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Fast evaluation of the adsorption energy  
of organic molecules on metals via graph 
neural networks

Sergio Pablo-García    1,2,3,10, Santiago Morandi    1,4,10, 
Rodrigo A. Vargas-Hernández2,5, Kjell Jorner2,3,6, Žarko Ivković    1, 
Núria López    1  & Alán Aspuru-Guzik    2,3,5,7,8,9 

Modeling in heterogeneous catalysis requires the extensive evaluation 
of the energy of molecules adsorbed on surfaces. This is done via density 
functional theory but for large organic molecules it requires enormous 
computational time, compromising the viability of the approach. Here 
we present GAME-Net, a graph neural network to quickly evaluate the 
adsorption energy. GAME-Net is trained on a well-balanced chemically 
diverse dataset with C1–4 molecules with functional groups including N, O, S 
and C6–10 aromatic rings. The model yields a mean absolute error of 0.18 eV 
on the test set and is 6 orders of magnitude faster than density functional 
theory. Applied to biomass and plastics (up to 30 heteroatoms), adsorption 
energies are predicted with a mean absolute error of 0.016 eV per atom.  
The framework represents a tool for the fast screening of catalytic materials, 
particularly for systems that cannot be simulated by traditional methods.

Metal/organic interfaces are key to several fields including electron-
ics, protective coatings and, in particular, heterogeneous catalysis1. 
Adsorption of organic species on metallic surfaces can be evaluated via 
density functional theory (DFT); this approach has been successfully 
applied to molecules containing up to one to six carbon atoms (C1–6). 
However, DFT simulations become computationally expensive when 
dealing with: (1) large molecules with non-rigid bonds; (2) amorphous, 
partially disordered and/or polymeric structures; and (3) molecules 
with several conformations resulting in different bond patterns. There-
fore, faster tools are needed to estimate the interaction of molecules 
derived, for instance, from plastics and biomass, but keeping the accu-
racy of DFT2,3.

Large organic molecules can be seen as composed of different 
functional groups, and their structural information can be used to 

infer the molecular thermodynamic properties4,5 through Benson’s 
equation6,7:

Tm =
N
∑
i=1

Ti + cm, (1)

where the thermodynamic property Tm of a molecule containing N 
functional groups is obtained as the sum of each group contribution 
Ti plus a constant cm associated with the molecular property. Despite 
its simplicity, Benson’s equation has an impressive accuracy for the 
formation energy of small gas-phase molecules such as hydrocar-
bons, alcohols and ethers, with errors lower than 0.05 eV (ref. 8). 
However, the description of radicals and strained rings requires 
additional corrections9.
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In this article, we present GAME-Net (Graph-based Adsorption on 
Metal Energy-neural Network), a GNN model trained on an extensive 
DFT dataset consisting of closed-shell organic molecules (3,315 entries 
and common functional groups) adsorbed on transition metal surfaces, 
able to estimate the adsorption energy with an error comparable to 
DFT, using a simple molecular representation. GAME-Net can be used 
for predicting the adsorption energy of larger molecules derived from 
biomass, polyurethanes and plastics, allowing the study of chemical 
systems that are not amenable to DFT.

Results
Our goal is to obtain the DFT ground-state energy of a closed-shell 
organic molecule on a metal surface, using the simplest graph repre-
sentation. To this end, we followed the procedure illustrated in Fig. 1.

The workflow consists of the following steps: (1) generation and 
curation of the ‘functional groups’ (FG)-dataset, consisting of organic 
molecules with representative functional groups adsorbed on close-
packed metal surfaces; (2) development of the graph representation 
for the adsorption and gas-phase systems from the DFT-optimized 
geometries; (3) design, training and testing a GNN model with the FG-
dataset; and (4) assessment of the model performance with a dataset of 
larger molecules (‘big molecules’ (BM)-dataset, up to 22 carbon atoms) 
of industrial relevance including plastics, polyurethanes and biomass.

To start, we built the FG-dataset from scratch including 207 organic 
molecules adsorbed on 14 transition metals (Ag, Au, Cd, Co, Cu, Fe, Ir, 
Ni, Os, Pd, Pt, Rh, Ru and Zn) on their lowest-surface-energy facets. 
All generated computational data are available from the ioChem-BD 
repository44,45. The included molecules span the most common func-
tional groups in organic chemistry containing N, O and S heteroatoms 
(Supplementary Section 1 and Supplementary Tables 1–9): (1) non-
cyclic hydrocarbons; (2) O-functionalized (alcohols, ketones and alde-
hydes, ethers, carboxylic acids and carbonates); (3) N-functionalized 
(amines, imines and amidines); (4) S-functionalized (thiols, thioalde-
hydes and thioketones); (5) N- and O-functionalized combinations 
(amides, oximes and carbamate esters); and (6) aromatic molecules 
with up to two rings, also containing heteroatoms. Geometries were 
automatically generated and relaxed at the DFT PBE-D2 reparameter-
ized for metals level following the rules described in Supplementary 
Section 2 and ‘Automation of DFT data generation’ in Methods. For 
each molecule, we sampled a number of rotational configurations and 

Attempts to transfer the Benson model to adsorption on metals 
have failed. This occurs because when molecules interact with sur-
faces, some internal bonds weaken and the corresponding density is 
responsible for the new bonds with the surface. This is known as the 
bond-order-conservation theory and was employed in early adsorption 
schemes10. Other additivity models derived from explicit DFT geom-
etries and bond-counting techniques have faced some limitations11–15. 
However, a recent successful example of a group additivity scheme was 
presented for the determination of the free energy of 200 adsorbates 
and 151 reaction barriers in ethanol aqueous phase reforming on Pt, 
showing errors of around 0.12 eV (ref. 15). More recently, machine 
learning approaches14,16–19, for instance, artificial neural networks 
(ANNs), have been introduced to obtain the adsorption energy of small  
C1–3 fragments20–22.

An alternative representation of molecules on surfaces is through 
graphs. The graph compresses the information of the atoms and the 
connectivity in a simple data structure, in an analog way to Benson’s 
approach. Graph neural networks (GNNs), which are ANNs for the 
graph data structure type23–26, have been successfully applied to pre-
dict chemical properties of molecules and materials27,28. For gas-phase 
molecules, GNNs have been able to predict molecular properties and 
their solvation energy with exceptional performance29–31. Extending to 
materials, specific convolutional graph layers can describe periodicity 
and predict the structure of metals and crystals32,33. For the adsorption 
of molecules on metals, GNNs have been used to estimate the DFT 
binding energy of small species (up to C2 with O and N)20 in the Open 
Catalyst Project28,32,34–37. Moreover, GNNs have been used to assess lat-
eral adsorbate–adsorbate interactions38. Taking eight C1–2 fragments on 
metals with different adsorbate–surface connectivity (1,422 points), a 
previous study39 coupled a graph kernel to a Gaussian process regressor 
and obtained a reasonable performance for small molecules in a variety 
of metal and alloy surfaces (root mean square error 0.30 eV)40. Another 
study devised an algorithm to explore 108 potential configurations 
of species with up to 6 carbon and oxygen atoms on 11 metals19. The 
workflow was built based on a graph enumeration platform, force field, 
DFT and machine learning, and was able to rapidly screen the stability 
of the configurations by introducing a fingerprint-like descriptor-based 
logistic regression19. As new GNN architectures trained to target addi-
tional chemical properties appear41,42, finer-granularity graph models 
are emerging43, creating a complete toolbox to address complexity.
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GAME-Net

Atom

E{i,GNN}

Linear Convolutional Pooling

Level

FG-dataset

Model training

Graph 
representation

Neighbors Ensemble

BiomassPolyurethanesPlastics

BM-dataset

(1)

(2) (3)

(4)

Fig. 1 | Schematic illustration of the workflow for GAME-Net. Starting from the 
DFT FG-dataset containing small adsorbates (3,315 points; step 1), we transform 
the sample adsorption systems to their corresponding graph representation 
(molecule and metal atoms directly interacting with the adsorbate) (step 2) to 

train the proposed GNN architecture (step 3). The final purpose is using GAME-
Net to estimate the adsorption energy of big molecules C<23 on metal surfaces 
present in the BM-dataset (step 4) avoiding the use of computationally expensive 
DFT calculations.
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different adsorption positions on the metal surface, retaining only the 
lowest-energy configuration.

Graph representation
To build the graph to be used as input to the GNN, we started from the 
relaxed three-dimensional (3D) atomic coordinates. In the graphs, 
each atom is treated as a node storing its nature (element), while the 
bonds are taken as the edges. When interacting with the metal, the cor-
responding graph needs to incorporate the formed metal–adsorbate 
(M–A) bonds. We developed an algorithm to convert the adsorption 
structures into their corresponding graph representation. Figure 2 
shows an example of the transformation process. Starting from the 
relaxed DFT geometry, we apply a modified version of the Voronoi 
tessellation algorithm46.

The criterion to select the M–A bonds uses a slightly modified set 
of the atomic radii based on those of ref. 47. Then, the graph represen-
tation contains all the molecule atoms and the metal atoms directly in 
contact with the adsorbate (M–A). We decided to keep our graph rep-
resentation as simple as possible. The chemical element for each node 
is included in a one-hot encoding representation (Supplementary 
Section 2 and Supplementary Fig. 1), while the edges do not contain any 
chemical information of the bonds. The one-hot encoding is needed 
to convert categorical variables (as atomic elements) into machine-
learning-suitable data structures. A set of filters is applied to the raw 
graph FG-dataset to avoid the presence of spurious representations 
during the training process (Supplementary Fig. 2). Detailed informa-
tion regarding the conversion and curation procedure can be found in 
‘Graph representation algorithm’ in Methods and Supplementary Fig. 3.  
To train the GNN, the generated graphs need to be labeled with their 
DFT energy. In this way, the energy of the total system EA/M (adsorb-
ate on metal) is targeted, but this would imply accounting for the full 
metal graph, which is computationally heavy and complex to handle. 
Thus, we followed a Δ-ML approach48; the Δ learnt is the change in 
the energy of the molecule due the interaction with the metal. Our 
final target is the adsorption energy, Eads, of the organic molecule, 
obtained as follows:

Eads = EA/M − EM − EA (2)

where EA/M is the energy of the adsorption system, EM the energy of 
the clean metal slab and EA the gas-phase molecule energy. Instead of 
this standard value, here we use a proxy energy, E{i,DFT}, containing the 
first two terms:

E{i,DFT} = EA/M − EM (3)

In this way, E{i,DFT} accounts for the energy of adsorbate i and the 
perturbations caused by the bonding to the surface. This value is the 

target of GAME-Net (E{i,GNN}). To get the adsorption energy, the energy 
of the gas-phase molecule should be subtracted.

Model architecture
The adsorbed molecule graph can then be input into a neural network. 
GNNs are a type of ANN able to handle variable-size non-Euclidean data, 
represented as graphs. GAME-Net is built by assembling three building 
blocks: (1) fully connected layers, (2) convolutional layers and (3) a 
pooling layer. The first two blocks work at the node level. The fully con-
nected layers apply a transformation to the embedding of the nodes. 
The convolutional layers exploit the graph connectivity, capturing the 
information from the embedding of the neighbors. The pooling layer 
allows the transformation from the node level to a graph-level represen-
tation predicting the energy, E{i,GNN}. GAME-Net adopts GraphSAGE49 as 
the convolutional layer and the Graph Multiset Transformer (GMT) as 
the pooling layer50. The architecture of GAME-Net has been defined by 
performing an extensive hyperparameter optimization study consider-
ing both architecture and training-related variables. Details about this 
process can be found in ‘Hyperparameter optimization’ in Methods. In 
total, GAME-Net has 285,761 parameters, and its detailed architecture 
is described in ‘GAME-Net architecture’ in Methods.

Model performance
To estimate the generalization performance of GAME-Net with the FG-
dataset in a robust way, we applied a fivefold nested cross-validation, 
performing a total of 20 learning processes with unique combinations 
of training, validation and test sets (more details in ‘Model training’ in 
Methods and Supplementary Figs. 5–9). For each model training, the 
cleaned graph FG-dataset is split into training, validation and test sets 
(60/20/20). The training set serves to learn the model parameters and 
the validation set is used to adjust the learning rate during the train-
ing process. The test set is unseen during the training process; thus it 
provides an unbiased evaluation of the GNN performance. As the FG-
dataset is made up of subsets of specific chemical families (Fig. 3a), we 
implemented a stratified data splitting to ensure that all families are 
equally represented in each partition.

The nested cross-validation revealed a mean absolute error (MAE) 
of the predicted E{i,GNN} against the E{i,DFT} values of the test sets of 0.18 eV. 
Considering that the consensus error of DFT in adsorption is about 
0.20 eV (ref. 51) and that our values can be both above or below the 
1:1 line, we conclude that the error of the method is similar to that of 
DFT itself. However, once trained with a sufficiently large and diverse 
dataset as the FG-dataset, the true advantage is the fast estimation of 
the DFT energy, which takes place on the order of milliseconds in a 
single central processing unit.

Figure 3d shows the error distribution grouped by chemical fam-
ily. A similar standard deviation of 0.20 eV is found for each of the 
families (Supplementary Table 11). Lower MAEs are retrieved for amides 

DFT adsorption
geometry

 Adsorbate + 
interacting metal atoms

Ensemble
extraction

Sample
Graph

encoding

Label Ground-state energy (EA/M) E{i,DFT} = EA/M – EM E{i,DFT} = EA/M – EM

a b c Graph 
representation

Fig. 2 | Conversion from the adsorption geometry to graph. a, Relaxed 3D structure with the total DFT energy EA/M. b, Reduced 3D structure considering the bonds 
within the adsorbate (A–A) and between the metal atoms and the adsorbate (M–A), and the subtracted metal DFT energy, E{i,DFT} = EA/M − EM. c, Graph codification of the 
reduced structure, keeping the label of the previous step.

http://www.nature.com/natcomputsci


Nature Computational Science

Article https://doi.org/10.1038/s43588-023-00437-y

(0.11 eV), CxHyO(2,3) (0.1 eV), carbamates (0.13 eV) and oximes (0.18 eV). 
Larger errors are associated with the aromatic compounds, with an 
MAE of 0.34 eV. The source of this higher dispersion comes from con-
jugated rings, particularly those containing two rings. The error for 
aromatic compounds may be explained as due to the difficulties of 
the graph model to capture non-local electronic effects in aromatic 
rings and thus, additional work is needed to accurately represent 
these molecules, including ring identification routines in GAME-Net. 
Inherently non-local/non-additive effects have been also identified 
in localized coupled-cluster single–double methods52,53. Figure 3e 
shows the mean of the MAE among the different models generated 
during the cross-validation, grouped by family, and their associated 
standard error of the mean (s.e.m.) (Supplementary Table 11). Values 
obtained for the s.e.m. show that there is no substantial variation in the 
prediction performance among the models. Supplementary Fig. 10  
and Supplementary Table 12 show the error distribution and the s.e.m. 
grouped by metal surfaces.

The inputs to the GNN are the optimized structures from the 
explicit DFT calculations in the FG-dataset. However, once GAME-Net 
is trained, an algorithm that docks a molecule on any of the investigated 
metal surfaces can be employed to generate an initial-geometry graph 
(not optimized) and an estimate of the energy can be extracted from 
GAME-Net. Although not trained on them, GAME-Net can assess differ-
ent adsorption sites on the surface, that is, going from hollow sites, to 
bridge and top positions. We have randomly selected two molecules 
from each functional group and placed them on two different surface 

sites (one from the original FG-dataset). We employed the initial geom-
etry to get the corresponding graphs and compared the GNN energy 
prediction with the DFT energy after full relaxation. The results of this 
test (Supplementary Figs. 11–13) show that the graph representation 
is able to distinguish different adsorption sites, providing different 
graphs and consequently diverse model predictions. The mean abso-
lute deviation of the GNN energy difference between two adsorption 
sites with respect to the DFT difference is 0.34 eV.

Similarly, we investigated the dependence of the adsorption 
energy as a function of the metal surface facet orientation, that is, 
structure sensitivity54. To this end, we have considered the (100) and 
(110) facets of the eight face-centered cubic (fcc) metals present in the 
FG-dataset and tested the generalization performance of the GNN with 
these unseen additional data (1,776 points for each facet), predicting 
their adsorption energy. The test revealed an MAE for the two facets 
of 0.34 eV and 0.41 eV, respectively, mainly affected by the poor per-
formance for the aromatic molecules. The results can be found in 
Supplementary Figs. 14 and 15.

Application to industrially relevant problems
The obtained GNN model generalizes the chemical patterns found 
within the FG-dataset, which presents functional groups that are com-
monly found as building blocks of more complex chemical structures. 
In this context, we tested GAME-Net on industrially relevant large mol-
ecules that are not amenable to DFT. The kind of challenges we decided 
to consider are the following: (1) molecules derived from biomass,  
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Fig. 3 | GAME-Net training with the FG-dataset. a, FG-dataset illustration, 
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cubic; hcp, hexagonal closed packed. b, Bar plot of the adsorbate atom count in 
the FG-dataset. c, Distribution of the DFT energy target EA/M − EM. d,e, Box plot of 
the error distribution (d) and the MAE (e) grouped by chemical family in the test 
sets from the fivefold nested cross-validation. The colors in c–e are associated 

with the chemical families in a. The number of data used for d and e is n = 11,412, 
due to the fact that the k-fold nested cross-validation involves including all the 
graph data of the FG-dataset (n = 2,853) in the test set k − 1 times, each with a 
different combination of training and validation sets for training the model. Each 
box plot in d defines the median as the box center, the interquartile range (IQR) 
as the box size, with whiskers extending for 1.5 × IQR. Data in e are presented as 
mean ± s.e.m.
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(2) polyurethanes precursors derived from the 2,4-diaminotoluene 
and (3) polymeric molecules (for example, polyethylene, polyeth-
ylene terephtalate and polystyrene). Biomass-derived molecules 
typically contain multiple aromatic rings, unsaturated segments and  
O-containing functional groups. These molecules derive from the 
decomposition of lignin and the typical metals studied for its conver-
sion are Ni and Ru55. Polyurethanes contain connected rings through 
N- and O-functionalized bridges, and their sustainable synthesis has 
been explored on Ag and Au catalysts56. Conversion of plastics is of 
great importance to society and developing the required technology 
for chemical recycling is an open challenge. However, DFT simulations 
have been of little help as these molecules are excessively large and 
consequently present a higher degree of flexibility. The metal catalysts 
considered for this family are Pt and Ru57.

To test GAME-Net outside the training data distribution, we built 
the BM-dataset. The BM-dataset includes, for each mentioned group, 
five representative molecules in gas phase and adsorbed on two specific 
metals (Supplementary Section 3 and Supplementary Figs. 16–18). The 
optimized 3D structures were converted into graphs and used as test set 
for GAME-Net. Instead of considering E{i,DFT} as the final metric, in this 
case we consider Eads, estimated by subtracting E{i,GNN} of the gas-phase 
molecule from E{i,GNN} of the metal-adsorption ensemble. Figure 4 shows 
the performance of the GNN model compared with the ground truth 
defined by DFT. The obtained global MAE for the BM-dataset is 0.48 eV, 
which is 0.016 eV per atom (Supplementary Table 13).

In general, the adsorption of large multifunctional molecules is 
reasonably estimated, even considering (1) the presence of aromatic 
rings in most of the adsorbates, and (2) the relatively small amount of 
data employed in the FG-dataset for training the model. Polyurethane 
precursors are well reproduced, even if their corresponding points 
are accumulated in the weak-binding-energy region (MAE = 0.43 eV). 
The adsorption of the plastics family is the best predicted, with 
MAE = 0.39 eV. The interaction of some of these molecules (polyeth-
ylene and polypropylene on Ru) with inert bonds is rather small and 
can be endothermic if the adsorbed conformation differs from the 
gas-phase one. Notably polyethylene terephtalate on Ru(0001), the 
biggest molecule (30 heteroatoms) in the BM-dataset with the high-
est adsorption energy (−4.78 eV), is one of the best reproduced of the 
entire dataset, with an error of 0.23 eV.

Finally biomass molecules, containing both rings and C–O 
functionalities, are also reproduced with a lower degree of accuracy 
(MAE = 0.63 eV), keeping, however, the relative ordering between the 
adsorption of the different molecules. The largest errors of the BM-
dataset, which are associated with this family (0.94 eV and 0.83 eV), 
come from the same molecule, the only one in the dataset with an 
aromatic ring connected to a C sp2 atom (Supplementary Fig. 16), a 
pattern for which GAME-Net has not been explicitly trained.

Model benchmarking
An intrinsic feature of GAME-Net is that it targets the adsorption energy 
of closed-shell molecules. We tested the model with three external data-
sets including small open-shell fragments ranging from single atoms 
(C, H and O) to C4 species12,58,59 and we observed that the performance 
improves as the size of the considered fragments increases both within 
and between the datasets, as for these molecules the open-shell behav-
ior becomes less dominant (Supplementary Section 4, Supplementary 
Table 14 and Supplementary Figs. 19–22).

To complement this, we benchmarked GAME-Net with two GNNs 
from the Open Catalyst Project, directional message passing neural 
network (DimeNet++) and polarizable atom interaction neural network 
(PaiNN)28,36, using the FG-dataset as the training set. A detailed descrip-
tion of the benchmark study can be found in Supplementary Section 5, 
Supplementary Tables 15 and 16, and Supplementary Figs. 23 and 24. 
The original target of these models is the optimized adsorption energy 
starting from an initial structure and the full metal slab. In light of the 
difference between this setting and that defined for GAME-Net, we 
investigated the role of unrelaxed versus relaxed geometries and the 
number of metal atoms in the graph representation (full slab versus 
surface ensemble). The key learnings from the benchmark are: (1) the 
FG-dataset is robust, comprehensive and well balanced, enabling all 
benchmark models to provide satisfactory results; (2) the use of the 
graph representation based on the adsorption ensemble consistently 
yields superior results compared with the full slab for both DimeNet++ 
and PaiNN; and (3) GAME-Net performs similarly to DimeNet++ and 
PaiNN but at a substantially lower computational cost and time.  
In addition, while the benchmark models employ an initial 3D geom-
etry to provide a final optimized energy, GAME-Net is more intuitive 
as the guess structures are distilled as graphs and thus the chemistry 
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becomes transparent in the interpretation of the bond at the interface. 
This is particularly evident when assessing the adsorption energy on 
different surface positions (top versus hollow sites), where we can trace 
completely the type of bond, essential information for experimental 
scientists to understand reactivity.

Discussion
GAME-Net demonstrates its robustness when explaining the chemical 
adsorption. As functional groups in the dataset present a wide variety, 
GAME-Net generalizes to bigger compounds, providing a fast alterna-
tive to evaluate the adsorption energy. Each structure in the FG-dataset 
required on average 5.4 h to be evaluated. These are small calculations 
on relatively small unit cells; thus they can be run in modest computa-
tional facilities. The large molecules of industrial interest still would 
require massive computational resources due to the large unit cells 
required and sequential DFT evaluations in powerful machines. The 
total elapsed time needed to generate the FG-dataset was 16,617 h, and 
a single GNN training in a normal laptop graphics processing unit takes 
around 5 min. The hyperparameter optimization involved thousands of 
learning processes, requiring the use of a computational node equipped 
with high-performance-computing-grade graphics processing units 
and contributing importantly to the final cost. As the actual output of 
GAME-Net is not the adsorption energy but the scaled system energy 
(equation (3)), getting the adsorption energy prediction for a specific 
system requires two passes through the GNN: one for the adsorption 
graph and one for the graph of the gas-phase molecule (or alterna-
tively its DFT value as this one is relatively cheap). For a comparative 
DFT versus GAME-Net evaluation, the time gain is several orders of 
magnitude (7–9 depending on the size of the molecule), while the gray 
hidden cost of training the network is 107–108 s. The positive part is that 
once trained, GAME-Net can be widely applied to other compounds 
without the need for external computational resources, as it can run 
on a normal laptop in milliseconds.

Compared with other methods in the literature based on lin-
ear-scaling relationships, group additivity models or earlier graph 
representations, our model has been devised to provide results for 
a wider and more complex chemical space, where the functional 
groups are not required to be spatially isolated in the molecule (not-
interacting) and more than one can interact with the surface15,19,60 
(Supplementary Fig. 25).

The simplicity of our method might present some limitations when 
considering complex catalysts with multiple components or phases. 
Our graph representation considers only the first metal neighbors 
between the adsorbate and the surface, disregarding potential different 
metal atoms not directly bonded to the adsorbate (alloys), changing 
coordination number or stepped surfaces35,54. In particular, the surface 
coordination dependence has been tested for only low-energy sur-
faces (fcc (110) and (100)), and for very low-coordinated surface sites 
with complex topography, important deviations could be observed. 
Another degree of freedom that the model has not been trained with 
is strain, and thus the response in this case cannot be anticipated. As 
for alloys and dopants, the model is probably able to capture the elec-
tronic contributions but less so the local strain effects. In addition, in 
complex catalysts, secondary phases and supports might contribute 
or change adsorption patterns. Finally, simplifications regarding the 
lateral effects of the adsorbed molecules, such as coverage effects and 
solvation, are also being investigated with neural networks; therefore, 
they could potentially be implemented in a similar manner38.

The limitations can be seen as strengths, as they increase the 
generality of the model. A method that takes more information into 
account will become more specialized and difficult to deploy. The 
overall simplicity of our methodology relies on a few key aspects:  
(1) the robustness coming from the wide chemical span covered owing 
to the FG-dataset used to train GAME-Net, (2) the possibility to use 
guess initial structures to obtain the prediction, and (3) the availability 

to run GAME-Net on a consumer laptop and obtain the prediction  
in milliseconds.

In summary, we have generated a robust, well-balanced and chemi-
cally diverse dataset, including all the relevant functional groups in 
chemistry consisting of C1–10 molecules, for their adsorption on closed-
packed metal surfaces. The dataset is used to train the proposed GNN 
architecture. The fivefold nested cross-validation revealed an MAE of 
0.18 eV when applied to the FG-dataset. Once trained, the time required 
to obtain the energy estimation from GAME-Net is at least six orders of 
magnitude lower than that for DFT. Application of GAME-Net to larger 
molecules related to biomass conversion, polyurethane synthesis and 
plastic chemical recycling shows the potential of geometric deep learn-
ing models to reach areas that can not be easily addressed by standard 
first-principles techniques. Our work provides a tool for building graph-
based frameworks capable of learning complex chemical patterns from 
high-quality datasets composed of small molecules.

Methods
Density functional theory
We performed the DFT simulations with the Vienna Ab-initio Simulation 
Package, VASP 5.4.4 (ref. 61). The FG-dataset used to train GAME-Net 
consists of 207 closed-shell organic molecules both in the gas phase 
and adsorbed on 14 metals (3,315 samples). The functional of choice 
was the Perdew–Burke–Ernzerhof (PBE)62 with D2 (ref. 63) and our re-
parameterized values for metals64. Core electrons were represented by 
projector-augmented-wave pseudopotentials and valence electrons 
were represented by plane waves with a kinetic energy cut-off of 450 eV. 
Electronic convergence was set to 10−5 eV and atomic positions were 
converged until residual forces fell below 0.03 eV Å−1. The gas-phase 
molecules were relaxed in a cubic box with 20 Å sides. Metals include 
eight fcc, one body-centered cubic and five hexagonal closed packed, 
and (111), (110) and (0001) surfaces, respectively (Ag, Au, Cd, Co, Cu, Fe, 
Ir, Ni, Os, Pd, Pt, Rh, Ru and Zn). The calculated lattice parameters for 
the metals show good agreement with experimental values. Extension 
to other surface orientations was performed on the same molecules 
adsorbed on the (100) and (110) facets of fcc metals, not included in the 
FG-dataset. These additional test sets have 1,776 data each65. Metal 
surfaces were modeled by four-layer slabs, where the two uppermost 
layers were fully relaxed and the bottom ones were fixed to the bulk 
distances. Only the fcc(110) facets were modeled with six layers, keeping 
the 3 at the bottom fixed. The FG-dataset samples were generated on 
2√3 × 2√3 − R30∘ supercells (all except the Fe and Co samples), with a 
surface coverage concentration of 0.02 molecules per square ångström, 
a reasonable value to avoid lateral interactions. We employed a set of 
rules to obtain the optimum adsorption site for the molecules on the 
surface (Supplementary Section 2). These include the rotation of several 
bonds in the molecular skeleton and the sampling of different adsorp-
tion positions. The vacuum between the slabs was set larger than 13 Å 
and the dipole correction was applied in the z direction66. The Brillouin 
zone was sampled by a Γ-centered 3 × 3 × 1 k-points mesh generated 
through the Monkhorst–Pack method67. Regarding the BM-dataset, the 
samples belonging to the plastics family were calculated on the super-
cells of the FG-dataset multiplied twice in the x–y directions to make 
the larger molecules fit into them, while the slabs for the polyurethanes 
and biomass were retrieved from ref. 56 and ref. 55, respectively.

Automation of DFT data generation
Building a proper dataset for machine learning purposes requires 
the automation of the data-generation process68. To build and obtain 
the adsorbate–metal combinations included in the FG-dataset, we 
executed the following procedure. (1) First, the metallic surfaces were 
built starting from their respective bulks. (2) Then the SMILES69 of the 
molecules in the FG-dataset were fed to Open Babel to generate the .xyz 
geometry files of the molecules, applying the MMFF94 force field70.  
(3) The .xyz geometry files were converted with Pymatgen 2022.11.7 
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(ref. 71) to VASP POSCAR files representing the molecules in cubic cells 
with a dimension of 20 Å. The gas-phase molecules were calculated with 
this initial geometry. (4) The relaxed molecules were copied and placed 
at a distance of 2.2 Å from the Rh slab, our reference metal, following 
Supplementary Section 2. (5) The resulting structures were relaxed with 
VASP. Once full convergence was reached, the geometry of the relaxed 
molecules on Rh was extracted and automatically placed on the slabs 
of the all the other metals preserving the adsorbate distance from the 
Rh slab. (6) The obtained structures were checked for conformation 
errors (less than 1%), and if needed, manually built and relaxed again. 
Typical problems encountered were related to the fragmentation of the 
adsorbate during the relaxation due to the unstable initial geometry.

For the BM-dataset, the molecules were manually built, adsorbed 
on the metal surfaces and relaxed using VASP, including the gas-phase 
molecules. Structures obtained from both datasets were uploaded to 
ioChem-BD44,45.

Graph representation algorithm
To convert the 3D structures obtained from DFT to their respective 
graph representation, we applied a modified version of the algorithm 
presented in ref. 46, implemented in pyRDTP 0.2. To define the neigh-
bors of each atom, the algorithm reads the relaxed 3D atomic positions 
from the geometry file (CONTCAR) generated by VASP, and applies the 
Voronoi tessellation method. This method creates a partition of the 3D 
space, defining a region for each atom that consists of all points of the 
space closer to that atom than to any other. Two atoms are considered 
connected if they share a Voronoi facet and their distance is less than 
the sum of the atomic covalent radii plus a tolerance distance. In this 
work, we used as covalent radii those provided by ref. 47 multiplied by 
a scaling factor of 1.5 for metals, and a tolerance of 0.5 Å to help in the 
detection of metal–adsorbate connections.

Once the connectivity is defined, the graphs are generated, rep-
resenting the atoms as nodes and the detected connections as edges. 
The metal atoms not directly connected to the adsorbate are not con-
sidered during the graph-generation process. The atomic elements 
are embedded to the nodes using the one-hot encoding approach 
as implemented in scikit-learn72 (Supplementary Fig. 1). This step is 
needed to convert categorical variables (as atomic elements) into 
machine-learning-suitable data structures. This algorithm is applied to 
all the samples in both the FG-dataset and the BM-dataset. For a fraction 
of the adsorption systems (about 4%), the graph conversion results in 
inaccurate representations, as for specific geometries the M–A distance 
is so high that the algorithm is unable to properly define their con-
nectivity. This is due to the fact that the algorithm is based on a purely 
geometric criterion that defines the edges relying on a set of empirical 
covalent radii, which are fixed for each element and do not account for 
all the possible phenomena occurring in catalytic systems. Thus, the 
strategy for minimizing the amount of bad representations has been to 
fine tune the tolerance parameter and the covalent radii scaling factor. 
To discard inaccurate graph representations and properly curate the 
graph dataset to be suitable for the model training, we implemented 
the following four sieves (Supplementary Fig. 2): (1) a first filter that 
discards the graphs representing adsorption configurations without 
the presence of metal atoms; (2) a second filter that verifies the correct 
connectivity of C and H atoms within the molecules—connectivity of 
carbon atoms is properly defined if the number of edges connecting it 
to other atoms in the molecule is equal or less than 4, while hydrogen 
atoms are correctly connected if its number of edges is exactly one 
(our molecules are closed shell and thus the interaction with the metal 
is of van der Waals type at most); (3) a filter to prevent the inclusion of 
DFT samples containing more than one adsorbate on the slab or with 
a final geometry in which the adsorbate has dissociated; and (4) a last 
filter for removing duplicate graphs deriving from the presence of ste-
reoisomers adsorbed in the same configuration on the metal surface.

The amount of graphs pruned out after the first two filters intrin-
sically depends on the graph conversion algorithm: a higher applied 
tolerance would reduce the number of discarded graphs after the first 
filter, but at the same time it increases the number of removed graphs 
after the second filter, due to the creation of non-physical connections 
within the adsorbates.

Hyperparameter optimization
GAME-Net design involved a series of hyperparameter optimization 
studies to explore the vast space defined by all the variables affecting 
the final model performance. The hyperparameters are the variables 
that are not trainable parameters, but that affect model performance 
to the same extent. These can be divided in two groups, training-related 
hyperparameters (that is, learning rate, optimizer, batch size and so on) 
and model-related hyperparameters, which define the model architec-
ture (that is, activation function, layer depth and width, bias and so on). 
We adopted the hyperband asynchronous algorithm (ASHA)73 imple-
mented in RayTune74. ASHA combines random search and aggressive 
early stopping to optimize the hyperparameters and is based on the 
proved fact that to find the best hyperparameter setting, just a small 
number of iterations (epochs) is sufficient to discriminate between 
poor and promising candidates. The hyperparameter space, shown 
in Supplementary Table 10, was investigated by randomly picking 
10,000 different settings and running model training for each using 
ASHA, with a grace period of 15 epochs (for example, the worst models 
are discarded after training them for a minimum of 15 iterations) and a 
maximum of 200 for the best ones. The final adopted hyperparameter 
setting is the one that minimizes the MAE of the energy of the samples 
belonging to the BM-dataset.

GAME-Net architecture
The architecture of GAME-Net developed in this work is shown in Sup-
plementary Fig. 4. The input graphs are represented by a set of node 
feature vectors, each of them being a 19-dimensional array (14 metals + 
C, H, O, N and S) needed for representing the chemical element via the 
one-hot encoder, and by the graph connectivity in coordinate format 
(Supplementary Fig. 1). To transform the graph representation into 
the DFT energy prediction of the associated system, the following 
transformations are applied in the listed order.

 (1) First, each node feature vector is transformed via one dense 
layer, which increases the dimensionality of the vector from 19 
to 160, 𝔹𝔹19 → ℝ160, where 𝔹𝔹 denotes the Boolean space used to 
define the nodes via one-hot encoding. The bias term is not 
present in the linear transformation.

 (2) Three GraphSAGE49 convolutional layers are applied to all the 
nodes to capture the information from the neighbors by 
exploiting the graph connectivity, ℝ160 → ℝ160.

 (3) Finally, the information embedded in the nodes is compressed 
into a graph representation via the GMT50, a global pooling  
layer that returns back a scalar value, namely, the DFT energy 
prediction of the chemical system represented by the initial 
input graph. ℝN×160 → ℝ, where N is the number of nodes in  
the graph.

The activation function used in the node-level layers (all except 
the pooling layer) is the rectified linear unit (ReLU)75. GAME-Net has 
been trained with 2,853 graphs, ending up with a GNN that contains 
285,761 trainable parameters, 129,121 of them (45%) belonging to the 
GMT pooling layer due to its internal complexity, and the remaining 
parameters equally distributed among the other layers. The number of 
parameters employed in the GNN probably contains some redundan-
cies; however, eliminating those might be a more complex task than 
employing the compact structure of GAME-Net.
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Model training
The training processes have been performed by minimizing the MAE 
as a loss function with the ADAM optimizer76. The learning rate value 
is steered with the reduce-on-plateau scheduler. The initial learning 
rate was set to 10−3 and is reduced exponentially by the scheduler every 
time in which there is no improvement after 5 epochs (patience) in the 
MAE of the validation set. The minimum learning rate possible was set 
to 10−8, while the decrease factor was set to 0.7. In each training, 200 
epochs were performed. During each epoch, the training set is fed to the 
model in batches of 16 samples, performing a backward propagation 
and updating the model parameters after each batch.

GAME-Net performance was assessed by applying a stratified split-
ting of the FG-dataset by chemical families followed by a fivefold nested 
cross-validation. The first (Supplementary Fig. 5) allows a proper dis-
tribution of all the chemical families among the splits, while the latter 
provides a robust estimation of the GNN generalization performance. 
The nested cross-validation approach follows the process depicted in 
Supplementary Fig. 6: after the partition in five stratified splits, each 
split is employed as test set; for each split used as a test set, four splits 
are left and each is employed as a validation set. This leads to a final 
validation approach consisting of 20 independent learning processes, 
each performed with a unique combination of the splits among train-
ing, validation and test sets. The generalization performance of the 
model is finally assessed by averaging the MAE of the absolute errors 
of the learning processes performed using the same test set. Supple-
mentary Fig. 7 shows the typical trend of MAE and learning rate during 
a model training, together with the graph target distribution in the 
training, validation and test sets after the stratified data splitting. It is 
important to mention that after the creation of the training, validation 
and test sets in each learning process, a standardized target scaling is 
applied using the mean and standard deviation of the energy values 
of the samples from the training and validation sets, discarding the 
samples from the test set as its inclusion would lead to data leakage. 
The target scaling is essential to ensure a stable learning process: if the 
target variable in the graph dataset has a large spread of values, it may 
result in large error gradients causing model parameters to change 
dramatically, making the learning process unstable.

Computational tools
GAME-Net was built with PyTorch Geometric 1.6 (ref. 77) running over 
PyTorch 1.10 (ref. 78). PyRDTP 0.2 (ref. 79) (gitlab.com/iciq-tcc/nlopez-
group/pyrdtp) and NetworkX 2.6 (ref. 80) were used to convert the 
molecular structures into graphs. Stratification and cross-validation 
algorithms were developed exclusively for this work and implemented 
in Python 3.9 (ref. 81). Matplotlib 3.5.1 (ref. 82) and Seaborn 0.11.2  
(ref. 83) were used to draw the plots presented in the paper.

Data availability
The DFT datasets are available in the ioChem-BD repository44. Source 
data for Figs. 3 and 4, and the Supplementary figures containing data 
plots are available with the paper. A simplified version of the used 
datasets, containing the DFT geometries and energies, is available with 
the code repository in Zenodo84.

Code availability
The Python code framework has been publicly released under a MIT license 
and is available at gitlab.com/iciq-tcc/nlopez-group/gnn_eads. The version 
of GAME-Net used in this work (0.2.0) has been uploaded to Zenodo84.
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