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Predictive model of perceived driving stability at high speeds under aerodynamic excitations
ARUN KUMAR
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

The automotive industry is continuously advancing towards more energy-efficient vehicle designs.
Streamlined vehicles have low aerodynamic drag but have the potential to be unstable when
exposed to external excitations such as unsteady aerodynamic forces created by the flow of air
around them. Before signing off a new vehicle for production, several on-road test scenarios are
conducted by professional drivers to evaluate the performance. Finding vehicle instabilities and
proposing solutions to problems during late phases of development is challenging and costly.
The objective of this thesis is to correlate and predict the driver’s subjective evaluation of high
speed straight-line driving stability with measurable quantities in early design phases.

In this work, substandard straight-line drivability was investigated on-road using different
aerodynamic devices for generating high rear lift and asymmetric aerodynamic forces. These
aerodynamic devices were then paired with stabilizers, called side-kicks, which helped to define
the flow separation and improved the drivability of the tested vehicle. Vector plots of the
mean and standard deviation of lateral acceleration, yaw velocity, steering angle, and steering
torque were used to understand vehicle behaviour for the paired configurations and relate
to the difference of subjective evaluation of drivability within each pair. The ride diagram
was used to separate the presence of transient behaviour and study its impact on subjective
evaluation. The qualitative assessment of the resulting trends agreed well with the subjective
evaluation of the driver.

Following this, experimental trials were conducted in driving simulators and on-road, in order
to have an in-depth understanding of drivers’ subjective evaluation and responses to external
excitations. Both common and professional test drivers were involved in the study. The results
provided insight into the excitation frequencies and amplitudes of interest. From the test
data, mathematical models were generated that can predict the drivers’ subjective evaluation
after experiencing induced external excitations. The outcome showed the impact of drivers’
steering on their subjective evaluations towards these excitations. The on-road study revealed
that higher roll and longitudinal noises reduce the drivers’ sensitivity to external excitations.
Headwind magnitude and lateral motion in a certain frequency range experienced by the
human upper body contribute to drivers’ identification of excitations. The resulting predictive
model can be used to pinpoint the time of occurrence of observable aerodynamic excitations
and provides their characteristics in early development phases. Since the models represent
measurements from the cabin, they should be valid for different vehicles.

Keywords: Driving simulator, on-road tests, driver-vehicle interaction, unsteady aerodynamics,
vehicle stability, predictive model, subjective evaluation.





"Strong people don’t put others down. They lift them up.” —Darth Vader, Philanthropist
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y Excess lateral acceleration [m/s2]
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cDT Driver type [-]
Clf Aerodynamic coefficient of front lift force [-]
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Hδsw→ωi

Transfer function for steering input to rotational rate [-]
Mz Yaw moment [Nm]
s, t Time [s]
vx Vehicle longitudinal velocity [m/s]
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High Speed ≥ 200 km/h



xi

Thesis

This thesis consists of an extended summary and the following appended papers:

Paper A
Kumar, A., Sebben, S., Sällström, E., Jacobson, B. J. H., and Broniewicz,
A. “Analysis of Subjective Qualitative Judgement of Passenger Vehicle High
Speed Drivability due to Aerodynamics”. Energies 12.14 (2019). doi: 10.
3390/en12142839

Paper B
Kumar, A., Sällström, E., Sebben, S., Amiri, K., and Jacobson, B. “Prediction
of Driver’s Subjective Perception and Vehicle Reaction under Aerodynamic
Excitations”. Human Factors (2023). doi: 10.1177/00187208231157935

Paper C
Kumar, A., Sällström, E., Sebben, S., and Jacobson, B. “Improved Prediction
Model of Drivers’ Subjective Perception of Vehicle Reaction under Aerodynamic
Excitations”. To be submitted (2023)

Paper D
Kumar, A., Sällström, E., Sebben, S., and Jacobson, B. “Predictive Model of
Driver’s Perception of Vehicle Stability under Aerodynamic Excitation”. SAE
Technical Paper Series (2023). doi: 10.4271/2023-01-0903

Division of work
• Paper A: All instrumentation setup, data acquisition, and analysis were done by Kumar.

The high speed driving at the test track was performed by Kumar with the support of
three experienced test drivers from Volvo Cars. The first manuscript was written by
Kumar then discussed, reviewed, and revised by all authors.

• Paper B and C: All instrumentation setup, data acquisition, and analysis were done
by Kumar. The driving simulator setup was done by Kumar with dedicated people at
Volvo Cars’ driving simulator and VTI. The high speed driving in the driving simulator
was performed by engineers at Volvo Cars and PhD colleagues. Kumar together with
Sällström build the predictive regression model. The first manuscript was written by
Kumar then discussed, reviewed, and revised by all authors.

• Paper D: All instrumentation setup, data acquisition, and analysis were done by Kumar.
The high speed driving at the test track was performed by Kumar with the support
of experienced test drivers/engineers at Volvo Cars. Kumar together with Sällström
build the predictive regression model. The first manuscript was written by Kumar then
discussed, reviewed, and revised by all authors.

https://doi.org/10.3390/en12142839
https://doi.org/10.3390/en12142839
https://doi.org/10.1177/00187208231157935
https://doi.org/10.4271/2023-01-0903




xiii

Contents

Abstract i

Acknowledgements v

Nomenclature

Thesis xi

Contents xiii

I Extended summary 1

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Evaluation of vehicle stability . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Subjective perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Thesis objective 11
2.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methodology 13
3.1 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Vector plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Ride diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Excess motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Test vehicles and vehicle setups . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Experimental trial design . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Further insights of trial design . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results and discussions 29
4.1 Visual representation of subjective evaluation . . . . . . . . . . . . . . . . . . 29
4.2 Drivers’ evaluation in driving simulator trial . . . . . . . . . . . . . . . . . . . 32
4.3 Predictive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Predictive model from driving simulator test . . . . . . . . . . . . . . . 35
4.3.2 Predictive model from on-road test . . . . . . . . . . . . . . . . . . . . 38

4.4 Proposed transfer function using dynamic model . . . . . . . . . . . . . . . . . 41
4.5 Implementation of proposed predictive model . . . . . . . . . . . . . . . . . . 44

4.5.1 For early development phase . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.2 For later development phase . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



xiv

5 Conclusions 47

6 Future work 49

7 Summary of papers 51
7.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.4 Paper D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References 53

II Appended papers 59



Part I

Extended summary





3

1
Introduction

This thesis brings insight into passenger vehicle driving stability in high speed straight-line
cruising conditions. It focuses mainly on relating the subjective evaluation of drivers to
physically computable and measurable quantities such as linear and rotational motions, and
steering characteristics. Subjective evaluation, vehicle dynamics, and aerodynamics are the key
fields coupled in this study.

Designing a vehicle is challenging as it needs to impress the customer both aesthetically and
with energy efficiency. The impact of aerodynamic drag is becoming increasingly in focus,
especially with the electrification of vehicles due to its implication on the drive range. Designing
a vehicle with low aerodynamic drag might bring in susceptibility to vehicle instabilities. Pre-
production vehicles are tested on-road by professional test drivers to subjectively assess the
driving dynamics and vehicle stability in different driving scenarios. These tests take place
in the later phase of development. The test drivers usually rate the vehicle’s performance for
high speed cornering, high speed lane maneuvers, high speed braking, vehicle response to gusts,
etc. For the assurance of safety and vehicle performance quality, these tests are conducted up
to the maximum potential of the vehicle. In this study, straight-line driving at constant high
speeds of 200 km/h and higher is the scenario in focus.

Nervousness, termed by test drivers, is a vehicle instability behaviour felt while driving in a
straight line. The causes of nervousness can be many but the one in focus in this study results
from vehicle instabilities induced by unsteady aerodynamic forces. Unsteady aerodynamics
constantly influences vehicle performance and increasingly so at high speeds. For drivers,
such nervousness can produce subjective impressions ranging from merely inconvenient to
alarmingly unacceptable behaviour of the vehicle. Finding such impressions during on-road
tests is not desirable by OEM. In this work, several studies are conducted to find ways to
improve the prediction of such subjective evaluations from test drivers and relate those to
objective measurable quantities in the early stage of vehicle development. From the test data,
mathematical models are generated that can predict the drivers’ subjective evaluation after
experiencing induced external excitations.

1.1 Background
The stability of a vehicle is determined by a combination of aerodynamics, vehicle dynamics,
driver, and environment. The vehicle and driver’s response to the influence of external
disturbances provides an understanding of the vehicle’s stability. In this study, the focus is on
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the subjective evaluation of vehicles under high speed straight-line cruise driving. The high
speed in this thesis refers to speeds 200 km/h and higher.

The background on the relation between the subjective evaluation of vehicle stability is described
in this chapter. Related on-road and driving simulator studies and the basic working principle
of the driving simulator are explained. Thereafter, a brief overview of subjective perception is
discussed.

1.1.1 Evaluation of vehicle stability

There are different approaches to evaluating if a vehicle design is aerodynamically stable.
One common approach that is straightforward and simple is by using only aerodynamic
forces and moments as measured variables of stability in conditions such as crosswinds and
improves the stability of the vehicle through minimized yaw moments and total lift and side
forces. Aerodynamic coefficients for yaw and lift are a function of the vehicle shape and initial
aerodynamic design studies use this stability reference for development [1]. This is often
practiced in the automotive industry. Although simple, this criteria might not be sufficient, as
demonstrated by Brandt, A. [2].

Another approach is with one-way or two-way coupling of aerodynamics and vehicle dynamics.
Some studies run aerodynamic simulations separately and then feed the aerodynamic data to a
vehicle dynamic model, termed one-way coupling [3–5]. Other studies investigate the effective
vehicle orientation to disturbances and the resulting effect on flow conditions through concurrent
aerodynamic and vehicle dynamic simulations [6–11]. This is termed two-way coupling. Some
studies have investigated the aerodynamic response approach where the effective transient
aerodynamic load from gusty wind conditions is estimated from inverse simulations of dynamic
models of the vehicle [12–14]. This approach makes it possible to study the aerodynamic
loads without a full-scale wind tunnel adapted for crosswind excitation. The vehicle dynamic
response approach was studied using a vehicle dynamics model of varying degrees of complexity
coupled with aerodynamic loads under a given aerodynamic condition [3, 9, 10].

Even vehicle setups configured to be stable through the aforementioned approaches can turn out
to be subjectively evaluated as unstable by drivers. Therefore, aerodynamic-vehicle dynamic
coupling simulations should benefit from being further extended with the implementation of a
driver model, for example, as done in [2, 12, 15]. The addition helps the development of a more
realistic vehicle response by including a driver’s input. However, such models can be prone to
the uncertainty of a real driver’s behaviour following external excitations. Currently, the study
of drivers’ subjective evaluation of vehicle stability is best investigated through on-road and
driving simulator testing. The background on these methods is explained in the succeeding
subsections.

On-road test
On-road tests are used by automobile manufacturers in the last phase of development for
the final tuning and evaluation of vehicle performance. On-road tests simulate more realistic
driving conditions, the drivers are more involved and do not have the false sense of safety as in
a driving simulator. This experience results in responses that are more realistic. On the other
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hand, the external environment is neither controllable nor repeatable. A lot more testing is
required for achieving statistical significance when implementing a standardized driving test
under potentially high random noise. Typically, it is not realistic to do as much testing as
is desired due to cost, time, and resource constraints. Moreover, certain on-road maneuvers
might be hazardous and ethically inappropriate.

The aerodynamics affecting vehicle stability can be due to external excitations such as impacts
of wind gusts, a consequence of vehicle motion due to road uneveness [16–21], or as a result of
induced complex flow structures due to the shape of the vehicle, as studied in [22–24]. Okada
et al. [22] used on-road and wind tunnel tests to show the influence of rear lift fluctuations and
the A-pillar vortices on vehicle stability. Kawakami et al. [24] improved vehicle performance by
reducing the aerodynamic load fluctuations on a hatchback with the help of vortex generators.
The study was done using CFD and scale model wind tunnel experiments, followed by on-road
tests. The preliminary study, using CFD and wind tunnel, showed how vortex generators
suppressed the aerodynamic yaw and roll moment fluctuations by creating a more distinct flow
separation region. They proved to improve the subjective rating during on-road tests.

Howell and Le Good [25] investigated the influence of front axle lift coefficient Clf and rear
axle lift coefficient Clr on straight-line and lane change stability for several kinds of passenger
vehicles. The lift coefficients were obtained from wind tunnel tests. The results provided
initial design criteria of Clf + Clr ≤ 0.2 and |Clf − Clr| ≤ 0.1 for a stable vehicle. Buchheim
et al. [26] investigated the influence of aerodynamic parameters on vehicle stability under
high speed straight-line, braking, and crosswind conditions. Results from their on-road tests
provide insight into preliminary stability criteria. Low overall lift force with a positive pitching
moment is desirable for good vehicle dynamic performance under high speed straight-line
driving scenarios. An increased rear lift in an exaggerated way demonstrates that the vehicle
becomes unstable. Their work was the inspiration behind the modifications made to the rear of
the vehicle on the first track tests performed in this study. Aerodynamic devices were added to
increase the rear lift forces and consequently, decrease tire grip. Through reduced rear lateral
grip between tires and road surfaces, the quality of vehicle straight-line stability was reduced.

Studies contributing to how on-road subjective vehicle nervousness correlates with measurable
quantities such as acceleration, rotation or steering during straight-line driving are limited. Kim
et al. [27] used deep neural networks to find an objective measure from subjective evaluation
for various suspension settings. The trained network was capable of comparing the performance
between models but did not give an assessment on absolute scale. A work by Wang et al. [28]
focused on creating objective measures from subjective scores of ride comfort in autonomous
driving under different on-road conditions such as acceleration around city traffic. Apfelbeck
et al. [29] investigated a methodology to predict subjective impressions of ride quality under
induced steering torque.

All these studies focused on ride quality and did not include high speed stability analysis. No
methodology found by the author could pinpoint the time at which the aerodynamic excitations
observed by the driver occurs in a transient condition. Such a methodology is useful to early
identify the characteristics of aerodynamic excitations that can cause vehicle instability or a
sense of nervousness by the driver.
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Driving simulator test
Virtual simulation of on-road driving scenarios can be conducted using driving simulators
with good repeatability as the environment is controlled. Current computational power
can incorporate the full vehicle characteristics to conduct maneuvers such as high speed
stability, crosswind, and primary ride (low-frequency high amplitude disturbances), already in
early vehicle development. Analysis from such early tests can lead to sooner design decision
making, resulting in better product performance and reduced development costs through fewer
prototypes [30].

In a driving simulator, a realistic driving impression plays a significant role in the driver to
absorb the virtual reality [31]. In order to enable simulations with the physical constraints of
the simulator, most importantly the limited actuator stroke lengths, a motion cueing algorithm
is used. A motion cueing algorithm (MCA) balances the actuated degrees of freedom (DOFs)
according to the type of experiment and expectations within the physical constraints.

Motion platform
The driving simulators operated in this thesis use the hexapod system, which is a very commonly
used hardware platform. It consists of six independently controlled prismatic actuators with
the ability to transfer the load within 6 DOFs. These are:
Linear motion

• Surge: Translation along x axis
• Sway: Translation along y axis
• Heave: Translation along z axis

Rotation motion

• Roll: Turning around x axis
• Pitch: Turning around y axis
• Yaw: Turning around z axis

The hexapod system has limited stroke lengths and all DOFs are mechanically connected. As
a result, the use of one DOF limits the stroke potential of the others. In the driving simulator
used in this study, the whole platform is combined with an XY-sled which increases the stroke
lengths further along the XY plane, shown in Figure 1.1. The simulator in this figure is used
for the final clinical test, details of which are in [32–34].

Driving cues
Certain cues play a key role in perceived realism when simulating an on-road maneuver. They
are:

• Visual cue: The computing delays between the computed position and direction of driver’s
view to visual display for the driver of the resulting motion in the simulator should be
minimal. The visual latency of the simulator used for this study lied within 120 to 130
ms. According to Blissing et al. [35] the maximum thresholds for visual latency ranges
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Figure 1.1: VTI SimIV (Photo: Hejdlösa Bilder AB) [34]

from 50 to 150 ms. Exceeding this threshold showed effects on driver’s behaviour such as
lane keeping and steering wheel reversal. Motion sickness and stress were other effects
found at higher visual latency. The positioning of the observer in the platform should
also be accurate enough to represent the desired visual sensation. The effect should also
be minimal in this study due to less demanding maneuver.

• Steering torque feedback: The driver’s haptic feedback is important. The steering wheel
feedback provides the driver with an understanding of coupled interactions between the
front axle tires and the road.

• Motion cueing algorithm: Vehicle motion is mapped to stay within the constraints of the
driving simulator platform with the aim to create an experience as close to reality as
possible for the human kinaesthetic sense and vestibular system. A motion cue algorithm
maps the simulated vehicle motions to simulator motions. The classical motion cueing
algorithm uses a frequency split approach as shown in Figure 1.2. The typical acceleration
(or velocity) inputs from the simulated vehicle dynamics model to motion algorithm are:

– linear accelerations: longitudinal ẍvh, lateral ÿvh and vertical z̈vh

– rotational velocity: roll ϕ̇vh, pitch θ̇vh, yaw ψ̇vh

The obtained accelerations (or velocities) are distributed to the hexapod and sled
systems based on the frequency range. The linear accelerations are divided between
translation motion and tilt coordination. The sled system takes the middle frequency
linear accelerations and the hexapod takes the high frequency linear accelerations. Low
frequency linear accelerations are achieved by tilt coordination. Hexapod rotations will
take this responsibility along with rotational velocity.

Several studies have assessed a driver’s reaction to external disturbances using driving simulators,
for example, Krantz et al. [36] who investigated the crosswind influence on vehicle dynamics.
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Figure 1.2: Scheme of motion cue algorithm. Courtesy of A. Kusachov [33]

The unsteady aerodynamic coefficients relating to the crosswind behavior of two different
vehicles from wind tunnel tests were added to a single-track model. The drivers were asked
to keep the vehicle in a straight-line. The investigated crosswind had a transient profile with
a power spectral density peaking around 2 Hz. The results were used to study and compare
the yaw and lateral response with those of on-road tests. The comparison showed a shift
of the maximum yaw velocity towards lower frequencies in the driving simulator partly due
to the effect of latencies on drivers’ steering behaviour. Nevertheless, regarding variation in
vehicle properties, the results reflected similarity to on-road tests, providing an insight into the
application of driving simulators in unsteady aerodynamics in early development phase.

Huemer et al. [37] presented the influence of multidimensional vehicle response due to crosswind
on driver perception also using a driving simulator. In their work, the multidimensional vehicle
response consisted of roll velocity, yaw velocity, and lateral acceleration. The impact of
amplitude changes of crosswinds and time delays between the resulting aerodynamic loads on
the vehicle response was investigated. Yaw moment disturbance showed the highest influence
on driving stability, subsequently side force, and roll moment. It was observed that the driver’s
perception of vehicle motion around the perception threshold was affected mainly by the lateral
acceleration, yaw velocity, and time lag between them.

Nguyen et al. [38] investigated a cornering scenario on the German autobahn replicated in the
simulator with vertical disturbances simulating road unevenness and road bumps. The vehicle’s
body motion was subjectively evaluated and the results included a threshold of sensitivity
between pitch, roll, and lateral disturbance impulses over varying road noise intensities. In
addition, the paper studied the difference in subjective impression in the case of coupled yaw
and roll motion with different phase delays and amplitudes. When roll motion was perceived
first followed by yaw motion, the sense of insecurity over vehicle motion increased. On the other
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hand, the driver most likely rated the vehicle motion unrealistic if the roll motion had a positive
phase lag over the yaw motion. While an increase in roll-to-yaw motion amplitude resulted in
discomfort, an increase in roll-to-yaw motion amplitude resulted in a feel of unsecured vehicle
motion.

Fuller et al. [39] also supported the importance of the unsteadiness of lateral aerodynamics
from unsteady gusts on the subjective rating of vehicle stability using a simplified vehicle
model geometry. The vehicle handling to different sources of unsteady crosswind was observed.
The experimental aerodynamic loads were used in a dynamic model with six DOF. The vehicle
model was coupled with a simulated driver model derived using driver data from a driving
simulator study subjected to a crosswind. Only aerodynamic yaw moments and lateral forces
were implemented in the simulator. The study showed that the large-scale onset change of wind
had the largest impact on vehicle handling and subjective results. Furthermore, the stability
impact study of other flow unsteadiness such as hysteresis, instantaneous unsteadiness, and
vehicle front-to-rear time delay was found to be relatively small.

Literature on building a regression model that can predict the probability of a driver identifying
an induced disturbance with the help of the measured quantities such as vehicle and driver
behaviours is limited. For building this model, the driving simulator provides the ability to
control the environment and reduced the impact of external noises affecting drivers’ sensitivity.

1.1.2 Subjective perception

The vestibular system in the human body is responsible for human’s ability to detect acceleration
and orientation. The threshold for linear acceleration detection in vertical (z-axis), longitudinal
(x-axis) and lateral (y-axis) directions was investigated in [40] and it was found to be 0.154 m/s2,
0.063 m/s2 and 0.057 m/s2, respectively. This means that the threshold for vertical movement
is significantly higher than the threshold of movement in longitudinal and vertical directions.
The study in [40] was done with a single sinusoid disturbance without involving visual or
auditory inputs on the participants. Groen et al. [41] found the rotational perception threshold
as 3 deg/s. But this study was based on self-motion with four selected frequencies and
amplitudes where the participants were more like a passenger. Mesland et al. [42] showed a
rotational threshold value of 0.5 deg/s. The study was conducted in dark without visual aid.
The threshold levels vary depending on many factors such as the test environment, visual and
auditory inputs, disturbance frequencies, repetition of the test and the task of the participant
such as driving.

As mentioned earlier in this chapter, difficulty in keeping the vehicle in the lane because of
the presence of undesired vehicle oscillations is an unacceptable vehicle dynamics behaviour.
Such vehicle oscillations can be due to external excitations and result in frequent steering
corrections. The threshold of unacceptable vehicle dynamics behaviour varies with the drivers’
sensitivity to perceived stability. Perceived stability is regarded as a subjective acceptance
of a driver to a vehicle’s behaviour under an excitation. During the subjective evaluation of
vehicle performance, drivers’ reaction to such vehicle dynamic behaviour is important [36, 43].
The impact of driver-vehicle system interaction on the subjective evaluation of the vehicle’s
perceived stability is significant.
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Wagner and Wiedemann [43] found differences in drivers’ reactions and judgements on vehicle
behaviour depending on crosswind conditions. In the frequency range 0.5 - 1.5 Hz the drivers’
steering intensity was quite high and resulted in amplified vehicle response. At crosswind
conditions less than 0.5 Hz the drivers were capable of correcting the vehicle, however, above 2
Hz the changes were too fast for the drivers to respond.

For crosswind conditions, it is seen that yaw velocity and lateral acceleration have a strong
correlation with subjective perception on stability [2]. From the related literature discussed in
the previous section, generalized characteristics regarding drivers’ subjective perception can
be drawn. The drivers are highly sensitive to yaw moment followed by lateral acceleration,
the influence of crosswind on yaw motion was the most sensitive and sensitivity reduces with
increased road unevenness. The variation phase delays and amplitude ratio between roll and
yaw moments showed the shift of drivers’ subjective impression between uncomfortable and
unsafe vehicle motion.

Presence of abrupt motion in the induced disturbance was found to get more attention from
the driver than periodic disturbances [44, 45]. This observation led to the introduction of
ride diagrams for analysis of ride comfort [46, 47]. A similar approach to lateral motion and
steering behaviour showed potential in visually relating the subjective evaluation of perceived
stability and measurable quantities.

The tests in this thesis investigate a high speed straight-line driving condition, during which
the impact of driver fatigue is crucial for subjective response and limits the suitable duration
of each test session. Driver fatigue can be a state of deterioration of mental alertness, or
the transient state between sleep and awake, or psychological and physiological behaviour
which when left undisturbed results in poor driver response to a given task [48–50]. Awareness
decreases and sleepiness increases with prolonged monotonous driving [51, 52]. The studies
suggest the test trial duration be kept below 15 minutes to minimize the impact of driving
fatigue.

1.2 Thesis outline
Chapter 1 describes the purpose behind this project, narrates the necessary background of
studies related to vehicle stability and subjective perception. Chapter 2 shortly presents the
main objectives, and the limitations faced during the various tests. Chapter 3 explains the
mathematical models, test vehicles and vehicle setups, and experimental trial design. Chapter
4 summarizes the most relevant findings from the whole study. Chapter 5 provides some final
conclusions and Chapter 6 suggests future investigations. Finally, Chapter 7 summarizes each
of the four papers.
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2
Thesis objective

2.1 Research questions
This research aims to study and contribute to answering the following main research questions
and sub-questions:

1. For high speed straight-line driving under aerodynamic excitations, how can objective
quantities such as steering response, and linear and rotational accelerations be related to
the subjective evaluation of drivers?
How does the driver’s evaluation relate to the measured objective quantities? Can
eventual differences in subjective evaluation between cases be explained with objective
quantities?
Approach: On-road and driving simulator tests.
Related work: Papers A, B, C, D.

2. Is it possible to predict a driver’s ability to identify an induced disturbance in an early
vehicle design phase?
Can a driver’s ability to identify an induced disturbance be predicted with a mathe-
matical model? How do common drivers and professional test drivers react to external
disturbances? What quantities, amplitudes, and frequencies are influential in drivers’
evaluation of stability?
Approach: On-road and driving simulator tests.
Related work: Papers B, C, D.

3. How can a predictive model be used to identify instabilities before any drivable vehicle
prototype is available?
Approach: On-road and driving simulator tests.
Related work: Thesis, Section 4.5.

2.2 Limitations
This study is limited to straight line driving under small, but distinct aerodynamic excitations,
as opposed to constant wind and constantly varying wind environment. The speeds considered
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were: Paper A, 230 and 250 km/h and Papers B, C, and D 200 km/h. The influence of acoustic
and visual stimuli on a driver’s stability evaluation is not investigated in this study. Influence
from advanced steering assist functions is also not included, only traditional boost-curve-assist.

In the first on-road test (Paper A), the test vehicle was a mid-size, front-wheel driven, and
front-weight-biased sedan. The test was conducted using only one type of tire. For the driving
simulator test (Papers B and C), the vehicle model was a compact sports utility vehicle (SUV).
The components of the vehicle dynamics model used for the clinical test, such as tires and
steering, were generic. Resources constraints limit the sample size, number of drivers, and the
number of variations of disturbances that can be studied. This also limited the implementation
of road noise in the simulator to only include the vertical component. The test vehicle for the
final on-road test (Paper D) was a mid-size, all-wheel drive SUV. This test was also conducted
using only one type of tire. Since the individual tests were conducted on a single type of vehicle
and set of tires, more tests involving different vehicles and tires would be needed to prove the
generality of the conclusions.

Furthermore, fatigue and mind saturation were also factors limiting the duration of the tests.
As a result, the thesis does not claim to have a good predictive model to judge perceived
stability with respect to the influence of driver’s performance on the driving duration or other
individual performance uncertainties. However, despite all these limitations, this thesis still
provides good insights into a better understanding of perceived vehicle stability.
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3
Methodology

This chapter presents the overview of the methodology used in this study. Mathematical models
are needed for analyzing and representing drivers’ perceived stability with objective quantities.
So the first section starts by briefly explaining the mathematical models used. The final section
describes the experimental designs conducted in both on-road and driving simulator tests.

3.1 Mathematical models
Vector plots, ride diagrams, and logistic regression are used to relate the objective quantities
with the perceived vehicle stability. These are explained in the following sections. The excess
motion variables are important in the predictive model. The term excess motion will be defined
and described later in this section. Paper A uses vector plots and ride diagrams, and Papers B,
C, and D use logistic regression and excess motion.

3.1.1 Vector plots

Vector plots are used as an objective indicator for perceived vehicle stability, where vector lines
join one configuration, marked as the tail, with another with improved subjective evaluation,
marked as the arrow. A group of vectors that trend toward the origin implies improved
perceived stability. The mean value and standard deviation of relevant objective quantities
such as steering torque or yaw velocity are used.

Mean value
The mean is calculated for a quantity x according to the equation:

x̄ = 1
N

N∑
i=1

xi (3.1)

where N is the number of samples.

Standard deviation
The number of independent samples, m, of each signal, x, is found using the auto-correlation
function [53]. This function calculates the correlation between xi and xi+k, where lag k =
1, 2, 3, ...K. According to Box et al. [54] the auto-correlation for lag k is

rk = ck

c0
(3.2)
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where c0 is the sample variance of the time series.

ck = 1
N

N−k∑
i=1

(xi − x̄)(xi+k − x̄). (3.3)

where N is the total number of observations. The auto-correlation time, τ , is

τ = 1 + 2
K∑

k=1
rk (3.4)

The effective sample size is
m = N

τ
. (3.5)

The variance of the signals are:

σ2
x = 1

N

N∑
i=1

(xi − x̄)2 (3.6)

The σx obtained represents the standard deviation. The mean uncertainty with a coverage
factor of 2, which corresponds to a coverage probability of approximately 95%, is:

Ux̄ = 2 1√
m
σx (3.7)

The resulting value is used for vector plotting.

3.1.2 Ride diagram

The ride diagram is another objective indicator used to relate the potential influence of objective
quantities of transient nature to perceived stability. The method for the ride diagram is done
in three steps, defined by Strandemar et al. [46, 47]. First, the signal of measure quantity is
divided into segments at the sign changes of the signal derivatives as shown in Equation 3.8.

Ω = {n | x(n− 1) > x(n) < x(n+ 1) or x(n− 1) < x(n) > x(n+ 1)} (3.8)

Thus the kth segment will be expressed as:

yk = {x(n)}n=nk+1
n=nk

(3.9)

Where k = 1, 2, ..., Nk−1 and Nk is the total number of peaks. The peak-to-peak value of kth

segment is:
Ptp(k) = |max(yk) − min(yk)| (3.10)

Second, the segments are categorized as transient or stationary according to:

yk
trans =


{x(n)}nk+1

nk
Ptp(k) > Tlimit & Ptp(k − 1) ⩽ Tlimit

{x(n)}nk+1
nk+1 Ptp(k) > Tlimit & Ptp(k − 1) > Tlimit

0 otherwise
(3.11)

where Ptp(0) = 0, k = 1, 2, ..., Nk − 1 and Nk − 1 is the number of segments.
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Figure 3.1(a) shows an example of a random signal. As referred in Strandemar et al. [46],
Tlimit = 2

√
2 RMS(x) is the limit of transients also known as the signal’s energy equivalent

amplitude.

Third, the Mean Squared Values (MS) of transient and stationary (remaining) signals are
related as shown by the two equations:

MStransient = 1
N

Nk−1∑
k

∑
n

|yk
trans|2 (3.12)

(a)

(b)

Figure 3.1: Differentiation of stationary-transient signal derived from ride diagram of Strandemar
[46]: (a) A signal divided into segments, where peak-to-peak, Ptp(k), distance is marked
and the segments with asterisks are sorted as transient, and (b) A ride diagram, showing
a simple representation of how to read the diagram. Left side represents Mean Squared
Value (MS) of transient signals and right side represents Mean Squared Value (MS) of
stationary signals.
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(a) (b)

Figure 3.2: Comparison of the ability to separate transient segments with different sample rates:
(a) Lateral acceleration ay vs time with a sample rate of 100 Hz, and (b) Lateral
acceleration ay vs time after downsampling to 10 Hz.

MSstationary = 1
N

N∑
n=1

x(n)2 −MStransient (3.13)

For a given situation, Figure 3.1(b) shows the general idea of how to read the ride diagram
with respect to perceived stability standards. The left side represents Mean Squared Value
(MS) of transient signals and the right side represents Mean Squared Value (MS) of stationary
signals. This method has some practical issues when the signals have small spikes. Spikes can
be located in between an otherwise high peak-to-peak value as shown in Figure 3.2, from time
26 to 27 seconds. When separating the signals with the Tlimit criterion, the algorithm only
checks for the exact peak-to-peak values between these spikes. So the possibility is high for a
peak-to-peak value, which would otherwise be eligible for being filtered as a transient segment,
to not be filtered because of spikes. This can be reduced (but not eliminated) by downsampling
the signals. The signal between 26 to 27 seconds is not considered transient in Figure 3.2(a)
but it is considered transient in the downsampled signal shown in Figure 3.2(b) due to this
reason. The method was originaly used by Strandemar for relatively simple signals for testing
in a driving simulator. Hence, it needs further development for more realistic signals.

3.1.3 Logistic regression

Logistic regression is used here as a binomial classification technique, [55, 56]. It is used
to predict the driver’s subjective response from the governing measured vehicle and driver
reactions. Consider the number of observations as n, Ri as the response, xi as the independent
variables called predictors, and k as the number of predictors. In this case, Ri consists of binary
responses from the drivers (0 or 1). The objective of this approach is to create a response model
that can predict the likelihood of each response Ri for given predictors on each observation.

Logistic regression is used to obtain the model coefficients needed to estimate the log-odds z of
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the driver response being 1, in the linear function:

z = β0 + β1x1 + β2x2 + ....+ βkxk (3.14)

where, β0 is y-intercept and βi=1,2,3.. are model coefficients of respective independent variables
(predictors) xi=1,2,3..

A desired predictive model is established in the form of a logistic regression function p(z) = 1/(1+
exp(−z)). Where p(z) is a sigmoid function and the value is the predicted probability of
the response being 1 for a given observation. The logit model, p(z), is a non-linear func-
tion. Finding the global minima while fitting model coefficients using the cost function
further tunes the regression. This helps in selecting the best-suited predictors. Here, the
MLE (maximum likelihood estimate) = ∑

i(Rilog(p(xi)) + (1 − Ri)log(1 − p(xi))), is used.
The resulting prediction accuracy can be classified as:

• Generic accuracy: The number of correct predictions over the total number of observations.
• True positive accuracy: The number of correctly predicted ones over the total number of

observed ones.
• True negative accuracy: The number of correctly predicted zeros over the total number

of observed zeros.

3.1.4 Excess motion

The cause for the motion in the cabin of a vehicle can be split into two parts. The first part is
the result of steering if there is no other input. The second part is due to external inputs such
as crosswinds or on-road inundations. An estimate of the latter is termed in this study as the
excess motion.

The notations of variables shown here might vary from that of the papers presented in this
study. The rotational velocities, denoted as ωi, are measured from the cabin. The part of the
rotational velocities that can be estimated from the steering is defined as ωsteer

i , and the rest is
an approximation of the response to external disturbances, ωexcess

i .

ωexcess
i (t) = ωi(t) − ωsteer

i (t) where i ∈ {x, z} (3.15)

The ωsteer
i estimated from the steering angle, δsw, and longitudinal velocity, vx, using the

transfer function, Hδsw→ωsteer
i

. A direct transfer function from a sample window j is given by:

Hδsw,j→ωsteer
i,j

(f) =
F{ωsteer

i,j }(f)
F{vx · δsw,j}(f) (3.16)

For on-road tests, sample window j represent each drive of all drivers. For driving simulator
tests, j represents each signal window of stimuli of all drivers.

In condition to the test scenarios in this study, the driving speed is kept as constant, vx = 200
km/h, to minimize noise. A direct transfer function was not achieved because ωsteer

i is not a
directly measured variable. Instead a transfer function, Hδsw,j→ωi,j

, was achieved from Equation
3.16 by replacing ωsteer

i with the rotational rate, ωi, logged from the cabin.



18 Chapter 3. Methodology

As a result, the transfer function used to estimate ωsteer
i from the steering angle, δsw, and

longitudinal velocity, vx, was taken from the weighted sum of all sample windows:

H̄δsw→ωsteer
i

(f) =
∑

j Hδsw,j→ωi,j
(f) · rj∑

j rj

(3.17)

Where rj is a weighting factor for each sample window, j. The weighted approach of each
transfer function, derived once per drive from all drives along straight lines parts of the test
track, minimizes the influence of transient external excitations.

In the analysis of the driving simulator data, only time segments without any added disturbance
in each j were used to calculate the transfer function. The Before Disturbance time segments
were used, further explained in second half of Section 3.2.3. As a result, the weighted
transfer function, H̄δsw→ωsteer

i
, approximately projects the steering-vehicle dynamics system

characteristics and ωsteer
i,j is determined from δsw,j using this weighted transfer function.

Through the positive real part of the inverse Fourier transform of the weighted transfer function,
Re(F−1{H̄δsw→ωsteer

i
}), the predicted rotational rate due to steering, ωsteer

i , from all sample
windows along straights lines is obtained in time domain using convolution, denoted by ∗.

ωsteer
i (t) = Re(F−1{H̄δsw→ωsteer

i
}) ∗ (δsw · vx)(t) (3.18)

The excess rotational velocities due to external excitations, ωexcess
i , are obtained from Equation

3.15. A similar approach is followed for linear motion. In the case of excess lateral acceleration,
aexcess

y , the weighted transfer function, H̄δsw→asteer
y

, is obtained from the product of steering
angle, δsw, and squared longitudinal velocity, v2

x (kept as constant, vx = 200 km/h, to minimize
noise) as input, and cabin lateral acceleration, ay, as output.

asteer
y (t) = Re(F−1{H̄δsw→asteer

y
}) ∗ (δsw · vx

2)(t) (3.19)

This approach for identifying the excess motion is validated using a data flow model with a
simple one-track model, the schematics are shown in Figure 3.3. A represents a physical vehicle
or vehicle model with a yaw moment disturbance, Mz. B can be an identical model, but have
Mz = 0 as input. B can be used as a reference vehicle model to capture the vehicle motion due
to steering. The mathematical expression of Mz can be given by the formula:

Mz(t) = 2 · sin
(
2π(t− 5)

)
exp−(t−5) ∀t ∈ [0, T ] else Mz = 0 (3.20)

Where T is the total disturbance time.

The driver model used follows the equation:

δfront axis(t) = −ψvh(t) − tan− 1
(
yvh

vxζ

)
(t) + noise ∀

(
yvh

vxζ

)
∈ [−π, π] (3.21)
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Figure 3.3: Data flow model on vehicle model with a yaw moment disturbance, Mz.

Where, δfront axis is the steering angle at front wheels, ψvh is the yaw angle of the vehicle, yvh

is the lateral displacement of the vehicle and vxζ is the look-ahead distance for the driver to
correct back to the straight line. The resulting amplitude of ωz

excess is compared between the
output from the proposed approach and that from the Simulink model, which will be discussed
in Section 4.4.

3.2 Experiment design
The present study utilizes on-road and driving simulator experiments. The initial experiment
trial was on-road (Paper A), and was conducted to find post-processing approaches to relate the
subjective evaluation of perceived stability to measurable quantities such as steering responses,
and linear and rotational motions between configurations. After Paper A, more knowledge
was needed to understand what events drivers react to and be able to pinpoint when they
occur without all the on-road noise. As a result, a driving simulator trial (Papers B & C) was
conducted. The purpose is to build a region of interest for external excitations in terms of
frequencies and amplitudes and to develop a model that predicts the drivers’ ability to identify
the presence of any induced excitation. The final trial (Paper D) was done again on-road to
further understand the excitation and driver response on more realistic road conditions and
compare the derived predictive model from on-road data with that from the driving simulator
data. This chapter covers the experimental setups used for both types of trials.

3.2.1 Test vehicles and vehicle setups

For the initial on-road experiment (Paper A), the test object was a mid-size, front-wheel drive
sedan, Volvo S60 (model year 2013). The trial was designed to create substandard perceived
stability using sets of aerodynamic devices increasing the aerodynamic rear lift coefficient
and changing the lift distribution of the test vehicle. The front-wheel-driven version has a



20 Chapter 3. Methodology

more forward load distribution, compared to a four-wheel-driven version, hence enhancing the
sensitivity in the rear due to lower traction on the rear tires. The drivers were simply asked to
respond if they perceived poor stability. The differences in the perceived stability were then
presumed to be because of the changes to the car using aerodynamic devices. Three devices
were selected for this study. The devices are shown in Figure 3.4 and described below:

• Anti-diffuser [a]: Designed with the intention to guide the flow downwards, resulting in
increased rear lift, and partially restrict the flow along the diffuser region, Figure 3.4(a).

• Inverted wing [w]: A rear wing attached to act like aircraft wings, set to increase rear
lift, Figure 3.4(b).

• Inverted wing with fin [w-f]: A fin placed 90◦ to the upstream flow as an addition on the
left side of the inverted wing to generate asymmetric forces and moments, Figure 3.4(c).

The above-mentioned devices were paired with an additional aerodynamic device termed as
Side-kicks [s], Figure 3.4(d). These were shaped as slightly ramped-up separation edges on
both sides of the rear bumper, creating an outwash while separating the flow along a clearly
defined line.

Despite these extreme modifications on the test vehicle, no alarming instabilities were sensed by
the test drivers, which was the prior intention. Wind tunnel tests were later conducted at the

(a) (b)

(c) (d)

Figure 3.4: Aerodynamic devices designed to create substandard perceived stability: (a) Anti- diffuser
[a], (b) Inverted wing [w], (c) Inverted wing with fin [w-f], and (d) Side-kicks [s].
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Table 3.1: The change in mean aerodynamic lift coefficients of each configuration compared to the
reference vehicle.

(∆ = Configuration - base car value)
front lift coefficient rear lift coefficient

Configuration ∆Clf ∆Clr

Anti-diffuser [a] −0.001 0.005
Anti-diffuser [a] + Side-kicks [s] 0.000 0.004
Inverted wing [w] −0.016 0.096
Inverted wing [w] + Side-kicks [s] −0.016 0.093
Inverted wing with fin [w-f] −0.012 0.072
Inverted wing with fin [w-f] + Side-kicks [s] −0.012 0.070
Uncertainty for ∆Clf = ±0.0015 and ∆Clr = ±0.008

Volvo Cars’s wind tunnel [57] to obtain the aerodynamic coefficients of each configuration. The
change in aerodynamic coefficients of front and rear lifts compared to the reference vehicle are
shown in Table 3.1. With the uncertainty of difference between two measurements measured
by wind tunnel balance during the same test, shown in Table 3.1, the anti-diffuser [a] showed
no change in aerodynamic coefficients of front and rear lifts. For the remaining aerodynamic
devices, [w] and [w-f], the changes were significantly higher. The addition of a side-kicks [s] did
not make much difference to the front or rear lift coefficients in any of the cases with respect
to the uncertainty of the wind tunnel measurements.

The driving simulator trials investigated driver response when driving a compact front-wheel
driven SUV. First, a pre-study was done at the Volvo Cars driving simulator. The pre-
study adapted the Volvo XC40 vehicle dynamics properties. The real-time vehicle simulation
environment was performed using CarRealtime [58]. The final clinical trial was done at the
Swedish National Road and Transport Research Institute (VTI). It used a generic vehicle
dynamic model that was tuned to behave similarly to the pre-study model in specific maneuvers
such as sinusoidal yaw moments with linearly increasing frequencies. The vehicle response
output from the pre-study online simulations using CarRealtime of these maneuvers was used
for reference. However, the tuned model has its limitations such as generic steering and tire
model. The vehicle dynamics model used was originally developed by Bruzelius et al. [59]
and refined by Obialero [60]. Coefficients for aerodynamic forces and moments were taken
from wind tunnel tests performed earlier and translated to the center of gravity of the vehicle.
Noise was added to the experience to create a feeling of road unevenness and was derived
from the Inertia Measurement Unit (IMU) readings of the on-road test in Paper A. White
noise was filtered to get the desired frequency spectra that matched the accelerations from the
on-road data. For simplicity, only the vertical and pitch accelerations were used. Feeding the
excitations on each wheel independently is more realistic. However, the available setup and
time constraints resulted in feeding them at the center of gravity (CoG) of the vehicle.

The final on-road trial was conducted using a front-wheel-driven XC60 (model year 2015).
The trial was done with four different aerodynamic rear spoilers. Spoiler designs A, B, and
C shown in Figure 3.5 were selected as suitable candidates for this study based on previous
wind tunnel work performed by the aerodynamics group at Volvo Cars. Spoiler D was a late
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(a) (b)

(c) (d)

Figure 3.5: Aerodynamic devices: (a) Spoiler A, (b) Spoiler B, (c) Spoiler C, and (d) Spoiler D.

addition to the test. Apart from the rear lift coefficient Clr of spoiler A, no large differences in
mean aerodynamic coefficients between each spoiler were found [61]. However, the subjective
evaluation of these spoilers varied during the on-road trials.

3.2.2 Instrumentation

For on-road trials, different variables were recorded through sensors to capture the vehicle’s
behaviour. A steering wheel torque and angle transducer, from PM Instrumentation [62],
measured the steering angle, steering rate, and steering torque and was placed on the steering
wheel. The sensor has an uncertainty of ±0.01 deg. In addition, a trigger button was added
on the steering wheel in the final on-road trial (Paper D) to record the drivers’ notification
of subjectively identifying the presence of external excitations. An Aeroprobe and pressure
sensors measured headwind conditions such as yaw angle, roll angle, and angle of attack with
a range of ±70 deg and an accuracy of ±1 deg. It was positioned 360 mm vertically above the
center of the vehicle roof, in line with tests done by Oettle et al. [63]. In the initial on-road
trial (Paper A) four laser sensors were installed to measure the ride heights of the test vehicle.
Two were placed on the underside of the front and rear bumpers flush with the exterior surface.
The remaining two sensors were placed to the sides at the middle of the wheelbase. The
measurement of uncertainty for the sensor was ±0.6 mm. The laser sensors were not included
in the final on-road trial (Paper D).

An Inertia Measurement Unit (IMU) was placed in the CoG of the vehicle except vertically
(due to structural hindrances). However, the IMU can translate the readings of any reference
point on the input, irrespective of the position of IMU itself. A GPS sensor was integrated into
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(a)

(b)

Figure 3.6: Instrumentation setup for the on-road tests: (a) Front iso view, and (b) Rear iso view.

this system and the GPS antennas were positioned as recommended by Dewesoft [64]. Four
draw-wire potentiometer sensors were co-aligned with the spring of each wheel measuring the
displacement of the suspensions with an uncertainty of ±0.03 mm. In Paper A CAN signals
from the vehicle’s built-in sensors were also recorded. The absolute steering wheel angle data
considered in this paper during post-processing were recorded from the CAN bus. The accuracy
of these sensors was ±0.1 deg. In Paper D, additional accelerometers were mounted on each
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Figure 3.7: Schematics of the test track at Volvo Cars Hällered Proving Ground.

corner of the vehicle, detecting the lateral and vertical accelerations of the vehicle. A 3-axis
sensor was fixed to the headrest to measure the motion felt close to the driver’s upper body.
All sensors were connected to a Sirius Dewesoft data acquisition system which timestamps the
sensors’ readings in a synchronized way. The DewesoftX software was used for data acquisition
and some post-processing. The overview of sensors used in Paper D is shown in Figure 3.6.

For driving simulator trials (Paper B & C) the IMU and accelerometers were the only sensors
used to measure cabin motion. The other signals such as vehicle motion, steering angle, and
drivers’ subjective evaluations of excitations were obtained from the simulator. The sensor (i.e.
buttons) to measure driver subjective evaluations was also mounted on the steering wheel.

3.2.3 Experimental trial design

The study considered a straight-line high-speed driving condition at constant speeds. Each
trial run with a driver was shorter than 15 minutes to minimize the potential impact of driver
fatigue [51, 52]. The drivers were asked to keep the vehicle in a straight line. The on-road
studies were carried out at Volvo Cars Hällered Proving Ground. It is an oval track with
two straight lines (L1 and L2) of 1.1 km, as sketched in Figure 3.7. In the study, the data
analysis only considered measurements along the two straight lines. The signals were tared at
a reference position on the track i.e., the values at this point were set as offsets. The car was
modified with aerodynamic devices to the desired configuration at this reference position.

The initial on-road experiment (Paper A) was performed with three test drivers. This test
focused on the subjective evaluation of the vehicle’s perceived stability under minimal wind
conditions. The test was conducted on days with minimal wind conditions (< 3 m/s) and
the start of data acquisition was triggered when the desired speed is achieved. For each
configuration, the trial run was over after three full laps of the high-speed track. Only data
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sampled at speeds of 230 and 250 km/h was analyzed. The variables considered for the study
were lateral acceleration ay, yaw velocity ωz, steering angle δsw, and steering torque τsw. The
influence of heave and roll velocitys under these driving conditions was negligible, hence, they
are not further discussed.

In the final experimental trial in the driving simulator study (Paper B & C) 23 drivers were
asked to keep a straight line at a constant speed of 200 km/h and evaluate their experience while
the car was experiencing induced disturbances. The drivers were categorized into common and
professional test drivers. The common drivers were 13 in total with 82% men and an average
age of 33 (±8) years. Their average driving experience was 14 (±6) years. The professional
test drivers were 10 in total. All were men with an average age of 40 (±11) years and average
professional driving experience of 16 (±9) years. The limited number of participants is not
representative for the general population. However, the goal of the study is to be able to
predict subjective evaluation made by professional test drivers before a physical car is built. It
is therefore not necessary for the study to be representative of the general population. For
subjective evaluation, the drivers were provided with 3 response buttons on the steering wheel,
with which the driver could respond: 0 for ’did not feel’, 1 for ’felt’ and 2 for ’felt and potential
instability’.

The pre-study at the Volvo Cars Driving Simulator helped in narrowing down the amplitude
and frequency ranges of interest of the excitations. The excitations induced in this study
were in the form of yaw and roll moments acting at the center of gravity of the vehicle.
For achieving the selected frequency ranges, a base excitation signal was passed through an
8th-order Butterworth band pass filter. The base excitation is generated using the following
equation:

y(t) = sgn
(
T

2 − 1
)

·
(

1 − cos
(2π
T

· t
))

∀ t ∈ [0, 10] (3.22)

where, y is the amplitude at a given time t and T = 10 is the total excitation signal time.

The selected frequency ranges were 0.25 − 0.5 Hz (F1), 0.5 − 1.0 Hz (F2), 1.0 − 2.0 Hz (F3),
and 2.0 − 4.0 Hz (F4). And the signal of selected frequency ranges was multiplied with the
desired amplitudes: 150 Nm (A1), 175 Nm (A2), 225 Nm (A3), and 325 Nm (A4). This results
in 16 unique excitation signal combinations of interest in this study. These signals were fed
to the simulator in the form of pure roll or yaw moments. As a result, a driver experienced
with 32 distinct signals: 16 unique yaw and roll moments. They were randomly ordered into
23 unique sequences. The overview of the drivers’ evaluation of all signals considered in this
study is shown in Table 3.2.

Figure 3.8 shows the designing and sequencing layout of the excitations of interest. The road
noises and static aerodynamic load were fed throughout the simulation time. The simulation
time was split into signal windows around each of the sequenced excitation of interest. Each
signal window can be split into two segments: ’Before disturbance’ and ’During disturbance’. As
a result, the rotational rate, ωi, measured from the cabin at ’Before disturbance’ segments can
be considered as ωsteer

i , as previously mentioned in Section 3.1.4. All the ’Before disturbance’
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Table 3.2: Overall distribution of drivers’ subjective evaluation to the induced disturbances.

Yaw Disturbances Roll Disturbances
Driver type Driver type

Driver evaluation Common driver Test driver Common driver Test driver Total

0 - Did not feel 88 33 150 101 372
1 - Felt 108 68 53 55 284
2 - Felt and 12 59 5 4 80
potential instability

Total 208 160 208 160 736

Figure 3.8: Designing and sequencing layout of excitations of interest.

segments from the samples are used for deriving the weighted transfer function, H̄δsw→ωi
steer

with input signal ωi filling in for ωsteer
i .

In the final on-road trial (Paper D), the participants were 18 professional test drivers that
engage in subjective evaluations of vehicle performance during product development. All
drivers were male with an average age of 40 (±11) years and professional driving experience of
17 (±10) years. The trial runs with the four spoiler configurations were sequenced in the same
order for each driver and performed at a constant cruising speed of 200 km/h. The drivers
were asked to press the button on the steering wheel when an excitation was felt. Unlike in
the driving simulator trial design, there is no clear undisturbed time sequences similar to the
’Before disturbance’ segments for deriving the weighted transfer function, H̄δsw→ωi

steer .

For developing the predictive models, an algorithm was used for variable selection through
iteration run over combinations of independent variables to find the highest significance
(p-value).
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3.2.4 Further insights of trial design

This section explains some of the challenges and differences in the design layout of trial designs
in both driving simulator and on-road trials.

Driving simulator trial design
It is challenging to achieve large sample sizes of trials and enough drivers who participated
to represent the general population. With the sample of common drivers and professional
test drivers used in this work, a projection of the difference in their steering behaviour and
sensitivity to excitations is observed. Professional test drivers are expected to be more sensitive
to vehicle instabilities and more consistent in their evaluation than common drivers.

In the driving simulator study (Paper B & C) the induced excitations act on the CoG of the
vehicle. They stimulate the drivers closer to a sensation of pure roll moment or yaw moment.
These excitations are not simulating the whole force and moment situation in all frequencies in
a real on-road scenario but the motivation behind this component-wise approach is to identify
the dominating variables along with the frequency ranges and amplitudes that will trigger the
drivers’ perception of instability. Once identified, it will be easier to filter data from future
studies for further investigation.

The experiment trial in the simulator study lacked control trials to measure the level of bias
of participants’ response to zero excitation. For indicating the level of bias, the subjective
evaluation of the least sensitive excitations is used to indicate a maximum level of bias, i.e.,
the level of 1 or 2 responses when there is no induced disturbance. Roll moment excitations at
frequencies F1 (0.25 − 0.5 Hz) and F2 (0.5 − 1 Hz) and the lowest amplitude A1 (150 Nm)
were used for this purpose. Considering all drivers, the bias may be up to 16% (±7%). The
overview of the drivers’ evaluation suggests that the second level of the response scale, 2 - ’felt
and potential instability’, may lack reliability, but merely feeling the disturbance should be easy
to understand. Therefore, the two levels were merged into one for analysis: 0 for ’did not feel’
and 1 for ’felt’ and ’felt and potential instability’.

The road noise fed to the driving simulator was in the form of vertical acceleration and pitch
moment at the CoG of the vehicle. There were no externally added forces and moments acting
on the car between induced excitations. The results show that the drivers’ reaction to the
excitations is not significant. The ωexcess

x and ωexcess
z represent rotations in excess of that

directly resulting from steering input calculated using a transfer function and depend on the
interaction between vehicle, driver and external excitations.

On-road trial design
The final trial on-road (Paper D) only had the professional test drivers as participants. As a
result, the model derived relates to the subjective evaluation of professional test drivers.

Unlike the set-up in the driving simulator, road noise acts on all four wheels in the on-road
test. As a result, all components of road noise were significantly higher than that of the driving
simulator test, further discussed in Section 4.3.2. The ωx,std and ax,std values showed the highest
relative increase. Moreover, unlike in the driving simulator, the excitations were a result of
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the natural environment and road and were not triggered and shaped in a controlled manner.
The transfer function used to estimate ωexcess

i was therefore calculated as a weighted mean of
transfer functions from all drives along straight lines, but separately for each trial, to minimize
bias from transient external excitations.
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4
Results and discussions

This chapter summarizes the findings from all the tests conducted in this study. The first
on-road test (Paper A) gave an overall understanding of the relation between the driver and
measurable quantities. Visual tools that differentiated subjective evaluation of drivability
within paired aerodynamic configurations with measured variables were presented. The details
will be further discussed below. The driving simulator and final on-road tests (Paper B, C
& D) developed predictive models. These tests investigated the characteristics of measured
variables in terms of amplitude and frequencies and their influence on the drivers’ ability to
identify any aerodynamic excitations.

4.1 Visual representation of subjective evaluation
In the first on-road test (Paper A), major modifications were implemented through aerodynamic
devices as explained in section 3.2.1 with the prior intention of inducing significant vehicle
instabilities. However, no alarming instabilities were sensed by the test drivers. The vehicle
behaviours felt by drivers with the attachment of the three aerodynamic devices:

• The anti-diffuser yielded a more high-frequency yaw disturbance behavior compared to
the other configurations.

• The inverted wing gave a low-frequency sway behaviour with the impression that the
source of excitation was from the rear end of the test object.

• The inverted wing with fin resulted in a similar behaviour similar to that with just the
inverted wing, but in addition, there was a slight leftward yaw.

The test drivers observed an improvement in drivability and the above-mentioned behaviours
of the respective configurations were notably dampened with attachment of side-kicks, shown
in Figure 4.1. As presented in Table 3.1, the addition of a side-kicks did not make a significant
difference to the front or rear lift coefficients for any of the three tested configurations.

The study brought two tools useful for visualizing measurement data that can be connected
to subjective evaluations. The first one is the mean and standard deviation vector plots.
The vector lines represented in Figure 4.2 show each configuration pair, connecting from the
configuration without to with side-kicks. The method is described in detail in Section 3.1.1.

With a straight-line driving scenario, the mean values of lateral acceleration, ay, and yaw
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Figure 4.1: Subjective evaluation between paired configurations, where ’good’ or ’poor’ drivability is
relative to the configuration in the same pair.

(a) Mean values (b) Standard deviations

Figure 4.2: Vector plots of mean values (a) and standard deviations (b) of steering torque τsw vs
steering angle δsw of each straight line L1 and L2 for the different configurations and
speeds.
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velocity, ωz, will be negligible. In the case of steering angle, δsw, and steering torque, τsw, the
mean value depicted the excess averaged steering input required by the driver in response
to exterior disturbances while keeping the test object following the straight line. The vector
plots presented in Figure 4.2(a) point towards the origin, implying the lower need for δsw and
τsw response. This may be an indication of good drivability. These vector plots fall in line
with the overall subjective evaluations of all configurations with and without side-kicks except
for the anti-diffuser. The standard deviation vector line patterns of τsw vs δsw coincides with
subjective evaluation for all configurations with and without side-kicks, as shown in Figure
4.2(b). A similar pattern is also found for lateral acceleration, ay, and yaw velocity, ωz, shown
in Paper A. This suggests that side-kicks dampen the unsteady vehicle behaviour, resulting in
better driving in a straight line.

The second tool is the ride diagram method. The plots in Figure 4.3 show the mean squared
values (MS) values of the transient part of the signals to the left and the MS values of the
remaining stationary part of signals to the right, explained in detail in Section 3.1.2. Unfilled
markers represent respective configurations without side-kicks and filled markers represent
configurations with side-kicks. The sum of the transient and stationary part gives the total
MS value of the signal. The further the MS value is from the origin of the x axis, the lower
the standard of drivability. Such an interpretation agrees with the subjective evaluation of all
configurations, Figure 4.3.

On the transient side in Figure 4.3(a), the transient nature of the signal is larger in the
configuration with anti-diffuser compared to other configurations at 250 km/h. At 230 km/h
the transient side of the configuration pair with the anti-diffuser is not predominant and the
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Figure 4.3: Ride diagram of all configurations and selected speeds: (a) Yaw velocity ωz, and (b)
Steering torque τsw.
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trend is opposite to the subjective judgment by a small margin. However, on the stationary side,
the configuration with anti-diffuser, a, is mainly showing a worse trend than the configuration
with anti-diffuser and side-kick, a-s. The steering characteristics such as τsw, Figure 4.3(b),
show a larger contribution on the stationary side for wing and wing with fin configurations.
The transient contribution in all configurations is negligible in comparison. This shows the
inability of the drivers to respond to unknown transient behaviours.

4.2 Drivers’ evaluation in driving simulator trial
The driving simulator tests (Paper B & C) showed that the test drivers are more sensitive to
yaw excitations at all tested frequency ranges compared to common drivers, Figure 4.4. The
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Figure 4.4: Stacked fraction of driver responses after yaw and roll moment excitations at different
amplitudes and frequency ranges. Legend: grey - ‘did not feel’, green - ‘felt’, and red -
‘felt and potential instability’.
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responses from test drivers can be seen to transition from 1 (‘felt’, coloured green) to 2 (‘felt
and potential instability’, coloured red) with increasing amplitude of yaw disturbances. This
suggests that test drivers’ sensitivity threshold for sensing yaw excitations is lower than the
tested amplitudes. But there was no difference in sensitivity between both types of drivers for
roll excitations and only transition from 0 (‘did not feel’) to 1 (‘felt’) is seen for both types of
drivers, which increases with higher amplitude and higher frequency range.

At all tested amplitudes, it is observed that at 2 − 4 Hz the drivers’ ability to identify yaw
excitations drop but the ability to observe roll excitations increase. A reason for this observation
is the chassis characteristics as shown by the swam plot of yaw velocity, ωz, and roll velocity,
ωx, measured in the cabin during yaw and roll excitations respectively. In Figure 4.5 it is
observed that the chassis’ dampens yaw excitations at 2 − 4 Hz. However, 2 − 4 Hz lies in the
natural frequency range of the roll of the chassis in the case of roll excitations as shown in
Figure 4.6. Statistical tests were done separately on tested amplitudes and frequency ranges.
The Chi-squared test (χ2 test, N = 368, df = 3, p-value < 0.001) of yaw excitations showed
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Figure 4.5: Swarm plot of frequency range vs peak-to-peak yaw velocity, ωz,p2p, vs driver response
for different driver type and yaw moment excitation amplitudes. Legend: grey - ‘did not
feel’, green - ‘felt’, and red - ‘felt and potential instability’.
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Figure 4.6: Swarm plot of frequency range vs peak-to-peak yaw velocity, ωx,p2p, vs driver response
for different driver type and roll moment excitation amplitudes. Legend: grey - ‘did not
feel’, green - ‘felt’, and red - ‘felt and potential instability’.

significant relation of the driver response to both the tested frequency ranges and amplitudes.
However, the χ2 test of roll excitations showed significant relation of the driver response to the
tested frequency ranges (N = 368, df = 3, p-value < 0.001) but not to the tested amplitudes
(N = 368, df = 3, p-value = 0.12). Even so, both figures show that a selected excitation with
a given amplitude results in a distribution in amplitude for the resulting vehicle body rotation
ωi,p2p. Hence, because of road noise, driver input, vehicle dynamics and motion queuing, the
conditions under which every sample is taken is unique. There is an overlap in measured
amplitudes of yaw velocity between different amplitudes of excitation. This partially explains
why there are different subjective evaluations to the same induced excitation. No explanation
relating the difference in driver subjective evaluation can be deduced when considering only
peak-to-peak or standard deviation of rotational rate, ωi. Since there is a distribution of
measured amplitudes from the IMU, rather than distinct points, a regression is a suitable
approach and will be applied in the next section.

Figure 4.7 represents the steering characteristics before and during the excitations. The steering
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(a) (b)

Figure 4.7: Box plot of peak-to-peak steering angle, δsw,p2p, characteristics depending on driver type
Before and During disturbance segments for: (a) Yaw moment excitations and (b) Roll
moment excitations.

was not significantly larger during the excitations compared to before the excitations, i.e., the
greater steering especially observed in common drivers is not a result of the excitations. The
higher inputs from steering might create an anticipated vehicle behaviour making them less
sensitive to induced excitations. This could partially explain why common drivers are less
sensitive to induced excitations than test drivers.

4.3 Predictive model
The predictive model was created from logistic regression by building the relation between
drivers’ subjective evaluation as the dependent variable and measured vehicle motion variables
as independent variables (predictors).

The influence, I, is a term introduced to understand further about each predictor of a given
predictive model. I for a given predictor, k, is defined as the ratio between the impact of model
parameter, βk, of a change of a given predictor on the log-odds, times its standard deviation,
xk,std, and the sum the numerator for all predictors. The influence, I, for a given predictor, k,
is given by the equation:

Ik = |βk · xk,std|∑n
i=1|βi · xi,std|

(4.1)

4.3.1 Predictive model from driving simulator test

For the predictive model from driving simulator, standard deviation values of 5 second windows
of before and during disturbances of the measured variables of each excitation were used as
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independent variables and respective drivers’ subjective evaluation is assigned as dependent
variable. The predictive model was optimized by considering only independent variables with
high level of significance i.e., p-values < 0.001. The resulting optimized independent variables
were roll velocity ωx,std, yaw velocity ωz,std, steering angle δsw,std and driver type cDT . The
resulting predictive model, p(z), has an overall accuracy of 85.5% to predict the drivers’ ability
to identify an excitation, and its’ properties are shown in Table 4.1.

The negative β coefficient for steering angle indicates that the drivers’ sensitivity reduces
with steering fluctuations, supporting the observation previously mention about Figure 4.7.
Replacing ωz,std with standard deviation of excess yaw velocity ωexcess

z,std , the predictive model
improved its overall accuracy from 85.5% to 87.5%. A similar replacement for roll velocity
didn’t show significant improvement. The updated predictive model property is shown in Table
4.2. The p-values became smaller with excess compared to Table 4.1, which states the increase
in the level of significance of the variables in the model.

I is reduced by half for δsw,std hence reducing the direct impact of driver-vehicle interaction on
the predictive model. On the other hand, I of yaw and roll variables have increased significantly.
This implies that a driver is mostly sensitive to rotational rate impulses that cannot be predicted
from steering and therefore are unexpected. Independent variables based on excess rotational
rate, i.e., rotational rate not caused by steering, are the strongest investigated predictors for a
driver to identify an excitation. When using the direct rotational rate, any driver input adds
noise to the rotational rate signals decreasing the ability to predict what excitations a driver
can feel.

Table 4.1: Properties of the predictive model from driving simulator with direct variables

βk p-value Ik

offset -5.86 [-] 0.24 · 10−46 -
ωx,std 21.60 [s/deg] 0.27 · 10−26 0.13
ωz,std 61.94 [s/deg] 0.66 · 10−57 0.45
δsw,std -7.81 [1/deg] 0.24 · 10−40 0.34
cDT 0.86 [-] 0.77 · 10−08 0.07

Table 4.2: Properties of the predictive model from driving simulator after replacing direct variables
with excess motion variables

βk p-value Ik

offset -6.68 [-] 0.92 · 10−50 -
ωexcess

x,std 25.05 [s/deg] 0.20 · 10−31 0.20
ωexcess

z,std 70.05 [s/deg] 0.11 · 10−65 0.53
δsw,std -2.79 [1/deg] 0.22 · 10−15 0.17
cDT 0.79 [-] 0.22 · 10−06 0.09
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Table 4.3: Properties of the predictive model from driving simulator with excess motion variables
and significant ranges of studied frequencies

Frequency range βk p-value Ik

[Hz]

offset -6.69 [-] 0.26 · 10−44 -
ωexcess

x,std 0.25-0.5 73.51 [s/deg] 0.21 · 10−09 0.08
1-2 25.31 [s/deg] 0.13 · 10−11 0.09
2-4 22.45 [s/deg] 0.37 · 10−12 0.09

ωexcess
z,std 0.25-0.5 63.14 [s/deg] 0.77 · 10−21 0.14

0.5-1 52.20 [s/deg] 0.29 · 10−15 0.16
1-2 53.55 [s/deg] 0.48 · 10−13 0.19
2-4 55.01 [s/deg] 0.14 · 10−09 0.08

δsw,std 1-2 -7.86 [1/deg] 0.89 · 10−09 0.09
cDT - 0.84 [-] 0.11 · 10−06 0.07

Figure 4.8: Additional magnitude required for each rotational rate variable, ∆xi, in Table 4.3 to
increase probability of feeling the excitation, p(z), from 3% up to 75%. Lower magnitude
of ∆xi implies higher sensitivity of respective variable, xi, in the predictive model

Further investigation of the independent variables of the model was made with the focus on
the impact they have over the tested frequency ranges. Table 4.3 shows the model properties.
It has an overall accuracy of 87.5%. The model suggests that drivers are most sensitive to yaw
velocity. This is inline with previous studies [37, 38, 65]. The improved predictive model also
shows that the yaw velocity plays a significant role throughout the studied frequency range
0.25 − 4 Hz. The influence of steering input from the drivers is significant only around to 1 − 2
Hz. Since the excitations designed for the driving simulator were intended as a pure moment
component acting on the CoG of the vehicle, aexcess

y,std and ωexcess
z,std are highly correlated. As a

result, the accuracy of the model shown in Table 4.3 remains nearly unchanged when aexcess
y,std
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replaces ωexcess
z,std as an independent variable. The frequencies of significance of the variables also

remain the same.

Figure 4.8 shows the additional magnitude required for each rotational rate variable, ∆xi, in
Table 4.3 when considered individually, to increase the probability of feeling the excitation, p(z),
from 3% up to 75%. z represents the log-odds. The mean magnitude of standard deviation
of samples of rotational rate variables is denoted as x̄i. A lower magnitude of ∆xi represents
higher sensitivity of respective variable, xi, in the predictive model. In addition, a new finding
shows that the drivers’ sensitivity to roll velocity in the frequency range of 0.25-0.5 Hz is
comparable to the yaw velocity. The improved model provides a clearer understanding of the
threshold of excitations of various frequencies and disturbance type that will influence the
drivers’ perception towards vehicles stability and nervousness.

4.3.2 Predictive model from on-road test

The box plot of standard deviation of each variable measured in the driving simulator and
on-road tests over the 5 second window samples is shown in Figure 4.9. The difference in
magnitude distribution of variables ωy,std and az,std between driving simulator and on-road are
relatively low. This is a result of how the road uneveness were implemented in the driving
simulator test setup, as discussed in Section 3.2. The magnitude was fine-tuned subjectively
due to the hexapod physical limitations. Considering the condition that the road uneveness
spectra were not fed at wheel centers and only vertical, and pitch components were simulated,
the significant difference in magnitude distribution of ωx,std is self-explanatory. From the
comparison of ωz,std and ay,std, the disturbances simulated in the simulator appear close to
what was experienced on-road. Although from the figure, the steering angle, δsw,std, aligns
with respect to the magnitude distribution, it isn’t relatable. From the results, it is observed
that for small δsw inputs the steering to vehicles motion gain (input to output gain) of the
driving simulator steering model is significantly higher than the on-road steering system. This

Figure 4.9: Box plot comparison between the driving simulator study (DS) and on-road study (RT)
on standard deviation magnitudes of road noises and steering noises over 5 second
window samples.
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implies that small δsw input in the on-road test resulted in lower vehicle motion compared to
the driving simulator test.

For the predictive model from the on-road data, 5 second windows ending at the time at
which the driver had pressed the button were extracted for each button press and categorized
as having felt the presence of external excitation. The remaining data was split up into 5
second non-overlapping windows with a 2.5 second margin to already extracted data and
categorized as undisturbed. The independent variables in the predictive model, obtained from
the iterative process as mentioned in Section 3.2.3, contain the standard deviation value of
the 5 second windows representing the respective dependent variable. The resulting predictive
model properties with independent variables similar to that of the driving simulator study are
shown in Table 4.4.

The model with excess variables obtained from on-road data, Table 4.4 can be compared to
that from the driving simulator, Table 4.3. The model coefficients, β, are lower in the on-road
model than in the driving simulator model implying the need for larger excitations to trigger
a driver’s sensitivity. This is quite expected since there is more noise on the road compared
to the driving simulator scenario, as previously discussed. Unlike the excitations induced
in the driving simulator, the excitations experienced on-road consist of pressure and shear
forces acting non-uniformly across the vehicle together with excitations from road unevenness.
Nevertheless, in the on-road model, the lateral motions ωexcess

z,std and aexcess
y,std are highly correlated.

The comparison between models confirms that the yaw moment is important in the 0.5 − 2.0
Hz range, consistent with the results from the driving simulator. This observation on the
importance of yaw moment agrees with the findings from the studies by Huemer et al. [37],
Nguyen et al [38], and Brandt et al. [65].

The impact of excess roll velocity, ωexcess
x,std , presented by the model from the driving simulator

contradicts that by the on-road study. The model coefficient, β, of ωexcess
x,std in Table 4.4 is negative

which implies the presence of ωexcess
x,std decreases the probability to identify the excitation in the

on-road study. The drivers on-road did not experience the roll motion as induced excitations
but as road noise. This contradiction also has to do with the difference in how road unevenness

Table 4.4: Properties of the predictive model from on-road with independent variables similar to that
of driving simulator study

Frequency range βk p-value Ik

[Hz]

offset 6.13 · 10−03 [-] 0.98 −
ωexcess

x,std 0.25-0.5 -3.70 [s/deg] 0.39 · 10−07 0.11
0.5-1 -10.23 [s/deg] 0.51 · 10−15 0.18

ωexcess
z,std 0.5-1 26.95 [s/deg] 0.38 · 10−15 0.21

1-2 11.46 [s/deg] 0.48 · 10−04 0.08
δsw,std 1-2 10.39 [1/deg] 0.12 · 10−04 0.19

2-4 -28.00 [1/deg] 0.40 · 10−08 0.22
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act on the vehicle in the two studies, as previously discussed.

The model from on-road tests, Table 4.4, shows an increase in sensitivity for steering, δsw,
frequency content at 1 − 2 Hz which is opposite to that observed from the driving simulator
study but the sensitivity is significantly reduced by the higher frequency range of 2 − 4 Hz. The
lateral acceleration, ay, and steering, δsw, at 1 − 2 Hz showed high correlation which implies
from the model that steering at 1 − 2 is either input or response by the driver that relates
to observable self-induced or external excitations respectively. Nevertheless, since the higher
frequency range of 2 − 4 Hz has a higher impact on the model, the combined impact of the two
frequency ranges is in line with the driving simulator model. The influence, I, of the combined
steering frequency range 1 − 4 Hz, is reduced from 0.16 to 0.12 when investigated between the
model with direct variables and the model with excess motion variables. The details of these
models are discussed in [61].

Table 4.5 shows the predictive model properties with the inclusion of all measured variables.
Similar to the driving simulator study, the excess motion variables significantly reduced the
influence of steering. The inclusion of the three additional measured variables with high
significance (p-value < 0.001) in this predictive model improved the accuracy of the model
to correctly predict the drivers’ ability to identify an excitation from 67.7% to 71.7%. The
standard deviation of absolute wind magnitude fluctuations, vwind,mag,std, of frequency range
0.5 − 1 Hz, is one of the included variables. The second variable is the standard deviation of
absolute lateral acceleration felt by the drivers’ upper body, ay,head,std, at 1 − 2 Hz. The aexcess

y,std

at 1 − 2 Hz is found to be replaced by ay,head,std. This finding suggests that the direct lateral
acceleration felt by the drivers’ upper body at 1 − 2 Hz adds to the probability of observing
external excitations. This is in line with the primary resonance of the upper body [66]. The
model shows that the lateral acceleration together with yaw rotation (lateral motion) is present
from 0.25−2 Hz and roll motion between 0.25−1 Hz. The negative β of ax,std suggests that the
presence of vehicle longitudinal unsteady noises reduces the drivers’ sensitivity to excitations
but its impact is the least among the variables in this model.

Table 4.5: Properties of the predictive model from on-road with the inclusion of all measured variables

Frequency range βk p-value Ik

[Hz]

offset -1.25 [-] 0.11 · 10−04 -
aexcess

y,std 0.25-0.5 15.90 [s2/m] 0.41 · 10−06 0.07
ωexcess

x,std 0.25-0.5 -5.16 [s/deg] 0.49 · 10−10 0.11
0.5-1 -9.67 [s/deg] 0.53 · 10−12 0.13

ωexcess
z,std 0.5-1 20.24 [s/deg] 0.20 · 10−08 0.12
δsw,std 1-2 12.51 [1/deg] 0.62 · 10−07 0.17

2-4 -29.88 [1/deg] 0.10 · 10−08 0.18
ay,head,std 1-2 45.44 [s2/m] 0.22 · 10−09 0.10
vwind,mag,std 0.5-1 2.06 [s/m] 0.14 · 10−07 0.08
ax,std 0.5-1 -38.17 [s2/m] 0.90 · 10−04 0.05
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Table 4.6: Properties of the alternative predictive model from on-road with exclusion of direct
involvement of steering

Frequency range βk p-value Ik

[Hz]

offset -1.19 [-] 0.12 · 10−06 -
aexcess

y,std 0.25-0.5 19.71 [s2/m] 0.11 · 10−08 0.16
ay,std 1-2 28.35 [s2/m] 0.88 · 10−10 0.18
ωexcess

x,std 0.25-0.5 -4.89 [s/deg] 0.10 · 10−09 0.21
0.5-1 -9.24 [s/deg] 0.27 · 10−12 0.24

ωexcess
z,std 0.5-1 18.29 [s/deg] 0.24 · 10−09 0.21

An alternative model was derived from direct and excess motion variables excluding steering,
Table 4.6. The algorithm used for variables selection chose excess variables prior to their direct
variables provided the respective p-value was not higher. The variables for selection represented
vehicle rotational rates, lateral acceleration, and steering. In this model, the only excess motion
variable replaced with direct variable is aexcess

y,std at 1 − 2 Hz. This model, with no high frequency
steering noise as input, provides a better application in the early development phase of a vehicle
design. A trend is observed in Tables 4.5 and 4.6 that signifies a straightforward relation
between identifying excitations and the direct reading of lateral motion at 1 − 2 Hz. The excess
motion variables lie below 1 Hz, an indication that at least the effects of slow steering motion
should be removed to improve the prediction of observable excitations.

In general, from on-road test a vehicle motion in the 0.5 − 1 Hz range is most important
for drivers experiencing excitations, followed by 0.25 − 0.5 Hz and 1 − 2 Hz. The predictive
models from this study brought some insight into influential variables under controlled test
environment in driving simulator and under on-road conditions. The model identified the
significance of road induced roll noise causing lower sensitivity of the drivers. This supports
the observation from the study by Nguyen et al. [38]. The frequency ranges of the variables
that most influence the drivers’ sensitivity to any induced excitation are observed from the
predictive model. The models also confirmed the trend of the influence of steering and yaw
velocity on driver sensitivity under both test conditions.

4.4 Proposed transfer function using dynamic model
The transfer function approach is proposed to obtain the excess motion variables which correlate
better with the influence of external disturbances, such as aerodynamic excitations, and enhance
the predictive model. The approach utilizes the weighted transfer function, H̄δsw→ωsteer

i
or

H̄δsw→asteer
y

. The dynamic model discussed in Section 3.1.4 was used to analyze the proposed
transfer function. As a case study, a yaw moment disturbance, Mz, Equation 3.20, was fed
to the vehicle model A as shown in Figure 3.3. The yaw moment disturbance is introduced 5
seconds after the start of the simulation, shown in Figure 4.10.
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Figure 4.10: Yaw moment disturbance Mz fed to the vehicle model A
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Figure 4.11: Driver’s steering, δsw, over the simulated time from the driver/driver model.

Figure 4.11 shows the driver’s steering over the simulated time. The noise added in the equation
of the driver model, Equation 3.21, is seen throughout the simulation time. Figure 4.12 shows
the resulting the direct yaw velocity, ωz, yaw velocity due to steering, ωsteer

z , excess yaw
velocity from simulation, ωexcess

z (simulated), and excess yaw velocity estimated from proposed
transfer function approach, ωexcess

z (estimated). From the dynamic model, the absolute value of
ωexcess

z obtained by running the model and estimated from implementing the proposed transfer
function approach with the input variables from the model were compared, Figure 4.13. Both
ωexcess

z showed a similar trend with comparable amplitudes but the proposed approach contains
small background noise. The weighted transfer function, H̄δsw→ωsteer

z
, is composed of data with

discrete frequencies and respective gain values which explains the presence of noise. Optimizing
the process of obtaining the transfer function will help to reduce the noise level. The profile of
ωexcess

z shown in Figure 4.12 is identical to a yaw moment disturbance, Mz, shown in Figure
4.10. The estimated ωexcess

z from the proposed approach also showed the same profile but
with background noise, Figure 4.13. The analysis supports the application of the weighted
transfer function approach to estimate the excess motion variables that correlate well with
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Figure 4.12: Output variables direct yaw velocity, ωz, yaw velocity due to steering, ωsteer
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Figure 4.13: Comparison of the absolute value of ωexcess
z obtained by running the dynamic model
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z estimated from weighted transfer function, H̄δsw→ωsteer
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input variables from the dynamic model.

the external disturbance. The analysis was done by building a transfer function from ωsteer
z

and δsw. Replacing the ωsteer
z with ωz as done for this thesis resulted in the same pattern of

the absolute value of ωexcess
z between the two methods as mentioned above but with higher

noise background. An increase in sample size showed a significant improvement in the absolute
value of ωexcess

z correlation between the two methods and a reduction in the noise.

This section confirms that the signal processing using transfer function works and also shows
how a conceptional time domain vehicle dynamics model can be used as alternative way to
create the excess signals. The weighted transfer function of steering to relevant motions such
as H̄δsw→ωsteer

i
and H̄δsw→asteer

y
of a vehicle prototype can be received from the engineers. This

is a fast and simple approach to obtain excess motion variables without the need of any other
vehicle parameters.
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4.5 Implementation of proposed predictive model
The proposed predictive model can be used to study the perceived vehicle stability of a given
vehicle. Figure 4.14 shows the layout of a possible implementation of the model that predicts
the occurrence of observable aerodynamic excitations.

The estimated excess motion variables can be obtained from the transfer function approach
or a dynamic model. The predictive model can be applied for both early and later phase
of vehicle development. In the former application, the layout will evaluate perceived vehicle
stability at high speed in early stages of development before any drivable real vehicle prototype
is available.

4.5.1 For early development phase

Early phase of vehicle development includes simulations such as wind tunnel tests, computational
fluid dynamics (CFD), and vehicle dynamic simulations. For predicting the occurrence of
observable aerodynamic excitations involving these simulations, the choice of the predictive
model is wider. The predictive model with properties shown in Table 4.3 is suitable for
investigating the observable excitations on a vehicle model using vehicle dynamic simulations
with a focus on axis component force or moment fluctuations. The influence of other external
disturbances such as road unevenness is minimal in the model.

The predictive model with properties shown in Table 4.6 contains the influence of road
unevenness and more realistic coupled aerodynamic excitations’ forces and moments experienced
on-road. This model does not consider the direct impact of high steering noise in predicting
observable excitations. For the simulated tests, the direct variables are computed quantities
that represent aerodynamic properties, steering, and vehicle motion. This predictive model
shows the variables of significance and their respective frequency ranges. As described in the
previous section, the excess motion variables can be obtained from the direct variables and the

Figure 4.14: Layout of a possible implementation of the predictive model.
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weighted transfer function approach or the dynamic model. The weighted transfer function can
be calculated from the vehicle dynamic of the prototype model. These two predictive models,
represented by the model properties Tables 4.3 and 4.6, are relevant for early development
studies of vehicle design and perceived stability.

Table 4.5 represents properties of the predictive model from the on-road tests where the
influence of the absolute wind magnitude fluctuation and reduced sensitivity from road induced
roll and longitudinal motions are present. This model is also suitable for further investigating
the perceived stability under wind and longitudinal force fluctuations during early phase of
development.

The predictive models from the on-road study, model properties shown by Tables 4.5 and 4.6,
represent only professional test drivers’ perceived stability.

4.5.2 For later development phase

Tests of physical pre-production vehicles on-road can only be done during the later development
phase and by professional test drivers. In this case, the properties of the predictive model shown
in Table 4.5 are suitable for perceived vehicle stability on-road. The model includes lateral
accelerations felt at the headrest and external disturbances and related measured variables
such as absolute headwind magnitude. Similar to previous models, the excess motion variables
can be calculated from direct variables using the weighted transfer function approach or the
dynamic model. Only the variables shown in Table 4.5 filtered to their frequency ranges of
significance are needed to estimate the occurrence of observable aerodynamic excitations.
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5
Conclusions

The findings in this study provide insight into the relationship between subjective evaluation of
drivers and measurable quantities on vehicle behavior during straight-line high speed driving,
under external excitations such as unsteady aerodynamics. The outcomes of this study can be
used to improve early phase development prediction of aerodynamic vehicle stability when no
drivable physical vehicle prototype is available.

The initial on-road experiment was aimed at finding a relation between the subjective evaluation
of perceived stability and measurable quantities such as steering responses, and linear and
rotational motions. Several aerodynamic devices were used to excite varying forces and
moments: An inverted wing, an inverted wing with fin, and an anti-diffuser. These were
paired with and without sidekicks. The paired comparisons showed that the presence of
side-kicks improved perceived straight-line stability. Two methods to visualize the overall
average subjective evaluation between devices with measured variables were presented. The
vector plots of mean and standard deviation pointed toward the origin (when plotting pairs
from without sidekick to with sidekick) implying that the vehicle response and steering effort to
aerodynamic excitations were reduced with side-kicks, thus increasing perceived stability. The
ride diagram helped to differentiate the influence of transient and stationary behaviour. The
devices were able to reduce nervous vehicle behaviour without changing the rear lift coefficient
or front-rear lift distribution.

The experiments from driving simulators and on-road tests focused on obtaining data for
regression models to predict which excitations drivers can feel in relation to objective quantities.
The model from the driving simulator test quantified the difference in sensitivity between
driver types (common drivers and test drivers) and the difference in sensitivity to yaw and
roll excitations. Compared to common drivers, professional test drivers were more sensitive to
yaw moment excitations at all tested frequency ranges but not roll moment excitations. The
impact of steering at 1 − 2 Hz affects the drivers’ sensitivity to externally induced excitations.
Professional test drivers steered less than common drivers. This partially explains the higher
sensitivity of test drivers. The on-road predictive model shows that vehicle motion at 0.5 − 1
Hz range is most important for drivers experiencing excitations. Similar to the model from
the driving simulator, higher frequency steering, at 1 − 4 Hz, affects the drivers’ sensitivity to
externally induced excitations. The on-road noise results in higher rolling and longitudinal
motions that reduced the drivers’ sensitivity to external excitations. The absolute lateral
motion of drivers’ upperbody at 1 − 2 Hz and the absolute wind magnitude fluctuations around
0.5−1 Hz contribute to the drivers’ identification of excitations. Both tests support that drivers
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are more sensitive to yaw excitations than roll. A layout is proposed for the implementation of
the predictive model for both on-road test and simulations.

The results obtained from the on-road and driver simulator tests provide an opportunity for
assessing and investigating flow characteristics that could result in excitations in the form of
vehicle instabilities for the driver.

Concluding the thesis findings by reviewing the thesis objective:

• For high speed straight-line driving under aerodynamic excitations, how can objective
quantities such as steering response, and linear and rotational accelerations be related to
the subjective evaluation of drivers?
From the test results, it was shown that the relative subjective evaluation of drivers’
within paired configurations can be visually represented with objective quantities using
vector plots and ride diagrams. Furthermore, the developed predictive models also relate
subjective evaluation of the drivers to objective quantities.

• Is it possible to predict a driver’s ability to identify an induced disturbance in an early
vehicle design phase?
Yes, the derived predictive models can be used to pinpoint the occurrence time of
observable aerodynamic excitations in an early vehicle design phase. The models provide
a base for filtering aerodynamic excitations or fluctuations in terms of frequencies and
amplitudes. They can also be used to identify which signals and frequency ranges can be
ignored when searching for problematic excitations.

• How can a predictive model be used to identify instabilities before any drivable vehicle
prototype is available?
For this application, a layout for the implementation of the predictive model is proposed
in Section 4.5. It provides a platform for simulation tools that help identifying perceived
instabilities in the early design phase.
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6
Future work

In the case of driving simulator trials, more data collection should be carried out with a greater
and better-adjusted range in amplitude. Likewise, studying yaw and lateral motion separately,
and more complex disturbance combinations are of interest. The impact of road noises on the
driving simulator which is more relatable to on-road conditions should be further investigated.
Further collection of data with more participants with different aerodynamic designs with
generalized vehicle dynamic properties such as tires would help in building more generic
predictive models. The use of different vehicle dynamic properties can further investigate
the influences of different variables. More work is needed to decide how well the proposed
implementation of predictive model antecipates the observable excitations.

The study on steering behaviour and the involvement of driver interaction create uncertainties.
As a result, an in-depth study relating to noises created by driver-vehicle interactions will add
further understanding of vehicle stability.

A study to verify the predictive model using wind tunnel tests and CFD simulations on a
generic or specific vehicle prone to aerodynamic instabilities will be beneficial. The wind tunnel
balance should be able to record time-resolved measurements with high resolutions in order to
capture the aerodynamic excitation characteristics. Additionally, measuring surface pressures
around the aerodynamically stable and unstable configurations when driving on road would
be desirable. Of course, the same is valid with CFD or wind tunnel tests in order to draw
conclusions from the data. The research could also be extended to more complex cases like
cornering, bumpy roads and braking or combinations of those.
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7
Summary of papers

7.1 Paper A
Analysis of Subjective Qualitative Judgement of Passenger Vehicle High Speed Drivability due
to Aerodynamics

This paper focuses on finding a relationship between the vehicle motion and subjective evalua-
tion of high-speed straight-line perceived stability. The test was performed on a front-load
biased compact sedan at the Volvo Cars Hällered Proving Ground. Different aerodynamic
devices were used for generating higher lift and asymmetric aerodynamic forces resulting in
substandard straight-line perceived stability on-road. The resulting poor perceived stability of
the test vehicle with the aerodynamic devices was improved with the help of side-kicks. The
paper investigates the trend of perceived stability of configurations with and without side-kicks
in relation to vector plots of mean and standard deviation. The ride diagram was used to
separate the presence of transient behaviour and study its impact on subjective evaluation.
The qualitative assessment of the resulting trends agrees well with the subjective evaluation of
the driver.

7.2 Paper B
Prediction of Driver’s Subjective Perception and Vehicle Reaction under Aerodynamic Excita-
tions

This paper investigates drivers’ subjective evaluation and responses to aerodynamic exci-
tations in high-speed straight-line driving condition. Clinical tests involving both common
and professional test drivers were conducted using driving simulators at Volvo Cars and VTI.
The results provided insight into the disturbance frequencies and amplitudes of interest. The
paper presents a model from the test data that can predict the drivers’ subjective evaluation
after experiencing induced aerodynamic excitations. The drivers were more sensitive to yaw
excitations than roll excitations. The impact of drivers’ steering actions on their subjective
evaluations of these excitations is also shown.
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7.3 Paper C
Improved Prediction Model of Drivers’ Subjective Perception of Vehicle Reaction under Aerody-
namic Excitations

The driving simulator study in Paper B was extended with a deeper analysis. The accu-
racy of the model was improved by doubling the sample sizes, replacing directly measured
variables with excess variables and by splitting measured variables into frequency ranges using
bandpass filtering. Excess motion variables are defined as the part of vehicle motion that is not
the direct result of steering action. Moreover, excess motion variables reduce the importance
of steering as a separate variable in the predictive model. Paper B showed that the drivers
were more sensitive to yaw excitations than roll excitations. The updated model shows that
the drivers’ sensitivity to roll velocity in the frequency range 0.25-0.5 Hz is comparable to yaw
velocity. The impact of drivers’ steering on their subjective evaluations of these excitations is
significant only around to 1-2 Hz. The study also reveals the crucial frequency range of other
measured variables that influence the updated predictive model.

7.4 Paper D
Predictive Model of Driver’s Perception of Vehicle Stability under Aerodynamic Excitation

Paper B and paper C are extended by collecting on-road data and using that instead of
driving simulator data to fit predictive models. The similarities and differences between the
models are compared with those from Paper C. The study shows that the reduced importance
of steering and the improvement in accuracy of the predictive model with the help of excess
motion variables found in the driving simulator is also valid in on-road conditions. Similar to
the findings in Paper C, the reduction of drivers’ sensitivity to aerodynamic excitations due
to steering is significant around 1-4 Hz. The models show the drivers to be more sensitive to
yaw motion than roll motion. Roll motion lower the drivers’ sensitivity to excitations, which
is in contradiction to the findings in Paper C. The reason may be the presence of realistic
and higher amplitude on-road noise transfer. The study suggests that the drivers experience
the excitations the most with the resulting vehicle motion in the 0.5-1 Hz range, followed by
0.25-0.5 Hz and 1-2 Hz. In addition, the absolute lateral acceleration felt by the drivers’ upper
body, at 1-2 Hz and absolute wind magnitude fluctuations at 0.5-1 Hz contribute to the drivers’
ability to identify excitations.
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