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Abstract

Communicating systems have become ubiquitous in today’s society. Unfortu-
nately, the complexity of their interactions makes them particularly prone
to failures such as deadlocked states caused by misbehaving components, or
memory exhaustion due to a surge in message tra�c (malicious or not). These
vulnerabilities constitute a real risk to users, with consequences ranging from
minor inconveniences to the possibility of loss of life and capital. This thesis
presents results that aim to increase the reliability of communicating systems.
First, we implement a choreography language that can, by construction, only
describe deadlock-free systems. Second, we develop a cost semantics to prove
programs free of out-of-memory errors. Lastly, we improve both results by
using novel semantic approaches that strengthen key theorems and facilitate
further proof development. All of these results are formalized in the HOL4
theorem prover and integrated with the CakeML veri�ed stack.
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Introduction

Software-based communicating systems are everywhere in today’s society.
They are at the core of stock exchanges, air tra�c controls, and power grids
while also being prevalent in our daily lives through phones, vehicles, and
even doorbells. Moreover, the scale and relevance of communicating systems
are only increasing for critical and everyday tasks.

It is well known that software systems can go wrong, especially when com-
munications are involved. The complexity that arises from coordinating the
communication of multiple components can introduce unpredictable and
hard-to-spot errors. Given the ubiquity of communicating systems, failures
might lead to the loss of capital or, in extreme cases, lives. Therefore, mit-
igating errors in such systems is crucial for their continuing adoption and
growth.

One way a communicating system can go wrong is when it reaches a state
where multiple components wait on each other inde�nitely without making
any progress; this is referred to as a deadlocked state. Some of the problems
that might lead to such a state are:

(P1) A communication protocol instructs some components to receive a
message but does not require another component to send one. Hence,
stopping the receiver from making any progress.

(P2) A program suddenly runs out of memory and stops sending messages
halting the rest of the system.

This thesis comprises four papers tackling problems P1 and P2. Our works
present formal approaches to safeguard programs against deadlock, with im-
proved results for usability and scalability. Paper I presents work on a chore-
ography language to de�ne communicating systems that, by construction, can
not deadlock due to communication mismatches and therefore addresses P1.
Paper II proposes an alternative semantics for our choreographic language
with a more robust notion of deadlock freedom and semantic correspondence.
Paper III develops a cost semantics for CakeML [17] programs, enabling
space-bound reasoning to prevent occurrences of P2. Paper IV improves our
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Introduction

previous cost semantics by simplifying how space is measured, reducing the
complexity of proving the absence of P2.

The following sections give a more in-depth explanation of choreographies
and cost semantics, as well as highlight the main contributions of our papers
and how they tackle challenges P1 and P2. This introductory chapter con-
cludes with an outline of future work, including how the methods presented
can be combined to achieve even stronger guarantees.

Choreographies

We consider communicating systems where components interact with each
other only through a well-de�ned interface of communication primitives. This
approach allows for well-de�ned boundaries between components, heteroge-
neous system implementations (e.g., across di�erent devices, using multiple
programming languages, or based on various frameworks), and forms the
basis of many fundamental models of concurrency [1, 11, 12, 13, 14]. As a spe-
ci�c example of such a system, consider the process for making a purchasing
decision between two buyers and a seller modeled as follows:
Example 1.

1. BUYER1 asks SELLER for the price of an item
2. SELLER gives the prices back to BUYER1
3. BUYER1 shares the price with BUYER2
4. BUYER2 tells BUYER1 if they decide to buy
5. IF they decided to buy
5.1 BUYER1 gives its payment details to SELLER
5.2 SELLER responds with the receipt to BUYER1
6. OTHERWISE nothing happens

In Example 1, a single buyer interacts with the seller; however, both buyers
are involved in the decision to buy or not. An informal system de�nition
like the one presented in Example 1 can be more concretely described using
the following pseudo-language, where A.x -> B.y means component A sends
value x to B, which binds it to its variable y.
Example 2.

BUYER1.item → SELLER.item
SELLER.price → BUYER1.price
BUYER1.price → BUYER2.price
BUYER2.decision → BUYER1.decision
If BUYER1.decision ≡ "buy"
Then BUYER1.payment → SELLER.payment

SELLER.receipt → BUYER1.receipt

2
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This high-level view of a system’s interactions is referred to as a protocol.
Protocols describe how components talk to one another, and are meant as
high-level blueprints for concrete system implementations. However, the
details of internal computations are left unspeci�ed—e.g., how SELLER fetches
prices or how BUYER2 decides when to buy.

To illustrate how one can go from the idea of a protocol to an implementation,
consider the following pseudo-code implementation of BUYER1 and BUYER2

from our previous example:
Example 3.

send(SELLER,item)
price = receive(SELLER)
send(BUYER2,price)
decision = receive(BUYER2)
If decision ≡ "buy"
Then
send(SELLER,payment)
confirmation = receive(SELLER)

BUYER1

price = receive(BUYER1)
If price < 100
Then
send(BUYER1,"buy")

Else
send(BUYER1,"pass")

BUYER2

The structure of the code for each component follows from the protocol
actions in which it is involved, either as a sender or as a receiver. This leaves
only the internal computations unaccounted for. In Example 3, the expression
price < 100 was chosen as the criterion for whether to buy or not, but a
di�erent predicate could have been used while still adhering to the protocol.

It is however not a trivial task to correctly implement or even de�ne a protocol;
this is perhaps best illustrated by attempting to implement SELLER as follows:
Example 4.

item = receive(BUYER1)
price = lookupPrice(item)
send(BUYER1,price)
// ??

SELLER

payment = receive(BUYER1)
send(BUYER1,"ok")

Option 1

// Do nothing

Option 2

From the protocol de�ned in Example 1, the actions of SELLER are unambigu-
ous up until step 4. However, once BUYER1 and BUYER2 make their decisions it
is unclear what SELLER should do. In the �rst option (from Example 4) pay-
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ment information is expected to arrive from BUYER1, but there is no guarantee
of the purchasing decision being a�rmative, in which case SELLER might
never get a response and wait forever. Similarly, in the second option, if
BUYER1 relays the payment information, it will never receive a con�rmation
from SELLER. This mismatch is due to an inconsistency in our original protocol
de�nition, since SELLER does not have enough information at hand to follow
the actions of the other components.

Choreographies, as introduced by Carbone et al. [6, 7], are languages for
de�ning communicating systems that prevent communication mismatches
(like the one in Example 4). First, a choreography de�nes a global protocol
for all the components of the system alongside their internal computations;
this allows for entirely automated translations—through a process called
projection—that avoids mismatches between a speci�cation and its implemen-
tation. Second, inconsistent protocols are ruled out by the language semantics
(which by construction can not get stuck) and an accompanying notion of
"projectability" which guarantees that choreographies behave the same as
their projections. Finally, these two mechanisms ensure that all projectable
choreographies generate protocol-compliant code that does not get stuck and
can always progress—a property known as deadlock-freedom.

An improved version of our running example can be de�ned using a choreog-
raphy as follows:
Example 5.

Let item@BUYER1 = "Cake" in
BUYER1.item → SELLER.item
Let price@SELLER = lookupPrice(item) in
SELLER.price → BUYER1.price
BUYER1.price → BUYER2.price
Let decision@BUYER2 =

If price < 100
Then "buy"
Else "pass"

in
BUYER2.decision → BUYER1.decision
If BUYER1.decision ≡ "buy"
Then BUYER1 → SELLER[T]

Let payment@BUYER1 = "<cc info>" in
BUYER1.payment → SELLER.payment
Let receive@SELLER = "Purchase No: <XYZ>" in
SELLER.receipt → BUYER1.receipt

Else BUYER1 → SELLER[F]

4
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Here Let v@p = expr in binds the result of the internal computation expr to
variable v, in the context of component p. Moreover, the selection primitive p

→q[b] communicates to component q that the branch b has been selected by
p—a more formal de�nition can be found later in 1.2. By using choreographies
to de�ne our original example, we can provide a single global description that
is concrete enough to generate implementations for all components directly.

Example 6.

send(SELLER,item)
price = receive(SELLER)
send(BUYER2,price)
decision = receive(BUYER2)
If decision ≡ "buy"
Then
select(SELLER,T)
payment= "<cc info>"
send(SELLER,payment)
receipt = receive(SELLER)

Else
select(SELLER,F)

BUYER1

item = receive(BUYER1)
price = lookupPrice(item)
send(BUYER1,price)
Choice BUYER1 of
T =>
payment = receive(BUYER1)
receipt = "Purchase No: <XYZ>"
send(BUYER1,receipt)
F => // Do nothing

SELLER

price = receive(BUYER1)
decision = If price < 100

Then "buy"
Else "pass"

send(BUYER1,decision)

BUYER2

The ambiguity in the original version of the protocol (Example 2) is removed
by communicating BUYER1’s branch choice to SELLER using a selection primi-
tive, which ensures communication is consistent and thus free of deadlocks.
However, communication guarantees are only a part of what makes a com-
municating system truly reliable.

Unfortunately, the implementation of a consistent protocol can still go wrong
if computation errors are present [8]. Steps in-between communications can
fail in ways that a�ect the system as a whole. For example, a function that
fails to terminate might stop a component from sending or receiving further
messages, possibly causing a deadlock state. Moreover, incorrect results from
a function (e.g., -1, 0/0, NaN) can lead to failures down the line causing the
system to reach a failure state. It is a non-trivial task to prevent these types of
failures, and it goes well beyond what informal protocols typically consider.
Nonetheless, it is paramount for a reliable communicating system to mitigate
such errors as much as possible.

5



Introduction

To safeguard against errors in local computations, one must ensure the cor-
rectness of individual component implementations. Various methods and
formal approaches exist to show the correctness of a source program. Fur-
thermore, the source program’s properties and behaviors must also translate
to target representations to add weight to any correctness claims. However,
source programs (that can run on a computer) are ultimately compiled into
machine code, making correctness results for intermediate representations
inherently incomplete. A property that is preserved from source to machine
code is known as "end-to-end" and is amongst the strongest guarantees a
program can have.

The CakeML veri�ed stack [17] allows end-to-end proofs of correctness for
SML-like source programs, making it the perfect target representation for a
reliable communicating system.

Paper I presents the implementation of a choreography language and, to
the best of our knowledge, the �rst mechanized end-to-end proof of the
correctness of a projection function. The main contributions of this paper
are:

• A formalization of a choreography language semantics with machine-
checked proofs of con�uence and deadlock-freedom.

• A projection function that leverages the characteristics of multiple in-
termediate languages to facilitate the machine-checked proof of seman-
tics correspondence between choreographies and our target language,
CakeML.

• A novel end-to-end result stating each component in the choreography
will follow the global protocol as long as all other components are
present and correctly perform their function. Additionally, this result
extends to machine code thanks to the CakeML veri�ed stack.

This work was presented at the 13th International Conference on Interactive
Theorem Proving (ITP) in 2022 [15].

Statement of Contribution. For this paper, I contributed to the de�nition
of the top-level choreography language and semantics, and was involved
in the development of proofs for various properties (e.g., congruence cor-
respondence, source level deadlock-freedom). Additionally, I was the main
contributor to the implementation and veri�cation of the projection function.
This paper was in collaboration with Johannes Åman Pohjola, James Shaker,
and Michael Norrish.

6
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Paper II enhances our choreographic language semantics by adding a
more �exible version based on interaction trees [18]. This new approach
enhances our previous small-step semantics by clearly distinguishing between
components’ local behavior and global interactions. As a result, it becomes
easier to prove semantic correspondence in a veri�ed choreographic compiler–
like Kalas. The main contributions of this paper are:

• A de�nition of an interaction tree-based semantics for Kalas with a clear
separation between local behaviors and global interactions.

• A proof of correctness for Kalas’s projection function showing semantic
equivalence between source and target programs.

• A general interaction tree-based de�nition of deadlock-freedom, along
with proof that it holds by design for Kalas’ programs. Moreover, this
de�nition also holds for our target language, thanks to projection cor-
rectness.

This work is currently being prepared for submission.

Statement of Contribution. I am this paper’s main author of semantics
de�nitions, properties, and proofs. This work was in collaboration with
Magnus Myreen and Johannes Åman Pohjola.

Cost Semantics

A program’s space consumption is as relevant to its utility as the functional
correctness of its implementation. Despite appearances to the contrary in
high-level language semantics, programs only have a �nite amount of memory
available to them; the use of this resource has a direct impact on whether the
programs will be able to execute their function correctly.

Consider the implementation of yes, a program whose expected behaviour is
to prints the string "yes" forever. If, at any point during execution, memory
is exhausted, then the program will exit and, as a result, will not print "yes"
inde�nitely, which is contrary to what the programmer intended. This is the
reason why any correct implementation of yes must ensure that su�cient
memory is available so it can indeed run inde�nitely.

Example 7.

1 let
2 fun yes t = (print "yes\n"; yes t)
3 in yes ()

7
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Figure 1

fun yes t = (yes t; print "yes\n")

fn1

...
fnk

Memory

call-stack
yes ()

STACK

yes ()

yes (); print "yes\n"

STACK

yes ()

yes ()

yes (); yes(); ...; print "yes\n"

STACK

yes ()

yes ()

...

*OUT-OF-MEMORY*

The code in Example 7 presents a valid implementation of yes in an SML-like
language. However, a non-terminating recursive function like the one shown
above could be a source of concern regarding its space use. Performing a
function call often requires the program to store, to the call-stack, the current
environment and return location in order to resume appropriately after the
called function returns. Therefore, if a program recursively calls a function
without giving a result, as seems to be the case in Example 7, the call-stack’s
growth would eventually exhaust the memory. Thankfully, when a recursive
call occurs at the end of a function, nothing needs to be stored in the call-stack,
as nothing is left of the current function. Hence, the original caller function
can be directly resumed—a technique called tail-recursion and present in most
compilers. The yes implementation shown above exhibits a tail-recursive
structure; thus, memory is not exhausted despite the unbounded number of
recursive calls. As a comparison, replacing line 2 (in Example 7) with fun yes

t = (yes t; print "yes\n") fails to print “yes” and runs out of memory
due to lack of tail-recursion (see Figure 1).

Answering the question of whether a given program might run out of memory
during execution requires some compilation and runtime considerations.
At �rst glance, the structure of a program provides good evidence of its
memory consumption, but other factors can sway the actual result. Consider
the following two implementations of a program that computes the sum
of function foo applied to numbers 0 to 10000000 (107) —where foo is any

8
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function from int to int.

Example 8.

// Using a list
let
fun bar1 0 = []
| bar1 n = foo n :: bar1 (n - 1)

in foldl (op +) 0 (bar1 10000000)

// Using an accumulator
let
fun bar2 0 x = x
| bar2 n x = bar2 (n-1) (x + foo n)

in bar2 10000000 0

In the �rst implementation (bar1), the result is generated by traversing a list of
10000000 applications of foo and adding each element. In contrast, the second
example (bar2) accumulates intermediate results on each foo application.
Initially, it would appear that bar1’s use of a large list would result in a
higher memory footprint than that of bar2, which only uses an accumulator
argument; the intuition being that representing 10000000 elements ought
to take more space than just one. However, looks can be deceiving, and
while this observation holds for SML-like languages where arguments are
fully evaluated—hence, represented in memory—before function calls, it does
not hold for languages with on-demand argument consumption like Haskell.
Furthermore, compiler optimizations could take bar1’s code and transform
it into a structure similar to that of bar2, modifying its space consumption
completely. Other aspects, like language design or underlying architecture,
could further complicate reasoning about memory costs. Hence, intuition
will only take us so far, and a formal approach might be more appropriate.

The space cost of a program is the highest memory consumption required at
any point during its execution. Therefore, if it exceeds the available space,
the program will run out of memory. The formal measurement of a program’s
space consumption can be done through a cost function, which determines
the amount of memory being used by the program at a given point. Hence, if
one can show that this function never goes above some bound m, it follows
that running the program with space greater or equal to m should not result
in an out-of-memory error. A semantics with a concrete memory model can
be used to perform such reasoning by implementing the corresponding cost
function—in what is known as a cost semantics [2]—which in turn can be used
to prove a concrete bound exists.
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Figure 2
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A cost function essentially measures the size of the data used by the program;
thus, a simple implementation (simple_size_of) could just add the sizes of all
objects currently in memory. However, in the presence of a garbage collector
(GC), not all objects in memory are relevant for the measurement of space
cost. Speci�cally, unused or unreachable objects can not exhaust a program’s
memory, as they are preemptively removed by a GC pass before an out-of-
memory error can occur; thus, they are indistinguishable to free space from a
space cost perspective. Therefore, when a GC is available, simple_size_of’s
measurement is not well suited for space-bound reasoning, as it includes
objects that could have been safely ignored.

reachable_size_of (Figure 3) improves on simple_size_of by only consid-
ering reachable objects; that is, objects that are being used by the program,
and thus can be reached from global constants, local values of functions in
the call-stack, or (recursively) other reachable objects. This approach often
provides a better approximation than that of simple_size_of. Nonetheless,
due to data aliasing—multiple pointers referring to the same data—objects
stored in memory might be counted multiple times; thus, the traversal of
reachable data needs to account for this to be e�ective.

Previous works on space cost semantics have targeted either languages with-
out a GC [4], or only part of a larger compiler [5]. Furthermore, most results
target approximated measurements, either as a function of the inputs (asymp-
totic bounds) or a conservative over-approximation (upper bounds).
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Figure 3
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Paper III presents a cost semantics that can be used to prove that a given
CakeML program does not run out of memory for a speci�c amount of memory,
which, to the best of our knowledge, is the �rst time this result has been
obtained for a garbage-collected language. The approach presented addresses
common pitfalls in the following ways:

• The cost semantics is de�ned in an intermediate language of the CakeML
compiler, which provides two main advantages. First, since most opti-
mizations have already happened by that stage, the cost function does
not need to account for optimizations. Second, the memory model is
closer to the machine representation; thus allowing the cost semantics
to be more concrete.

• The cost function provides a tight approximation of memory consump-
tion by only considering reachable objects.

• Data aliasing is mitigated by marking every created value with a times-
tamp; this way, "seen" timestamps can be recorded as the reachable
data is traversed, and previously seen values can be ignored.

This work was presented at the conference in Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) in 2020 [10].
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Statement of Contribution. For this paper, I worked on the addition of
timestamps to the CakeML intermediate language DataLang, as well as the
de�nition and proof of soundness of a cost semantics for DataLang programs.
Furthermore, I worked on the implementation and veri�cation of two com-
plete examples, the yes program, and a linear congruential generator. The
other authors on this paper are Johannes Åman Pohjola, Hira Taqdees Syeda,
Magnus Myreen, and Yong Kiam Tan.

Paper IV in this thesis presents the development of an alternative cost
function for CakeML, which exhibits compositional properties that greatly
simplify space reasoning. This new cost function is a drop-in replacement
for our previous results; however, empirical results show a reduction of LOC
in proof �les of close to 30% when the new formulation is used. The main
contributions of this paper are:

• A new reachability-base cost function for CakeML with rich composi-
tional properties that aid reasoning.

• A proof of equivalence to existing cost functions in CakeMl, with a
direct end-to-end soundness result.

This work was presented at the 33rd Symposium on Implementation and
Application of Functional Languages (IFL) in 2021 [9].

Statement of Contribution. For this paper, I was involved in all aspects
of the development. This involved contributing to designing and implement-
ing the cost function, formalization of crucial properties, and the proof of
equivalence. This paper was done in close collaboration with Magnus Myreen.

Future Work

One clear area for cost semantics in CakeML to develop is proof automation
with a focus on scalability. While proofs of space safety tend to be quite
involved and labor intensive, common patterns and proof techniques are often
used with case-by-case modi�cations that could be captured in proof tactics
or automation. Furthermore, subsets of CakeML, or even completely new
languages built on the CakeML stack, could impose restrictions on programs
to make space safety decidable or at least more tractable. Developing these
(or alternative) methods could help verify the space safety of larger programs
without signi�cantly augmenting cost or complexity.

There are also a number of natural directions to develop Kalas further. For
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instance, adding process creation to Kalas’ syntax and semantics could allow
the implementation of more expressive communicating systems. Similarly,
proving live-lock freedom for Kalas programs would signi�cantly improve
the language’s end-to-end guarantees. More generally, we believe Kalas is a
sandbox on which more and more features (e.g., typed communication, general
projectability, message optimizations) could be added without changing much
of its core structure.

Finally, the works presented in this thesis aim to improve the level of reliability
that can be achieved for communicating systems. As such, choreographies and
cost semantics can be combined to achieve even stronger assurances for pro-
grams. Concretely, deadlock-freedom guarantees provided by choreographies
assume that each component is present and functions correctly. Space-bound
reasoning and other guarantees provided by CakeML ecosystem [3, 16]—Kalas’
target language—could be connected to projected programs to improve their
reliability. By doing this, projected programs can be shown, with proof, not
to stop responding due to an out-of-memory error or correctness bugs, sig-
ni�cantly reducing the number of assumptions needed to rule out deadlock
completely.

Thesis Outline

The rest of this thesis consists of four chapters. Chapter 1 introduces Kalas
and our choreography semantics—Paper 1. Chapter 2 expands the semantics
of Kalas with an interaction tree-based version of the semantics—Paper 2.
Chapter 3 presents a cost semantics for CakeML with tight bounds—Paper
3. Finally, Chapter 4 improves the previous cost semantics for CakeML to
facilitate reasoning about tight space bounds—Paper 4.

13





Bibliography

[1] G. A. Agha. ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in arti�cial intelligence. MIT Press, 1990. ISBN 978-0-
262-01092-4.

[2] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell, I. Garnier,
A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack, Y. Régis-
Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli. Certi�ed complexity
(cerco). In U. Dal Lago and R. Peña, editors, Foundational and Practical

Aspects of Resource Analysis, pages 1–18, Cham, 2014. Springer International
Publishing.

[3] J. Åman Pohjola, H. Rostedt, and M. O. Myreen. Characteristic formulae
for liveness properties of non-terminating cakeml programs. In Interactive

Theorem Proving (ITP). LIPICS, 2019.

[4] F. Besson, S. Blazy, and P. Wilke. A concrete memory model for com-
pcert. In Interactive Theorem Proving, pages 67–83, Cham, 2015. Springer
International Publishing.

[5] F. Besson, S. Blazy, and P. Wilke. Compcerts: A memory-aware veri�ed
c compiler using a pointer as integer semantics. Journal of Automated

Reasoning, 63(2):369–392, Aug 2019.

[6] M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty
asynchronous global programming. In The 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,

Italy - January 23 - 25, 2013, pages 263–274, 2013. doi: 10.1145/2429069.2429101.
URL https://doi.org/10.1145/2429069.2429101.

[7] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In Programming Languages and

Systems, 16th European Symposium on Programming, ESOP 2007, Held as Part of

the Joint European Conferences on Theory and Practics of Software, ETAPS 2007,

15

https://doi.org/10.1145/2429069.2429101


Bibliography

Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages 2–17, 2007. doi:
10.1007/978-3-540-71316-6\_2. URL https://doi.org/10.1007/978-3-540-

71316-6_2.

[8] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,
D. Adrian, V. Paxson, M. Bailey, et al. The matter of heartbleed. In
Proceedings of the 2014 conference on internet measurement conference, pages
475–488. ACM, 2014.

[9] A. Gómez-Londoño and M. O. Myreen. A �at reachability-based mea-
sure for cakeml’s cost semantics. In 33rd Symposium on Implementation

and Application of Functional Languages, IFL 2021, Nijmegen, The Netherlands,

September 1-3, 2021, pages 1–9. ACM, 2021. doi: 10.1145/3544885.3544887.
URL https://doi.org/10.1145/3544885.3544887.

[10] A. Gómez-Londoño, J. Å. Pohjola, H. T. Syeda, M. O. Myreen, and Y. K.
Tan. Do you have space for dessert? a veri�ed space cost semantics
for cakeml programs. Proc. ACM Program. Lang., 4(OOPSLA):204:1–204:29,
2020. doi: 10.1145/3428272. URL https://doi.org/10.1145/3428272.

[11] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21
(8):666–677, 1978. doi: 10.1145/359576.359585. URL https://doi.org/10.

1145/359576.359585.

[12] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980. ISBN 3-540-10235-3. doi: 10.1007/3-540-
10235-3. URL https://doi.org/10.1007/3-540-10235-3.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
I. Inf. Comput., 100(1):1–40, 1992. doi: 10.1016/0890-5401(92)90008-4. URL
https://doi.org/10.1016/0890-5401(92)90008-4.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II.
Inf. Comput., 100(1):41–77, 1992. doi: 10.1016/0890-5401(92)90009-5. URL
https://doi.org/10.1016/0890-5401(92)90009-5.

[15] J. Å. Pohjola, A. Gómez-Londoño, J. Shaker, and M. Norrish. Kalas: A
veri�ed, end-to-end compiler for a choreographic language. In J. An-
dronick and L. de Moura, editors, 13th International Conference on Interactive

Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of
LIPIcs, pages 27:1–27:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022. doi: 10.4230/LIPIcs.ITP.2022.27. URL https://doi.org/10.

4230/LIPIcs.ITP.2022.27.

[16] A. Sandberg Ericsson, M. O. Myreen, and J. Åman Pohjola. A veri�ed

16

https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1145/3544885.3544887
https://doi.org/10.1145/3428272
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.4230/LIPIcs.ITP.2022.27


Bibliography

generational garbage collector for CakeML. J. Autom. Reasoning, 63(2):
463–488, 2019. doi: 10.1007/s10817-018-9487-z.

[17] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish.
The veri�ed CakeML compiler backend. Journal of Functional Programming,
29, 2019.

[18] L. Xia, Y. Zakowski, P. He, C. Hur, G. Malecha, B. C. Pierce, and
S. Zdancewic. Interaction trees: representing recursive and impure pro-
grams in coq. Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020. doi:
10.1145/3371119. URL https://doi.org/10.1145/3371119.

17

https://doi.org/10.1145/3371119




1
Kalas: A Verified, End-to-End

Compiler for a Choreographic

Language

Johannes Åman Pohjola

Alejandro Gómez-Londoño

James Shaker

Michael Norrish

International Conference on Interactive Theorem Proving (ITP) 2022
1

A
bstract. Choreographies are an abstraction for globally describ-

ing deadlock-free communicating systems. A choreography can
be compiled into multiple endpoints preserving the global behavior,
providing a path for concrete system implementations. Of course, the
soundness of this approach hinges on the correctness of the compilation
function. In this paper, we present a veri�ed compiler for Kalas, a chore-
ographic language. Its machine-checked end-to-end proof of correctness
ensures all generated endpoints adhere to the system description, pre-
serving the top-level communication guarantees. This work uses the
veri�ed CakeML compiler and Hol4 proof assistant, allowing for con-
crete executable implementations and statements of correctness at the
machine code level for multiple architectures.

1This thesis version of the paper exhibits slight di�erences from the published version.





1.1 Introduction

In recent years, advances in the �elds of concurrency theory and systems
veri�cation have taken us closer to the idea of a truly correct communi-
cating system. The former abounds with beautiful high-level speci�cation
formalisms and reasoning techniques for communicating systems. At the
same time, the latter provides detailed correctness proofs of the low-level
computing infrastructure (e.g., compilers, language runtimes, and operating
systems) needed to implement them. There is then much to be gained by
joining these worlds. In particular, high-level descriptions of communicat-
ing systems — along with their guarantees — could be propagated down to
low-level implementations to create an end-to-end result. One promising
approach is choreographic programming, which at a high level describes
communicating systems while providing by-construction guarantees.

A choreography is a global description of a communicating system, written
in a style reminiscent of the Alice→ Bob notation for protocol descriptions.
Compared to the traditional approach of writing separate programs for every
Alice and Bob, the choreographic approach has the advantage that it is im-
possible to write a program with a communication mismatch. In particular,
deadlock freedom holds by construction. Furthermore, through a procedure
called endpoint projection choreographies can be compiled into separate pro-
grams for each endpoint, such that their parallel composition implements the
global behaviour.

In this paper, we present a compiler for our choreographic language, Kalas,
with a machine-checked, end-to-end proof of correctness. That is, we create
an environment based on the Hol4 interactive theorem prover [20] where
programmers can write choreographies, and then have the system automati-
cally generate executable code for each endpoint, along with a proof of its
correct compilation into machine-code.

Our compiler is structured into �ve phases, illustrated in Figure 1.1, with
associated correctness result for each. The �rst step is endpoint projection,
where the global choreography is projected into a parallel composition of
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Kalas Endpoint Payload CakeML

Endpoint projection (§1.3)

Phase I

Remove choice op. (§1.4)

Phase II

Split large messages (§1.5)

Phase III

Switch to Letrec (§1.6)

Phase IV

Code generation (§1.8)

Phase V

Figure 1.1: Compilation Steps and Intermediate Languages

sequential programs implementing each endpoint, expressed in a process
algebra we call Endpoint. Second, the Endpoint operators for branch selec-
tion are encoded with more primitive operators. Third, Endpoint is compiled
to a second process algebra, Payload. While messages in Endpoint can be
arbitrarily large, messages in Payload have a �xed size. This step introduces a
protocol that divides long messages into chunks, thus accounting for the fact
that real communication protocols have bounds on message size, without bur-
dening the application programmer with the details. A fourth step compiles
Kalas’s �xpoint operator (with substitution semantics) into recursive function
de�nitions (with environment semantics), to align better with functional
programming idioms. The �nal compilation phase compiles Payload’s end-
points to CakeML [10], a sequential, functional programming language with
a veri�ed compiler, giving us semantics preservation down to the machine
code.

Composing the compiler correctness results for each phase, we show that the
deadlock freedom of Kalas carries over to the compiler output: the generated
CakeML code never aborts with a runtime error, and—by the CakeML compiler
correctness theorem—neither does the machine code (unless it runs out of
memory).

As a convenient byproduct of CakeML’s FFI modelcode is parameterised on
primitives for sending and receiving messages, making it communication-
backend agnostic. Thus, the same CakeML code can be used irrespective
of whether the communication happens via (say) TCP/IP, MPI, or IPC, as
long as these actions have the same semantics as the corresponding Payload
primitives. Like other choreographic languages, our deadlock freedom guar-
antee depends on the rather strong assumptions implicit in the operational
semantics: the backend stays live, and messages will never be lost in transit.
In practice, our theorems are only as good as the backend’s ability to abide
by this.

As a proof-of-concept of our approach, we implemented a �lter choreography
and executed the generated code using an IPC communication backend on
seL4 [13], a formally veri�ed operating systems microkernel. Hence there
is strong evidence, in the form of machine-checked proofs of functional
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correctness of the kernel [13] and the delivery guarantees of the component
platform [6], that this backend is up to the task, even though we do not
connect our proofs with the seL4 proofs.

This paper’s main contributions are:

• the de�nition and veri�cation of an end-to-end choreographic compiler,
including:

• the proof of endpoint projection’s correctness w.r.t. Kalas’s asynchronous
semantics; and

• the implementation of a proof-of-concept choreography on top of
seL4/CAmkES.

All de�nitions and proofs in this paper are mechanised in Hol4 [20] and
available online.2

1.2 Kalas: A Choreographic Language

In this section we introduce our choreographic language, Kalas. To build an
intuition for how choreographies operate, consider a common situation in
component-based systems: a producer wishes to send a stream of messages
to a consumer, but the consumer can only receive messages of a certain form.
A �lter that discards malformed messages is inserted.
Example 9 (Message �lter - Choreography).

1. while(true) do
2. let v@producer = next_msg() in
3. producer.v −> filter.temp;
4. let test@filter = test(temp) in
5. if test@filter then
6. filter −> consumer[T];
7. filter.temp −> consumer.v
8. else filter −> consumer[F]

We assume a function next_msg to obtain the next message, which is then
stored in the producer’s local variable v (line 2). The producer then commu-
nicates the contents of v to the filter which stores it locally in temp (line
3). The filter computes test(temp) (line 4). If test(temp) is true (line 5),
we inform the consumer that a message is coming (line 6), and forwards the
contents of temp to the consumer (line 7). Otherwise, we inform the consumer

that a message was dropped (line 8).
2https://github.com/CakeML/choreo/. Instructions for reviewers here: https://www.

cse.unsw.edu.au/~z3528312/itp2019/artifact.pdf
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This example highlights two important features: a choreography captures
both the concrete behaviour of its participants and a global view of the com-
munication occurring between them. That is, interactions between endpoints
are presented together with local computation, e.g., test above. This allows
individual endpoints to be translated into complete sequential programs.
Second, communication mismatches are impossible by construction: if no
message is forthcoming, the consumer will never be stuck waiting for one.

1.2.1 Syntax and Semantics

Kalas is similar to Core Choreographies (CC) [1], but features arbitrary local
computation and asynchronous communication. The main datatype under
consideration in our choreography language is strings or, to be precise, �nite
sequences of bytes. Strings are used as endpoint names (pi), variable names
(vi), process variables (X), and as the concrete data that gets bound to vari-
ables and transmitted between endpoints (d). The use of strings as the value
represents a separation of concerns: after marshalling and unmarshalling,
local computations have full access to HOL’s strongly typed language, but the
choreography language is only concerned with data as it is really transmitted,
namely as strings. The booleans (ranged over by b) are written T and F. When
we use booleans where strings are expected, we tacitly identify T with [0x01],
and F with [0x00]. We use a to range over the union of strings and booleans,
and f to range over functions of type string∗→ string.

De�nition 1 (Kalas syntax). Choreographies in Kalas, ranged over by C, are
inductively de�ned by the grammar

C ::= p1.v1 −> p2.v2;C (com) p1 −> p2[b];C (sel)

if v@p then C1 else C2 (if) let v@p = f (̃v) in C (let)

µX. C (�x) X (var)

0 (nil)

The pre�x (com) sends the data bound to variable v1 at endpoint p1 to endpoint
p2 which stores it in variable v2, (sel) communicates the selection of a branch
from p1 to p2, (if) branches over the value in variable v at process p, and (nil)

is the empty choreography. (let) performs local computation, taking all values
bound to the variables ṽ at endpoint p and applies them as arguments to the
function f . The result is then stored in v. Note that we do not commit to any
particular syntax for functions; rather, f is a function in the meta-language in
which Kalas is de�ned. In our case, the meta-language is higher-order logic
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(Hol). Hence our syntax is only concerned with interaction and branching
of endpoints, o�oading computation to Hol. This �exibility is useful for
specifying open systems, or systems with legacy components: the internal
behaviour of an endpoint that we have no control over can be modelled
by functions that are non-computable, underspeci�ed, or even completely
uninterpreted, and the compiler can ignore such endpoints for code generation.
For endpoints that we do intend to project, we require that the f ’s used in
their let-bindings be “su�ciently code-like”—otherwise, code generation will
fail. This excludes, for example, functions that use Hilbert choice, sets or
quanti�ers.

Finally, (�x) supports choreographies with in�nite behaviour. These can be
unfolded, taking e.g. µX. p1 −> p2[b];X to p1 −> p2[b];µX. p1 −> p2[b];X. The
above example also illustrates the only use of (var): as a placeholder for
�xpoint unfolding. The while loop used in Example 9 is syntactic sugar for
(�x).

We will use fv(C) to refer to the free variables of a choreographyC, where each
variable is paired with the name of the process that owns the variable. The
binding operators are let and p1.v1 −> p2.v2;C, where (v1,p1) is considered
free and (v2,p2) is considered bound.

Com
s (v1,p1) = d p1 , p2

sB p1.v1 −> p2.v2;C
p1.v1−>p2.v2−−−−−−−−−−→

ε
s[(v2,p2) := d]BC

Com-S
sBC

α−→
l

s′ BC′ p1 < fp(α) p2 < fp(α)

sB p1.v1 −> p2.v2;C
α−→
l

s′ B p1.v1 −> p2.v2;C′

Com-A
sBC

α−→
l

s′ BC′ p1 ∈ fp(α) wv(α) , (v1,p1) p2 < fp(α)

sB p1.v1 −> p2.v2;C
α−−−−−−−−−−−−−→

(p1.v1−>p2.v2)::l
s′ B p1.v1 −> p2.v2;C′

Table 1.1: Kalas semantics: communication rules. The function wv(α) re-
turns the variable (if any) that is modi�ed by α.
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The operational semantics is inductively de�ned, with some sample rules
given in Table 1.1. Transitions are labeled to indicate both the action being
performed (upper α), and the trace (lower l) of deferred asynchronous actions.
We explain the latter mechanism below. We refer to both labels and pre�xes
as actions, since they directly correspond to all operations that can be per-
formed in the language. A store s is a partial function string× string ↪→ string
representing a global view of the endpoints’ variable binding environment:
s(v,p), if de�ned, denotes the value bound to v in p’s binding environment.
In Hol, we use option types in the range to encode this partiality; much of
the following presentation elides the logic’s special handling of this (e.g., the
Some and None constructors).

Kalas uses non-blocking, asynchronous communication. Hence, a sender
process should be able to perform further actions before the message has
arrived at the receiver. The semantics captures this by allowing an action α to
occur before other interactions, provided only the sender process is present
in α. A trace of every action that was skipped over is kept, to ensure the
consistency between asynchrony and concurrency rules. This trace is used
in the rule for if, which requires that both branches defer the same actions,
though not necessarily in the same order. This constraint guarantees that
regardless of the choice of branch, the asynchronous actions that need to be
deferred in order to perform α are the same for each of the processes involved,
implying that α is independent of the branching caused by the guard.

We prove that the resulting semantics is locally con�uent, which will turn out
to be immensely important for taming the proofs. As a sanity check of our
rather involved labels, we also show completeness with respect to a similar
semantics (not shown here) with structural congruence instead of swapping
rules.

1.3 Endpoint Projection

The �rst phase of our compiler is endpoint projection, where we translate Kalas
into Endpoint, our �rst intermediate language.

Continuing with Example 9, when we apply endpoint projection to the
producer-consumer-�lter choreography (PCF), we obtain JPCFKE = P | C | F,
comprised of the following endpoints running in parallel:

Example 10 (Message �lter — Endpoint).
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P (Producer)
µX. F (Filter)

let v = next_msg() in µX.
sendv tofilter. X receivemsgfromproducer.

let v = test(msg) in
C (Consumer) if v then

µX. chooseTforconsumer.
filterchooses sendmsg toconsumer. X
T : receivev fromfilter. X else chooseFforconsumer. X
or
F : X

Here the (Filter) endpoint receives a message from the producer and, depend-
ing on the output of test, communicates its choice of branch to the consumer.
Conversely, the (Consumer) decides based on the �lter’s choice whether it
should await a message or whether the message was dropped. Finally, the
(producer) obtains a message and sends it to the �lter. Note that no branching
or choice is required in the producer, since it behaves the same whether test
succeeds or not.

1.3.1 Endpoint: Syntax and Semantics

Endpoint inherits many design decisions from Kalas, but splits unitary Kalas
systems into two layers: the endpoint layer is purely sequential, and the
network layer is a parallel composition of endpoints, each with its own name,
queue and binding environment.

A queue q is a function string→ string∗. The value q(p) is the sequence of
messages, from �rst to last, received from process p but not yet read. Let
q+ (p,a) be q with a appended to the end of q(p), and q − p be q with the �rst
element of q(p) removed; if q(p) is empty, q − p is unde�ned. An environment e
is a partial function from variable names to values.

De�nition 2 (Endpoint syntax).

P ,Q := sendv top.P (output)

receivevfromp.P (input)

choosebforp.P (internal choice)

pchoosesT : PorF : Q (external choice)

if v then P else Q (if)

let v = f (ṽ) in P (let)

µX.P (�x)

X (var)

0 (nil)
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N := N1 |N2 (parallel)

0 (nil)

(p,e,q)B P (endpoint)

Table 1.2 shows three representative rules from Endpoint’s operational se-
mantics. sendv top.P represents an endpoint ready to send the contents of
variable v to p, using the Send rule; the Enqeue rule allows a message thus
sent to arrive in p’s queue. receivevfromp.P denotes a process ready to de-
queue a message from its queue originating from p, and bind the contents of
the message to the variable v (Deqeue); if there is no message from p, the
endpoint is blocked until one arrives. Similarly, choosebforp.P represents an
endpoint ready to tell process p that it has chosen the b-branch. The corre-
sponding IntChoice rule (elided) interacts with Enqeue to add the choice
to b’s message queue. pchoosesT : PorF : Q represents a process waiting for
p to communicate its choice of branch. If it �nds a T from p in the queue, it
proceeds as P ; if it �nds something else from p, it proceeds as Q.

Send
e v = d p1 , p2

(p1,e,q)B sendv top2.P
p1→p2:d−−−−−−−→ (p1,e,q)BP

Enqeue
p1 , p2

(p2,e,q)BP p2←p1:d−−−−−−−→ (p2,e,q + (p1,d))BP

Deqeue q(p2) = d::̃a p1 , p2

(p1,e,q)B receivevfromp2.P
τ−−→ (p1,e[v := d],q − p2)BP

Table 1.2: Endpoint semantics: communication rules.

1.3.2 Endpoint projection

The main complication when de�ning endpoint projection is how to handle
if statements, which are not always projectable. For an example, consider the
choreography

if Alice@v then Bob.v −> Alice.v else Alice.v −> Bob.v

where Alice makes an internal choice, and depending on the result, either
Alice sends a message to Bob, or vice versa. How does Bob know whether to
send or receive?
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We need a projectability criterion that rules out such degenerate cases. Our
criterion is, intuitively: whenever Alice chooses an if branch, every other
endpoint whose projection depends on the choice must immediately be told
which branch was chosen. Hence, the example above can be made projectable
by adding selections as follows:

if Alice@v then Alice −> Bob[T];Bob.v −> Alice.v
else Alice −> Bob[F];Alice.v −> Bob.v

To formalise this criterion, we use the auxiliary function sp to split o� initial
selections pertaining to a pair of endpoints and check which branch was
chosen.

De�nition 3 (Split selections). The partial function sp is inductively de�ned

as follows (in all other cases, sp is unde�ned)

spp1,p2
(p3 −> p4[b];C) =


(b,C) if p1 = p3 and p2 = p4

spp1,p2
(C) if p1 = p3 and p2 , p4

undefined otherwise

Fixpoints motivate some additional projectability criteria: (i) orphan (var)

statements are not allowed, and (ii) the projection of a (�x) statement for
endpoints that do not appear in its body should be 0 (otherwise, the compiler
introduces divergence). To enforce these requirements, we use a �xpoint context

γ , a partial function from process names to sets of endpoint names that keeps
track of which endpoints occur in the body of each (�x) statement.

We de�ne a single partial function pr that given an endpoint name, a �xpoint
context, and a choreography, returns an endpoint (its projection), if it exists.

De�nition 4 (Projection and projectability). A choreography C is projectable
if for all p ∈ procs(C), prp(ε,C) is de�ned. The projection of the endpoints p̃

from a choreographyC with state s is de�ned as JsBCKp̃E = Πpi∈p̃. (pi , s↓pi ,ε)B
prpi (ε,C) whereΠ denotes iterated parallel composition, s↓p denotes λv.s(p,v),
ε is an empty �xpoint context, and pr is de�ned inductively by the equations in

Table 1.3. JsBCKE abbreviates JsBCKprocs(C)
E .

1.4 Refining Choice

In Phase II, we implement Endpoint’s choice primitives using send and receive
actions. This simpli�es reasoning about later compilation phases and the
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implementation of communication backends, which only need to consider
two message-passing primitives instead of four.

After re�ning choice from the parallel composition P | C | F in Example 10,
we obtain JP | C | FKC = P | C′ | F′ , where the producer P is unchanged because
it uses no choice constructs. The �lter and consumer are compiled as follows:
Example 11 (Message �lter — Re�ning choice).

F′ (Filter) C′ (Consumer)
µX. µX.
receivemsgfromproducer. receivevfromfilter.
let test = test(msg) in if v then
if test then let v = T in receivev fromfilter. X

sendv toconsumer. else X
sendmsg toconsumer. X

else let v = F in
sendv toconsumer. X

The phase is mostly straightforward: internal choice is encoded as sending a
boolean value, and external choice is encoded as receiving a value, storing it
in a temporary variable v, then branching on it using if.

De�nition 5 (Phase II). The compilation function is homomorphic on all

operators except internal and external choice, where it is de�ned as follows for

any v not free in P ,Q:

Jchooseb forp.P KC = let v = (λx.b)ε in sendv top.JP KC

JpchoosesT : P orF :QKC = receivev fromp.(if v then JP KC else JQKC)

Since v is not used further in the continuation, it can be reused for subsequent
choice encodings, meaning that in practice, a single fresh name su�ces.

The design of the Endpoint semantics anticipates this compilation phase,
by allowing type confusion between boolean values and string values. This
feature, which may seem otherwise undesirable, makes branch selection
messages indistinguishable from other messages. This makes the di�erence
between NE and JNEKC unobservable by other processes.

1.5 Spli�ing Large Messages

In both Endpoint and our source language, transmitting a message of arbitrary
size is a single atomic operation, whether it carries one bit or one terabyte of
information. This is convenient for the programmer, but doesn’t re�ect how
real communication protocols work.
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Our second compiler phase introduces a protocol that divides long messages
into chunks (see Figure 1.2), accounting for the fact that real communication
protocols have bounds on message size, without burdening the application
programmer with the details.

A BA→ B : v

chunk1

chunk2

chunkn

sendv toB. P receivev fromA. P

Figure 1.2: Messages split into chunks

For these purposes, we introduce another intermediate representation, Pay-
load, which is similar to Endpoint except messages have a �xed size. It
turns out that this compiler phase is more proof-relevant than compiler
implementation-relevant. Syntactically, the compilation function J·KC from
Endpoint to Payload is essentially the identity function. Semantically, send
and receive actions are no longer atomic, which leads to a combinatorial
explosion in the number of possible interleavings. The associated proof com-
plications are largely mitigated by observing that the target terms are always
locally con�uent.

Payload is parameterised by a payload size σ > 0. Unlike in previous languages
where messages can have arbitrary size, here messages in transit must be
exactly σ + 1 bytes long. Longer messages are transmitted in chunks, and
shorter messages are padded; the extra byte encodes the bookkeeping neces-
sary to realise this. In particular, we must track whether a given chunk ends
a message, or whether it will be continued in future messages.

De�nition 6 (Payload syntax, I). The syntax of Payload is obtained by remov-

ing endpoint, input, output and choice from Endpoint, and adding:

(p,e,η,q)B P (endpoint) sendvn top.P (output)

receivev in〈d〉fromp.P (input)

The message-splitting aspect of Payload’s semantics is embodied here: the
new input and output pre�xes record how far along in a transmission we
are. Hence sendvn top.P will send the value of v to p, starting from the n-
th byte, divided into as many chunks as necessary, one chunk at a time.
Similarly receivev in〈d〉fromp.P will receive chunks from p, recording every
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intermediate chunk in the temporary bu�er d. When a final chunk arrives,
all received chunks are concatenated and bound to the variable v.

The state component η is a closure environment; we will discuss it in Sec-
tion 1.6.1, where the operators that need it are introduced. For space reasons,
readers interested in the operational semantics are referred to the formalisa-
tion.

1.6 Introducing Closures

Finally, before we transition from Payload to CakeML, we introduce closures.
That is, we translate all instances of the �xpoint operator µ into a letrec
primitive, to better match CakeML’s representation of recursive functions.
Though CakeML supports global, update-able variables (SML’s ref types),
reasoning is much simpler if one remains “purely functional”, and uses param-
eters with closures and local, immutable bindings. Thus: variables written to
in the �xpoint body (ultimately from the Kalas source) must be made function
parameters.

Why not just put letrec in the source language, if we have to add it later
anyway? Brie�y, it becomes technically complicated to maintain a consistent
view of the global environment in the presence of out-of-order execution. Fix-
point semantics do not need environments. See Section 1.9 for a comparison
with related approaches.

1.6.1 Closures: syntax and semantics

Recall from Section 1.5 that endpoint states contain a closure environment η.
It is a mapping from function names to closures. Closures are triples (e,η,λx̃.P ),
where: e,η are the local variable environments and closure environments,
respectively; x̃ is the function’s parameters; and P is the function body. Note
that closures and environments are mutually recursive.

De�nition 7 (Payload syntax, II). These augment the operators from De�ni-

tion 6.

letrec F(d̃) = P (letrec) F(ṽ) (call)

(letrec) and (call) are function de�nitions and function calls, respectively. They
are similar to (�x), but use environment semantics instead of substitution
semantics. Note that letrec has no continuation; instead, the de�ned function
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will be called immediately. This su�ces for our purposes, which is to use
letrec to encode µ.

1.6.2 Compilation

To compile the �xpoint operator into the letrec operator, the basic idea is the
obvious one: a �xpoint binder µX becomes a recursive function de�nition,
and a process variable X becomes a function call. But what arguments should
we give the function?

To prepare for compilation to CakeML, the main goal is to make sure we
use the constructs that mutate variables (let and input) consistently with
functional programming idioms. But we have a second, con�icting goal. To
simplify proofs, we want the local variable environment of target terms to be
identical to the global environment of their source terms. The following table
illustrates the options we considered:

Source
let x,y = . . . in µX. let x = f(x,y) in sendx top.receivez fromp.X

Target I Target II Target III
let x,y = . . . in let x,y = . . . in let x,y = . . . in
letrec X(x,y,z) = letrec X(x,z) = letrec X(x) =
let x = f(x,y) in let x = f(x,y) in let x = f(x,y) in
sendx top. sendx top. sendx top.
receivez fromp. receivez fromp. receivez fromp.
X(x,y,z) X(x,z) X(x)

Target I represents the simplest compilation strategy that could possibly work:
every program variable becomes a parameter of every function. This, however,
is rather wasteful: y is never modi�ed within the function, so there’s no need
to pass it around; z is modi�ed in the body, but not subsequently read, so
there is no need to remember its value between calls.

Taking all this into account would yield Target III, which is to take as function
parameters only those variables that may be read before they are written to
within a �xpoint’s body. Unfortunately, this is not compatible with our second
goal above: while the source term retains the value of z between subsequent
�xpoint unfoldings, Target III will restore z to its value at the point of X’s
de�nition at each recursive call.

As a compromise, we opt for Target II: the function parameters are the vari-
ables that may be written to within the body of the �xpoint expression. To
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this end, we let the function wv(e) return all variables that are modi�ed (by
let or receive) in e.

De�nition 8 (Phase IV). The compilation function J·KγF is homomorphic on all

operators except: letrec and call, where it is unde�ned; and �x and val, where it

is

JµX.P KγF = letrec X(wv(P )) = JP Kγ[X:=wv(P )]
F JXKγF = X(γ(X))

In the above, γ is a partial function from process variables to lists of local

variables.

A further minor complication is that a variable can be used as a function
argument before its de�nition. We could add support for optional arguments,
but since CakeML has no such feature we would eventually have to compile
them away. Our �x is that before we apply JXKF, we add a prelude to each
endpoint that initialises all variables to a default value.

1.7 Compiler Correctness

In this section, we discuss the compiler correctness theorem connecting Kalas
to Payload with Letrec, and its proof.

1.7.1 Theorem Statement

Let J·Kp̃ denote the composition J·Kp̃E ◦ J·KC ◦ J·KP ◦ J·KεF and let JCK = JCKprocs(C).
We prove weak operational correspondence up-to strong bisimilarity (denoted
.∼) for J·Kp̃:

Theorem 1. If c is a projectable choreography and fv(c) ⊆ dom(s), then

1. (Operational completeness) If sBC ==⇒ s′BC′ then there exist s′′ ,C′′ ,NF

such that s′ BC′ ==⇒ s′′ BC′′ and JsBCK ==⇒ NF and NF
.∼ Js′′ B

C′′Kprocs(C)

2. (Operational soundness) If JsB CK ==⇒ NF then there exist s′ ,C′ ,N ′F
such that NF ==⇒ N ′F and sBC ==⇒ s′BC′ and N ′F

.∼ Js′BC′Kprocs(C)

Here ==⇒ over networks denotes τ−−−→
?
, and ==⇒ over choreographies denotes

(
⋃
a,l

a−→
l

)? . Our presentation of operational completeness requires a catch-up
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transition because projectability is not, in general, preserved by reduction.
However, any non-projectable choreography reachable from a projectable
choreography can always reduce to a projectable choreography.

One important consequence of Theorem 4 is that the compiler output is
deadlock-free:

Theorem 2 (Network-level deadlock-freedom). If C is a projectable choreog-

raphy, and fv(C) ⊆ dom(s), and JsBCK ==⇒ NF, then either all endpoints in

NF are Nil, or there exists N
′
F such that NF

τ−−→N ′F

1.7.2 On the proofs

As the reader may expect, we prove soundness and completeness separately
for each compilation phase before composing the theorems. A common theme
is strategic use of con�uence to reduce the number of interleavings we must
consider.

The proof of operational completeness for Phase I leverages local con�uence to
simplify reasoning in a major way. The asynchrony and swapping rules in
Kalas’s semantics, which are otherwise a pain point, play no role in these
proofs. This is because any reduction involving them has a common successor
with a reduction that only uses the syntax-directed rules (e.g., rule Com
from Table 1.1). This yields a simpler proof than, for example, Montesi [16,
Appendix C]; his language is also con�uent, yet his proof makes no use of
this, and includes cases for the swapping and asynchrony rules.

To prove operational soundness we use a technique based on inert reduction, �rst
conceived by van Glabbeek to study encodings from the synchronous to
the asynchronous π-calculus [25]. Intuitively, an inert reduction is one that
performs a bookkeeping step without committing to a branch. We say that
NE −−−→ N ′E is inert if for every N ′′E , N ′E such that NE −−−→ N ′′E , there is an N ′′′E

such that N ′E −−−→ N ′′′E and there is an inert transition N ′′E −−−→ N ′′′E . The key
insight is that for encodings that only use inert catch-up transitions, opera-
tional soundness can be proven by induction on the length of the reduction
sequence. Moreover, since inertness is a form of con�uence, it su�ces to
consider just one interleaving of the intermediate steps, namely the one that
directly mimics one source-language step at a time. All our catch-up tran-
sitions are inert, which makes the proof of operational soundness much more
tractable, with roughly half the e�ort going into proving con�uence. The
same technique is also used to great e�ect to tame the interleaving explosion
of Phase III.
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Phase II uses a traditional invariant-based technique, which we found in-
tractable for the other phases with more complicated interleavings. The main
headache here is alpha-equivalence considerations arising from the need to
invent fresh names.

The proofs for Phase IV are di�erent. In the other phases, the bulk of the
e�ort is chasing transitions. Here, that part is trivial since we have one-to-
one transition correspondence (up-to strong bisimilarity). The di�culty is
in wrangling the candidate relation used to prove that the continuations of
�xpoints and letrec unfoldings are bisimilar. The relation, which describes the
precise relationship between closure environments and (possibly unfolded)
�xpoints, is surprisingly complicated at almost 50 lines of Hol4 script. It is
worth pointing out that this complicated relation entails no trust issues; its
only use in the overall proof story is to witness an existential quanti�er.

1.8 Compilation into CakeML

CakeML [10] is an impure, sequential, functional programming language
similar to Standard ML. Its most notable feature is a compiler correctness
proof in Hol4 that extends down to the machine code level for mainstream
architectures such as x86-64 and ARM [21]. Interaction with the outside
world is supported by a foreign function interface (FFI). We assume two
foreign functions, send and receive, that support communication with the
other endpoints. Compilation to CakeML consists of two parts: the static
part, which is veri�ed once and for all, and the dynamic part, which is proof-
producing.

1.8.1 Static compiler

Example 12. let val v =
let val buff = Word8Array.array (σ + 1) 0

fun receiveloop d =
(#(receive) p buff;
let val m = unpad buff
in if final buff then concat(reverse(m::d))

else let fun zerobuf(i) =
if i < 0 then ()
else (Word8Array.update(buff,i,0);
zerobuf(i-1))

in zerobuf(Word8Array.length(buff)-1);
receiveloop(m::d)

end
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end)
in receiveloop [] end

in JP KML end

The static compilation is performed by the function J·KML, which maps Payload
endpoints to CakeML expressions. Its full de�nition would not �t here, but to
show its �avour, Jreceivev in〈ε〉fromp.P KML produces the code in Example 12

First, a receive bu�er of size σ +1 is allocated. Then, the function receiveloop

repeatedly calls the foreign function #(receive) until a �nal chunk from p is
received, zeroing the receive bu�er between every message. All chunks of
the message are unpadded, concatenated and �nally bound to the variable v
before proceeding.

We use a small-step, relational (but deterministic) presentation of CakeML’s
semantics, allowing a natural expression of our eventual simulation theorem.
We write (p0,cs0)→c (p,cs), with p0 the initial CakeML program, and cs0 its
accompanying state, to mean that this pair can evolve in a single step to (p,cs).
The states csi contain FFI information (see below), the internal program state
(variable environment, reference contents), as well as a continuation stack to
track what remains to be done. The semantics is parametric on the behaviour
of foreign functions: states include a freely chosen model of the outside world,
and a freely chosen oracle function that describes how this model reacts to FFI
calls.

We are interested in how generated CakeML code interacts with the choreog-
raphy’s other endpoints, so our FFI state models the outside world as triple
(p,q,N ), with p the name of the CakeML endpoint, q its queue, and N a Pay-
load network that p interacts with. There is an unfortunate mismatch here:
the FFI model must be a function (CakeML is deterministic), but Payload’s
semantics is a one-to-many relation: when we receive a message from N ,
there is not in general a unique N ′ that the network will reach after sending
us our message, as actions internal to N may or may not �re before N sends
the message. However, as long as all endpoints in N have unique names (a
reasonable invariant), Payload reductions and send actions are locally con-
�uent. So whether such internal actions �red or not, the resulting states are
observationally equivalent from p’s point of view.

Let N p→p̃:d̃
=====⇒ N ′ denote N ==⇒ p→p0:d0−−−−−−−−→==⇒ . . .

p→pn:dn−−−−−−−−→==⇒ N ′ . We de�ne
the oracle so that when #(send)pd executes in a state (p1,q,N ), if there is
no endpoint named p in N , we abort with a run-time error; otherwise we
produce a new state (p1,q + �(p,d) + (̃p′ ,d′),N ′), chosen with Hilbert Choice
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to satisfy N p̃→p1:d̃
======⇒ p←p1:d−−−−−−−→ p̃′→p1:d̃′

=======⇒N ′ . That is, the network component N ′
records its delivery of some number of messages to us (from p̃), the delivery
of our message d to p1, followed by its sending us possibly yet more messages
(from p̃′).

The semantics of #(receive) is similar, with the addition that the FFI call
diverges if there is no reduction sequence causing a message to be enqueued.
A key sanity check and technical lemma to show that this use of Hilbert
choice is innocuous is the following:

Lemma 1 (FFI irrelevance). Two CakeML steps starting from equal environ-

ments, equal expressions and bisimilar initial states yield bisimilar states and

otherwise equal results.

Let Np denote the endpoint named p in N , and N − p the network with that
endpoint removed. Let FFI(cs) denote the FFI component of the CakeML
state cs. Write cs1 =ffi cs2 when FFI(cs1) is bisimilar to FFI(cs2) and all other
components of the two states are equal.

Theorem 3 (Network Forward Correctness). LetN be a well-formed Payload

network that includes an arbitrary endpoint p. Further, assume a CakeML state

cs that is appropriately related to N (see below), with FFI(cs) = (p,q,N − p).
Then, if N can reduce to N ′ , there exist cs′ , mp (the “merge program”), cs1 and

cs2 (two “merge states”) such that

• FFI(cs′) = (p,q′ ,N ′ − p) and cs′ is appropriately related to N ′ ;

• (JNpKML,cs)→∗c (mp,cs1);

• (JN ′pKML,cs′)→∗c (mp,cs2); and

• cs1 =ffi cs2.

The “appropriate relation” above between a network and a CakeML state
requires that: all bindings of Np are present in the CakeML state’s envi-
ronment; our library functions (e.g., List.drop) are de�ned and have the
expected behaviour; and for every function f used in a let expression in Np, a
CakeML function that is a totally correct implementation of f is present in
the environment.

As CakeML is deterministic, Theorem 3 gives us that (i) all in�nite traces in
Payload are necessarily simulated by an in�nite trace in CakeML, and (ii)
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compilation of a terminating choreography produces CakeML endpoints that
will all also terminate successfully.

Though Theorem 3 tells us that every step taken by an endpoint will result in
corresponding movement at the CakeML level, we have not transferred dead-
lock freedom to this level if the original choreography has only in�nite paths.
This is because currently, our theorems are not strong enough to rule out
the possibility of livelocks: states where global progress is possible, but some
nodes may be stuck waiting to receive. This is impossible by construction in
Kalas, so while no such livelocks can occur (under weak fairness), operational
correspondence by itself is only strong enough to guarantee global progress.
One possible solution is to prove, in addition to operational correspondence,
that an invariant stating “every receive can eventually be matched by a send”
holds throughout the compilation chain.

1.8.2 Dynamic compiler by example

The dynamic compiler creates the initial environment assumed in Theorem 3,
and proves that it is appropriate. The environment is built on top of the
CakeML basis library by invoking CakeML’s proof-producing code synthesis
tool [17] on each function used in the endpoints’ let expressions.

Kalas and the compiler are all deeply embedded in Hol4. Hence, users program
choreographies by writing instances of the Hol4 datatype that encodes the
choreography syntax. We de�ne the system in Example 9 as a choreography
filter where the producer has an in�nite message stream, and where test

is a simple function that checks if the message starts with "A" or not. To run
the compiler, the invocation is

project_to_camkes builddir filename "filter";

This automatically performs the following tasks: (i) proves that the current
environment is appropriate; (ii) evaluates the compiler in the logic to pro-
duce CakeML code for each of the three endpoints; (iii) produces end-to-end
theorems for each endpoint by composing Theorems 4 and 3, discharging all
assumptions; (iv) �nally, generates all the glue code and build instructions
necessary to create a complete system image that runs our choreography on
top of the veri�ed microkernel seL4 [13]. The system consists of three compo-
nents in parallel, each running our generated CakeML code. The CakeML code
is linked with a thin layer of C glue code that implements send and receive

using the dataport and IPC mechanisms of the CAmkES [15] component plat-
form. Thus: the user writes a choreography, calls project_to_camkes, and
obtains a correctly compiled choreography running on a veri�ed component
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platform on a veri�ed microkernel.

1.9 Related Work

Session types [10] have seen extensive use in the π-calculus [11] and other
concurrent languages [5, 12, 18, 26]. In recent years, the �eld has seen more
mechanised proofs, perhaps motivated by past mistakes [19, 27]. In Castro et

al. [3] a revised version of the session-typed π-calculus [27] is formalised in
Coq [23]. Furthermore, Thiemann [24] proves type soundness and session
�delity in Agda [1] for an asynchronous functional session type language
based on Gay et al. [7]. Tassarotti et al. [22] develop a higher-order concurrent
logic, and verify a re�nement procedure for a session-typed language as a
case study. More broadly, Hinrichsen et al. [9] draw inspiration from session
types to develop Actris, a higher-order concurrent separation logic capable
of reasoning about multiple concurrency paradigms like message-passing,
process forks, and critical section locks.

Hallal et al. [8] synthesise the distributed components of a communicating
system from a global choreography. Their result aims only to capture the
communication logic of the system; by way of contrast, we consider local
computation also.

Carbone and Montesi [6, 16] present a choreographic language with multi-
party asynchronous session types (demonstrating the combination of the two
approaches to great e�ect) along with a projection function into a variant of
the calculus for multi-party sessions, with a proof—albeit pen-and-paper—of
projection correctness. Kalas began as a simpli�ed version of their language.

The most closely related work is two recent Coq formalisations of endpoint
projection in di�erent settings, by Cruz-Filipe et al. [2], and by Hirsch and
Garg [7]. Cruz-Filipe et al. verify endpoint projection from CC (Core Choreo-
graphies) to a distributed process calculus. Hirsch and Garg [7] formalise
endpoint projection from Pirouette, a higher-order functional choreographic
language, where functions can return, and be parameterised on, choreo-
graphies. The most obvious di�erence between our work and these other
papers is one of scope: both of [2, 7] formalise endpoint projection in isola-
tion; for us, this is just the �rst step towards our goal of integrating endpoint
projection into an end-to-end veri�ed compilation toolchain that can be used
to build real, runnable code.

Both CC and Pirouette are parameterised on a local language for describing
computation, which is assumed to be available also in the target language.
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We achieve similar generality by representing local computation as shallow
embeddings (functions in Hol4’s logic). This lets us use a more abstract
presentation, with no need to carry around an extra syntax, semantics, and
associated well-formedness assumptions. The tradeo� is that we need a
proof-producing (as opposed to veri�ed) compiler phase to generate CakeML
code.

In terms of semantics, one di�erence is that Kalas has asynchronous communi-
cation, whereas both CC and Pirouette are synchronous languages. Another
interesting di�erence between the three languages is their representation
of choreographies with in�nite behaviour. Pirouette uses function closures.
CC does not support the de�nition of local procedures, but executes in a
context where a number of top-level, parameterless procedures are available.
Kalas uses a �xpoint operator, which is parameterless, like CC, but supports
arbitrary nesting of local procedures, like Pirouette.

CakeML has functions with closure semantics, but we nonetheless chose �x-
points over functions for Kalas. This is because, in an environment semantics,
it is di�cult to maintain a consistent view of the global environment in the
presence of out-of-order execution: the semantics needs to track which local
computations should be executed in the caller’s environment (if they’re ahead)
or in the callee’s environment (if they’re behind). One solution is Cruz-Filipe
et al. [2]’s approach, which breaks the abstraction of global, atomic actions by
introducing an operator representing partially-completed procedure entry
into the source language. Hirsch and Garg use an interesting approach, where
function calls are considered global both in source and target language. In particu-
lar, executing a function call in a single endpoint has a CSP-like synchronous
semantics where, as a single atomic action, the entire network performs the
same function call together. While assuredly simplifying endpoint projection,
this comes at the expense of complicated synchronisation when realising
this in a distributed setting. In contrast, Kalas’s unfolding of �xpoints can be
implemented locally.

The target language used by Hirsch and Garg is a parallel composition of
nodes expressed in the so-called control language. It mixes λ-calculus features
with communication-enabling e�ects like send, receive and choose. This is
rather like a functional language, which invites comparisons to our �nal target
language, CakeML; but the role it plays in their development is much more
akin to the role Endpoint plays in ours. Much like the relationship between
Kalas and Endpoint, the feature set of Pirouette and the control language are
essentially the same, except the latter is a localised representation.
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Not all aspects considered by Hirsch and Garg, and by Cruz-Filipe et al.,
are present in our work. For example, Hirsch and Garg prove progress and
preservation for an associated type system, while we do not consider types
at all. In a companion paper, Cruz-Filipe et al. [3] prove that CC is Turing-
complete, by showing that it can implement partial recursive functions. Turing
completeness for Kalas is trivial because local computations may use arbitrary
Hol functions.

1.10 Conclusion

We have presented what we believe to be the �rst end-to-end veri�ed compiler
for a choreographic language. After passing through �ve phases and two
intermediate languages, our language, Kalas can be compiled to machine-
code by reusing existing work from the CakeML project. Further, we have
implemented a deployment on top of the micro-kernel seL4, itself also veri�ed
software. There, message-passing is implemented by IPC between separate
user-processes.

There are a number of interesting directions for future work. Data types other
than strings require a framework for veri�ed marshalling and de-marshalling.
Our model of the communication backend assumes unboundedly long message
queues, which is arguably unrealistic. It would be interesting to investigate
if deadlock freedom holds in a model where queues are bounded but not
lossy. Alternative ITree-base [18] semantics (i.e., a co-inductive observational
semantics) for Kalas and other intermediate languages, could signi�cantly
simplify projection proofs and allow for more lax projectability criteria. The
CakeML compiler correctness theorem has an “unless the compiler output
runs out of memory” side-condition, so liveness properties such as deadlock
freedom carry over to the machine code only with this caveat, which could be
discharged using CakeML’s veri�ed space-cost semantics [10]. We would also
like to deploy on other communication backends, perhaps on top of TCP/IP,
which would demonstrate veri�ed distributed computation over the Internet.
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prp(γ,0) = 0

prp(γ,p1.v1 −> p2.v2;C)

=


⊥ if p1 = p2 = p

sendv1 top2.prp(γ,C) if p = p1 , p2

receivev2 fromp1.prp(γ,C) if p , p1 = p2

prp(γ,C) otherwise

prp(γ, let v@p1 = f (ṽ) in C)

=

let v = f (ṽ) in prp(γ,C) if p = p1

prp(γ,C) otherwise

prp(γ,µX.C)

=

µX.prp(γ[X := procs(C)],C) if p ∈ procs(C)

0 otherwise

prp(γ,X) =


⊥ if X < dom(γ)

X if p ∈ γ(X)

0 otherwise

prp(γ, if v@p1 then C1 else C2)

=



if v then prp(γ,C1) if p = p1

else prp(γ,C2)

p1 chooses if p , p1 and spp1,p(C1) = (T,C′1)

T : prp(γ,C′1) and spp1,p(C2) = (F,C′2)

or
F : prp(γ,C′2)

prp(γ,C1) if p , p1 and prp(γ,C1) = prp(γ,C2)

⊥ otherwise

Table 1.3: Projection and projectability, with the (sel) case, which is similar to
(com), elided. Partiality is indicated with a result of ⊥. Recursive
calls (e.g., in the let case) that fail propagate that unde�nedness to
the top-level.
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A
bstract. Choreographic languages provide a convenient model

for communicating systems that can be projected to concrete im-
plementations. Previous works have shown, via mechanized proofs,
that correspondence between choreographic and target languages can
be established while preserving valuable properties like deadlock free-
dom. The most common approach for achieving these kinds of results
is to rely on small-step semantics to describe language behavior and
subsequently perform all proofs. However, small-step semantics strug-
gle to capture the unique mix of local and global behavior present in
choreographies, leading to complicated correspondence theorems and
di�cult proof developments. In this paper, we present an alternative
semantics for the choreographic language Kalas based on interaction
trees—a �exible co-inductive denotation for programming languages.
We show how interaction trees can be used to express both the global
and local behaviors of choreographies and their correspondence with
a target language—all with a reduced proof e�ort when compared to
previous results. This work extends the previous formalization of Kalas
with our new interaction tree-base semantics, and all proofs are mecha-
nized using the Hol4 proof assistant.





2.1 Introduction

In recent years choreographies have emerged as a convenient formalism for
describing and implementing communicating systems [1, 4, 7]. A choreogra-
phy expresses the interactions between system components alongside their
local computations, creating a complete global view of the whole system. This
global perspective is accomplished by using a protocol-like syntax to denote
communication and additional syntax for control �ow, variable binding, and
local computations.

As an example, consider the following simple choreography:
Example 13 (Simple choreography).

1. let l@A = [5,4,7,1,4] in
2. A.l −> B.xs;
3. let ys@B = sort(xs) in
4. B.ys −> A.l;

Example 13 illustrates how communication can be seamlessly interleaved
with internal computations. First, process A sends its local list l (Line 1) to
process B (Line 2), which stores it in xs. Afterwards, B internally performs a
sort operation on xs (Line 3) and sends the result back to A (Line 4).

Choreographies also guarantee deadlock-freedom by construction. Further-
more, one can synthesize the implementation of individual components from
choreographies through a process known as endpoint projection. These
properties (along with features such as concurrency and asynchrony) make
choreographies a robust formalism and an ideal foundation for truly reliable
communicating systems.

Rigorous machine-checked formalizations of the semantics and properties of
choreographies exists [2, 4, 7]. Moreover, in recent work, a veri�ed end-to-
end choreography language compiler (Kalas) was implemented [13]. These
results strengthen the guarantees choreographies can provide and expand
their potential applications.

The formalization of choreographies, particularly their compilation into other
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An interaction tree-based semantics for choreographies

languages, is not without its challenges. Most formalizations of choreo-
graphies use small-step operational semantics, usually labeled transition
systems. Small-step semantics are well studied, conveniently capture non-
determinism, and have standard de�nitions for many desirable properties (e.g.,
con�uence, deadlock freedom, semantic correspondence, etc.); making them,
at face value, an excellent choice for choreographies. However, small-step se-
mantics struggle when reasoning about language correspondence is required.
Correspondence proofs often require cumbersome operational soundness
and completeness results [5], which must account (in the worst cases) for
fundamentally di�erent sets of transitions representing the same behavior—
e.g., when di�erent communication encoding are used. These shortcomings
are present (and abundant) in veri�ed compilers, as the correspondence of
di�erent languages’ semantics must be obtained to show the compiler’s over-
all correctness. Furthermore, for choreographic compilers, like Kalas’, this
issue is particularly troublesome as they have to consider a variety of be-
havior encodings (communication, selection, recursion, etc.) across multiple
intermediate languages

In most choreographic semantics, there is almost no distinction between
global component interactions and local computations, as both transitions
occur at the same global level. Choreographies blend components into a
single program structure, making them no longer external to one another and
allowing their interactions to be represented similarly to local computations.
However, this abstraction disappears as choreographies are compiled into
less global representations (e.g., a process calculus). Components’ boundaries
become explicit through parallel composition; interactions become external
from the perspective of individual components, as they require cooperation
from others in their global environment. Meanwhile, local computations
remain mostly unchanged, only acting within the boundaries of single com-
ponents. This drastic change in the encoding of global interactions and their
sudden disconnect with local computations causes correspondence proofs of
choreographic compilers (in a small-step setting) to be challenging. Then, if
we could better preserve the various behavior encodings throughout multiple
languages, the overall proof e�ort of establishing semantic correspondence
would be signi�cantly reduced.

Interaction trees [18] are a promising new approach for modeling the exter-
nal interaction of programs in a semantically convenient way. Interaction
trees are coinductive structures with a continuation-passing style handling of
external interactions. Instead of labeled transitions, the structure of interac-
tion trees contains events (requests to the external environment) alongside
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continuations which, given an action (the response from the environment),
return the remaining structure. Furthermore, semantic correspondence and
other properties can still be proven using powerful notions like bisimulation,
coinduction, and observational equivalence. We believe interaction trees can
express choreography semantics and support their veri�ed compilation into
individual components more �exibly than other traditional approaches.

This paper presents an interaction tree-based semantics for choreographies,
which addresses the shortcomings of small-step representations in several
ways. First, every component in the choreography is given an interaction
tree denotation of their local behavior and intended interactions; all compo-
nents are then combined into, what we call, an interaction forest (a collection of
interaction trees), which handles global interaction behaviors separately in a
language-agnostic manner. Consequently, establishing semantic correspon-
dence between compilation phases is reduced to showing either the equality
or bisimulation of interaction trees, as the interaction forest remains constant.
Finally, desirable properties like deadlock-freedom can be generally stated in
terms of interaction forests and proven "once and for all" at the choreography
level as long as the property under consideration is stable under bisimulation.

Our approach creates a separation of concerns between local and global
behaviors that, while seemingly contrary to the choreographic abstraction,
provides a consistent semantic notion for every language in the compilation
chain. Furthermore, we claim this approach allows for simpler proofs and
cleaner semantics in the context of veri�ed choreographic compilers. To
support this claim, we developed a new interaction tree-based formalization of
the Kalas language and compared it with its previous small-step formalization.

This paper’s main contributions are:

• The de�nition of an interaction tree-based semantics for Kalas with a
clear separation between local component behaviors and global com-
ponent interactions.

• The proof of endpoint projection correctness of Kalas’s projection function
in the context of the new interaction tree-based semantics.

• De�nition of deadlock freedom for an interaction forest and proof that
our construction for Kalas programs is deadlock-free.

All de�nitions and proofs in this paper are mechanized in Hol4 [14] and
available online1.

1https://github.com/CakeML/choreo
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2.2 Kalas in a nutshell

This section outlines the original presentation of Kalas based on small-step
operational semantics as a prelude to our new interaction tree-based formal-
ization in Section 2.3. Our work reuses the Kalas’ syntax and several other
key language concepts, which we brie�y recap here for convenience.

Kalas is a choreography language and veri�ed compiler implemented in Hol4
on top of the CakeML [10] compiler’s toolchain. The language itself is reminis-
cent of core choreographies [1] with some additions to facilitate mechanized
proofs and compilation. First, local computations (besides top-level branching)
are shallowly embedded as HOL4 functions and compiled using the CakeML
toolchain into executable code. Furthermore, all values are �nite sequences of
bytes (or simply strings), relying on veri�ed marshalling and unmarshalling
at the HOL4 level for type safety. Finally, there is a �xed number of processes,
and all values are variable bound.

2.2.1 Syntax

Overall, the language design of Kalas attempts to focus solely on representing
global interactions, conveniently o�oading other more local aspects of the
language. The syntax of Kalas is inductively de�ned by the following grammar:

De�nition 9 (Kalas syntax).

C ::= p1.v1 −> p2.v2;C (com)

p1 −> p2[b];C (sel)

if v@p then C1 else C2 (if)

let v@p = f (̃v) in C (let)

µX. C (�x)

call X (var)

0 (nil)

Component names (pi), variable names (vi), and function names (X) are
represented using strings. The empty choreography (nil) is denoted by 0.
Communication (com) between two components sends the value of local
p1 variable v1 and binds it to v2 in p2. Similarly, component p1 can select
(sel) a boolean branch b and communicate its choice to p2. Control �ow (if )
branches over the value of v in p, with [0x01] as true, and [0x00] as false.
Local computations (let) bind the result of applying f (a Hol4 function) to
the values bounded to the variable list ṽ. Recursion is by �xpoint unfolding
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(f ix and var), where the following choreography:

µX. p1 −> p2[v];call X

After one iteration becomes:

p1 −> p2[b];µX. p1 −> p2[b];call X

2.2.2 Semantics

The original semantics of Kalas was de�ned as an operational small-step
semantics with support for asynchronous communication. Transitions are of
the following form:

s1 B c1
τ−→
l

s2 B c2

Where a choreography (ci) and a value store (si) transition under an action label
τ and a trace of deferred asynchronous actions l. A value store si is a partial
function string × string ↪→ string mapping local variables in a component
to their corresponding value. Furthermore, action labels τ denote each of
the operations that can be performed in a choreography as per De�nition 9.
Finally, the trace l of deferred asynchronous actions prevents out-of-order
execution (e.g., send before receive) from taking place, a challenging property
to enforce in the presence of asynchrony and control-�ow operations.

The rest of this section discusses the most pertinent aspects of Kalas’ semantics;
we direct readers to the original article and source repository for the complete
formalization.

Communication Distinct components might communicate if a variable
binding exists in the sender. After the transition is performed, a new binding
is introduced in the receiver. The rule itself is straightforward:

s (v1,p1) = d p1 , p2

sB p1.v1 −> p2.v2;C
p1.v1−>p2.v2−−−−−−−−−−→

ε
s[(v2,p2) := d]BC

The interaction between the two components is fully contained within the
choreography and occurs in unison—sends and receives always match.

Concurrency Actions between disjoint components might occur in any
order. Therefore, an action structurally "behind" another one can be performed
�rst as long as both are component-wise unrelated. While each action has its
own concurrency rule, they are all conceptually similar. For example, consider
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the rule (below) for "skipping over" a communication action, where function
fp(α) returns the set of all processes present in α.

sBC
α−→
l

s′ BC′ p1 < fp(α) p2 < fp(α)

sB p1.v1 −> p2.v2;C
α−→
l

s′ B p1.v1 −> p2.v2;C′

Concurrency is fundamental for allowing choreographies to model the inter-
leaving behaviors of most communication systems.

Asyncrony In previous rules, interactions between components seem to
occur atomically. However, communication is often implemented using non-
blocking send primitives. Therefore, similarly to concurrency, a component
might perform an action "before" another action in which it is involved as a
sender is completed. Delaying a communication due to asynchrony requires
that any component overlapping occurs only on the sender. Furthermore, an
action writing to a variable can only occur after all remaining readings of that
variable have been performed. Concretely, the rule below asynchronously
performs an action over a communication, where wv(α) returns any variable
being written by α.

p2 < fp(α)
sBC

α−→
l

s′ BC′ wv(α) , (v1,p1) p1 ∈ fp(α)

sB p1.v1 −> p2.v2;C
α−−−−−−−−−−−−−→

(p1.v1−>p2.v2)::l
s′ B p1.v1 −> p2.v2;C′

The delayed communication is prepended to l so that asynchronous actions
can be safely performed over if statements. Conceptually, an action might
occur over an if statement when its behavior is not a�ected by branch choice.
To enforce this in the presence of asynchronous actions, one must ensure that
the delayed actions are the same on each branch up to some reordering (').

sBC1
α−→
l

s′ BC′1 sBC2
α−→
l′

s′ BC′2 l ' l′ p < fp(α)

sB if v@p then C1 else C2
α−→
l

s′ B if v@p then C′1 else C′2

Deadlock-freedom Choreographies are meant to be deadlock-free by con-
struction; as such, Kalas’ semantics provide a standard notion of deadlock-
freedom.

`c , 0⇒ ∃τ l s′ c′ . sB c
τ−→
l

s′ B c′

Informally, deadlock freedom guarantee that the choreography as a whole
can advance or that it terminates successfully.
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2.2.3 Endpoint Projection

Endpoint projection is the process of translating a choreography into individ-
ual component implementations. Informally, to project a component from a
choreography, one must consider only the actions where the component is
present. For example, the projection of p1.v1 −> p2.v2 is as a send operation
for p1, a receive for p2, and is ignored for all other components.

The language used as the projection target is often a CCS-style [12] language
with parallel composition and communication primitives. Kalas projects into
the Endpoint language, a network of sequential component descriptions
joined by parallel composition. In Endpoint, each component has a name (e),
its own value store (e), and a message queue (q).

De�nition 10 (Endpoint syntax).

P ,Q := sendv top.P (output)

receivevfromp.P (input)

choosebforp.P (internal choice)

pchoosesT : PorF : Q (external choice)

if v then P else Q (if)

let v = f (ṽ) in P (let)

µX.P (�x)

call X (var)

0 (nil)

N := N1 |N2 (parallel)

(p,e,q)B P (endpoint)

0 (nil)

The syntax of Endpoint in De�nition 10 is spit into individual components
(P ,Q) and their network composition (N ). Components are described similarly
to choreographies (De�nition 9), but with communication (input,output)
and selection (internal and external choice) split into individual actions for
each process involved. The network N not only joins components in parallel
composition, but extends them with a name, a queue, and a value store.

Endpoint projection is, however, not always successful, as some choreo-
graphies can not be translated directly. The main obstacle is ambiguous
branching on if statements. For example, consider the following choreogra-
phy:

if A@v then B.v −> A.v else A.v −> B.v
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Here, it is unclear whether component B should send or receive after compo-
nent A has chosen a branch. Fortunately, choreographies can be repaired and
made projectable quite easily:

if A@v
then A −> B[T];B.v −> A.v
else A −> B[F];A.v −> B.v

A projectability criteria denotes which choreographies can be projected. De�n-
tion 11 states this criterion for Kalas branching—other more straightforward
requirements are used to rule out edge-cases.

De�nition 11 (Kalas projectability criteria for branching).
Any branching component must communicate its choice to all other compo-
nents a�ected.

Endpoint projection for Kalas is de�ned as a function from choreographies to
a pair (ok,ep), where ok is the projectability of the given choreography and
ep is the resulting Endpoint network. The de�nition of this function is quite
involved; however, it follows our earlier intuition for the communication case:

project p dvars (p1.v1 −> p2.v2;c) def=
if p = p1 ∧ p = p2 then (F,0)
else if p = p1 then Send p2 v1 < Γ > project p dvars c
else if p = p2 then Receive p1 v2 < Γ > project p dvars c
else project p dvars c

The complete projectability criteria for Kalas is then embedded into its projection
function. Furthermore, combinator (< Γ >) lifts the projectability result of
recursive calls to the top result. Note, for example, that self-communication is
forbidden and leads to unprojectability. Other actions are projected similarly
except for branching, which requires careful implementation of De�nition 11.

The resulting Endpoint network must preserve all behaviors from the orig-
inal choreography. Thus, allowing properties like deadlock-freedom to be
translated directly to the Endpoint implementation. This correspondence is
known as endpoint projection theorem and is proved w.r.t the semantics of Kalas
and Endpoint.

Theorem 4. If c is a projectable choreography

1. (Operational completeness) If sBC −−→ s′ BC′ then there exist s′′ ,C′′

such that s′ BC′ −−→∗ s′′ BC′′ and JsBCK −−→∗ Js′′ BC′′K
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2. (Operational soundness) If JsBCK −−→ N then there exist s′ ,C′ such

that N −−→∗ Js′ BC′K and sBC −−→∗ s′ BC′

The proof is phrased in terms of two dual properties operations completeness

and operations soundness. In a nutshell, both properties state that a transition
in either language can be eventually matched by its counterpart.

While this result successfully connects the behaviors of Kalas and translated
Endpoint programs, there is room for improvement. Speci�cally, using two
di�erent semantics makes the proofs more complex as they must grapple
with more granular communications and interleaving, despite component
behavior being unchanged. Moreover, more relaxed projectability criteria
are hard to implement as they would require a complete refactoring of the
original proof—a monumental task on its own. These and other issues are
commonplace for formalizations of this kind. However, they must not be
accepted as unsurmountable facts of life, as will be demonstrated in the
upcoming sections.

2.3 Choreographies as Interactions Trees

Interaction trees are coinductive structures that can denote, possibly divergent,
programs that interact with the environment. Their de�nition is deceptively
simple:

(α, ε, ς) itree =
Ret ς
| Tau ((α, ε, ς) itree)
| Vis ε (α → (α, ε, ς) itree)

Interaction trees have then three building blocks:

Results (Ret r) computations returning a value r.

Internal computations (Tau t) a single internal step followed by an interac-
tion tree t with further computations.

External interaction (Vis e f ) a visible events e and continuation function f
which expect an action response a from the environment to continue
as f a.

Hol4’s simple type system limits the type of events (ε), actions (α), and results
(σ ) to independent type variables. However, more expressive type systems can
implicitly derive the type of actions from that of events—i.e., Vis (A E) (A ->
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E R itree). This limitation does not a�ect interaction trees’ expressivity, but
it requires some extra considerations when creating speci�c type instances.

One can use interaction trees to de�ne a program that prints "yes" inde�nitely—
the yes program.

yes = Vis “yes” (λx. yes)

Events in yes are of type string, and since no response is expected from the
environment, actions are of type unit.

Programs can interact with the environment: when making a visible action,
the environment can give an answer. The problem above ignored the envi-
ronments response, i.e. x. But we can easily make a simple example that uses
the response. The following is a program that prints the reverse of any input
given —the rev_echo program with actions and events of type string.

rev_echo msg = Vis msg (rev_echo ◦ REVERSE)

As showcased by these examples, the type of actions (α) and events (ε) deter-
mines the interface by which interaction trees "talk" with their environment.
Therefore, the environment of an interaction tree can be modeled as the events
it can observe and the actions it can give in return. This approach provides
excellent �exibility for program reasoning, as the environment model is kept
separated from the program’s semantics.

Additionally, interaction trees can be interpreted into other representations
by traversing their structures while handling events. Interpreters can be
seen as executing interaction trees for a given environment, as they must
provide actions back to the interaction tree after every event. For instance, an
interpreter for rev_echo might always give "yes" back as action and produce
a possibly in�nite list (i.e., a co-list) with only "sey" elements. Similarly, an
interpreter for yes can produce an in�nite trace of the "yes" message by always
acting with the unit value—the only possible choice. To better illustrate this
idea, consider interp : [|α|]× (α, ε, ς) itree→ [|ε|], a generic interaction tree
interpreter.

De�nition 12 (Simple interpreter).

interp [||] it = [||]
interp (msg:::rest) (Ret r) = [||]
interp (msg:::rest) (Tau t) = interp (msg:::rest) t
interp (msg:::rest) (Vis e f ) = e:::interp rest (f msg)
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Given a co-list of α values, interp returns a co-list of ε values corresponding
to the events generated by the given interaction tree. Using interp one can
trivially interpret rev_echo to be a mapping of the reverse function over the
co-list—an accurate representation. This generic interpreter can be used for
almost any interaction tree (interp xs it is unspeci�ed for a divergent it).
However, interp’s environment model is rigid, as it does not react to what
events occur; more expressive interpreters are possible, as we shall see in
future sections.

2.3.1 A Local Perspective

Choreographies provide a global view of a system by expressing interactions
between components and local computations in the same language. Conse-
quently, as choreographies are projected into other languages, component
interactions are meant to remain behaviorally equal to match the system
speci�cation. As a result, guarantees like deadlock-freedom can be extended
to individual component implementations.

Small-step semantics for choreographies tend to be monolithic in their treat-
ment of interactions and computations. A downside of such monolithic
semantics is that any transformations to the language (e.g., through projec-
tion) must involve new semantics, even if some behaviors are unchanged. In
particular, small-step semantics can not take advantage of equivalent compo-
nent interactions through projection and must "reinvent the wheel" at every
step.

In contrast, interaction trees provide a clear separation between external
interactions (Vis) and local computations (Tau). Therefore, language trans-
formations that only concern local computations are denoted by interaction
trees with equivalent interactions.

A denotation of choreographies as interaction trees could, in principle, abstract
component interactions and remain unchanged through projection. However,
representing all components in a single interaction tree would “hide” much of
the system’s behavior as Tau steps, since the choreography (as a whole) does
not interact with an external environment but (locally) between individual
components. Therefore, we must look at choreographies in a new light to
take full advantage of an interaction tree representation.

A key observation is that an interaction tree can naturally denote a single
component in a choreography. From the perspective of a single component,
the "external" environment comprises all the other components in the chore-
ography. An interaction tree can represent this perspective by handling any
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interactions with the choreography as external. In this approach, compo-
nent interactions are abstracted away as (Vis) events that expect a response
from the choreography. Meanwhile, local computations are denoted by Tau

and possibly Ret. As such, in a choreography p.x −> q.y;q.y −> r.w one could
express each component as follows:

Example 14 (Interaction trees for components of p, q and r).

p_it = Vis (Send “q” x) done
q_it = Vis (Receive “p”) (λy. Vis (Send “r” y) done)
r_it = Vis (Receive “q”) done
done x = Ret ()

Component p interacts with its environment by signaling through an event
(Send q x) that it intends to send x to q and �nish its execution, disregarding
any reply. Likewise, component r’s event (Receive q) signals the incoming
transmission from q. More interestingly, component q �rst expects to receive
into y a message from p and later relay its value to q. While each component
is denoted as an independent interaction tree, their interactions are deeply
linked by their common choreographic origin.

However, representing a single component as an interaction tree only captures
a fraction of all the behaviors in a choreography.

Looking at Example 14, it appears that the collection of all components, even
as interaction trees, somehow denotes the choreography itself. This intuition
arises from the fact that all interactions in the original choreography (two
communications in this case) appear as matching Send and Receive events in
the corresponding components. Moreover, the action a component expects to
receive after each event is evident from the event itself. For example, events
Send q x in p and Receive p in q suggest that the value of x must be applied
to the �rst continuation in q—matching the behavior of the choreography.
This observation suggests that it might be possible to construct a complete
denotation for a choreography by connecting the interaction trees of all
components.

Following this intuition, we present a semantics for choreography languages
(Kalas in particular) that uses a form of interaction tree composition to produce
the expected global behavior. As a �rst step, we must denote single choreo-
graphic components as interaction trees—the remaining section is devoted to
these representations. Later in Section 2.4, the details of their composition
and the overall semantics are presented.
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2.3.2 Single components as interaction trees

All de�nitions presented are based on the original Kalas’ syntax and seman-
tics; however, the overall approach ought to apply to other choreography
formalizations.

The �rst step in de�ning an interaction tree for a choreography component
is establishing appropriate types for events, actions, and results.

event = Send proc datum

| Receive proc
| Choose proc bool
| Select proc

The event type models the primary forms of interaction (events) that can occur
in a choreography—communication and selection. Value Send p x signals
a component’s intent to send value x to process p. Similarly, a component
expecting to receive a message can produce the event Receive q. Selection is
modeled in the same manner, with Choose p b picking a boolean branch b to
communicate to component p, and Select q receiving that choice.

action = Ok

| Msg datum

| Branch bool

The environment response is characterized by the action type, which provides
appropriate responses to each possible event. A component at the receiving
end of a communication or a selection expects either Msg x or Branch b

(respectively) as a response; where value x and boolean b are the interaction’s
result. When a component sends a value or chooses a branch, it only expects
Ok as an acknowledgment from the environment.

As previously mentioned, in Hol4’s type system the types of events and actions
are independent; this in turn allows for event-action mismatches to occur—
e.g., a Receive event that is given an Ok response. Therefore, interaction trees
must handle these occurrences explicitly as erroneous results, and it is up to
the interpreter to guarantee that such mismatches do not occur.

result = End

| Done

| Unproj

| Error

In our denotation of choreographies, the result of a well-formed �nite inter-
action tree must always be End, indicating that a component has completed
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execution. However, the remaining values are used to indicate failures (Error),
unprojectable behaviors (Unproj), and discarded branches (Done). All results
other than End are either handled internally, ruled out by construction (from
a choreography), or guaranteed by the interpreter to never occur. The coming
sections present the use and appropriate handling of each result variant.

Once the appropriate types are established, a denotation function can be
de�ned (by induction on the choreography’s structure) to produce the in-
teraction tree of a single component p. The denotation function �lters all
operations that relate to p and denote them as Vis, Tau, or Ret to form the
corresponding interaction tree.

Given a choreography c, a component identi�er p, and an initial variable
binding s, the function chor_itree produces the interaction tree denoting p
in c. The full de�nition of chor_itree is divided below into three distinct
categories to aid the presentation: local computations, external interactions
and branching.

Local computations Local computations occur only within the component
boundary and do not require introducing any new mechanisms. Aside from
explicit End and Error results, local computations are performed in the same
fashion as in Kalas’ small-step semantics.

chor_itree p s 0 = Ret End

chor_itree p s (call f ′) = Ret Error

chor_itree p s (let v@q = f (vl) in c) =
if p = q then

if vl ⊆ dom s then

Tau (chor_itree p s[v := f (map s vl)] c)
else Ret Error

else chor_itree p s c
chor_itree p s (µf ′ . c) =
if p ∈ procsOf c then

Tau (chor_itree p s c[call f ′/µf ′ . c])
else Ret End

The empty choreography (0) directly terminates with result End. In a well-
formed choreography out-of-scope call operations can not occur and produce
an Error result. Fixpoint unfolding is standard (substitution of call), but it
requires the component to be present in the choreography to guarantee pro-
ductivity. Finally, let-bindings of local computations related to the component
are performed and added to the binding environment.
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External interactions Communications and selections are denoted di�er-
ently depending on the component’s role in the interaction.

chor_itree p s (q1.v1 −> q2.v2;c) =
if p = q1 then

if v1 ∈ dom s then Vis (Send q2 (s v1)) (chor_itree_send p s c)
else Ret Error

else if p = q2 then Vis (Receive q1) (chor_itree_recv p s v2 c)
else chor_itree p s c
chor_itree p s (q1 −> q2[b];c) =
if p = q1 then Vis (Choose q2 b) (chor_itree_send p s c)
else if p = q2 then Vis (Select q1) (chor_itree_select p s b c)
else chor_itree p s c

A component sending a message produces an event (Send p x) with a recipient
(p) and a message (x), followed by a continuation (chor_itree_send) expecting
(Ok) as an acknowledgment. Conversely, when receiving a message, the
expected origin (q) is signaled in an event (Receive q) alongside a continuation
(chor_itree_recv) binding the value received to the appropriate local variable.

Selection interactions follow the same pattern as communications, with homol-
ogous events and corresponding continuations. When a component chooses
a branch (b) for another component (q2) it produces an event (Choose q2 b)
and, as before, expects an (Ok) acknowledgment—through chor_itree_send.
In the opposite case, a component expecting a selection (from q1) signals it
with an event (Select q1) and expects to receive a choice of branch matching
b. If the choice received is not b, the component returns Done as an indicator
that the current branch is being discarded.

Branching Branching operations are challenging as they originate in a
single component but require the rest of the choreography to react appropri-
ately to achieve projectability. In a projectable choreography all components
must either choose a branch (directly or through selection) or have the same
behavior regardless of the branch chosen.

chor_itree p s (if v@q then l else r) =
if p = q then

if v ∈ dom s then

if s v = > then Tau (chor_itree p s l)
else Tau (chor_itree p s r)

else Ret Error

else chor_itree_merge (chor_itree p s l) (chor_itree p s r)
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If a component p is performing a branching operation, it chooses a branch
based on the value of its local variable v. Otherwise, both branches are merged
as there is no immediate way of locally determining which branch to take.
A merge operation expects identical behavior from each branch until one
is discarded with a Done result. In case of a mismatch, an Unproj result is
generated, warning of ambiguous behavior under branching.

2.3.3 Revisiting Endpoint Projection

Endpoint projection is a crucial component of any formalization of choreo-
graphies. The correctness of this process in Kalas is guaranteed by the endpoint

projection theorem. Given our new interaction tree-based semantics for Kalas,
there is a need to reformulate this theorem.

As we did for choreographies, we must �rst create an interaction tree de-
notation for components in Endpoint–our target implementation language.
In stark contrast to Theorem 8, we do not need to consider an entirely new
semantic for Endpoint; instead, we can reuse our previous interaction tree
types as the basis for a new denotation function. The function ep_itree s n

denotes a single component of an Endpoint network as an interaction tree.

ep_itree s 0 = Ret End

ep_itree s (call f ′) = Ret Error

ep_itree s (Let v f vl e) =
if vl ⊆ dom s then Tau (epn_itree s[v := f (map s vl)] e)
else Ret Error

ep_itree s (µf ′ . e) = Tau (ep_itree s e[call f ′/µf ′ . e])
ep_itree s (if v then l else r) =
if v ∈ dom (s) then

if s v = > then Tau (ep_itree s l)
else Tau (ep_itree s r)

else Ret Error

ep_itree s (sendv top.e) =
if v ∈ s then Vis (Send p (s v)) (ep_itree_send s e)
else Ret Error

ep_itree s (receivevfromp.e) = Vis (Receive p) (ep_itree_recv s v e)
ep_itree s (choosebforp.e) = Vis (Choose p b) (ep_itree_send s e)
ep_itree s (pchoosesT : lorF : r) = Vis (Select p) (ep_itree_select s l r)

The de�nition of ep_itree is almost identical to that of Kalas’ chor_itree, if
only simpler. An empty component de�nition returns an explicit End result.
Local computations are homologously treated, with Let, Call, and Fix being
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denoted in the same way using Tau. Branching statements in Endpoint are
local and, as such, only require a Tau step after looking at the branching (local)
variable. Furthermore, component interactions use individual operations with
explicit roles allowing the one-to-one mapping of events and continuations
in Vis. Overall, it is remarkable how the denotation of these two languages
can be so similarly de�ned.

This correspondence between denotations hints at a closer link between Kalas
and Endpoint. Speci�cally, while their syntax and operation might di�er,
the underlying behaviors both languages aim to represent are the same—
interactions between components. Therefore, an interaction tree denotation,
which excels at capturing this behavior, will necessarily be very similar.

With a common interaction tree denotation, the endpoint projection theorem can
be stated in a delightfully simple manner.

project_ok p c⇒
↑ (chor_itree p s c) = ep_itree s (project p c)

Reusing Kalas’ projection function and associated projectability criteria, it is
possible to prove that both representations are equal and will produce the
same behaviors given the same response from the environment. Operand
↑ lifts any Done result to End; this is required as Endpoint has no notion of
discarded branches, and the absence of Done can not be shown for a single
component. Nonetheless, when the whole choreography is considered ↑ can
be easily removed.

An attentive reader might notice that this version of the endpoint projection

theorem only concerns a single component instead of the whole system—a valid
observation. However, since the same form of interaction tree composition
can be used to denote global behavior, regardless of language, this result
extends naturally to the whole system.

2.4 Interaction Forests

An interaction forest is a collection of interaction trees that are collectively
interpreted to produce a global behavior. In general, interaction forests con-
nect two (or possibly more) related events from interaction trees and interpret
them with the appropriate actions. For example, consider two interaction
trees representing components p and q performing communication events.

p_it = Vis (Send “q” x) (λok. p_rest)
q_it = Vis (Receive “p”) q_rest
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It is clear from each event that p is attempting to communicate the value of x
to q. An interaction forest could react to this and advance both components
by providing an Ok acknowledgment to p_rest (which it disregards) and the
value of x to q_rest. In essence, interaction forests interpret each interaction
tree they hold based solely on their events and a notion of how they relate to
each other.

An interaction forest needs to include not just a collection of interaction trees,
but also information about how they should behave collectively. This enables
the creation of a single interpreter that can be applied to all interaction forest
instances. Furthermore, by stating generic properties w.r.t this interpreter,
proof e�orts can be shifted to the speci�c details of each interaction forest,
rather than its interpretation.

The following record de�nes an abstract interaction forests value:

(α, ε, π, ς, σ ) interpΨ = 〈|
forest : π 7→ (α, ε, ς) itree;
st : σ ;
act : σ → π → ε → α option;
upd : σ → π → ε → σ
|〉

The �rst and primary �eld is a mapping (forest) from component identi�ers
to interaction trees on which to operate. A state (st) holds any bookkeeping
necessary for interactions—e.g., message queue, resource pools, broadcast
challenges. An actuation function (act) determines given a state, a component
identi�er, and an event which action to pass to the component to continue.
Finally, an update function (upd) appropriately modi�es the state after every
action taken by act.

The inclusion of a state (st) and its associated update function (upd) is moti-
vated by the goal of creating a generic interpreter. Although it may be possible
to adapt the interpreter for speci�c instances of an interaction forest with-
out utilizing a state, doing so would likely diminish the interpreter’s overall
generality. For instance, consider an interaction forest where communication
is synchronous. In this scenario, it might be feasible to avoid using a state
by exchanging the sent value from one interaction tree to another in a single
step. However, in an asynchronous setting, the same interpretation would not
be feasible as the sent values must be retained until it is received. Therefore,
the use of a state becomes crucial for correctly interpreting an interaction
forest in such cases.
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To facilitate the de�nition of an interpreter, a minimal interface is provided
to perform modi�cations to interaction forests.

delΨ ψ p = ψ with forest := ψ.forest \\ p
setΨ ψ p i = ψ with forest := ψ.forest[p := i]
getΨ ψ p = (ψ.forest p)
updΨ ψ p e f =
case ψ.act ψ.st p e of

None ⇒ ψ
| Some a ⇒ ψ with 〈|forest := ψ.forest[p := f a]; st := ψ.upd ψ.st p e|〉

While delete, get and insert are standard map operations over forest, the
de�nition of update models the relationship between the �elds act, st, and
upd. Speci�cally, update encodes how any action picked by act will be used
to update st using upd.

Using this interface, we can construct a function that interprets all inter-
action trees in unison—an interaction forest interpreter. On a high level,
an interpreter for an interaction forest operates in three phases: (i) non-
deterministically chooses an interaction tree to act on, (ii) performs the chosen
action—i.e., interactions or local computations—updating the state accordingly,
and (iii) records the behavior that just occurred. By repeatedly performing
these phases, we can construct a global denotation of all the behaviors in the
forest. The interpreter halts once there are no more available actions or local
computations. However, since termination is not guaranteed nor required,
the chosen denotation must be able to model non-termination—e.g., by using
a co-inductive structure.

We present an interaction forest interpreter implementation by describing
each of the three phases followed by a complete de�nition of the interpreter.

Phase (i) - choosing an interaction tree to act on At every step, an
interaction forest interpreter must choose an interaction tree on which to
act. However, this choice must not be deterministic to be able to model
asynchronous and concurrent behavior—i.e., all the possible orderings in
which interactions might occur.

To model non-deterministic choice, our interpreter picks from a trace of
choices (a co-inductive in�nite list containing component identi�ers) that
it takes as an argument. This approach considers all possible choices in the
interpreter’s de�nition and its subsequent general properties, as it allows
universal quanti�cation. Other alternative approaches are Hilbert’s choice,
oracle functions, or even interaction trees. However, we choose traces of
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choices due to their ease of reasoning, but more importantly, because they
can naturally express assumptions on choice.

Not all traces of choices are adequate; crucially, some do not allow every
component in an interaction forest to act. For example, consider an interpreter
execution using a trace that only chooses component a and an interaction
forest with more than one component.; clearly, the results would not capture
other component’s behaviors, only those of a. The expectation that every
component is eventually chosen and thus its behavior accounted for is known
as fairness. To achieve fairness, we must restrict any trace of choices to be
fair w.r.t all components in an interaction forest. Formally, a fair trace is
co-inductively de�ned as:

Theorem 5. Given an interaction forest ψ and a trace of component identi�ers

l, we say that l is fair w.r.t ψ i�

• Every component in ψ is present in a �nite pre�x of l

• Every �nal segment of l is fair w.r.t ψ

In our presentation, we restrict ourselves to fair traces, as it guarantees the
fairness of our interaction forest interpreter.

Since our interpreter is only interested in choosing components it can act on;
we must �rst de�ne the notion of available actions of an interaction forest.

The available actions of an interaction forest ψ are all the components in
ψ.forest it can interpret in the current state ψ.st. The following function
describes when an interaction tree p can act in ψ—i.e., it can be interpreted.

can_actΨ ψ p ⇐⇒
case getΨ ψ p of

None ⇒ F

| Some (Ret v6) ⇒ T

| Some (Tau v7) ⇒ T

| Some (Vis e f ) ⇒ isSome (ψ.act ψ.st p e)

Components not in ψ.forest can not be interpreted. Local computations Tau
and result values Res can always be interpreted. However, external inter-
actions Vis can only be performed if an action can be provided by ψ—via
ψ.act.

Finally, to choose between all available actions, we pick the �rst component
identi�er in the trace of choices (from phase (i)) for which we can act. The
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de�nition of next_proc returns the next component that can act along with
the remaining trace of choices.

next_proc ψ xs =
case LDROP_WHILE ((¬) ◦ can_actΨ ψ) xs of

[||] ⇒ None

| p:::ll ⇒ Some (p,ll)

Using LDROP_WHILE, the identi�ers of components that can not act are removed
from the front of the trace of choices, and the �rst component that can act is
returned.

Phase (ii) - performing the chosen action Once a component with an
available action has been chosen, the next step is to advance the interaction
forest by performing the given action. To perform an action in a component
p it is enough to advance it by one step and update ψ.forest accordingly. The
auxiliary function stepΨ performs one action on the given component.

stepΨ ψ p =
case getΨ ψ p of

None ⇒ ψ
| Some (Ret t) ⇒ delΨ ψ p
| Some (Tau t′) ⇒ setΨ ψ p t′

| Some (Vis e f ) ⇒ updΨ ψ p e f

When a component �nishes execution and returns a result, it is removed from
ψ.forest. Local computations τt are consumed and then replaced in ψ.forest
by the remaining interaction tree t. External computations are acted upon
using updΨ , which updates the internal state ψ.st according to ψ.upd.

Phase (iii) - recording behaviors To encode the kind of behaviors that
might occur in an interaction tree, the following data type is used:

(α, ς) itree_action = Ext α | Int | Res ς

The event in an external computation is recorded inside Ext. Similarly, any
resulting values are held in Res. Internal computations are denoted with Int.

Given a component identi�er p and an interaction forest ψ, we can denote
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the next behavior of p in ψ (assuming it can act) with actΨ .

actΨ ψ p =
case getΨ ψ p of

| Some (Ret t) ⇒ (p,Res t)
| Some (Tau t′) ⇒ (p,Int)
| Some (Vis e f ) ⇒ (p,Ext e)

If p is not present in ψ, it can not act, breaking our assumption. Otherwise,
the denotation is one-to-one with the corresponding interaction tree as an
identi�er-behavior pair.

An interaction forest interpreter By combining all of the operations
presented in previous phases, we de�ne our interaction forest interpreter as
follows:

interpΨ ψ trace =
case next_proc ψ trace of

None ⇒ [||]
| Some (p,ll) ⇒ actΨ ψ p:::interpΨ (stepΨ ψ p) ll

The empty co-list is returned if there are no components on which to act.
Otherwise, the behavior of the chosen action is added at the front of the
co-list using actΨ , followed by a recursive call on the updated–trough stepΨ–
interaction forest. All three phases are present, with next_proc and trace
providing choice (i), actions being performed by stepΨ (ii), and actΨ record-
ing behaviors (iii).

The resulting denotation is a co-list of identi�er-behavior pairs, which we refer
to as a behavior trace. More formally, the complete behavior of an interaction
forest ψ is the set of behavior traces obtained by applying interpΨ to all fair
traces of choices.

2.4.1 Deadlock-freedom

A notion of deadlock freedom can be established for the resulting behavior
trace of an interaction forest.

As a �rst step, we must rule out any ill-formed behavior traces–i.e., those that
do not originate from interpΨ .

A behavior trace is well-formed if no more behaviors are observed from a
component after a result behavior occurs.
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The predicate actions_end describes well-formed behavior traces by indexing–
obtaining the nth element of a trace through LNTH.

actions_end actions ⇐⇒
∀n m p t a.
LNTH n actions = Some (p,Res t) ∧ n < m⇒
LNTH m actions , Some (p,a)

In a nutshell, if an index n points at a result behavior for p, any index m
greater than n does not point at a behavior involving p. As expected, any
behavior trace produced by interpΨ ful�lls action_end by construction.

`actions_end (interpΨ ψ trace)

The proof is by induction on the index n, using the de�nition of stepΨ to
show that components are always removed after producing a result.

Deadlock-freedom requires a system (or its denotation) to show that it either
terminates successfully or continues without getting stuck. A behavior trace
of an interaction forest that terminates successfully must be �nite and record
a result behavior for every component. Conversely, an in�nite behavior trace
signals that the interaction forest does not get stuck. Formally this is described
by the predicate deadlock_freedom.

deadlock_freedom procs actions ⇐⇒
actions_end actions ∧
(¬LFINITE actions ∨
∀p. p ∈ procs⇒

exists (λ (q,a). p = q ∧ ∃ t. a = Res t) actions)

Therefore, to show that interaction forest is deadlock-free, one must show
that its interpretation–trough interpΨ–satis�es deadlock_freedom.

2.5 Kalas in The Forest

To de�ne a complete semantics for Kalas we can combine our interaction
tree denotation of components (Section 2.3) with interaction forests. An
interaction forest de�nition requires us to populate its type structure with
appropriate values. We present an interaction forest denotation for Kalas by
providing de�nitions for forest, st, act, and upd.
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The mapping of interaction trees The �rst component, forest, can be
constructed by applying chor_itree to every component in the choreog-
raphy and mapping the resulting interaction tree with the corresponding
component identi�er. The function chor_forest takes a choreography and a
list of component identi�ers and creates a mapping of their interaction tree
denotation.

chor_forest c s [] = ∅
chor_forest c s (p::procs) =
(chor_forest c s procs)[p := chor_itree p (projectS p s) c]

An empty list of component identi�ers produces an empty mapping. Alterna-
tively, it recursively performs a call to chor_itree with the front component p,
an empty binding environment, and the initial choreography c. It is assumed
that the list of component identi�ers is distinct (no duplicate values) and that
choreography c has no free variables.

Bookkeeping state The value of st contains message queues for communi-
cation between components. Message queues are represented as a list, while
the overall state maps from sender-receiver pairs to message queues. Basic
operations over the state are provided to add and retrieve messages.

message_add s p q d = s[(p,q) := (s (p,q)) ++ [d]]
message_fetch s p q =
case s (p,q) of

None ⇒ None

| Some [] ⇒ None

| Some (x::xs) ⇒ Some x
message_drop s p q =
case s (p,q) of

None ⇒ s
| Some [] ⇒ s \\ (p,q)
| Some [x] ⇒ s \\ (p,q)
| Some (x::v5::v6) ⇒ s[(p,q) := v5::v6]

Messages are appended to the corresponding queue with message_add; while
the �rst message in the queue is retrieved with message_fetch and removed
with message_drop.

Action function Interaction forests use act to determine if an action can be
produced for a particular event. In the case of Kalas, events Send and Choose
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can always be acted on, while Receive and Select events require a value to
be present in the messages queue.

chor_actΨ s p (Send q d) = Some Ok

chor_actΨ s p (Choose q b) = Some Ok

chor_actΨ s p (Receive q) = case message_fetch s p q of None ⇒ None

| Some x ⇒ Some (Msg x)
chor_actΨ s p (Select q) = case message_fetch s p q of None ⇒ None

| Some x ⇒ Some (Branch (x =>))

An Ok acknowledgment is always given as the action for Send and Choose

events. For Receive and Select events, the �rst message retrieved from the
queue is used as the action.

Update function After an action is produced by act, changes to the state of
the interaction forest might be required. Given that Kalas’ state is composed
of message queues and its events always signal some form of communication,
changes to the state are direct message operations.

chor_updΨ s p (Send q d) = message_add s q p d
chor_updΨ s p (Choose q b) =
message_add s q p (if b then> else [0w])
chor_updΨ s p (Receive q) = message_drop s p q
chor_updΨ s p (Select q) = message_drop s p q

Events Send and Choose add their corresponding values to the message queue.
Messages are meant to be retrieved and read when acting on Receive and
Select events; therefore, they must be removed from the message queue.

A Kalas interaction forest As the last step, we combine our previous
de�nitions to construct an interaction forest for a given Kalas program.

chorΨ c s =
〈|forest := chor_forest c s (procsOf c); st := ∅;
upd := chor_updΨ ; act := chor_actΨ |〉

2.5.1 Deadlock freedom

Deadlock freedom holds by construction on any Kalas program denoted as an
interaction forest.

75



2. Dancing in a forest of interactions

An interaction tree-based semantics for choreographies

Theorem 6.
`compile_network_ok s c ∧ fair_trace (procsOf c) procs⇒

deadlock_freedom (procsOf c) (interpΨ (chorΨ c s) procs)

The proof is by contradiction: we assume that the interaction forest that one
gets from a choreography is not deadlock free. This means that there must be
a �nite trace for some process p such that the trace does not contain a Res for
that process. We perform induction on this �nite trace. In particular, we show
that every step of the trace preserves an invariant (explained below) and that,
at the end of the trace, the invariant implies that the forest must represent a
choreography without any processes, which means that there must have been
a Res in the trace somewhere for process p. We use the following invariant in
the proof: one can take some number of steps from the current interaction
forest in order to reach an interaction forest that describes some choreography.
The tricky part is that we have to show that some such new steps can be
found whatever step is taken from the current interaction forest. Similarly
to Theorem 2.3.3, the ↑ operand and a homologous version for interaction
forests were required for this proof, as compile_network_ok is reliant on the
structure of Endpoint and can not properly distinguish between Done and End

results. Nonetheless, the use of ↑ was removed from the �nal deadlock freedom
lemma as the whole choreography is considered, and the absence of Done can
be shown.

2.5.2 Endpoint projection

An interaction forest denotation for Endpoint can be trivially derived from
that of Kalas.

As with chor_forest, a mapping from component identi�er to interaction
trees must be created from an initial Endpoint program.

epn_forest NNil = ∅
epn_forest (NEndpoint p s ep) = ∅[p := ep_itree ∅ ep]
epn_forest (N1 |N2) = (epn_forest N1tepn_forest N2)

An empty network produces an empty mapping. Single endpoints are denoted
using ep_itree and a singleton map. The parallel compositions of endpoints
are merged recursively.

All other interaction forest �elds can be reused from Kalas.
epnΨ epn =
〈|forest := epn_forest epn; st := ∅; upd := chor_updΨ ;
act := chor_actΨ |〉
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A denotation this similar can be accomplished since i) Kalas and Endpoint
use the same interaction tree denotation, and ii) the interaction model is
compatible with both languages, i.e., communication through message queues.

It comes as no surprise that an endpoint projection theorem between Kalas’ and
Endpoint’s follows trivially as an equality from our previous (Section 2.3.3)
single component result. Where compile_network projects every component
in the choreography into an Endpoint, creating a complete network

Theorem 7.

`project_ok p c ∧ fair_trace (procsOf c) procs⇒
interpΨ (chorΨ c s) procs =
interpΨ (epnΨ (compile_network c )) procs

This form of correspondence is considerably stronger than what can be
achieved with small-step semantics (see Theorem 4). Interaction forests
allow the preservation of behaviors between Kalas and Endpoint to be direct—
via equality–obviating the need for "catch-up" transitions or notions like
operational completeness and operational soundess. The use of equality allows
properties like deadlock freedom (Theorem 6) to be trivially translated from
Kalas to Endpoint; as well as any other property over chorΨ c.

Theorem 8. Deadlock freedom for projected endpoint networks.

`compile_network_ok s c ∧ fair_trace (procsOf c) procs⇒
deadlock_freedom (procsOf c)
(interpΨ (epnΨ (compile_network c )) procs)

More generally, given the coinductive nature of interaction forests and in-
teraction trees, bisimulation relations can be conveniently used to express
correspondence and translate properties between denotations.

2.6 Related work

Ever since their introduction, interaction trees have been a viable tool for
proving the correctness of computer programs. Koh et al. [9] used interac-
tion trees to denote and verify a swap server and relate its speci�cations at
di�erent levels of abstraction. In subsequent work, Zhang et al. [16] imple-
mented a veri�ed HTTP key-value server, re�ning its interaction tree-based
speci�cation of system calls to match that of CertiKOS [6]. More broadly in
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the �eld of programming languages, Kanabar et al. [8] utilized interaction
trees as the semantics of PureCake, a lazy functional language, and other
intermediate languages used in PureCake’s veri�ed compiler. While in the
context of concurrency, Lesani et al. [11] introduced veri�ed transactional objects,
a hybrid approach combining concurrent data structures and transactional
memory, whose methods are expressed as interaction trees and can guarantee
atomic execution.

Choreographies and endpoint projection have been mechanically formal-
ized before in a variety of settings, albeit only using small-step semantics.
Hirsch and Garg [7] mechanized the semantics of a higher-order functional
choreographic language, Pirouette, and veri�ed its endpoint projection into
a concurrent λ-calculus. Moreover, Cruz-Filipe et al. [2, 3] formalized the
semantics and projection of Core Choreographies [1], a minimal foundational
model of choreographies, into a distributed process calculus. These results
highlight choreographies’ relevance and potential as a formalism for con-
currency, but they also show how common the use of small-step semantics
is, despite its downsides. Our work breaks with this paradigm and takes
advantage of the versatility of interaction trees to develop a simple and ex-
pressive semantics that can be used as a basis for further development of
choreographies.

2.7 Conclusions

We have presented a novel interaction tree-based semantics for Kalas, along
with interaction forests as a compositional notion for interaction trees. Our
approach improves on previous small-step formalizations in several ways.
First, it creates a separation of concerns between local computations, denoted
as interaction trees, and global interactions, represented as interaction forests.
Second, the presentation of the endpoint projection theorem (Section 2.3.3) is
signi�cantly strengthened, as Kalas and its projection target, Endpoint, share
denotations and interaction models. Finally, a general notion of deadlock

freedom based on interaction forest provides the guarantees choreographies
are known for with a signi�cantly reduced proof burden.

More broadly, interaction trees brought some practical advantages that greatly
aided development. De�nitions were concise and, in many cases, could be
reused; as such, this paper includes the complete interaction tree denotation
of Kalas and Endpoint, along with all de�nitions for interaction forests. Many
theorems saw an order of magnitude reduction in their proof’s length, and
statements became much easier to understand—compare, for example, The-
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orems 4 and 8. Overall, in the authors’ opinion interaction trees made the
formalization of choreographies a much more manageable endeavor.

The new formalization of Kalas presented in this paper creates new routes for
the development of the language. In particular, introducing less restrictive
projectability criteria could allow for more expressive choreographies. While
extending the endpoint projection theorem to support bi-similarity could broaden
the scope of projectable languages.

The introduction of interaction forests also creates several directions for future
work. One promising idea is to generalize the notion of deadlock freedom as
a property over interaction forests (i.e., their components) rather than their
behavior trace. Such characterization could allow proofs of deadlock freedom
for similar denotations to be derived. Also promising is the use of linear
temporal logic (LTL) to describe speci�c properties of interaction forests. This
connection arose during development as predicates over traces were often
reminiscent of common LTL concepts.
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3. Do You Have Space for Dessert?

A
bstract. Garbage collectors relieve the programmer from manual

memory management, but lead to compiler-generated machine
code that can behave di�erently (e.g. out-of-memory errors) from the
source code. To ensure that the generated code behaves exactly like the
source code, programmers need a way to answer questions of the form:
what is a su�cient amount of memory for my program to never reach
an out-of-memory error?
This paper develops a cost semantics that can answer such questions
for CakeML programs. The work described in this paper is the �rst
to be able to answer such questions with proofs in the context of a
language that depends on garbage collection. We demonstrate that
positive answers can be used to transfer liveness results proved for
the source code to liveness guarantees about the generated machine
code. Without guarantees about space usage, only safety results can be
transferred from source to machine code.
Our cost semantics is phrased in terms of an abstract intermediate lan-
guage of the CakeML compiler, but results proved at that level map
directly to the space cost of the compiler-generated machine code. All
of the work described in this paper has been developed in the HOL4
theorem prover.
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3.1 Introduction

High-level programming languages with runtimes that include a garbage
collector (GC) provide a layer of abstraction that makes memory seem un-
bounded. While this liberates the programmer from tedious and error-prone
manual memory management, it leads to compiler-generated machine code
that exhibits a form of partiality: the machine code will behave as the source
semantics dictates, unless or until memory is exhausted.

Well written source-level programs stay clear of this partiality by making
sure that the live data used by the program stays within some reasonable
bound. For such programs, the GC can always reclaim enough memory to
provide space for new allocations, even if there are an unbounded number of
allocations during the program run.

For certain applications, programmers are keen to make sure that they stay
clear of the partiality. In such circumstances, one has to �nd a way to answer
the question: what is a su�cient amount of memory for my program to
never reach an out-of-memory error? The answer clearly depends on the
exact compilation strategy. In this paper, we provide a proof-based approach for
answering such questions in the context of the CakeML compiler.

The CakeML compiler [17] is a formally veri�ed compiler for a high-level
source language that has no bounds on memory and no bounds on inte-
gers. However, the CakeML compiler targets real machine languages (x86-64,
ARMv8, RISC-V, etc) where memory and integers have hard bounds. The
CakeML compiler inserts a veri�ed GC and bignum library into the code that
it produces in order to make it seem as if memory and integers are unbounded.
But the GC and bignum library can not always stop the machine code from
hitting a hard resource bound, and the machine code might, as a result, have
to resort to an out-of-memory error.

The partiality mentioned above is clearly visible in the top-level compiler
correctness theorem for the CakeML compiler. This correctness theorem
relates the set of behaviours allowed by the source semantics source_sem and
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3. Do You Have Space for Dessert?

the machine semantics machine_sem along the following lines:

machine_semffi (compile c prog) ⊆
extend_with_resource_limit (source_semffi prog)

Here extend_with_resource_limit is a function that augments a set of be-
haviours with the option to exit early with an out-of-memory error.

The partiality that is expressed using extend_with_resource_limit means
that liveness properties proved at the source level do not transfer to liveness
properties at the machine code level. For example, suppose one proves a
liveness property that a source program will forever print "y" using a program
logic [3]. It does not follow from the compiler correctness theorem that the
generated machine code will forever do the same: the partiality means that
only safety properties carry over. The safety property in our example is that,
if the machine code produces output, then the output consists of only “y”s.

In this paper, we de�ne a predicate is_safe_for_space that is su�cient to rule
out this partiality and extend the CakeML compiler proofs to give stronger
guarantees for when is_safe_for_space holds. The is_safe_for_space pred-
icate de�nes a space cost semantics for CakeML programs, and the new com-
piler correctness theorem states that the cost semantics rules out all potential
for early termination. The new top-level theorem has the following shape.

is_safe_for_spaceffi c prog . . . ⇒
machine_semffi (compile c prog) = source_semffi prog

Note that the new relationship between source and target semantics here is
equality, not re�nement: the (deterministic) source semantics de�nes exactly
one permitted behaviour, and the machine semantics implements precisely
that behaviour. This equality means that liveness properties proved for the
source level carry over directly to liveness properties of the machine code.

Contributions. This paper’s contributions are:

• We de�ne a formal space cost semantics for the CakeML programming
language. The de�nition is stated in terms of one of the intermediate
languages used by the CakeML compiler. This intermediate language is
at a high enough level to avoid reasoning about data pointers and heap
objects, and yet at a low enough level to allow precise reasoning about
heap and stack space usage. In addition, the semantics is designed to
handle the most common forms of pointer aliasing found in functional
programming languages. The cost semantics only considers the live
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3.2. Overview

part of the state and, as a result, can be used to derive space bounds for
programs that call memory allocation an unbounded number of times.

• We prove that the cost semantics is sound for an end-to-end veri�ed
compiler that relies on (veri�ed) garbage collection for correct opera-
tion. This is the �rst such result. The proof covers not only the compiled
program, but also the implementation of the GC and the bignum li-
brary. When the cost semantics is used to rule out early exits, we get a
strong compiler correctness theorem in terms of equality of observable
behaviour, since all out-of-memory errors and other resource bound
errors are avoided.

• We show that the cost semantics is concrete enough to prove speci�c
space bounds for a few sample programs and, once bounds have been
proved, liveness properties proved at the level of source code transfer
directly to liveness properties about the compiler-generated machine
code. This paper is the �rst to demonstrate that this is possible in
the context of a veri�ed compiler for a language whose compilation
relies on automatic memory management. We consider both �nite and
in�nite time liveness properties.

All of the work presented in this paper has been developed in the HOL4
theorem prover [26] and is available as supplementary material with this
paper submission.

Limitations. We delimit the scope of our investigation as follows. Our
primary goal in this paper is to make space cost reasoning possible; making
it convenient for CakeML users is future work. We do not consider (external)
dynamic allocation: the CakeML binary asks the OS for all the memory
it will ever need up-front, and manages its own stack and heap within this
statically allocated region. Hence our memory model does not need to consider
questions like “will the OS give us enough space when we call malloc?”. For
CakeML programs that use the foreign function interface (FFI), we do not
model the space cost of code outside the FFI boundary; this does not impact
soundness, because the foreign function cannot give memory it allocates back
to CakeML.

3.2 Overview

This section describes our overall design and explains how the problem is
divided up into separate parts. Subsequent sections describe the separate
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parts in more detail.

3.2.1 Why can generated code exit early?

The cost semantics needs to predict when early exits might happen, so let us
start by looking at the circumstances under which the code emitted by the
CakeML compiler resorts to an early exit. The circumstances are:

(H) the creation of a new heap element (e.g. a datatype constructor, array,
or bignum integer) does not �t into the heap, even after a full GC run;

(S) a function or primitive operation attempts to allocate stack past the
end of the memory region reserved for representing the stack;

(L) the program tries to create an object whose length exceeds what can
be represented in the bits reserved for the length �eld in heap objects;

(F) the program tries to run an incompatible primitive, e.g. a �oating-point
instruction on a target architecture that does not support it.

Case H is an out-of-heap error. Case S is an out-of-stack error. Cases L and
F are possibly more exotic. One could argue that the compiler should catch
many instances of case L and F at compile time. However, for case L, this
is not always possible because the length of new arrays and vectors can be
computed dynamically. Regarding case F, we want to be able to compile a
standard library (which includes �oating-point primitives) to all targets; thus
the compiler will generate some code for all primitives.

3.2.2 Where are the early exits generated?

The CakeML compiler uses 9 intermediate languages and makes in total more
than 40 compilation passes over its input, but only two compilation passes
insert code that can cause early exits. The relevant intermediate languages
are the following:

• DataLang is an imperative language where values are abstract and
integers arbitrarily large; there is no notion of garbage collector in this
language (see Section 3.3).

• WordLang has a similar structure to DataLang but values are machine
words and memory is an array of machine words; the garbage collector
is an opaque primitive.

• StackLang has a concrete stack: the stack is a �xed-size array of machine
words. The GC stops being a primitive; the compiler inserts code
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3.2. Overview

implementing it.

Early exits for cases H, L and F are inserted by the compilation pass that
converts DataLang into WordLang, and early exits for case S are inserted by
the WordLang to StackLang pass.

3.2.3 At what level of abstraction should the cost semantics be

expressed?

At �rst glance, it seems most natural to express the cost semantics at the
level of the source semantics. However, since we are interested in sound,
concrete and tight bounds rather than asymptotic bounds, a source-level
based approach would have several drawbacks.

The CakeML compiler makes many function-call related optimisations [23]
that signi�cantly improve speed and space usage. Because these optimisations
mostly happen before the compiler phases that can introduce early exits, a
source-level cost semantics must either (1) use very loose approximations of
space usage, or (2) specify exactly which optimisations will be applicable on
the given program, essentially re-implementing the compiler inside the cost
semantics.

We consider both alternatives unacceptable. Our approach is based on the
insight that instead of re-implementing the compiler inside the cost semantics,
we can obtain the same precision by folding the compiler optimisations into
the program under consideration before space cost analysis.

Hence our cost semantics is expressed at the level of the DataLang interme-
diate language. This allows us to be very precise with respect to resource
usage without encumbering the cost semantics with compiler implementation
details.

3.2.4 Definition of is_safe_for_space

As motivated above, we de�ne our cost semantics based on the DataLang
level of abstraction. The following is our de�nition of is_safe_for_space,
which is our criterion for determining whether a source-level program is safe
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for space.

is_safe_for_spaceffi c prog stack_heap_limit def=
let data_prog = fst (to_data c prog) ; word_prog = to_word c prog in

c.data_conf.gc_kind , None∧
data_lang_safe_for_spaceffi data_prog

(compute_limits c c.data_conf.has_fp_ops
c.data_conf.has_fp_tern
stack_heap_limit)

(compute_stack_frame_sizes c word_prog)
Start_location

In this de�nition, to_data compiles the source program prog to DataLang;
then data_lang_safe_for_space is used to decide whether the resulting Data-
Lang program is safe for space (see Section 3.3).

The data_lang_safe_for_space predicate takes several arguments. It takes
the initial state of the foreign function interface ffi, the DataLang program
data_prog, the con�guration of limits, a mapping describing how large each
stack frame is, and �nally the start location in the program.

The de�nition above mentions to_word which compiles the source program
prog to WordLang. The input source program is compiled to WordLang in
order to compute the size of stack frames for each function that appears in
the DataLang program. The cost semantics for DataLang tracks stack usage
based on the provided stack frame size mapping (see Section 3.5).

The last conjunct of the de�nition requires the compiler con�guration c to
have gc_kind not equal to None (i.e. some garbage collector needs to be used).
The other alternatives are Simple for a non-generational copying GC [20], and
Generational for a generational collector [16]. Our cost semantics requires
a GC to be installed, therefore None is a disallowed con�guration. We have
proved our cost semantics sound w.r.t. the implementation of both the Simple

and the Generational GC.

3.2.5 A note on semantics

The semantics of CakeML, and all of its intermediate languages, is de�ned in
the functional big-step semantics style [14]. The core of such a semantics is a
clocked big-step evaluation function evaluate which maps (state, program)
pairs to (state, result) pairs. The state includes a clock which decrements at
every instruction that might potentially induce divergence (such as function
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calls); if the clock runs out, evaluate aborts with a special timeout result. The
state also includes a trace of all I/O events that have happened so far.

The top-level observable semantics function (called semantics) is de�ned
based on the evaluate function described above. The semantics function
returns a set of behaviours. A behaviour is one of the following:

Terminate reason events — indicates that, for some clock value, evaluate
terminates in a well-de�ned way (for a speci�c reason) after producing
the I/O events events.

Diverge events — indicates that, for every clock value, evaluate times out,
and events is the supremum of the I/O traces produces by evaluate for
di�erent initial clock values.

Fail — indicates that the semantics can get stuck.

The function extend_with_resource_limit extends a set of behaviours to
allow early termination with an out-of-memory error, i.e. Terminate where
the reason is Resource_limit_hit. Here 4 checks whether the �rst list is a
pre�x of the second, l is a �nite list of characters, and ll is a �nite or in�nite
list of characters.

extend_with_resource_limit behaviours def=
behaviours ∪
{ Terminate Resource_limit_hit io_list
| ∃ t l. Terminate t l ∈ behaviours ∧ io_list 4 l } ∪
{ Terminate Resource_limit_hit io_list
| ∃ ll. Diverge ll ∈ behaviours ∧ io_list 4 ll }

3.2.6 Structure of the proofs

The aim of our proofs is to show that the observational semantics is preserved
completely, i.e. the semantics functions are related with equality = rather
than . . . ⊆ extend_with_resource_limit . . . as described in the introduction.

Nearly all compiler phases preserve observational semantics with equality,
so no changes are required to those. Recall from Section 3.2.1 that the two
phases that use the weaker relationship are: the DataLang-to-WordLang
phase, which quits on out-of-heap errors and cases L and F from Section 3.2.1;
and the WordLang-to-StackLang phase, which quits on out-of-stack errors.

For both of these phases, we de�ne a predicate that implies that the obser-
vational semantics is related by = directly. For the DataLang-to-WordLang
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phase, this is data_lang_safe_for_space. For the WordLang-to-StackLang
phase, we de�ne a similar predicate, called word_lang_safe_for_space.

In order to avoid burdening the user with proofs in two cost semantics, we
instrument DataLang with enough stack size tracking to prove that data_-
lang_safe_for_space implies word_lang_safe_for_space. As a result, users
only need to prove data_lang_safe_for_space.

3.3 DataLang and its semantics

As of this paper, DataLang has two roles: (1) it acts as an intermediate language
of the CakeML compiler, and (2) it de�nes the heap and stack cost semantics
for the compiler.

3.3.1 DataLang as an intermediate language

DataLang is an imperative language with abstract values, stateful storage of
local variables, and a call stack. The semantics of DataLang models primitive
values with the following datatype:

v = Number int

| Word64 word64
| CodePtr num
| RefPtr num
| Block timestamp tag (v list)

Here Number represents an arbitrarily large integer. Word64 is a 64-bit machine
word. CodePtr is a code pointer, and RefPtr is a pointer to mutable state (such
as ML arrays).

Block is more interesting: it is used to encode datatype constructors, tuples
and vectors. For instance, the CakeML list [1,2] can be represented using
DataLang Blocks as:

Block 8 cons_tag [Number 1;
Block 7 cons_tag [Number 2;

Block 0 nil_tag []]]

Here the tag values, cons_tag and nil_tag, indicate which source-level con-
structor each Block represents. The tag information is for pattern matching.
The timestamps of the blocks are 8, 7 and 0, respectively; we will explain the
purpose of timestamps in Section 3.3.2.
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3.3. DataLang and its semantics

α state = 〈|
locals : v num_map;
refs : ref num_map;
stack : stack list;
handler : num;
global : num option;
space : num;
code : (num × prog) num_map;
�i : α ffi_state;
clock : num;
. . .
|〉

ref = ValueArray (v list) | Bytes bool (word8 list)

Figure 3.1: The de�nition of the DataLang state.

The runtime state of DataLang’s semantics is represented by a record type
state shown in Figure 3.1. The �elds locals and refs represent the �nite
maps of local variables (v num_map) and references (v ref num_map) respec-
tively. The stack is a list of frames, each frame containing only the relevant
variables that should be restored after a call is completed. On exception, the
length of the stack is set to be equal to handler, dropping the most recent
frames and setting the value of handler according to the new current frame.
The global �eld contains an optional reference to an array of global variables.
The space �eld is a guaranteed amount of space available in the heap, and
can be increased by doing allocation. This is for bookkeeping only; the Data-
Lang semantics maintains the �ction that more space can always be allocated.
Finally, the remaining �elds (some of them elided in Figure 3.1) pertain to the
code store, the state of the foreign function interface, and the semantic clock,
respectively.

DataLang’s abstract syntax (see Figure 3.2) provides most of the expected
features for an imperative language. A notable omission is looping constructs.
These are omitted because functional programs use (tail) recursion, which is
available as part of Call.

In the abstract syntax presented in the Figure 3.2, var (a type alias for the
type of natural numbers) represents variable names; var_set is a set of lo-
cal variables that are to be included in the stack frame when performing a
Call, and should be considered live by the garbage collector when allocating
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prog = Skip

| Seq prog prog
| If var prog prog
| Move var var
| Assign var op (var list) (var_set option)
| MakeSpace var var_set
| Raise var
| Return var
| Tick
| Call ((var× var_set) option) call_dest (var list)

((var× prog) option)

Figure 3.2: DataLang’s abstract syntax.

(MakeSpace). The evaluation of a DataLang program returns an optional result
along with a new state. We give a few samples of DataLang’s evaluation
semantics below.

The simplest program is Skip. It does nothing. The result is None because
there was no return or exception raised.

evaluate (Skip,s) def= (None,s)

Sequencing (Seq) continues execution as long as no return or exception is
raised:

evaluate (Seq c1 c2,s) def=
let (res,s1) = evaluate (c1,s) in

if res = None then evaluate (c2,s1) else (res,s1)

All of the primitive operations are performed by Assign, which deletes unused
variable bindings, then reads the values of its arguments, and �nally performs
the primitive operations using the helper function do_app.

evaluate (Assign dest op args names_opt,s) def=
case cut_state_opt names_opt s of

Some s ⇒
case get_vars args s.locals of

Some xs ⇒
case do_app op xs s of

Rval (v,s) ⇒ (None,set_var dest v s)
| Rerr e ⇒ (Some (Rerr e),s)
| . . . ⇒ (Some (Rerr (Rabort Rtype_error)),s)
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For a more detailed description of the DataLang semantics, including MakeSpace

and Call, we refer to Tan et al. [17].

3.3.2 DataLang as a cost semantics

DataLang provides a convenient level of abstraction for reasoning about
space consumption since functions are �rst-order and data has predictable
size. However, DataLang’s semantics has no notion of the heap, does not
specify which data elements are heap allocated, and does not represent stack
frames in a way that makes their size clear. Therefore, we need to add some
mechanisms to make DataLang suitable for accurate space measurements.
We add elements to the semantics state of DataLang to model the following:

1. A measurement of heap cost: the total space consumed by all values
that would be heap-allocated by the implementation. This measure
should only count live data, and so needs to be unchanged by garbage
collection.

2. A measurement for stack frame sizes, and subsequently the call stack,
that is consistent with their eventual implementation in StackLang. We
defer further explanation of stack costs to Section 3.5.

3. A signalling mechanism to track if at any point during execution ei-
ther the stack or the heap surpassed some given limits. The signal is
implemented as a new �eld called safe_for_space in the state record of
DataLang.

These elements are represented as follows:

α state = 〈| limits = 〈|
. . . heap_limit : num;
safe_for_space : bool length_limit : num;
stack_frame_sizes : num num_map; stack_limit : num;
limits : limits; arch_64_bit : bool

|〉 |〉

The safe_for_space �eld is true as long as program evaluation stays within
the limits. We say that a program prog is safe for space with respect to
some limits, if every execution, regardless of the value of the initial clock ck,
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manages to keep safe_for_space set to true:

data_lang_safe_for_spaceffi prog limits ss main def=
∀ck res s.
evaluate (Call None (Some main) [] None,initial_stateffi prog limits ss ck) = (res,s)
⇒ s.safe_for_space

At every memory allocation, the semantics computes the size of the live data
in the heap, adds this number to the requested space k, and checks whether
we might be exceeding the heap limit:

size_of_heap s + k ≤ s.limits.heap_limit

The semantics also checks that the stack size is below the stack limit at every
function call. If either of these tests fail at any point, safe_for_space is set
to false. Further down, after discussing aliasing, we will show the de�nition
of size_of_heap.

Aliasing information. Before presenting our strategy for computing the
live heap data, we explain how the semantics maintains aliasing information.
Functional programs give rise to a lot of pointer aliasing. Consider, for
example, the following snippet of ML code:
let val a = [1,2] in (a,0::a) end

This code evaluates to a tuple of two lists of integers, [1,2] and [0,1,2]. To
accurately compute the size of this tuple value, the semantics needs to carry
information from which we can infer that the memory representation of the
two lists share a tail.

We add timestamps to the Block values of the DataLang semantics that let
us detect when Block values are pointer-equal. Each new heap element gets
a unique timestamp for all of its Blocks. Hence, by keeping timestamps
invariant through a Block’s lifetime, we can infer that any two Blocks that
share a timestamp must refer to the same location on the heap.

The example of a tuple holding two integer lists above can be represented by
the following value in DataLang by our semantics.

block_example
def=

let a =
Block 8 cons_tag

[Number 1; Block 7 cons_tag [Number 2; Block_nil]] in

Block 10 tuple_tag [a; Block 9 cons_tag [Number 0; a]]
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If we expand the above let-expression, it is clear that Blocks with timestamps
8 and 7 repeat.

We compute the size of all live data on the heap using a function called size_of

that is aware of the meaning of timestamps. Before we de�ne it, let us consider
its application to the above example. We have that size_of returns 12 when
applied to block_example. The size_of function counts each two-element
Block as size 3 and each zero-element Block as size 0. The example above has
4 unique two-element Blocks, thus 4× 3 = 12. The unit is machine words of
heap space.

` fst (size_of [block_example] empty empty) = 12

It is worth mentioning that a naive size measure that ignores aliasing infor-
mation would have produced an over-approximation of 6× 3 = 18, because
there are 6 non-empty Blocks in the block_example.

Computing the size of the heap. The following are some of the equations
of the de�nition of size_of. Other equations are provided further down.

size_of [] refs seen def= (0,refs,seen)

size_of [Number i] refs seen def=
(if is_smallnum i then 0 else bignum_size i,refs,seen)

size_of [Block ts tag vs] refs seen def=
if vs = [] ∨ ts ∈ seen then (0,refs,seen)
else

let (n,refs′,seen′) = size_of vs refs ({ts} ∪ seen) in

(n + |vs| + 1,refs′,seen′)

size_of (x::xs) refs seen def=
let (n1,refs1,seen1) = size_of xs refs seen ;

(n2,refs2,seen2) = size_of [x] refs1 seen1 in

(n1 + n2,refs2,seen2)

Small numbers are stored within their containing block or stack frame, and
hence they have heap size 0; bignums use heap space proportional to the
number of digits in their binary representation.

Empty Blocks are stack-allocated and have heap size 0. The size_of function
ignores Blocks with timestamps that are present in seen. In all other cases,
Blocks add the length of their payload plus one to the �rst return value of
size_of. The size_of function uses seen to avoid counting the same Block

twice.
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The size_of function avoids counting references twice by deleting them from
the reference store that it carries in the refs variable:

size_of [RefPtr r] refs seen def=
case lookup r refs of

None ⇒ (0,refs,seen)
| Some (ValueArray vs) ⇒

(let (n,refs′,seen′) = size_of vs (delete r refs) seen
in (n + |vs| + 1,refs′,seen′))
| Some (ByteArray v2 bs) ⇒

(|bs| div 4 + 2,delete r refs,seen)

We de�ne size_of_heap as size_of applied to all of the values stored in the
DataLang state’s stack and global variables.

size_of_heap s def=
let (n,_,_) = size_of (stack_to_vs s) s.refs empty in n

The size_of_heap function is used in the semantics whenever an operation
that would allocate heap space is executed: if ever size_of_heap plus the
amount of heap space requested exceeds the limits, we set is_safe_for_space
to false.

3.4 Proving soundness of heap cost

Before this work, the DataLang-to-WordLang phase of the compiler had a
correctness theorem phrased in terms of ⊆ and extend_with_resource_limit

in order to allow early exits:

. . . ⇒
semanticsword ffi (compile c prog)
⊆ extend_with_resource_limit (semanticsdata ffi prog)

As part of this work, we have proved a new alternative correctness theorem
which states that, if data_lang_safe_for_space is true, then all behaviours
are preserved by equality =.

. . . ∧ data_lang_safe_for_spaceffi prog . . . ⇒
semanticsword ffi (compile c prog) = semanticsdata ffi prog

One can read this as saying that cost semantics for DataLang is sound. The
following subsections discuss our proof of this soundness result.
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3.4.1 Proving evaluate-level simulation

Each proof about the relationship between observational semantics (i.e. semantics)
is based on a theorem relating the evaluate functions of the languages in-
volved. In order to prove the new semantics theorem that was sketched
above, we need to update the main evaluate simulation theorem to state that
DataLang’s evaluate correctly predicts any early exits that the generated
WordLang program might have resorted to.

The theorem describing the evaluate simulation has the following shape,
which is similar to most CakeML compiler phases [17]. One can informally
read it as follows: if the input program prog evaluates to some result (res,s1)
without hitting a dynamic type error (Rabort Rtype_error), then the com-
piled program, comp c prog, will evaluate to a �nal state that is similar enough
according to a state relation state_rel. Here variable c is a compiler con�gu-
ration.

` evaluatedata (prog,s) = (res,s1) ∧
state_rel c s t ∧
res , Some (Rerr (Rabort Rtype_error))⇒
∃ t1 res1.
evaluateword (comp c prog,t) = (res1,t1) ∧
(res1 = Some NotEnoughSpace⇒

t1.�i.io_events 4 s1.�i.io_events ∧
(c.gc_kind , None⇒¬s1.safe_for_space) ) ∧

(res1 , Some NotEnoughSpace⇒
state_rel c s1 t1 ∧ . . . )

Compared with other CakeML compiler phases, the unusual part here is
the special case for the NotEnoughSpace result. For this result, the original
theorem only concluded that the WordLang state’s I/O events are a pre�x (4)
of the I/O events produced by the DataLang program prog.

For the cost semantics proofs, we added the part in a box . This box adds that,
whenever WordLang resorts to a NotEnoughSpace error result, the DataLang
evaluation predicts that this might happen, if a supported GC con�guration
is used. Thus for the user to prove that the WordLang program never exits
early, it su�ces to prove that DataLang says it won’t happen.

The proof of the evaluate simulation theorem sketched above is compli-
cated and long. The original proof builds on some 35,000 lines of invariant
de�nitions and proofs. All of these were updated to cope with the change
highlighted above. Handling early exits due to reasons L and F (from Sec-
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tion 3.2.1) was straightforward. The cases that arise when heap space runs
out (case H) are much more interesting and will be discussed in the following
subsections.

3.4.2 Notation and invariants

In the next subsection, we describe how we have proved that DataLang’s
size_of_heap function predicts all heap allocation failures that can happen
in the WordLang program. In this subsection, we explain the relevant heap
abstractions we use to prove our heap cost analysis sound in Section 3.4.3.

The state relation used in the DataLang-to-WordLang proofs is de�ned in
terms of several layers of abstraction. Fortunately for this work, the most
abstract intermediate layer is su�cient for our proofs. In that layer, the heap
is modelled as a list of heap_elements.

(α, β) heap_element =
Unused num

| ForwardPointer num α num

| DataElement (α heap_address list) num β

α heap_address = Pointer num α | Data α

During normal program execution, the heap consists of only DataElements
and Unused. ForwardPointers only exist while the GC runs. The natural
number (type num in HOL) in Pointer values is the address. We dereference
pointers using heap_lookup based on a natural number address a:

heap_lookup a [] def= None

heap_lookup a (x::xs) def=
if a = 0 then Some x
else if a < el_length x then None

else heap_lookup (a − el_length x) xs

el_length (Unused l) def= l + 1

el_length (ForwardPointer n d l) def= l + 1

el_length (DataElement xs l data) def= l + 1

In the DataLang-to-WordLang proofs, the relationship between DataLang’s
values and their abstract heap representation is speci�ed by the predicate
v_inv. We show the Number and Block cases of v_inv below. A number is
represented as a value that will �t in a register if the number is small enough,
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and otherwise by a pointer to a heap element containing the large number.
We omit the de�nition of Bignum, which is a form of DataElement.

v_inv c (Number i) (x,f,t,heap) def=
if is_smallint i then x = Data (Word (Smallnum i))
else

∃ptr.
x = Pointer ptr (Word 0w) ∧
heap_lookup ptr heap = Some (Bignum i)

In our work, we changed the de�nition of v_inv for the Block case: we added a
parameter t which dictates how timestamps stored in Blocks map to addresses
in the heap. The fact that the timestamp dictates the representation address
means that Blocks are pointer equal if their timestamp coincide. The new
part is highlighted with a box .

v_inv c (Block ts n vs) (x,f,t,heap) def=
if vs = [] then x = Data (Word (BlockNil n)) ∧ . . .
else

∃ptr xs.
lookup t ts = Some ptr ∧
list_rel (λv x. v_inv c v (x,f,t,heap)) vs xs ∧
x = Pointer ptr (Word (ptr_bits c n |xs|)) ∧
heap_lookup ptr heap =

Some (DataElement xs |xs| (BlockTag n,[]))

Finally, the next subsection uses the following combination of heap_lookup
and el_length.

get_len heap p def=
case heap_lookup p heap of None ⇒ 0 | Some x ⇒ el_length x

3.4.3 Correctness of heap allocation and size_of

The DataLang semantics decides that a heap allocation is not safe for space if
the following test returns true. Here k is the number of words of space that
have been requested.

s.limits.heap_limit < size_of_heap s + k

This section describes our soundness proof for this test, i.e. why this test at
the DataLang level must return true whenever an allocation failure might
happen at the WordLang level.
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At the WordLang level, a heap allocation failure happens only when not
enough space is available after a full (compacting) GC run. Since the GC has
run, we can assume that all of the DataElements in the heap are reachable
from the root variables. And since the WordLang space test has failed, we can
assume that the total amount of Unused space in the heap—call it sp—is not
su�cient to satisfy the allocation request, i.e. sp < k. Thus it su�ces to show:

s.limits.heap_limit ≤ size_of_heap s + sp

which is equivalent to:

s.limits.heap_limit − sp ≤ size_of_heap s

The left-hand side above is the same as the sum of the lengths of all heap
elements in the DataElement-�lled part of the heap. We will call this part of
the heap: heap. Thus it su�ces to prove:

sum (map el_length heap) ≤ size_of_heap s

We have now arrived at the tricky part of this proof: the statement above
requires us to prove that every data element in heap must be counted (at least
once) by size_of_heap, which is de�ned in terms of the size_of function.
This is tricky because the size_of function has a slight disconnect from
semantic state: it skips blocks with timestamps that it has accumulated in
its seen argument and deletes reference values from its refs argument during
recursion, which means that it cannot evaluate all reference pointers that it
encounters even when they exist in the actual heap.

In order to make this proof manageable, we introduce a new inductively
de�ned relation, called traverse, which captures abstractly the traversal
patterns that size_of implements using its arguments seen and refs. The
de�nition of traverse is shown in Figure 3.3. The traverse relation takes
four arguments: heap, p1, vars, p2. Here heap is the heap being traversed; p1

and p2 are lists of addresses which can be viewed as states: p1 is the input
state, and p2 is the output state; �nally vars is a working list of heap addresses
under consideration. The �rst rule states that the output state must be equal
to the input state if vars is empty. The second rule shows how the working
list can be split and the state threaded through. The third rule states that
traverse can skip data elements on the working list. The fourth rule is more
interesting: it states that traverse can skip a pointer if that pointer is already
in the input state. The last rule allows traverse to lookup a heap element
and place its payload on the working list. For the last rule, it is worth noting
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traverse heap p1 [] p1

traverse heap p1 vs1 p2
traverse heap p2 vs2 p3 set vars = set (vs1 ++ vs2)

traverse heap p1 vars p3

traverse heap p1 [Data d] p1

mem n p1

traverse heap p1 [Pointer n t] p1

heap_lookup n heap = Some (DataElement xs l d)
traverse heap (n::p1) xs p2

traverse heap p1 [Pointer n t] p2

Figure 3.3: De�nition of traverse.

that the traversal of the payload happens from state n::p1, i.e. a state where
the currently visited address n has already been added to state p1; this allows
traverse to break cycles in the graph of pointers in the heap.

With this de�nition of traverse, we can prove the following lemma that
puts a lower bound on size_of. The following lemma assumes that we have
DataLang values that are v_inv-related to some roots and heap, and that refs
are in a similar manner (ref_inv) represented in heap. If those assumptions
hold, then traverse heap [] roots p2 is true for some �nal state p2. Furthermore,
the sum of get_len applied to all addresses in p2 is ≤ the �rst component of
the result of size_of.

` size_of values refs empty = (n,r,s) ∧
v_inv_list c roots (values,f,t,heap) ∧
(∀n. n ∈ reachable_refs values refs⇒ ref_inv c n refs (f,t,heap,be))⇒
∃p2. traverse heap [] roots p2 ∧ sum (map (get_len heap) p2) ≤ n

The proof of this lemma requires stating �ddly assumptions about the accu-
mulated arguments of size_of, but is otherwise a reasonably straightforward
proof by induction over the recursive structure of the size_of function.

Let us continue the soundness proof for the check of running out of space.
In that context, we use the lower bound lemma from above to establish that
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there exists a p2 such that:

sum (map (get_len heap) p2) ≤ size_of_heap s ∧
traverse heap [] roots p2

With this knowledge, it su�ces to prove:

sum (map el_length heap) ≤ sum (map (get_len heap) p2)

The rest of the proof establishes that every element of heap has its address
included in p2 and is thus counted (at least once) in sum (map (get_len heap) p2).
The fact that every heap address is included in p2 follows from the fact that a
full GC has been run immediately prior to this, and from the following lemma
which states that traverse �nds all reachable addresses:

` traverse heap [] roots p2⇒ reachable_addresses roots heap ⊆ set p2

This concludes our sketch of the proof that the DataLang check for heap
exhaustion is sound with respect to WordLang’s check. The target language,
WordLang, operates over a lower level of abstraction, but fortunately all of
the tricky proofs were con�ned to the algorithm-level described above rather
than lower layers of data re�nements that between DataLang and WordLang.

3.4.4 Lessons learned

Doing heap cost analysis at a level of abstraction where there is no heap
has the advantage that reasoning can be carried out at a level closer to the
source program. But when de�ning the size_of function, we were faced
with an interesting trade-o� between accuracy and ease of reasoning. Our
implementation exploits timestamps to avoid counting the same block twice
in the presence of aliasing. This signi�cantly improves the tightness of our
bounds, at the cost of encumbering the de�nition with accumulator arguments
to keep track of which tags have been seen. This leads to a de�nition that
fails to satisfy some natural algebraic laws; for example, size_of does not in
general distribute over list append. It does for heaps that are well-formed in
the sense that distinct data elements have distinct tags, but carrying around
such well-formedness properties through proofs is cumbersome.

In situations where space is plentiful, precision might be less important than
the question of whether there is a bound at all. There it might be more useful
to have an imprecise size function that’s tailored for ease of reasoning. To
this end we have de�ned approx_of, an alternative to size_of that doesn’t
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track timestamps and hence has nicer algebraic properties. We prove that
approx_of is a sound over-approximation of size_of.

Another option is to make size_of even tighter by adding timestamps to data
elements other than blocks. For example, our version will count pointer-equal
bignums twice if they are aliased.

3.5 Proving soundness of stack cost

The DataLang and WordLang intermediate languages do not commit to a
concrete implementation of the stack, and do not allow the programmer
to manipulate the stack directly. The semantics of both languages model
the stack as a list of stack frames, which consist of binding environments for
local variables plus optional exception handlers. This list is allowed to grow
unboundedly large; hence the semantics of both languages act as if stack
space is unbounded.

In this section, we show how to make the DataLang and WordLang semantics
stack space aware. As in Section 3.3, we add �elds to their state records
that track stack usage. These �elds are a form of ghost state: they have no
e�ect on the program’s semantics beyond the �elds themselves. But they are
sound predictions of the program’s maximum stack usage, and the compiler
correctness theorem for the WordLang to StackLang phase—where the stack
is implemented in a bounded memory region—shows that early exits due to
out-of-stack errors never happen unless thus predicted.

As a �rst step, we annotate WordLang stack frames with an optional size
(num option), measured in machine words:

stack_frame =
StackFrame (num option) local_env (handler option)

The intuition is that None here denotes positive in�nity, or in other words, a
stack frame whose size we have no upper bound for. Its inclusion allows us
to preserve soundness in the presence of language features that are not safe
for space.2

Note that we cannot simply compute a bound for the stack frame from the
size of the local environment. This is because the environment does not
necessarily contain all stack-allocated variables, only those that are treated as

2The only language feature of WordLang whose stack usage we don’t provide bounds
for is the Install instruction for dynamic code evaluation. At present, this instruction is not
targeted by the CakeML compiler.
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roots by the GC; moreover, this is before register allocation, so we do not yet
know which local variables will be stack-allocated and which will be stored in
registers. Moreover, a stack frame is allocated at the beginning of a function,
but during the execution of the function there can be unused areas of the
stack frame that are not apparent from inspecting the abstract representation
of the local environment.

The size of the entire stack can then be computed as follows:

stack_size (StackFrame n l None::stack) def=
option_binop (+) n (stack_size stack)

stack_size (StackFrame n l (Some handler)::stack) def=
option_binop (+) (option_map ((+) 3) n) (stack_size stack)

stack_size [] def= Some 1

The fact that this is not just a straightforward list sum exposes two compiler-
speci�c implementation details that we include for the sake of more precise
bounds: the empty stack is one word long, and installing an exception handler
requires three words of stack space.

We annotate the WordLang state with an extra �eld stack_max, which records
the largest stack_size seen so far during the WordLang execution. This
�eld is updated to the maximum of the old value and the current stack_size
whenever a WordLang instruction that potentially allocates stack is executed;
the relevant instructions for our purposes is function calls and semantic
primitives that have an implementation (further down the compilation chain)
that internally allocates stack as part of the implementation of the primitive
in question.

To populate the stack frames with sizes, we assume that the state also contains
a mapping, called stack_frame_sizes, which maps function names to stack
frame sizes. It is possible to do symbolic computations about stack usage
without committing to any particular mapping. To obtain sound and concrete
bounds, the tooling we use in Section 3.7 obtains the actual stack frame sizes
by evaluating the compiler in logic down to StackLang. This avoids clutter-
ing the cost semantics with details of how lower parts of the compiler are
implemented, in this case, speci�cally: register allocation which determines
the size of stack frames.

These annotations allow us to soundly predict out-of-stack errors, as shown
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by the compiler correctness theorem for the WordLang-to-StackLang phase:

` evaluate (prog,s) = (res,s1) ∧ res , Some Error ∧
state_rel k f f ′ s t lens ∧ . . .⇒
∃ck t1 res1.
evaluate (fst (comp prog bs (k,f,f ′)),t with clock := . . . ) = (res1,t1) ∧
if option_map compile_result res , res1 then

res1 = Some (Halt (Word 2w)) ∧
t1.�i.io_events 4 s1.�i.io_events ∧
s1.stack_max > s1.stack_limit

else

. . .

The boxed conjunct is the novelty and the key: it states that if StackLang
evaluation yields an unexpected result (i.e. res and res′ disagree), then this must
have been due to an early exit that was predicted by WordLang evaluation
exceeding the stack budget at some point.

In order to allow reasoning about costs in just the one semantics, we lift
this stack cost semantics from WordLang to DataLang. The treatment of
function calls does not change signi�cantly between the two languages, so
that aspect of the semantics is mostly the same. The main di�erence is that
many native operators of DataLang, such as equality and bignum arithmetic,
are implemented by canned code in WordLang. When this code features calls
to subroutines, the DataLang semantics must make sure to update stack_-

max accordingly. Most of these subroutines are either tail-recursive or not
recursive, in which case the stack consumption can be characterised as the
largest of the involved WordLang stubs’ stack frames.

The operator with the most interesting stack usage is probably the equality
operator, which can compare arbitrarily nested trees of Blocks; its WordLang
implementation must recursively step through these pointer structures and
compare the payloads for equality. We prove that its stack usage is bounded
from above by a metric on the constructor depth of the DataLang values that
the pointer structures re�ne.

The DataLang-to-WordLang compiler also pastes in canned code that im-
plements the bignum library and this code required some special attention
regarding stack usage. The bignum library is reachable from any DataLang
integer arithmetic operation that fails to �t within small enough numbers.
The WordLang code implementing the bignum library is automatically gen-
erated from a higher-level speci�cation [21] and consists of several nested
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WordLang functions. To ease the e�ort, we developed a little veri�ed tool
that can automatically infer maximum stack depths of WordLang functions
where all cycles in the call graph consist of tail-calls. The bignum library �ts
within this subset of WordLang.

3.5.1 Lessons learned

Proving soundness of the stack cost semantics involved a tedious and cum-
bersome invariant preservation proof, but the e�ort invested helped us gain
insight. Even though the stack cost semantics is relatively straightforward
compared to heap cost, doing a formal soundness proof was invaluable for
getting the cost semantics right down to every detail. There were a number
of more or less subtle mistakes we made in early drafts of the semantics, that
would have been di�cult to catch and diagnose without formal proof:

• The WordLang semantics does not explicitly distinguish between whether
the current local variables have already been pushed to the stack or
not; this requires some care to avoid counting the current stack frame
twice in the tally.

• In the StackLang implementation of function calls, stack allocation is
done in two increments: enough space for the function arguments is
allocated by the caller, then the callee allocates space for the remaining
local variables. Our cost semantics abstracts away from this timing
detail, which makes it important that we update stack_max before rather
than after function calls; otherwise, our bounds will be unsound in case
the Call instruction aborts.

• We initially modelled tail calls as not changing stack size, but this is
unsound if the tail call is to another function with a larger stack size.

• Exception handler allocation needs to be counted separately from the
rest of the stack frame size, as shown above, because the same function
may be called both with and without exception handlers.

3.6 Top-level compiler theorem with cost

We have proved a new end-to-end correctness statement for the entire CakeML
compiler. In the theorem below, compile performs the entire compilation
chain from concrete syntax down to machine code. The new theorem lever-
ages is_safe_for_space to show that, for any successful compilation, execu-
tion from any machine state ms that has the compiler-generated code and data

110



3.7. Proving that programs are safe for space

installed will produce exactly the same behaviours as the source semantics.

` compile cc prelude input = (Success (code,data,c),c′)⇒
∃behaviours source_decs.
semantics_initffi prelude input = Execute behaviours ∧
parse (lexer_fun input) = Some source_decs ∧
∀ms.
is_safe_for_spaceffi cc (prelude ++ source_decs) (read_limits cc ms) ∧
installed code data . . . mc ms⇒
machine_semffi ms = behaviours

Here we assume is_safe_for_space (i.e. require the user to prove it), but we
conclude an equality machine_sem ffi ms = behaviours instead of the weaker
previous formulation that used ⊆ and extend_with_resource_limit as ex-
plained in the introduction.

Here read_limits is a function that computes the relevant limits for the cost
semantics based on information from the compiler con�guration cc and the
initial machine state ms.

3.7 Proving that programs are safe for space

The aim of this paper is to provide a cost semantics that can be used to carry
liveness properties proved at the source level down to the machine code level.
In this section, we demonstrate that we can do exactly that with our new cost
semantics.

3.7.1 Is yes safe for space?

As a �rst example, we use a CakeML implementation of the yes command,
shown in Figure 3.4. This program prints its argument to stdout inde�nitely.

fun put_line l = let
val s = l ^ "\n"
val a = Word8Array.array 0 (Word8.fromInt 0)
val _ = #(put_char) s a (* ffi call *)

in () end;

fun printLoop l = (put_line l; printLoop l)

val _ = printLoop "y"

Figure 3.4: Implementation of yes.
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Before we delve into a formal proof, let’s convince ourselves that yes is indeed
safe for space.

At �rst glance, we see a number of expressions within put_line that cause
memory allocation. For example, string concatenation requires allocating
space for the resulting string. Thus any call to printLoop, which recursively
calls put_line inde�nitely, will perform an unbounded number of allocations.
This is �ne since none of the variables in the body of put_line remain in
scope, and hence will eventually be garbage collected. This in turn means
that the heap footprint of printLoop, as measured by size_of_heap, does not
increase between loop iterations.

As for the stack, it is enough to notice that (1) put_line is a non-recursive
terminating function that consumes a bounded amount of stack space, and (2)
printLoop is tail-recursive, and thus its recursive calls to itself do not grow
the stack.

Informally, we conclude that yes must be safe for space, even though it’s not
clear yet with respect to what heap and stack bounds.

3.7.2 Is yes safe for space, formally?

We will now formalise our intuition from the previous section by showing
that evaluation of the yes program satis�es is_safe_for_space as de�ned in
Section 3.2.4. In other words, we show that during evaluation of its DataLang
intermediate representation, heap and stack usage never goes above a provided
limit. In order to avoid encumbering the proofs with a deeply embedded
semantics, we have developed a sound and complete shallowly embedded
representation of DataLang programs as a state monad for doing space cost
reasoning.

Most of the initial DataLang code generated by the compiler can easily be
evaluated in-logic from the concrete initial state; it is only when we reach
the body of printLoop that things get interesting. The body of the printLoop

looks as follows in the proof.

Seq (Call_put_line (Some (1, {0})) [0] None)
(Call_printLoop None [0] None)

This corresponds very closely to the source program. The local variable
0 stores the value of "y". Abbreviations to make function calls readable
are automatically installed; for example, Call_printLoop abbreviates to the
expression λret. Call ret (Some 285), where 285 is the code location where the
DataLang code generated from printLoop happens to be installed.
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From this point onwards the execution will repeat itself inde�nitely, and
thus data_is_safe_for_space can be proven by complete induction over the
semantic clock, and provide us with the following bounds:

` the (size_of_stack s.stack) + 17 ≤ s.limits.stack_limit ∧
size_of_heap s + 11 ≤ s.limits.heap_limit ∧ . . . ⇒
(snd (evaluate(Seq (Call . . . ) (Call . . . )))).safe_for_space

This shows that as long as there are 11 words (88 bytes) of heap and 17
words (136 bytes) of stack left when calling printLoop, we will not run out of
memory. (We are compiling to a 64-bit architecture, thus machine words are
8 bytes long.)

The formal proof closely resembles our earlier informal argument, but the
details of the formal proof are omitted here. The formal proofs is included as
part of the supplementary material.

The resulting is_safe_for_space theorem for the entire yes program is:

` is_safe_for_spaceffi yes_x64_conf yes_prog (56,89)

Here, the 56 and 89 are the concrete stack and heap bounds measured in ma-
chine words. These bounds are obtained during the course of the proof. They
are larger than the bounds for the call to printLoop because the surrounding
program (e.g. standard library) allocates on the execution up to the point of
the call to printLoop.

Having established that our program satis�es is_safe_for_space, a simi-
lar top-level correctness theorem, to the one shown in Section 3.6, can be
instantiated to read:

` 56 ≤ stack_limit ∧ 89 ≤ heap_limit ∧
read_limits yes_x64_conf ms = (stack_limit,heap_limit) ∧
installed yes_code . . . ms ∧ . . . ⇒
machine_sem . . . ms = semantics_prog . . . yes_prog

The equality in the theorem above allows us to carry over any liveness prop-
erty from the source semantics into the machine code semantics.

For our example, we can prove that the yes source-level program will produce
an in�nite stream of "y" characters on stdout.

semantics_prog . . . yes_prog =
{Diverge (lrepeat [put_str_event "y"])}
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Such a theorem is easy to establish thanks to a program logic for non-
terminating CakeML programs [3], where proving this liveness property
for the main loop is a 15-line proof. Unfolding the abstractions of the program
logic to obtain a corresponding theorem about the CakeML semantics requires
some additional boilerplate.

Finally, we combine these two theorems from above to obtain the same
liveness property at the level of the compiler-generated machine code:

` 56 ≤ stack_limit ∧ 89 ≤ heap_limit ∧
read_limits yes_x64_conf ms = (stack_limit,heap_limit) ∧
installed yes_code . . . ms ∧ . . . ⇒
machine_sem . . . ms =
{Diverge (lrepeat [put_str_event "y"])}

One can read this as saying: in a machine state ms where there are 56 words of
stack and 89 words of heap available, and where the compiler output yes_code
is installed and ready to run, execution from ms can exhibit one and only one
behaviour: it will produce an in�nite stream of "y" on stdout. In this case, the
theorem is about x86-64 machine code. Since our cost semantics is not tied to
a particular architecture, the same result could be reproduced for e.g. ARMv8
or RISC-V with no change to the space cost reasoning.

3.7.3 A linear congruential generator

A linear congruential generator (LCG) is a kind of pseudorandom number gener-
ator. The basic idea is that if xi is the current element of the pseudorandom
number sequence, the next element is generated by the following equation,
for �xed values of a,c,m:

xi+1 = (axi + c)modm

For this example, we implement a program that produces an in�nite stream of
LCG-generated numbers on stdout. The source code is shown in Figure 3.5.

This example shares some structural similarities with yes, but di�ers in sev-
eral ways that have bearing on space-cost reasoning. First, it exercises more
language features and reasoning techniques, including truely nested recur-
sive function calls. In particular, n2l_acc tail-recursively constructs a list in
accumulator passing style. Recall from Section 3.3 that lists are represented
by DataLang’s Blocks. Moreover, the length of the resulting list will depend
on the size of the input, so its cost must be expressed as a function of its input.
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fun n2l_acc n acc =
if n < 10 then hex n :: acc
else n2l_acc (n div 10) (hex (n mod 10) :: acc)

fun num_to_string n = n2l_acc n [#"\n"]

fun put_chars cs =
case cs of [] => ()
| x::xs => (put_char x ; put_chars xs)

fun print_num n = put_chars (num_to_string n)

fun lcg a c m x = (a * x + c) mod m

fun lcgLoop a c m x =
let
val x1 = lcg a c m x
val u = print_num x1

in
lcgLoop a c m x1

end

val _ = lcgLoop 8121 28411 134456 42

Figure 3.5: Implementation of lcg. The de�nition of put_char is elided.

Finally, put_chars also tail-recursively deconstructs the same list. This exer-
cises the way size_of infers aliasing information from timestamps: put_char
requires constant space, but if our analysis failed to account for the structure
sharing between the lists cs and xs and didn’t distinguish live memory from
garbage, we would be forced to conclude that put_char uses O(|cs|2) heap
space

Another di�erence between this example and the previous yes example is that
this example uses arithmetic. Arithmetic over small numbers has no stack or
heap cost. However, once the numbers are large enough, arithmetic starts to
incur the stack and heap costs of invoking the bignum library. The stack cost
for bignum operations is not dependent on the size of the given integers, but
the heap cost is of course dependent on how large the numbers are. Note that,
for programs that only use small numbers, one has to prove that the numbers
stay small enough to avoid the cost of bignum operations.

We have proved the code shown in Figure 3.5 to be safe for space (with stack
bound 182 and heap bound 199). We proved this by showing that the code
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stays within the range of small enough integers to avoid triggering CakeML’s
bignum library. Our proof is largely agnostic to the precise values of the
parameters so, in fact, lcgLoop can be called with di�erent values of a, c, m, x
with almost no change to the proofs (as long as the bounds described above
are met).

3.7.4 List reverse

In this example, we illustrate the precision advantages we gain by expressing
the cost semantics in an intermediate language. Consider the following naive
implementation of list reverse, which uses list append (written here in SML
syntax: @).

fun reverse [] = []
| reverse(f::l) = reverse l @ [f]

Figure 3.6: Naive implementation of reverse.

An informal source-level cost analysis would force us to conclude that since
this function is not tail-recursive, it requires O(n) stack space, where n is the
length of the input list, to accommodate the stack frames of the n recursive
calls reverse makes.

However, the CakeML compiler performs tail-call introduction before it
reaches DataLang [1], and this optimisation triggers on the body of reverse.
In other words, the compiler produces essentially the same code for reverse
as it does for reverse’ below:

fun reverse’_aux [] acc = acc
| reverse’_aux (f::r) acc = reverse’_aux r (f::acc)

fun reverse’ l = reverse’_aux l []

Figure 3.7: Tail-recursive implementation of reverse.

Therefore, we can use our cost semantics to prove that our initial naive version
of reverse uses only a constant amount of stack space:

` evaluate (s,reverse_body) = (res,s′) ∧ . . . ⇒
∃k. s′ .stack_max = option_map (+ k) s.stack_max

We note that a source-level cost semantics would have to know exactly when
the tail-call introduction optimisation kicks in to be able to prove such a
property for reverse.
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The stack costs are concrete enough that we could prove a theorem similar
to the one above with a precise numeric value in place of k, and we could
additionally consider heap cost to prove that reverse is safe for space. How-
ever, that is not the point here: our cost semantics is modular enough that
when we are only interested in stack usage, we can reason about it separately
by considering only stack_max and ignoring safe_for_space. This results in a
simpler proof than the previous examples because we do not need to reason
about heap usage at all.

3.8 Related work

There has been much interest in de�ning cost semantics for both imperative
and functional programming languages to reason about the resource usage of
programs. The main types of resources are execution time and memory space

(heap and stack), and the cost semantics aim to estimate worst-case bounds
for these resources either at the source level or during transformation phases
through compilers.

Source-level Cost Analysis. Source-level techniques enable static cost
analysis. For instance, Hofmann and Jost [16] provide static prediction of heap
space usage for functional programs, and Jost et al. [17] develop a type system
with heap annotations for determining the execution costs of lazily evaluated
functional languages. RelCost [10], CostIt [11], and RaML [15] are resource-
aware type systems for source-level programs based on re�nement types, and
Guéneau et al. [13] provide worst-case asymptotic time complexity of higher-
order imperative programs. Wang et al. [29] present an ML-like functional
language with time-complexity annotations in indexed types. Handley et al.
[14] implement a system based on re�nement types to enable reasoning about
resource usage of pure Haskell programs in Liquid Haskell. Madiot and
Pottier [19] present a separation logic for reasoning about heap usage in the
presence of garbage collection. Aspinall et al. [4] develop a program logic for
proving statements about resource consumption for the Java Virtual Machine
Language (JVML), Atkey [5] formalises a separation logic for heap-resource
analysis within the Coq proof assistant, and Vasconcelos [28] uses sized types
to obtain upper bounds on dynamic space usage of functional programs.
While these source-level analysis techniques provide formal estimates of cost
analysis, they ignore the e�ect of compilation and program transformation
on resource consumption, leaving an inherent trust gap between the analysis
and the actual machine code that runs.
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Preservation of Resource Bounds through Compilation. Resource
bounds estimated at the source level can be made accurate and certi�ed by
proving their preservation throughout the compilation chain. Crary and
Weirich [12] estimate upper bounds on resources through a decidable type
system and a bounds-certifying compiler from the impure functional language
PopCron to typed assembly. Resources are modelled as semantic clocks, and
a resource-safe program is one for which the clock never expires. While this
approach is best suited to modelling time (where resource usage is monotonic),
it does in principle generalise to stack and heap usage because there is a
mechanism to recover spent resources, provided allocation and deallocation
is explicit in the program text. Since this assumption fails to hold in the
presence of garbage collection, their approach is not well suited to languages
with automatic memory management.

Paraskevopoulou and Appel [24] develop a cost model for the CPS lambda-
calculus, in which they derive time and space bounds for a closure conversion
compilation phase in the Coq proof assistant. In our work we do not need
to explicitly model the space cost of closure conversion; instead, we derive
space bounds on code that has already been closure-converted. Their work
is also notable for taking garbage collection into account: their measure of
space usage assumes that an ideal, complete garbage collector is invoked often
enough so that actual heap usage can only exceed the size of the reachable
heap by a bounded amount. They can also give bounds for diverging programs.
The heap is explicitly present in the memory models of their source and target
languages. In contrast, we are able to lift our cost analysis to a level of
abstraction where there is no notion of heap, by annotating values in the
variable store with timestamps. Unlike Paraskevopoulou and Appel, we cash
out our cost model using the completeness proofs for the real garbage collector
implementation. Their runtime is stack-less, which allows them to sidestep
the problem of �nding roots in the stack. CakeML maintains its own stack,
and so implements and veri�es such root-�nding. Finally, our work is fully
integrated into an end-to-end veri�ed compiler, allowing space bounds to be
leveraged to transfer liveness properties all the way from source to machine
code; theirs is not (yet).

Our technique for estimating stack space consumption through an end-to-end
compiler closely relates to that of CerCo project [2]. The CerCo project has
built a veri�ed C compiler producing object binaries for the 8051 microcon-
troller in the Matita theorem prover. The compiler precisely estimates the
non-asymptotic computational cost involving execution time and stack space
usage of input programs at the source level. It also generates source-level
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annotations that correctly model low level costs. These invariants are then
certi�ed through automated theorem provers. Case studies include certifying
the exact reaction time of Lustre data�ow programs compiled to C. While
the CerCo project inspires our work for estimating stack space, it does not
consider heap usage, let alone garbage collection. Their compiler correct-
ness proof only considers preservation of cost bounds and not functional
correctness, whereas the CakeML compiler with our extensions considers
both.

The CompCert compiler [12] has also been employed to formally estimate
resource bounds for imperative C programs. Carbonneaux et al. [5] develop
a logic for reasoning at the source level about stack space consumption of
the corresponding CompCert compiler output. They introduce resource con-
sumption events to CompCert that are preserved by compilation and use
the compiler itself to determine the actual size of stack frames. Besson et. al

introduce �nite memory and integer pointers to the memory model of Com-
pCert, extend CompCert’s front-end for this concrete memory model, and
continue to verify its back-end layers to develop CompCertS in Coq [2, 4, 5].
CompCertS estimates the memory usage of individual functions directly at
the C level, proves that compiled programs use no more memory than source
programs, and ensures that the absence of memory over�ow is preserved
by compilation. It also provides stronger guarantees about arbitrary pointer
arithmetic and avoids the miscompilation of programs performing bit-level
pointer manipulation. Wang et al. [30] enrich the memory model of CompCert
with an abstract and bounded stack to develop Stack-Aware CompCertX: a
complete extension of CompCert with compositional compilation. The main
distinction between our work and these is the level of abstraction at which
the cost semantics is expressed. In this respect, C is very similar to our Word-
Lang: both languages give the programmer an explicit view of the heap and
responsibility for managing heap memory, while abstracting the stack. We
express our cost semantics in a language that abstracts away from the heap
and features no explicit memory management.

3.9 Conclusion

We have presented a space cost semantics for CakeML programs that makes
it possible to prove the absence of out-of-memory errors in the generated
machine code. The semantics does so by estimating the resource usage of
programs an intermediate representation that avoids reasoning about pointers
and heap objects, yet takes aliasing of data elements into account for an
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accurate estimate. The cost analysis is proven sound down to the machine
code, and we have demonstrated that it can be used to carry source-level
liveness properties down to machine code: the space analysis rules out all
partiality induced by potential out-of-memory errors, and can be applied even
to programs that make unboundedly many heap allocations.

In this paper, our primary goal was to make sound space cost reasoning about
CakeML programs possible. What remains to show is how such reasoning
can be made scalable; while our examples do exhibit interesting and relevant
features like non-termination and unbounded allocation, they are admittedly
small. There are several interesting ideas to explore in this direction. One is
to use coarser overapproximations of the heap size metric to make analysis
more compositional. Another is to develop a framework of sound abstractions
of the monadic DataLang semantics.
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A
bstract. The CakeML project has recently developed a veri�ed cost

semantics that allows reasoning about the space safety of CakeML
programs. With this space cost semantics, compiled machine code can be
proven to have tight memory bounds ensuring no out-of-memory errors
occur during execution. This paper proposes a new cost semantics which
is designed to make proofs about space safety signi�cantly simpler than
they were with the original version. The work described here has been
developed in the HOL4 theorem prover.





4.1 Introduction

Functional languages aid the development of complex programs by providing
programmers with many abstractions (e.g., polymorphism, garbage collection,
ADTs, among others). However, these abstractions often come at the cost of
increased memory usage and compiler complexity. These drawbacks make it
di�cult to judge space safety, i.e., how much memory a program will need in
order to run without encountering out-of-memory errors.

To avoid out-of-memory errors, the CakeML project has recently developed a
veri�ed cost semantics [8] that makes it possible to prove the space safety of
programs generated by the CakeML compiler. CakeML’s cost semantics pre-
dicts when a program runs out of memory using a space measuring function,
size_of. The size_of function is used at all allocation sites to check if the
memory usage has surpassed a given limit. To prove that a program does not
run out of memory, it is enough to show that size_of, as used by the formal
semantics, stays within the limits.

At its core, the measuring function size_of uses a single recursive descent to
discover reachable nodes in the heap and compute their sum (while taking
aliasing into account in order to avoid gross over-approximations). Space
safety proofs must then carefully use the de�nition and properties of size_-
of to reach Q.E.D. Unfortunately, the current formulation of size_of is not
naturally compositional, making its de�nition tricky to use, and forcing related
properties to require complicated assumptions to hold.

The non-compositionality of size_of makes reasoning about space safety
a cumbersome endeavor. The majority of a space safety proof is dedicated
to tedious by-hand accounting of arguments and establishing complicated
assumptions. Overall, while space safety can be established using CakeML’s
cost semantics, its utility is severely limited by the amount of e�ort necessary
to complete these size_of proofs.

This paper makes it easier to reason about CakeML’s cost semantics by de�n-
ing (and proving soundness of) an alternative space measuring function, called
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flat_size_of. The new function flat_size_of is de�ned in two steps: �rst, it
computes the set of reachable nodes, and then computes the sum of the size of
the data at those nodes. The new formulation is compositional and, thus, one
can express properties and conduct proofs more naturally than with size_of.
Our initial experiments suggest that flat_size_of makes space safety proofs
less cumbersome (i.e., require less assumptions) and more manageable (i.e.,
shorter theory �les) than size_of equivalents.

This paper makes the following contributions:

• De�nes flat_size_of (in Section 4.3) as a new reachability-based
measuring function, which is signi�cantly simpler to work with than
the original size_of (Section 4.2.3).

• Demonstrates (in Section 4.4) how flat_size_of overcomes some of
the most signi�cant problems of size_of.

• Discusses (in Section 4.5) how flat_size_of was proved sound, and
how future space safety proofs can use it.

All the work presented in this paper is machined-checked using the HOL4
theorem prover in the context of the CakeML compiler veri�cation project;
artifacts and example proofs can be found here.

4.2 A verified cost semantics

The cost semantics for the CakeML compiler [8] is expressed at the level of
its DataLang intermediate language.

DataLang is an intermediate language approximately in the middle of the
CakeML compiler. It is an imperative intermediate language with nested
tuple-like values and reference pointers, but no function values. It appears
right before memory becomes �nite and the garbage collector is introduced.
The semantics of DataLang is expressed in the form of a (functional) big-step
semantics.

The semantics for DataLang acts as a cost semantics for CakeML by main-
taining a boolean-valued safe_for_space �eld in the semantic state of the
operational semantics. This �eld is set to false whenever a semantic space-
cost measurement predicts that the current use of space might exceed the
con�gured space limits for heap or stack space.

This paper focuses on the measurement of heap space. At each allocation of
new memory, the semantics for DataLang computes the size of the currently
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live data using a measuring function called size_of. This size_of function
computes the space consumption of all values that are reachable from the root
values obtained from the stack and global variables. This size_of function is
de�ned to carefully track aliasing by keeping track of pointer-equal values,
and is unchanged by garbage collection as it only consider live (reachable)
data.

To prove the space safety of a CakeML program, one must show that for some
(concrete or abstract) limit that the semantics of its DataLang representation
never sets safe_for_space to false. Once space safety is established, it can
be extended all the way to the level of machine code, thanks to the soundness
proof for the cost semantics w.r.t. to the CakeML compiler.

The rest of this section introduces: the DataLang semantics, the space seman-
tics, and the de�nition of the original heap space measure, i.e. size_of. More
details on the original DataLang’s operational and costs semantics can be
found in prior work [8, 15].

4.2.1 DataLang at a glance

DataLang is an imperative language with abstract values, stateful storage of
local variables, and a call stack. In the compiler-stack, it sits between the more
abstract functional languages and the low-level languages with word-based
value representations.

To give a sense of how CakeML programs look when compiled into DataLang,
consider the following CakeML function expressed in CakeML source syntax
(which is very similar to SML syntax).

fun app123 x = let a = [1,2,3] in a ++ x end

This function appends its input to the list [1,2,3]. The result of compiling
this function to DataLang is shown in Figure 4.1.

At �rst, the DataLang presentation of the code might seem signi�cantly
di�erent. However, on closer inspection, we hope the reader will see the
similarity. In DataLang, the result of a primitive operation is always assigned
(B) to a local variable, which is represented as a natural number. On line
0, argument 0 corresponds to the source code binding x. Line 1 allocates
9 slots of space, since for each of the three Cons space for the constructor,
head, and tail is required. Line 2 creates a value representing an empty list
using the primitive operation Cons and a number tag (nil_tag) denoting the
nil constructor for lists. On line 3, a Const operation creates the number
literal 3. Line 4 combines local variables 1 ([]) and 2 (3) into the singleton list
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line 0 : app123 [0] evaluates as

line 1 : MakeSpace 9
line 2 : 1B Cons nil_tag []
line 3 : 2B Const 3
line 4 : 3B Cons cons_tag [2; 1]
line 5 : 4B Const 2
line 6 : 5B Cons cons_tag [4; 3]
line 7 : 6B Const 1
line 8 : 7B Cons cons_tag [6; 5]
line 9 : 8B ListAppend [7; 0]
line 10 : return 8

Figure 4.1: DataLang code for a function that appends its argument to
[1,2,3]

[3] using Cons and the corresponding list constructor tag (cons_tag); using
the same process, lines 5 through 8 create the DataLang representation of
the list [1,2,3]. Then, Line 9 applies ListAppend—which appends the two
lists-shaped values—variables 0 (the argument) and 7 ([1,2,3]).

v = Number int

| Word64 word64
| CodePtr num
| RefPtr num
| Block timestamp tag (v list)

Figure 4.2: DataLang’s abstract values

Primitive values in DataLang are modeled by the data type presented in
Figure 4.2. Here Number is an arbitrarily large integer; Word64 is a 64-bit
machine word; CodePtr is a code pointer; and RefPtr is a pointer to mutable
state (such as arrays). The Block constructor represents contiguous values in
memory, and encodes datatype constructors, tuples and vectors.

An example of a DataLang value is shown in Figure 4.3 which shows the
DataLang representation of the CakeML list [1,2,3]. This is the value result-
ing from a call to app123 with the empty list as the argument. Block values,
with cons_tag and nil_tag indicate the source-level constructor that each
Block represents. Furthermore, timestamp values 8, 7, and 6 uniquely identify
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each block.

app123_nil
def= Block 8 cons_tag [Number 1;

Block 7 cons_tag [Number 2;
Block 6 cons_tag [Number 3;
Block 0 nil_tag []]]]

Figure 4.3: Block representation of CakeML list [1,2,3]

The semantics state is de�ned as the record type shown in Figure 4.4. The �elds
locals and refs represent the �nite maps of local variables (v num_map) and
references ((v ref) num_map) respectively. The stack is a list of stack frames,
each frame containing only the relevant variables that should be restored
after a call is completed. The global �eld contains an optional reference to
an array of global variables. Space limits are kept in a record with �elds for
heap and stack limits. The boolean �ag safe_for_space is set to false when
space limits have been exceeded. The remaining �elds are not of relevance
for the presentation here.

α state = 〈|
locals : v num_map;
refs : v ref num_map;
stack : stack list;
global : num option;
limits : limits;
safe_for_space : bool;
clock : num;
. . .
|〉

ref = ValueArray (v list) | Bytes bool (word8 list)

limits = 〈| heap_limit : num; stack_limit : num; . . . |〉

Figure 4.4: The de�nition of the DataLang state.

The semantics of DataLang is de�ned as a functional big-step semantics [14].
In this style of semantics, a clocked big-step evaluation function, evaluate,
takes a (program, state) pair as input, and returns a (result, state) pair as
output. As an example, consider the evaluation of app123 with the empty list
as argument, which results in value app123_nil. Note that the program is
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given to evaluate as a DataLang AST (app123_prog) and arguments are local
variables in the state.

evaluate (app123_prog,s with locals := { 0 7→ Block 0 nil_tag [] })
= (app123_nil,s′)

To better visualize intermediate steps of evaluation, the DataLang semantics
can also be expressed as a shallowly embedded state-exception monad. This
is the representation used in app123 and by partially evaluating the �rst three
operations we can inspect its intermediate state:

app123 (s with locals := { 0 7→ Block 0 nil_tag [] })
= (4B Const 2

5B Cons cons_tag [4; 3]
6B Const 1
7B Cons cons_tag [6; 5]
8B ListAppend [7; 0]
return 8)
s with 〈| locals := { 0 7→ Block 0 nil_tag []

1 7→ Block 0 nil_tag []
2 7→ Number 3
3 7→ Block 3 cons_tag

[Number 3;
Block 0 nil_tag []] };

. . .
|〉

4.2.2 Embedded cost semantics

As previously stated, DataLang’s costs semantics is embedded into its oper-
ational semantics. Therefore, proving space safety of app123 is a matter of
proving the following statement:

` s.limits.heap_limit = mh∧
s.limits.stack_limit = ms∧
s.safe_for_space∧
evaluate (app123_prog,s) = (res,s′) ⇒

s′ .safe_for_space

This is, given stack space mh and heap space ms; the evaluation of app123_-

prog preserves safe_for_space, thus signalling that the program’s memory
consumption falls within the given bounds.
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Internally, the safe_for_space �ag is updated at every space-consuming oper-
ation, for example, at function calls and whenever new values are created.
Auxiliary functions size_of_heap and size_of_stack are used to update safe_-
for_space in one of two ways. If k slots of new heap space are to be used (e.g.
as part of MakeSpace), then safe_for_space is updated as follows:

s with safe_for_space :=
(s.safe_for_space ∧
size_of_heap s + k ≤ s.limits.heap_limit)

Similarly, if k slots of new stack space are to be consumed (e.g. as part of a
function call), then safe_for_space is updated as follows:

s with safe_for_space :=
(s.safe_for_space ∧
size_of_stack s + k ≤ s.limits.stack_limit)

The important work is performed by the size_of_heap and size_of_stack

functions. This paper focuses on improving the formulation of the heap space
measure and thus size_of_heap.

The original formulation of size_of_heap is shown below. Here stack_to_vs

is a function that computes a list of root values from local variables (s.locals),
the call-stack (extract_stack), and global references (global_to_vs). The
root values are given to the measuring function size_of, which computes the
size of heap elements reachable from these initial elements.

size_of_heap s def=
let (n,_,_) =

size_of (stack_to_vs s) s.refs ∅ in

n

stack_to_vs s def=
toList s.locals ++
extract_stack s.stack ++
global_to_vs s.global

The main workhorse of this de�nition is the size_of function, which is the
topic of the next section.

4.2.3 The original heap measure: size_of

At the core of DataLang’s cost semantics is the heap space measuring function
size_of. This function is responsible for computing the space consumed by
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all values reachable from the initial list of root values. Figure 4.5 shows its
de�nition with seen (a set of timestamps), and refs as additional arguments.

size_of [] refs seen def= (0,refs,seen)
size_of (x::xs) refs seen def=
let (n1,refs1,seen1) = size_of xs refs seen ;

(n2,refs2,seen2) = size_of [x] refs1 seen1 in

(n1 + n2,refs2,seen2)
size_of [Word64 v0] refs seen def= (3,refs,seen)
size_of [Number i] refs seen def=
(if is_smallnum i then 0 else bignum_size i,refs,seen)
size_of [CodePtr v1] refs seen def= (0,refs,seen)
size_of [RefPtr r] refs seen def=
case lookup r refs of

None ⇒ (0,refs,seen)
| Some (ValueArray vs) ⇒
(let (n,refs′ ,seen′) = size_of vs (delete r refs) seen in

(n + |vs| + 1,refs′ ,seen′))
| Some (ByteArray v2 bs) ⇒
(|bs| div (arch_size lims div 8) + 2,delete r refs,seen)

size_of [Block ts tag vs] refs seen def=
if vs = [] ∨ isSome (lookup ts seen) then (0,refs,seen)
else

let (n,refs′ ,seen′) = size_of vs refs (insert ts () seen) in

(n + |vs| + 1,refs′ ,seen′)

Figure 4.5: De�nition of size_of.

The measurement of most values (CodePtr, Word64, and Number) is straightfor-
ward, as it is either constant, already accounted for within another structure
(e.g. stack frames), or measured by a function without considering other
values. By contrast, the handling of Block and RefPtr requires additional
bookkeeping to avoid counting the same value twice (aliasing), and as such,
is where most of the complexity of size_of lies. In the case of Block values,
a set of already-measured (seen) timestamps is kept to avoid counting iden-
tical blocks multiple times; this mechanisms relies on a bijection between
timestamps and the blocks in memory. For RefPtr, pointers are removed from
references map (refs) once they are counted, this is to only follow a reference
once.
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To illustrate how size_of handles aliasing consider the following examples:

With x equal to Block ts tag [Number 1] throughout:

(B1) ts < seen ⇒ size_of [x] refs seen = (2,refs, {ts} ∪ seen)

(B2) ts ∈ seen ⇒ size_of [x] refs seen = (0,refs,seen)

(B3) ts < seen∧ ts ∈ seen′ ∧
size_of xs refs seen = (n,refs′ ,seen′)⇒
size_of (x::xs) refs seen = (n,refs′ ,seen′)

Intuitively, blocks whose timestamps have not been “seen” (i.e., ts < seen) are
always counted (B1). Moreover, blocks with already “seen” timestamps are
ignored (B2), as this hints at the block being present in previous values (B3)
at the back of the list — since size_of operates from the back.

The de�nition of size_of succeeds at providing tight bounds, mitigating
the e�ects of aliasing, and traversing only live data; however, perhaps due
to its precise and concrete nature, it can be challenging to reason about.
The main hurdle with size_of is the linearity of its traversal, where initial
measurements at the back of the argument list directly a�ect subsequent ones
through pointers or timestamps — as in example (B3). Thus, conceptually
simple properties (e.g., the reordering of values) are hard to prove and apply.
The shortcomings of size_of are explained in more detail in Section 4.4.

4.3 A new flat reachability-based measurement

This section shows the de�nition of our new heap cost measuring func-
tion, flat_size_of, which improves on the original size_of. In a nutshell,
flat_size_of takes a set of root addresses, computes the set of all addresses
reachable from that initial set (Section 4.3.1), and then sums the sizes of all
heap elements at those addresses (Section 4.3.2). We refer to this new formu-
lation as “�at” because operations occur mostly over sets and avoid recursing
into the structure of values. The rest of this section goes into the details of
the de�nition of flat_size_of.

4.3.1 The set of all reachable addresses

DataLang has no immediate notion of heap address. For the purposes of
the de�nition of flat_size_of, we de�ne a type for DataLang addresses.
Intuitively, an address is meant to represent any value that might contain
or reference other values. Therefore, we represent an address as either the
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timestamp (TStamp) of a Block (remember each block has a unique timestamp)
or the pointer to a reference (RStamp).

addr = TStamp num | RStamp num

From a list of DataLang values, we can compute, using to_addrs, a set of
corresponding addresses. Note that to_addrs does not recurse into Block

values, because it only wants to collect the immediately reachable addresses
of the given values.

to_addrs [] def= ∅
to_addrs (Block ts tag []::xs) def= to_addrs xs
to_addrs (Block ts tag (v::vs)::xs) def=
{ BlockAddr ts } ∪ to_addrs xs

to_addrs (RefPtr ref ::xs) def=
{ RefAddr ref } ∪ to_addrs xs

Omitted value kinds in the de�nition of to_addrs do not have addresses in
this representation; in those cases, recursion directly continues through the
list.

As a precursor to reachability, we de�ne the next relation which consider pairs
of addresses that are one-step reachable. When provided with value mappings
for pointers (refs) and timestamps (blocks), the relation next refs blocks a b holds
only if b is immediately reachable from a using one of such mappings.

next refs blocks (TStamp ts) r def=
r ∈ block_to_addrs blocks ts
next refs blocks (RStamp ref ) r def=
r ∈ ptr_to_addrs refs ref

block_to_addrs blocks ts def=
case lookup ts blocks of

| Some (Block _ _ vs) ⇒ to_addr vs
| _ ⇒ ∅

ptr_to_addrs refs p def=
case lookup p refs of

| Some (ValueArray vs) ⇒ to_addr vs
| _ ⇒ ∅

Therefore, from an initial set of addresses we can neatly describe all reach-
able addresses using the re�exive transitive closure (∗) of next. Note that
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this approach implicitly handles aliasing by declaratively de�ning the set
of reachable addresses; avoiding non-termination concerns and ruling out
duplicated values.

reachable_v refs blocks roots def=
{ y | ∃x. x ∈ roots ∧ (next refs blocks)∗ x y }

With these functions we can state the set of all reachable addresses from a
list of root values as follows.

reachable_v refs blocks (to_addrs roots)

Crucially, the result of reachable_v is only �nite if the initial set of roots is
�nite; a requirement to iterate on the resulting set in subsequent functions.
Fortunately, the result of to_addrs roots is know to be �nite as it only turns
the �nitely many elements of roots into addresses. Thus, one can prove the
following.

` FINITE (reachable_v refs blocks (to_addrs roots))

4.3.2 Adding it all up

In order to sum the sizes of all the reachable values, we need a function that
can compute the heap space consumed by a heap element at a speci�c address.
For this purpose, we de�ne a function size_of_addr which given an address
returns the size of that heap element.

size_of_addr lims refs blocks (TStamp ts) def=
case lookup ts blocks of

Some (Block _ _ vs) ⇒
1 + |vs| + sum(map (flat_measure lims) vs)

| _ ⇒ 0

size_of_addr lims refs blocks (RStamp p) def=
case lookup p refs of

None ⇒ 0
| Some (ValueArray vs) ⇒

1 + |vs| + sum(map (flat_measure lims) vs)
| Some (ByteArray _ bs) ⇒
|bs| div (arch_size lims div 8) + 2

In the de�nition above, we see that an address of a Block t n vs has size
1 + |vs| + sum (map (flat_measure lims) vs). Here 1 is the space for the header
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flat_measure lims (Word64 v0) def= 3
flat_measure lims (Number i) def=
if small_num lims.arch_64_bit i then 0
else bignum_size lims.arch_64_bit i
flat_measure lims (Block v5 v6 v7) def= 0
flat_measure lims (CodePtr v8) def= 0
flat_measure lims (RefPtr v9) def= 0

Figure 4.6: The de�nition of flat_measure

of the heap element; |vs| is for the length of the payload of the heap element;
and flat_measure lims vs is to account for the heap elements that are im-
mediately reachable from this block, but have no address. The de�nition of
flat_measure, shown in Figure 4.6, counts Block and RefPtr values as having
zero size, because they are already counted elsewhere.

Now we have a way to compute the set of reachable addresses and a way to
compute the size of a heap element at each address. Our �nal de�nition makes
use of ∑ which sums the application of a given function f to all elements of a
�nite set s. ∑

f s def= fold_set (λe acc. f e + acc) s 0

The top-level de�nition of the new heap measure is the following. This
de�nition sums the size of all Word64 and large Number values in the roots
using flat_measure. This is added to ∑ of size_of_addr applied to every
reachable address in the heap.

flat_size_of lims refs blocks roots def=
sum (map (flat_measure lims) roots) +∑

(size_of_addr lims refs blocks)
(reachable_v refs blocks (to_addrs roots))

Even though this de�nition is very di�erent in formulation from the original
size_of, shown in Figure 4.5, it computes the same number while providing
various advantages. Aliasing is implicitly handled and there is no need for
book-keeping of pointers and timestamps. Moreover, the clear separation be-
tween the gathering (reachable_v) and measuring (size_of_addr,flat_measure)
of heap elements makes for a more concise de�nition than combining both
operations in a single recursive descent. More generally, the main advantage
of the flat_size_of approach is that it abstracts the structure of the heap into
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a model (the set of all reachable addresses) that is considerably easier to oper-
ate over; this is in stark contrast of size_of, which operates directly on the
structure of the heap and therefore must deal with its associated complexity.

4.3.3 Requirements

In order for flat_size_of to be a viable replacement of size_of, some support
in DataLang’s semantics is required. Speci�cally, the semantic state must pro-
vide suitable values for the auxiliary arguments lims, refs, and blocks. However,
in the current semantics, only s.limits (lims) and s.refs (refs) are available.

To add support for flat_size_of to the semantics, we extended the semantic
state to include a mapping from timestamps to blocks: s.all_blocks. This �eld is
updated every time a block is created, adding a mapping between the block’s
timestamp and the block itself (i.e., ts 7→ Block ts tag l). Since timestamps
uniquely identify blocks, the mapping in s.all_blocks is always consistent with
all blocks in the heap, and by extension, all addresses derived by reachable_v.

Given this set up, one can de�ne the top-level cost measuring function
flat_size_of_heap in a way similar to size_of_heap.

flat_size_of_heap s def=
flat_size_of s.limits s.refs s.all_blocks (stack_to_vs s)

4.4 flat_size_of is be�er than size_of

To illustrate the challenges of reasoning about size_of, consider the following
reordering property:

size_of [x,y] refs ∅ = size_of [y,x] refs ∅

Intuitively, this property must hold for a measuring function as the values
considered are the same. However, with size_of both sides of the equality
might perform completely di�erent traversals:

size_of [y] refs ∅ = (ny1,refsy1,seeny1) ∧
size_of [x] refs ∅ = (nx1,refsx1,seenx1) ∧
size_of [y] refsx1 seenx1 = (ny2,refsy2,seeny2) ∧
size_of [x] refsy1 seeny1 = (nx2,refsx2,seenx2) ⇒
(ny1 + nx2,refsx2,seenx2) = (nx1 + ny2,refsy2,seeny2)

This mismatch exposes the following problems:
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• There is no straightforward relation between the two measurements of
[x] (or those of [y]) as size_of is applied to di�erent arguments.

• All blocks in [x] and [y] with the same timestamps must have the same
contents; otherwise, the order in which blocks are counted will a�ect
the result due to aliasing mitigation.

These issues can be overcome by introducing well-formedness conditions on
[x] and [y], and by generalizing the property statement to one more suited for
induction (e.g. list permutations). However, these kinds of hurdles appear
more often than one might want for such a crucial function.

In stark contrast, reordering can be trivially proved for the new flat_size_-

of function. First, a call to flat_measure traverses a list to add non-root
values, and is thus una�ected by permutations. Similarly, the initial root set
computed by to_addr is the union of all addresses in the list of values and is
again una�ected by reordering. Therefore, the remaining application of ∑ is
being applied to the same arguments.

This ease of reasoning is what makes flat_size_of better suited for proofs
of space safety as shown in the rest of this section.

4.4.1 A layout for space safety proofs

As mentioned before, to prove the space safety of a DataLang program one
must show the preservation of safe_for_space through its evaluation (Sec-
tion 4.2.2). As most DataLang programs are composed of multiple recursive
functions, it is often necessary to separately prove space safety for some of
them. To prove a function is space safe, one generally needs three kinds of
assumptions:

(A1) The space consumption before the function call is below the limits or
roughly size_of_heap s + M ≤ heap_limit, where M is any extra space
the function body needs.

(A2) A description of the arguments to the function, e.g., a list-shaped block,
a number within 0 and 255, among others.

(A3) That the function is de�ned in s.code and its body corresponds with the
code being evaluated
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Resulting in the following layout:

` A1 ∧ A2 ∧ A3 ∧
s.safe_for_space∧
evaluate (fun_body,s) = (res,s′) ⇒

s′ .safe_for_space

Proofs are by complete induction on the semantic clock and symbolic evalua-
tion of the function body. Assumption (A2) should allow the evaluation of
most of the function body. Moreover, intermediate updates to safe_for_space
can be resolved using (A1). Once the recursive call is reached, assumption
(A3) replaces the function call with the function’s body such that the inductive
hypothesis can be applied. At this point in the proof, assumptions must be
established again for the state at the function call. (A3) is trivial as s.code does
not change. (A2) might require work, but well-formed function code correctly
operates on its values and thus provides good arguments. The proof of (A1)
shown below is where things are most likely to become tricky:

` . . .
size_of_heap s + M s ≤ s.limits.heap_limit ⇒
size_of_heap s′ + M s′ ≤ s′ .limits.heap_limit

Here, we must show that the space required at the recursive call (size_of_heap s′ + M s′)
is still less than heap_limit, assuming the space was enough in the original call.
This amounts to proving that the required space decreases as the function
recurses:

` . . . ⇒
size_of_heap s′ + M s′ ≤ size_of_heap s + M s

This follows the intuition that function calls should take either progressively
less space, or require an extra amount of memory bounded by M.

4.4.2 A hypothetical tail-recursive example

Consider a hypothetical tail-recursive function ftail with the following
features:

• Takes a list of numbers as argument.

• Operates over the head of the list consuming constant space.

• Makes a tail-recursive call with the tail of the list.
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Now assume we want to prove ftail space safe for concrete argument
[1,2,3]. Instantiating the proof layout from the previous section, we ar-
rive at the proof goal shown below:

` size_of_heap s + C ≤ s.limits.heap_limit ∧
lookup ′′�ail′′s.code = Some ftail_body ∧
s.locals =
{ 0 7→ Block 8 cons_tag [Number 1,

Block 7 cons_tag [Number 2, . . .]]} ∧
s.safe_for_space∧
evaluate (ftail_body,s) = (res,s′) ⇒

s′ .safe_for_space

Above, C is the (constant) space the function uses to operate.

Using assumptions (A1), (A2), and (A3), most of the proof can proceed by
evaluation; until the tail recursive call to ftail is reached and we must
establish assumption (A1) again, leading to an inequality of the form:

size_of_heap s′ ≤ size_of_heap s

Which by de�nition of size_of_heap and rest (an abbreviation of expression
extract_stack s.stack ++ global_to_vs s.global ) simpli�es to:

size_of ([Block 7 cons_tag [Number 2, . . .]]]++ rest)
s.refs ∅

≤
size_of ([Block 8 cons_tag [Number 1,

Block 7 cons_tag [Number 2, . . .]]]++ rest)
s.refs ∅

Moreover, since size_of operates from the back of the list, we can abstract
away rest at both sides as size_of rest s.refs ∅ = (n,refs,seen), and rewritten to:

size_of [Block 7 cons_tag . . .] refs seen ≤
size_of [Block 8 cons_tag . . .] refs seen

At this point, it would appear that the proof is almost done, as we are essen-
tially testing if the space occupied by a list ([1,2,3]) is greater than that of its
tail ([2,3]), a rather intuitive claim. However, due to size_of’s handling of
timestamps and the fact that seen is symbolic, one can not show this inequal-
ity without additional assumptions. Concretely, one can think of a scenario
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where only 8 is in seen and no other timestamps in the block is in seen. Such a
situation will result in the measurement being 0 at the right of the inequality
and 4 on the left, a clear falsehood.

8 ∈ seen∧ 7 < seen∧ . . .∧
size_of [Block 7 . . .] refs seen = (4,refs′ ,seen′) ∧
size_of [Block 8 . . .] refs seen = (0,refs′′ ,seen′′) ⇒
4 ≤ 0

Therefore, the proof goal must be extended with a predicate ensuring that
if timestamps 8 is in seen it must be the case that 7 and all other subsequent
timestamps in the block are also in seen.

Proving such results and all their associated lemmas takes considerable work,
to the point that, similar mechanisms in existing space safety proofs take
around 25% of the proof script. The issue is further aggravated by the fact
that these kinds of results can not be easily generalized for all types of values
and must be re-written every time a new type is used.

By switching our reasoning to flat_size_of, our proof goal is greatly simpli-
�ed:

flat_size_of s.refs s.all_blocks ([Block 7 . . .] ++ rest)
≤
flat_size_of s.refs s.all_blocks ([Block 8 . . .] ++ rest)

While we can no longer “drop” rest from the roots, flat_size_of more than
makes up for this with its use of sets and relations to represent the reachable
memory. To showcase this, consider the following lemma, which states that
if the reachable set of addresses from two roots x and y are subsets, and
flat_measure then the space measurement of x done by flat_size_of must
be less than that of y.

flat_measure lims x ≤ flat_measure lims y ∧
reachable_v refs blocks (to_addrs x) ⊆
reachable_v refs blocks (to_addrs y) ⇒
flat_size_of lims refs blocks x ≤
flat_size_of lims refs blocks y

Using this lemma the proof goal becomes trivial:

{TStamp 7, . . .} ∪ reachable_v . . . (to_addrs rest)
⊆ {TStamp 8,TStamp 7, . . .} ∪
reachable_v . . . (to_addrs rest)
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One can then conclude the proof using basic set reasoning.

It is this ease of reasoning in the presence of (possibly) aliased values that
makes flat_size_of a suitable measuring function for a cost semantics. In
particular, the reachability-based approach to gathering live data aids the func-
tion, and its reasoning, to not be concerned with where in the heap structure
a value is located, and focus solely on its e�ect on the space measurement. In
contrast, reasoning about size_of constantly requires additional safeguards
and guarantees on the heap structure to be able to relate two measurements,
as seen in our previous example.

4.4.3 A concrete tail-recursive example

Consider the CakeML function sum de�ned below:
fun sum xs = foldl (+) 0 xs

Where xs is a list of (unbounded) integers and (+) is integer addition with
support for bignum arithmetic. As expected, a call to sum computes the
addition of all the elements of xs.

The space safety of sum follows from a similar intuition as the one presented for
ftail (Section 4.4.2) even after considering the space consumption of bignum
arithmetic (+) and accumulator arguments (foldl). This relation is made
evident by the space safety proof of sum currently available in the CakeML
project, which shares ftail’s proof structure, and thus, its issues regarding
the use of size_of. Speci�cally, the proof requires additional assumptions
and theorems to enforce the timestamps in xs’s representation are correctly
traversed — i.e., it is never the case that a timestamp at the head of the list
has been “seen” and one in the tail has not.

Fortunately, as with ftailm the space safety proof of sum can also be im-
proved by switching to flat_size_of. As an experiment we updated the
proof of the sum example to use flat_size_of and the following quantitative
improvements (in LOC) where archived:

• Assumptions outside of the scope of (A1), (A2), and (A3) were removed.

• 14 auxiliary lemmas and de�nitions were removed.

• The section of the proof dedicated to re-establishing (A1) shrunk by
32%.

• The proof of space safety shrunk by 13%.

• The entire �le for this proof and all auxiliary lemmas shrunk by 28%.
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Furthermore, the new proof text for flat_size_of only utilized de�nitions
and standard set reasoning leading to a nicer proof.

In summary, this updated space safety proof demonstrates the advantages of
flat_size_of over size_of.

4.5 Soundness

We have proved flat_size_of_heap sound. More speci�cally, we have proved
that, under reasonable assumptions size_inv s, the number computed by
flat_size_of_heap is equal to the number computed by size_of_heap.

` size_inv s⇒ size_of_heap s = flat_size_of_heap s

The size_inv assumption ensures that the values in s.all_blocks are consistent
with those in the heap (i.e,. s.refs and stack_to_vs). Speci�cally, that for any
Block ts tag l reachable in the heap, there is an entry ts 7→ Block ts tag l in
s.all_blocks. Our proof of soundness requires size_inv because flat_size_of,
unlike size_of, does not recurse over block values and instead must rely on
an accurate block mapping to obtain the same results.

Using the proof of equality between size_of_heap and flat_size_of_heap

one can rephrase any space safety proof, previously involving size_of, to be
in terms of flat_size_of.

4.5.1 Updates to CakeML’s cost semantics

The CakeML’s cost semantics was updated to facilitate the usage of flat_size_of
in space safety proofs.

The main hurdle when switching to flat_size_of is establishing size_inv

(so the soundness theorem can apply). To address this, we extended (at the
DataLang level) how s.safe_for_space is updated to include size_inv as an
antecedent.

s with

safe_for_space :=
(s.safe_for_space ∧
(size_inv s⇒
size_of_heap s + k ≤ s.limits.heap_limit))

With this change, if one starts a typical space safety proof (Section 4.4.1) and
uses flat_size_of_heap, instead of size_of_heap, for the (A1) assumption
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(i.e., heap measurement are within the limits), then, whenever s.safe_for_space
needs to be re-established size_inv will be available as an assumption.

The addition of size_inv to the cost semantics was proven sound w.r.t. the rest
of the compiler, as an update to size_of_heap’s original soundness proof. In-
formally, if size_inv holds for the initial semantic state and is preserved by the
semantic as an invariant, then, its addition as an antecedent in s.safe_for_space
does not a�ect the �eld’s value. Therefore, the addition of size_inv makes
proofs more convenient while keeping the semantics essentially unchanged.

4.6 Related Work

Veri�ed cost semantics are available for the CompCert [12] and CakeML [11]
veri�ed compilers. Carbonneaux et al. [5] develop a source level logic for stack
space reasoning that translates to the CompCert compiler output. Besson
et al. extends CompCert’s memory model with �nite memory and integer
pointers in CompCertS [2, 4, 5], which allows for memory usage estimates of
C functions that are proven to be bounds of the compiled code.

In recent work, Madiot and Pottier [13] develop a separation logic for conve-
niently reasoning about heap space usage in the presence of garbage collection.
However, their cost semantics is not proved correct w.r.t. a concrete compiler.

There have been many other approaches to source-level analysis of space cost.
For example, resource-aware type systems based on re�nement types [6, 7, 10]
can be used to obtain bounds for source programs. Moreover, a program’s
resource usage can be directly encoded as a re�nement type in compilers
with support for such type systems [9]. Time-complexity annotations and
indexes in types [16] can also be used to express costs. Another approach
is for proof-carrying code to be equipped with a resource usage proof w.r.t.
a resource-aware program logic [1]. In general, theses approaches provide
formal estimates of costs for source-level programs, however, they forgo the
e�ects compilation and program transformation can have on resource con-
sumption. Source-level cost analysis techniques could be used on DataLang
programs to facilitate reasoning further, however, we have not yet investigated
this approach.

4.7 Conclusion

In this paper we have proposed a new reachability-based measure for CakeML’s
veri�ed cost semantics. The examples explored here suggest that the new
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formulation is better suited for space safety proofs. We found that the need
for extra assumptions and auxiliary lemmas has been greatly reduced and, as
a consequence, proof scripts are more concise and easy to read, making the
whole proving process more scalable. Overall, we hope that by making space
safety reasoning easier, more ambitious veri�cation projects that prevent
out-of-memory errors can be undertaken.
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