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Modular Normalization with Types
N��������� V���������

Department of Computer Science & Engineering
Chalmers University of Technology

Abstract

With the increasing use of software in today’s digital world, software is becom-
ingmore andmore complex and the cost of developing andmaintaining software has
skyrocketed. It has become pressing to develop software using e�ective tools that
reduce this cost. Programming language research aims to develop such tools using
mathematically rigorous foundations. A recurring and central concept in program-
ming language research is normalization: the process of transforming a complex
expression in a language to a canonical form while preserving its meaning. Normal-
ization has compelling bene�ts in theory and practice, but is extremely di�cult to
achieve. Several program transformations that are used to optimise programs, prove
properties of languages and check program equivalence, for instance, are after all
instances of normalization, but they are seldom viewed as such.

Viewed through the lens of currentmethods, normalization lacks the ability to be
broken into sub-problems and solved independently, i.e., lacksmodularity. To make
matters worse, such methods rely excessively on the syntax of the language, making
the resulting normalization algorithms brittle and sensitive to changes in the syntax.
When the syntax of the language evolves due to modi�cation or extension, as it
almost always does in practice, the normalization algorithmmay need to be revisited
entirely. To circumvent these problems, normalization is currently either abandoned
entirely or concrete instances of normalization are achieved using ad hoc means
speci�c to a particular language. Continuing this trend in programming language
research poses the risk of building on aweak foundationwhere languages either lack
fundamental properties that follow from normalization or several concrete instances
end up being repeated in an ad hoc manner that lacks reusability.

This thesis advocates for the use of type-directed Normalization by Evaluation
(NbE) to develop normalization algorithms. NbE is a technique that provides an op-
portunity for a modular implementation of normalization algorithms by allowing us
to disentangle the syntax of a language from its semantics. Types further this oppor-
tunity by allowing us to dissect a language into isolated fragments, such as functions
and products, with an individual speci�cation of syntax and semantics. To illustrate
type-directed NbE in context, we develop NbE algorithms and show their applica-
bility for typed programming language calculi in three di�erent domains (modal
types, static information-�ow control and categorical combinators) and for a family
of embedded-domain speci�c languages in Haskell.

Keywords: programming language theory, normalization, type systems
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I
Introduction

The thesis underlying this bundle of papers, henceforth called a thesis, is:

Type-directed Normalization by Evaluation is a solution to the problem of
developingmodular normalization algorithms that are robust to extension.

Normalization is a broad term used for the process of transforming a program
into a canonical shape while preserving its meaning. The objective of normalization
can be fundamental (e.g., checking program equivalence or proving a property of a
program) or more practical (e.g., optimizing performance or analyzing a program).
By "modular" normalization, I mean the ability to decompose a normalization algo-
rithm into independent modules that can be reused under di�erent circumstances.

Normalization algorithms are currently implemented by rewriting the syntax
of a given program in accordance with certain reduction rules. For example, the
following reduction rule speci�es that an expression 0+ x can be rewritten to x.

0+ x 7! x

With su�cient reduction rules and sophisticated rewriting strategies, normalization
can be achieved even for complex languages. Rewriting techniques are neither the
enemy nor an ally of this thesis, but the di�culty with normalizing by rewriting
syntax lies in its very nature: it is a process sensitive to the syntax of the language.
When the syntax of the language is modi�ed or extended, a rewriting algorithm
may need to be revisited entirely. The goal of this thesis is to develop modular
normalization algorithms that are robust to modi�cation and extension.

To achieve its goal, this thesis1 employs a normalization technique known as
Normalization by Evaluation (NbE) in combination with the types of a language.
NbE avoids rewriting and instead normalizes a program by evaluating it in a suit-
able semantic domain. NbE provides an opportunity for a modular implementation
of normalization by decoupling the syntax of a language from its semantics. Types
further this opportunity by allowing us to dissect a language into isolated fragments,
such as functions and products, with an individual speci�cation of syntax and se-
mantics. Explaining the sorcery of NbE and illustrating its potential in the presence
of types for implementing modular normalization algorithms for well-typed func-
tional programming languages is the main non-technical contribution of this thesis.

1an extended version of my licentiate thesis [38]
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Modular Normalization with Types

I.1 Why Normalization Ma�ers
In the design and implementation of programming languages, normalization is a
recurring concept of central importance. The main bene�t of normalization lies in
its ability to reduce in�nitely large equivalence classes of terms identi�ed by their
semantics to their normal forms, thus vastly reducing the set of terms that we must
take into consideration while reasoning about the language. In programming lan-
guages, normalization may have several objectives:

• Checking program equivalence: How dowe know if the integer expressions 2+
2 ⇤ (x � 1) and 4 ⇤ (x � 1) are equal? We can normalize them to 2 ⇤ x and
(4 ⇤ x) � 4 respectively, and observe that they are not equal unless x = 2.
Normalization is widely used to check the equivalence of programs and proofs
in the implementation of dependently typed languages and proof assistants.

• Implementing program optimization: Normalization can be used to optimise
a program. The integer expression 2 + 2 ⇤ (x � 1) contains the unnecessary
overhead of evaluating known arithmetic operations on literal numbers, and
can be optimally replaced by 2 ⇤ x without changing its meaning.

• Proving properties of complex type systems: Type systems enable the detec-
tion and prevention of errors in a program before executing it by associating
every expression in the language with a type. For example, the type assign-
ment 2 : Int denotes that the expression literal 2 has the integer type Int.
The integrity of a complex type system lies within its ability to correctly asso-
ciate a value to its expected type, and not, for example, incorrectly associate
a string literal "hello" to the type Int. This property, called canonicity, can
be proved with normalization by showing that canonical forms of all (closed)
expressions with type Int are in fact integers.

• Proving completeness of semantic speci�cation: How do we know that a speci-
�cation of the semantics of a language is complete? That is, how do we know
that we have not missed an intended equivalence between two expressions
in a language such as (x + y) ⇤ z ⇡ (x ⇤ z) + (y ⇤ z)? Normalization allows us
to prove completeness with respect to a semantic model of the language that
de�nes the expected speci�cation, and thus allows us to gain con�dence in its
completeness with respect to the model.

Normalization is also prevalent in other areas of logic and computer science. For
example, in formal logic, normalization is used to prove meta-theoretic properties of
a proof system such as logical consistency and the subformula property. In formal
veri�cation, normalization is used to convert a logical formula to a normal form for
the purpose of deciding its truth. Similarly normalization is also used in databases
to eliminate data redundancy and improve the integrity of data in a database. This
thesis is developed in the context of programming languages, particularlywell-typed
functional programming languages, but it may have applications beyond this area.
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I. Introduction

I.2 The Sorcery of Normalization by Evaluation
This subsection gives an introduction to the essence of NbE by illustrating the im-
plementation of an NbE algorithm for an extremely simple language: arithmetic
expressions consisting of the addition of natural numbers. For this purpose, we en-
code the natural numbers 0 as Zero, 1 as Succ Zero, 2 as Succ (Succ Zero), and so
on, using a constant symbol Zero and a successor function Succ. Addition in a given
expression can be reduced using one of the two following reduction steps.

Zero+ x 7! x

(Succ x) + y 7! x + (Succ y)

The reduction relation 7! speci�es how an expression must be reduced to another
expression. Using this speci�cation, the expression 1+2 can be normalized to 3 by
reducing it as follows.

Succ Zero+ Succ (Succ Zero) (1 + 2)
7! Zero+ Succ (Succ (Succ Zero)) (0 + 3)
7! Succ (Succ (Succ Zero)) (3)

Observe that we rewrite the expression twice before reaching the normal form,
which cannot be reduced anymore since none of the reduction steps apply. Complex
expressions may need to be rewritten several times before a normal form is reached.
Rewriting is the basis for traditional normalization procedures, while NbE, on the
other hand, does not involve any rewriting.

NbE achieves normalization in two steps: 1) evaluating the expressions in a
“host” language, and 2) quoting (sometimes called reifying) the resulting values back
to expressions. Let us implement NbE for our example language using the program-
ming language Haskell as the host.

• Evaluation: We implement the �rst step using an interpreter function called
eval. This function interprets natural numbers as integers and the addition
of natural numbers by addition of integers.

eval :: Expr Nat -> Int
eval Zero = 0
eval (Succ x) = eval x + 1
eval (x + y) = eval x + eval y

• Quotation: The second step is to invert the integer values back to natural num-
ber expressions, and is implemented by a function called quote. This function
need not be de�ned on all integer values, but only on the values that may be
returned by eval.

quote :: Int -> Expr Nat
quote 0 = Zero
quote n = Succ (quote (n - 1))
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This Thesis

Paper A
(Modal Calculi)

Paper B
(EDSLs in Haskell)

Modular NbE

Applications of NbE

Paper C
(Static Noninterference)

Paper D
(Exponential Elimination)

Figure I.1: Outline of this thesis

We implement the normalization procedure by a function norm that applies quote
on the result of eval.

norm :: Expr Nat -> Expr Nat
norm e = quote (eval e)

Observe that an invocation of norm on the expression Succ Zero+Succ (Succ Zero)
does indeed return its normal form Succ (Succ (Succ Zero)). norm uses the ability
of Haskell to evaluate the addition of integers to normalize the addition of natural
numbers. This function can be extended easily to other arithmetic operators, and,
with some care, even to support variables and other unknowns in expressions.

This seemingly simple idea to leverage a host language’s evaluation mecha-
nism to normalize expressions extends much beyond arithmetic expressions, and
has found a wide range of applications. NbE has been used to achieve normalization
results in various programming calculi [2, 7, 9, 18, 24, 30], decide equality in alge-
braic structures [4], typecheck dependently-typed programming languages [3, 25],
and to prove completeness [5, 17] and coherence [10] theorems. NbE algorithms
have been observed to yield much faster normalization than their rewriting coun-
terparts [8, 29], and there is also evidence that indicates that it can be used to speed
up compilation in optimizing compilers [29].

I.3 Fistful of Problems and This Thesis

This section gives an overview of the problems addressed in this thesis by the pa-
pers in the forthcoming chapters. These problems occur independently in di�erent
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I. Introduction

domains, and thus the following subsections may be read in any order. These sub-
sections discuss the interest in these problems (and their domains) and provide an
introduction to the corresponding chapters—see Figure I.1 for an outline.

I.3.1 Fitch-Style Modal Calculi
Modal types In type systems, amodality can be broadly construed as a unary type
constructor with certain properties. Type systems with modalities have found a
wide range of applications in programming languages to capture and specify prop-
erties of a program in its type. For example, in language-based security, a �eld
dedicated to developing secure programming languages, a substantial number of
languages use modalities to ensure sensitive data is not leaked to an unauthorized
principal [27]. Using a modal type Secret Int, the programmer can indicate via
the modality Secret to the type system that the underlying integer value must be
kept a secret. The type system automatically tracks the �ow of this integer in the
program and prevents the need for a careful and error-pronemanual analysis. Modal
type systems o�er a form of lightweight and low cost alternative to formal veri�-
cation of programs for preventing software errors since type systems are a familiar
abstraction used widely in mainstream programming languages.

The design and implementation of modal type systems for various applications
is a vibrant area of ongoing research. Di�erent applications may demand di�erent
modal operations, which means there can be several di�erent kinds of modalities.
The necessitymodality is one suchmodality that has found applications inmodelling
purity in an impure functional language [13], con�dentiality in information-�ow
control [32], and binding-time separation in partial evaluation and staged computa-
tion [20].

Fitch-style modal calculi Fitch-style modal lambda calculi [12, 16, 31] feature ne-
cessity modalities in a typed lambda calculus by extending the typing context with
a delimiting "lock" operator. The characteristic lock operator simpli�es formulating
calculi that incorporate di�erent modal operations and these calculi have excellent
computational properties. Each variant demands, however, di�erent, tedious and
seemingly ad hoc treatment to prove meta-theoretic properties such as normaliza-
tion. In Chapter A, we identify the possible-world semantics of Fitch-style calculi
and use it to develop normalization. The possible-world semantics enables a modu-
lar implementation of normalization for various Fitch-style calculi by isolating their
di�erences to a speci�c parameter that identi�es the modal fragment. We show-
case several consequences of normalization for proving meta-theoretic properties
of Fitch-style calculi based on di�erent interpretations of the necessity modality in
programming languages, such as capability safety, noninterference and a form of
binding-time correctness.

I.3.2 Embedded Domain-Specific Languages
Overview An embedded domain-speci�c language (eDSL) is an implementation of
a domain-speci�c language (DSL) as a library in a host language. Implementing a
DSL as an eDSL o�ers two main advantages:
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• The programmer can leverage the features of the host, typically a more pow-
erful general purpose programming language, to write programs in the eDSL.

• Developing an eDSL compiler requires much lesser e�ort than building a dedi-
cated DSL compiler, since the host language’s compiler can be reused for stan-
dard compilation phases such as lexical analysis, parsing and type-checking.

The tradeo�, however, is that programming an eDSL may require some famil-
iarity of the host language.

Let us consider the example with arithmetic expressions again. The following
library functions in Haskell constitute an eDSL to write simple arithmetic expres-
sions.

val :: Int -> Expr Int
(+) :: Expr Int -> Expr Int -> Expr Int
(*) :: Expr Int -> Expr Int -> Expr Int

Using these functions, we can write the expression 1+2 as val 1 + val 2.
Suppose that we would like to write an expression xn that represents the n-th

power of an expression x, for some known non-negative integer n. How should we
do this when exponentiation is not a primitive function provided by the eDSL? If this
were a mere DSL, we would write x ⇤ x ⇤ x for x3, for example, since multiplication
is provided. In an eDSL, however, we can take this a step further to write a generic
power function that generates this expression automatically for an arbitrary integer
n.

power :: Int -> Expr Int -> Expr Int
power n x = if (n <= 0) then x else (x * (power (n - 1))

Using the power function, we may write power 8 x for x8 instead of x ⇤ x ⇤ x ⇤
x ⇤x ⇤x ⇤x ⇤x. The former variant is concise, less error-prone and also makes it easy
to modify and reuse code.

Notice that the de�nition of the power function uses Haskell’s features such as
conditionals (if ...), comparison (n <= 0) and function recursion (power (n - 1)).
Even if the eDSL does not implement these features natively, we are able to use
them to write expressions. EDSLs make it easy to derive additional functionality
by leveraging those the host language. EDSLs, speci�cally in Haskell, have found a
wide range of applications: hardware description [11], digital signal-processing [6],
runtime veri�cation [21, 35], parallel and distributed programming [14, 23], GPU
programming [15]—and the list goes on.

Compiling EDSLs In an eDSL program we may think of a value of type Int as a
static integer that is known at compile-time, and a value of type Expr Int as a dy-
namic integer that is known only at runtime. This stage separation of values as static
and dynamic corresponds to a manual form of binding-time analysis in partial eval-
uation [26], and presents an opportunity to exploit Haskell’s execution mechanism
to evaluate static computations in an eDSL program.

8
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Though separation of stages enables the programmer to manually specify those
parts of an eDSL program that must be evaluated by Haskell, it also burdens them
to maintain multiple variants of the same program. In addition to power function
de�ned above, wemay also desire the several variants of the exponentiation function
as follows, each corresponding to a di�erent separation of stages for its arguments
and result.

power0 :: Int -> Int -> Int
power1 :: Int -> Expr Int -> Expr Int
power2 :: Expr Int -> Int -> Expr Int
power3 :: Int -> Int -> Expr Int
...

NbE o�ers a modular solution to this problem by making specialization auto-
matic, without the need for manual stage separation. Chapter B shows that typed
NbE is particularly well-suited for specializing eDSL programs in Haskell given the
natural reliance on a host language. We argue that existing techniques for embed-
ding DSLs in Haskell (e.g., [37]), which may at �rst seem somewhat ad hoc, can be
viewed as instances of NbE after all.

I.3.3 Language-Based Security

Information-Flow Control. Information-Flow Control (IFC) is a language-based
security enforcement technique that guarantees the con�dentiality of sensitive data
by controlling how information is allowed to �ow in a program. The guarantee that
programs secured by an IFC system do not leak sensitive data is often proved using
a property called noninterference. Noninterference ensures that an observer autho-
rized to view the output of a program (pessimistically called the attacker) cannot
infer any sensitive data handled by the program from its output.

Proof by Normalization. To prove that an IFC system ensures noninterference,
we must show that the public output of secured programs remain una�ected by
variations in its secret inputs. If the output remains una�ected by a given input,
then it must be the case that it does not depend on the input to compute the output—
thus ensuring that the attacker could not possibly learn about the secret inputs.
Such programs may refer to the secret input in its body, but they must not use it to
compute the public output.

Chapter C proposes a new syntax-directed proof strategy to prove noninterfer-
ence for well-typed programming calculi that enforce static IFC. The key idea of
this chapter is to use normalization to eliminate any unnecessary input references
in a program, leaving behind references that are only absolutely necessary to com-
pute the result. Noninterference is then proved by ensuring that no public output
depends on a reference to a secret input in the normal form of a program—a task
that is much simpler than most semantics-based proof techniques. This technique
is illustrated for a model of the terminating fragment of the seclib library [36] in
Haskell, which is a simply-typed lambda calculus extended with IFC primitives.

9



Modular Normalization with Types

I.3.4 Categorical Combinators
Combinator Calculi. Combinators can be understood as program building blocks
which can be assembled in various ways to construct programs. In functional pro-
gramming, a combinator is a primitive higher order function, which can be applied
to and composed with other combinators to build more complex functions. Unlike
programming languages based on the lambda calculus, combinators lack a notion
of variables. In practice, this means that programming using combinators can be
an unbearable task and should probably be avoided at all costs. But then, why care
about combinators at all?

“...roughly �-calculus is well-suited for programming, and combinators (of
Curry, or those introduced here) allow for implementations getting rid of
some di�culties in the scope of variables.”
—P.-L. Curien (1985, Typed Categorical Combinatory Logic)

The output of a function in the lambda calculus is computed using a process
known as �-reduction. The primary di�culty with �-reduction lies in its very def-
inition: the output of a function �x.b for some input i is computed by substituting
all occurrences of the argument variable x, in the body of the function b, with the
actual input i . This statement is succinctly captured by the �-rule:

(�x.b)i 7! b[i/x]

This rule states that a function �x.b when applied to an argument i , can be reduced
to a simpler term b[i/x], which is the result of substituting all occurrences of xwith i
in the body of the function b. Although substitution readily appeals to the intuition
of replacement, there are a number of auxiliary conditions that must be checked
before the actual replacement of x with i . For this reason, substitution has long had
a reputation for being notoriously di�cult to implement and reason about.

Combinators, on the other hand, avoid the need for substitution by disallow-
ing variables entirely. Instead, they adopt a style of reduction that relies on simply
“shifting symbols”. The (categorical) combinator equivalent of the �-rule is, what I
like to call, the exponential elimination rule:

apply � h⇤b, ii 7! b � hid, ii
This rule reads as: the application (apply) of a function (⇤b) to an argument (i) can be
reduced to a composition of the body (b) with its input (i) in an appropriate manner.
The operator _�_ denotes the sequencing, or composition, of two combinators and
h_,_i denotes the coupling, or pairing, of two combinators. We shall return to the
speci�cs of this rule in a later chapter, but simply observe here that it does not use
the substitution operation on the right-hand side, and that the body of the function
(b) remains unmodi�ed.

The absence of substitution, an external operation, means that we need not im-
pose additional correctness criteria over the computation rules—which is great news
for formal reasoning! In essence, the very characteristic of combinators that makes
them impractical for programming also makes them amenable to implementation
and reasoning: the lack of variables.

10
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Categorical Combinators. Categorical combinators are combinators designed af-
ter arrows, ormorphisms, in category theory. They were introduced by Pierre-Louis
Curien as an alternative to the SKI combinator calculus to implement functional
programming languages.

The primary motivation behind categorical combinators appears to be two-fold:
1) to faithfully simulate reduction in lambda calculus without the di�culty of vari-
able bindings, and 2) to establish a syntactic equivalence theorem between the lambda
calculus and the categorical model underlying the combinators—namely, the (free)
cartesian closed categories. Categorical combinators o�ered an appealing alterna-
tive to Church’s more popular SKI combinator calculi, since their design is based
on a semantic model. This means that the reduction rules of the combinators arise
naturally from the model rather than having to be imposed.

“...categorical combinatory logic is entirely faithful to �reduction where
[Curry’s SKI] combinatory logic needs additional rather complex and un-
natural axioms to be...”
—P.-L. Curien (1986, Categorical Combinators)

Categorical combinators were used to formulate the Catergorical Abstract Ma-
chine (CAM) [19], which was used to used to implement early versions of Caml—the
predecessor of the OCaml programming language. Later versions of Caml, however,
did not use CAM due to performance issues and di�culty with optimizations 2. De-
spite its failure in use for compiling a programming language in practice, the ease of
formulating an abstract machine for categorical combinators (noted in [1]) seems to
have in�uenced several variants of CAM, an example of which is the Linear Abstract
Machine [28].

In recent times, variants of (what appear to be) categorical combinators have
reappeared in practical applications. They have been used to compile Haskell code
using user-de�ned interpretations [22] and in the development of a language for
executing smart contracts on the blockchain [34].

Exponential elimination. Exponentials are the equivalent of higher-order func-
tions in categorical combinator calculi. The runtime representation of an exponen-
tial is a closure, a value accompanied by an environment. Adding support for closures
complicates the implementation of the abstract machine, and makes certain static
analyses di�cult [39]. In [22], exponentials narrow the domain of target interpreta-
tions that are supported by the compiler.

The exponential elimination rule from earlier indicates that exponentials can be
eliminated in a speci�c case. This makes us wonder: can exponentials be eliminated
statically by applying this rule repetitively on a program? This would solve both
the above problems. Without a careful analysis, however, it is di�cult to answer
this question, since there may be interactions with other rules in the calculus that
prevent exponential elimination rule from being applied.

Chapter D shows that exponential elimination can be achieved for categorical
combinators with sums and products, in the presence of a special distributivity com-
binator that distributes products over sums. The ability to erase the equivalent of

2https://caml.inria.fr/about/history.en.html
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higher-order functions in functional calculus (known as defunctionalization) is not
news [33], but the distributivity requirement is a somewhat surprising insight. A
technical challenge faced by this result is the presence of the empty and sum types,
both of which are known for making normalization notoriously di�cult.
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II
Statement of contributions

This thesis is a bundle of articles published at di�erent venues focused on pro-
gramming language research. The initial conception, overall development and writ-
ing of all these articles were led by me. This chapter outlines my individual contri-
butions to their technical development alongside a listing of their abstracts.

A Normalization for Fitch-Style Modal Calculi
Nachiappan Valliappan, Fabian Ruch, Carlos Tomé Cortiñas

Fitch-style modal lambda calculi enable programming with necessity modali-
ties in a typed lambda calculus by extending the typing context with a delimiting
operator that is denoted by a lock. The addition of locks simpli�es the formula-
tion of typing rules for calculi that incorporate di�erent modal axioms, but each
variant demands di�erent, tedious and seemingly ad hoc syntactic lemmas to prove
normalization. In this work, we take a semantic approach to normalization, called
normalization by evaluation (NbE), by leveraging the possible-world semantics of
Fitch-style calculi to yield a more modular approach to normalization. We show that
NbE models can be constructed for calculi that incorporate the K, T and 4 axioms of
modal logic, as suitable instantiations of the possible-world semantics. In addition
to existing results that handle �-equivalence, our normalization result also consid-
ers ⌘-equivalence for these calculi. Our key results have been mechanized in the
proof assistant Agda. Finally, we showcase several consequences of normalization
for proving meta-theoretic properties of Fitch-style calculi as well as programming-
language applications based on di�erent interpretations of the necessity modality.

Statement of contributions I independently mechanized the �rst Agda prototype
using the categorical semantics of Fitch-style calculi and identi�ed the common pat-
tern in the construction of their NbE models. Fabian showed me a connection to
possible-world semantics in modal logic that gave a systematic and elegant account
of this pattern. This convinced me to factor the construction of the NbE models
through possible-world semantics, roughly midway during this development, from
which point onwards Fabian and I co-developed the remaining technical results.
Carlos helped us explore and understand the applications of these calculi.

Appeared in: Proceedings of the ACM on Programming Languages Vol 6. ICFP (2022)
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B Practical Normalization by Evaluation for EDSLs
Nachiappan Valliappan, Alejandro Russo, Sam Lindley

Embedded domain-speci�c languages (eDSLs) are typically implemented in a
rich host language, such as Haskell, using a combination of deep and shallow em-
bedding techniques. While such a combination enables programmers to exploit the
execution mechanism of Haskell to build and specialize eDSL programs, it blurs
the distinction between the host language and the eDSL. As a consequence, exten-
sion with features such as sums and e�ects requires a signi�cant amount of inge-
nuity from the eDSL designer. In this paper, we demonstrate that Normalization
by Evaluation (NbE) provides a principled framework for building, extending, and
customizing eDSLs. We present a comprehensive treatment of NbE for deeply em-
bedded eDSLs in Haskell that involves a rich set of features such as sums, arrays,
exceptions and state, while addressing practical concerns about normalization such
as code expansion and the addition of domain-speci�c features.

Statement of contributions I developed all the technical results in this paper un-
der the supervision of Alejandro. Sam helped us understand and survey earlier work
(some unpublished) that set out to leverage NbE to embed DSLs.

Appeared in: Proceedings of the 14th ACM SIGPLAN International Symposium on
Haskell (2021)

C Simple Noninterference by Normalization
Carlos Tomé Cortiñas, Nachiappan Valliappan

Information-�ow control (IFC) languages ensure programs preserve the con�-
dentiality of sensitive data. Noninterference, the desired security property of such
languages, states that public outputs of programs must not depend on sensitive in-
puts. In this paper, we show that noninterference can be proved using normalization.
Unlike arbitrary terms, normal forms of programs are well-principled and obey use-
ful syntactic properties—hence enabling a simpler proof of noninterference. Since
our proof is syntax-directed, it o�ers an appealing alternative to traditional semantic
based techniques to prove noninterference.

In particular, we prove noninterference for a static IFC calculus, based onHaskell’s
seclib library, using normalization. Our proof follows by straightforward induc-
tion on the structure of normal forms. We implement normalization using normal-
ization by evaluation and prove that the generated normal forms preserve semantics.
Our results have been veri�ed in the Agda proof assistant.

Statement of contributions Carlos and I shared the technical development in this
work. I constructed most of the NbE model and proved it correct, while Carlos
helped me understand, formulate and prove noninterference.

Appeared in: Proceedings of the 14th ACM SIGSAC Workshop on Programming Lan-
guages and Analysis for Security (2019)
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II. Statement of contributions

D Exponential Elimination forBicartesianClosedCat-
egorical Combinators

Nachiappan Valliappan, Alejandro Russo

Categorical combinators o�er a simpler alternative to typed lambda calculi for
static analysis and implementation. Since categorical combinators are accompanied
by a rich set of conversion rules which arise from categorical laws, they also o�er a
plethora of opportunities for program optimization. It is unclear, however, how such
rules can be applied in a systematic manner to eliminate intermediate values such as
exponentials, the categorical equivalent of higher-order functions, from a program
built using combinators. Exponential elimination simpli�es static analysis and en-
ables a simple closure-free implementation of categorical combinators—reasons for
which it has been sought after.

In this paper, we prove exponential elimination for bicartesian closed categori-
cal (BCC) combinators using normalization. We achieve this by showing that BCC
terms can be normalized to normal forms which obey a weak subformula property.
We implement normalization using Normalization by Evaluation, and also show that
the generated normal forms are correct using logical relations.

Statement of contributions I developed all the technical results in this paper un-
der the supervision of Alejandro.

Appeared in: Proceedings of the 21st International Symposium on Principles and Prac-
tice of Declarative Programming (2019)
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