can only occur if all
ions are part of one large, global structure.
The accuracy of this analysis scales with the number of ions and even for a concentrated
system such as this, system size and trajectory length are both on the smaller scale in
order to say something with statistical accuracy. Hence less concentrated systems,
such as LHCEs for example, require much larger simulations to enable the same
accuracy level as the analysis results of a HCE which more or less disqualify AIMD
for such systems.
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Figure 4.4: Snapshots of the periodic simulation cell, highlighting the percolating
network in a sea of solvent.

Figure 4.5: Distribution of (left) TFSI ions and ACN molecules coordinating to
Li+ and (right) Li+ ions coordinating to TFSI.

4.3 Role(s) of Salt Concentration
Extending on the structural analysis carried out in paper III, we showcase the
true strength of the CHAMPION software in paper IV by performing a screening
study of several similar systems. We are directly able to describe the emergence
of HCE behaviour by investigating the structural changes when increasing the salt
concentration of LiTFSI:ACN from 1:16, 1:9, 1:4, to 1:2. Similarly to the behaviour
we saw in paper III the percolating network is apparent in the 1:2 system in paper

33



4. Results & Discussion

IV, note that the behaviour is more extreme in this paper due to studying a more
equilibrated system (Fig 4.6). Comparing with experimental data performed by Seo
et al. [111] we see that the results obtained through our CHAMPION analysis of
data computed using PBE coincides well (Fig 4.7).

Figure 4.6: pSNACN (blue) and pSNTFSI (red) for the four electrolytes in paper
IV.

Figure 4.7: (p)CNs and (p)SNs, comparing our data with Seo et al.

Looking at the average and maximum aggregate size as well as the free fraction of
solvent and anion (Fig 4.8) we were able to show a clear trend towards forming a
large network structure at high concentrations. Also this agree well with literature
[111], [112] (Fig. 4.9). We stress that unlike conventional knowledge, which argue
that lack of free solvent being a key feature of HCEs, we show that even for the most
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extreme HCE a substantial amount of solvent remains free, an insight only made
possible by our deeper understanding of the electrolyte structure.

Figure 4.8: a) Average and maximum aggregate size in number of total ions
and solvent molecules in connected components, and b) fraction of free, i.e.
uncoordinated to Li+, anions and solvent molecules, as functions of electrolyte salt
concentration. (For 1:2 too few data points become available to make an error-bar
sensible in a).)

Figure 4.9: Fraction of free ACN and TFSI as function of LiTFSI molar fraction,
comparing our data with available data from literature.

Similarly the type of structure analysis CHAMPION enables gives a deeper understanding
in how the species distribution change as a function of concentration (Fig 4.10). A
clear picture emerges of how the local environment around lithium becomes more
complex the more salt is added, with the 1:16 LiTFSI:ACN system being fully made
up by the top five species, whilst in the 1:2 system less than 70% of the lithium
resides in the top five.
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Figure 4.10: The topologies and percentage fraction of the five most common local
structures for the four electrolytes.

Somewhat counter-intuitive given the previous insight, but still consistent with
literature [113], [114] the configurational entropy of LiTFSI in ACN decreases (Fig
4.11) as concentration rises. Even though local complexity rises, the global structure
gets more ordered, forming one big structure (Fig 4.8 a)), a percolating network.

Figure 4.11: Configurational entropy as a function of electrolyte salt concentration.

However, to make full use of these types of analysis, we would ideally like to
probe further along the temporal dimension, as well as have better statistics from
a larger sample. The method used to evaluate the forces, CPMD with the PBE
functional, generalise well to a wide array of systems, but AIMD still heavily impact
computational resources, making it non-viable for more exhaustive studies.
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4.4 The Dream of a Force Field to Rule Them All
As mentioned above large scale simulations must be utilised to make full use of
computational material science in general and the CHAMPION method in particular.
The systems that would benefit the most from this (HCEs, LHCEs, ionic liquids etc.)
employ FFs that usually do not capture the correct dynamics [14]. In this context,
paper V focuses on extending the functionality of CHAMPION by combining it with
the insights gained in Åvall & Johansson 2020 [20].
As a proof of concept the method was applied to the simplest case possible: a noble
gas modelled using a LJ potential and fit the raw data to a curve using a kernel
smoother.
The obtained r

2 = 0.923 (Fig 4.12) indicates that capture some of the dynamics,
but not yet at accuracy on par with conventional NN methods. Comparing with
Hellström and Behler’s [115] NN study of aqueous electrolytes with a root mean
squared error (RMSE), = 0.28 nN, our RMSE = 2.55 nN. Using the theoretical LJ
force curve, however, our RMSE = 0.28 nN.

Figure 4.12: a) Force-force scatter plot using both the computed and theoretical
LJ potential derivative to evaluate forces. r

2 calculated for the computed LJ-forces.
b) Computed and theoretical LJ potential derivative.

The remaider of paper V is still under development, where the full set of interaction
curves described by the natural internal coordinates for LiTFSI:ACN 1:9 is being
produced.
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Conclusion & Outlook

This thesis has studied battery electrolytes using computational means at di�erent
scales, and made suggestions for a work flow in order to better combine the strength
of each of the methods used at the di�erent scales. Starting with paper I studying
the local structure of electrolytes using DFT, and aiding in showing that the local
structure of HCEs are retained in LHCEs. From this we are able to create hypotheses
regarding macroscopic properties. In paper II we create a new method of detecting
structure in materials simulations, especially in liquids, which is used to aid us
describe the structural and transport behaviour we observe in papers III and IV,
enabling us to gain completely new insights into what might be the defining quality
of HCEs. Through understanding how the local structure gives rise to the global
structure, and how the global structure can be used to explain transport properties,
these two papers exemplify how computational methods open up a future where
materials science can be made more e�ective and predictive, especially building
upon the screening in paper IV with substantial gains in understanding to be had
pre-screening large amounts of materials. Especially if this methodology is combined
with experimental design schemes such as e.g. design of experiment (DOE) [116],
[117].

In order to enable such screenings to be viable, large scale MD simulations have
to be easily available. In paper V the development of a method trying to tackle
this problem was initiated, however much work is still needed on this method,
mainly on optimising the curve fitting algorithm as to obtain a closer fit to the
ideal curve. If successful this could open up for order of magnitude faster materials
computations; evaluating the xTB forces used in paper V took 208 core hours
at a modern supercomputer (vera@c3se), whilst evaluating the same forces using
the Åvall method took less than a minute using a single thread on a standard
laptop computer. In paper V we propose the following actions as a way forward in
developing the Åvall method:

• Optimize model parameters to better match force curves.
• Create a MD solver specialized in using this type of new FF.
• Showcase a better fit to theoretical forces.

Given all these pieces it would be interesting to study large scale simulations of
LHCEs and studying how these systems behave and what structures form on a
global scale. Especially the cumulative e�ects when large scale MD simulations
for any material quickly and cost e�ectively is combined with the CHAMPION
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analysis. Through such endeavours it will be most interesting, seeing what physical
properties can be explained this way. These types of studies should enable probing
the phase separation between the diluent and the HCE structures, making it possible
to study cluster formation, and cluster size, transport phenomena etc. Similarly the
combination of the methods presented in this thesis could provide an avenue to study
electrolyte-electrode interface and interphase interactions. From there on it is up to
the imagination of the reader to find interesting problems where these methods can
be applied.
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