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Abstract

Drug design is a process of trial and error to design molecules with a desired
response toward a biological target, with the ultimate goal of finding a new
medication. It is estimated to be up to 1060 molecules that are of potential
interest as drugs, making it a difficult problem to find suitable molecules. A
crucial part of drug design is to design and determine what molecules should be
experimentally tested, to determine their activity toward the biological target.
To experimentally test the properties of a molecule, it has to be successfully
made, often requiring a sequence of reactions to obtain the desired product.
Machine learning can be utilized to predict the outcome of a reaction, helping
to find successful reactions, but requires data for the reaction type of interest.
This thesis presents a work that combinatorially investigates the use of active
learning to acquire training data for reaching a certain level of predictive ability
in predicting whether a reaction is successful or not. However, only a limited
number of molecules can often be synthesized every time. Therefore, another
line of work in this thesis investigates which designed molecules should be
experimentally tested, given a budget of experiments, to sequentially acquire
new knowledge. This is formulated as a multi-armed bandit problem and we
propose an algorithm to solve this problem. To suggest potential drug molecules
to choose from, recent advances in machine learning have also enabled the use
of generative models to design novel molecules with certain predicted properties.
Previous work has formulated this as a reinforcement learning problem with
success in designing and optimizing molecules with drug-like properties. This
thesis presents a systematic comparison of different reinforcement learning
algorithms for string-based generation of drug molecules. This includes a study
of different ways of learning from previous and current batches of samples
during the iterative generation.

Keywords

Reaction yield prediction, de novo drug design, active learning, multi-armed
bandits, reinforcement learning
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Chapter 1

Introduction

Developing a new drug is a complex process that can take up to a decade and
cost more than US $1 billion (Paul et al., 2010; Wouters, McKee & Luyten,
2020). Throughout this process, numerous decisions are made, possibly with a
large impact on future decisions, requiring informed decisions. A crucial part of
this process is to design novel clinical drug candidates with desired molecular
properties (Hughes et al., 2011).

Conventional drug design involves human expertise to propose, synthesize
and test new molecules. Human experts hold a key position in the decision-
making in the design of new drugs, which have so far enabled the finding of
thousands of medicinal drugs that both save life and provide better life quality
for humans all around the world. It has been estimated that the ensemble of
academic, commercial, and propriety chemical databases includes a magnitude
of 108 existing chemical compounds, while the number of feasible drug-like
molecules is theoretically estimated to be between 1023 and 1060 (Polishchuk,
Madzhidov & Varnek, 2013; Reymond & Awale, 2012). Thus, conventional
drug design methods seem to concentrate on a relatively small fraction of the
chemical space.

Nowadays, machine learning and sophisticated automation of the design
of new drugs constitute fundamental strategies to enhance productivity in
pharmaceutical research (G. Schneider, 2018; Vamathevan et al., 2019). Sig-
nificant advances have taken place during the last years in applying machine
learning to drug design, in particular with the recent advances of deep learning.
One such example is the use of generative models to design molecules that
potentially demonstrates a desired set of experimental properties. Instead of a
human expert proposing new molecules, these methods leverage deep learning
to optimize predicted property values, which represent the set of desired exper-
imental properties. Since their recent introduction, a vast number and variety
of generative models have been applied to molecular design (Bilodeau et al.,
2022).

Another example of the recent advances in applying machine learning is to
assist in the decision of how to synthesize molecules (Coley, Green & Jensen,
2018). For instance, instead of a human expert trying different synthetic routes
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4 CHAPTER 1. INTRODUCTION

for synthesizing a target molecule, machine learning can be used to validate
the outcome of a reaction. This requires data for the reaction types of interest,
preferably including both unsuccessful and successful outcomes of reactions.

The recent advances in using machine learning can enable a closed-loop
drug design platform, where drug molecules are designed in an automated
system under human supervision, but no such system has so far been achieved
(Bilodeau et al., 2022). For such a system to be achieved, it has to be able
to make several decisions on its own, such as, where in the chemical space to
focus the search for novel molecules, which molecules to synthesize from the
search, and decide how to synthesize the molecules. In fact, it has been argued
by experts in the field that a closed-loop platform is necessary for machine
learning to make an impact in drug discovery (Saikin et al., 2019).

This thesis studies different sequential decision-making tasks for drug design
and is structured in the following way. The first part of the thesis comprises
the introductory chapters. Chapter 2 provides an overview of relevant back-
ground knowledge to aid in the understanding of the appended papers. This
includes an introduction to the phases of drug discovery and design and asso-
ciated sequential decision-making problems. Followed by a brief introduction
to relevant chemoinformatics and in silico drug design concepts. It contains
a concise introduction to active learning, multi-armed bandit, and reinforce-
ment learning problems. Furthermore, the challenges and consequent research
questions considered in this thesis are introduced. Chapter 3 summarizes the
problems, methods, results, and contributions of the appended papers. Chapter
4 concludes the main research outcomes of the appended papers and discusses
possible future direction. The second part of this thesis comprises the three
appended papers.



Chapter 2

Background

This chapter introduces some of the topics and concepts used throughout this
thesis.

2.1 Drug Discovery and Design

UMN
identification

Target
identification

Target
validation

Hit
identification

Lead
generation

Lead
optimization

Preclinical
candidate

Figure 2.1: The drug discovery process. UMN, unmet medical needs.

A drug discovery campaign is initiated when a disease with an unmet need
for medication has been identified (Hughes et al., 2011). The next step of this
campaign is to identify a biological target, e.g., a protein, genes, and RNA,
which the drug should interact with and yield a desired response resulting in
a therapeutic effect with respect to the identified disease. This refers to the
bioactivity (or biological activity), describing the response of a drug on living
matter. A molecule with a desired activity is called an active molecule (against
the desired biological target). When a target has been identified, it has to be
fully validated to gain sufficient confidence in the activity, preferably using
multiple validation approaches. After the identification and validation of a
biological target, the objective is to screen for molecules that are validated
to display the desired response, so-called hit molecules. A commonly used
screening method is high throughput screening (HTS) which tests a collection
of molecules against the validated target, usually conducted in parallel in wells
of a microtitre plate by a robotic system (Macarron et al., 2011; Wildey et al.,
2017). When several hit molecules have been identified and it has been decided
which ones are the most promising, the hits are refined to develop molecules
with a larger effect on the biological target, producing so-called lead molecules.
When such lead molecules have been developed, they are optimized to further
improve their drug-like properties, such as lowering the concentrations needed
to obtain a desired response against the biological target. From the optimized
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6 CHAPTER 2. BACKGROUND

lead molecules, a preclinical candidate along with a backup candidate is usually
selected (Vohora & Singh, 2017). This is the end of the drug discovery process
(illustrated in Fig. 2.1) and the beginning of the drug development process,
with the goal to get the newly discovered drug to the market. The work of this
thesis regards drug discovery and in particular drug design.

Drug design has the primary goal of designing a new drug that evokes a
desired response, at low concentrations, for a disease and at the same time is
free from side effects. Drug design is a vital part of drug discovery, involved
in developing a preclinical candidate after the first hit molecules have been
identified. The goal is to develop a molecule that is better than the hit molecule.
Hence, designing lead molecules and optimized versions of these.

2.1.1 Sequential Decision-Making in Drug Design

Design

Analyze

Test

Make

Dev
elop design ideas

U
p
d
at
e
h
yp
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S
ynth

esis
p
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m
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g
d
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ies

Figure 2.2: The Design-Make-Test-Analyze cycle utilized in drug design.

Drug design is an iterative process involving trial-and-error testing, hence
sequential decision-making is a natural part of it. The drug design process is
therefore often modeled as the so-called Design-Make-Test-Analyze (DMTA)
cycle, illustrated in Fig. 2.2, where one tries to iteratively acquire knowledge to
improve the design of novel drugs. In the Design step, the goal is to develop
molecules that potentially demonstrate the desired experimental properties.
Designed molecules are synthesized in the Make step and subsequently, if
successfully made, experimentally tested to identify their properties. Finally,
the acquired knowledge is analyzed and concluded to the next cycle. This is
done until a sufficient set of acceptable drug molecules has been designed.
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Synthesizing a molecule is not a straightforward task. Synthesis planning
is the process by which a chemist or computer decides how to synthesize a
molecule. This is usually done by iteratively breaking the desired molecules
into intermediates and smaller molecules until reaching an available building
block. This is known as retrosynthetic analysis. After identifying possible
synthetic routes and building blocks, they have to be verified and further
optimized to yield sufficient quality of the desired molecule. High-throughput
experimentation (HTE) is a workflow to run multiple reactions in parallel that
is nowadays widely used to explore and validate different reaction mechanisms
and reaction parameters to obtain an acceptable amount of product (Mennen
et al., 2019). This offers a way of trial-and-error testing of reactions to obtain
the desired molecule.

2.2 Cheminformatics

This section introduces relevant computer-readable representations of molecules,
and how to analyze and compare molecular structures.

2.2.1 Molecular Representation

Several different molecular representations are used for machine learning in drug
design (David et al., 2020). To provide a relevant background for the included
papers, we focus on two of them: the simplified molecular-input line-entry
system (SMILES) (Weininger, 1988) and molecular fingerprints. SMILES is
one among several string-based representations, while molecular fingerprints
are vector-based encodings. Many molecular representations (e.g., SMILES
strings) are based on the molecular graph representation, where the nodes and
vertices in a labeled graph correspond to the atoms and bonds, respectively, of
a molecule. The label of each node corresponds to the atom type of the atom
represented by that node, while the label of each vertex corresponds to the
corresponding bond type. There are several other graph representations but
they are not considered in this thesis.

2.2.1.1 Simplified Molecular-Input Line-Entry System (SMILES)

The simplified molecular-input line-entry system (SMILES) is a commonly
used line notation system, representing the 2-dimensional molecular graph as a
linear string of characters (Weininger, 1988). Firstly, each atom in the molecule
is assigned a unique number (hydrogen atoms are normally omitted). Sub-
sequently, the SMILES representation is obtained by traversing the molecular
graph in the order given by the unique numbers, appending each traversed
atom and non-single bond to the string. The unique number of each atom can
be assigned in different ways, leading to different atom orderings in the string
representation, as illustrated in Fig. 2.3. For canonical SMILES representation,
the ordering is computed to give unique a SMILES representation for the same
molecule; while for the randomized SMILES representation, the first atom is
randomly assigned and then traverses the graph starting from this atom.



8 CHAPTER 2. BACKGROUND

(a) Canonical representation (b) Randomized representation

Figure 2.3: Canonical and randomized SMILES representation of Aspirin. The
canonical representations assign a canonical ordering of the atoms, to provide a
unique string representation for each molecule. The randomized representation
assigns a random initial atom and then traverses the molecular graph starting
at the corresponding node. Figure extracted, with permission, from original
work by (Arús-Pous et al., 2019).

2.2.1.2 Molecular fingerprints

Molecular fingerprints are binary or occurrence vectors containing indexed
elements encoding the molecular structure (David et al., 2020; Mauri, Consonni
& Todeschini, 2017). The molecular structure is explored in all possible
substructure patterns by following a pre-defined set of rules, where different
types of fingerprints are defined by different sets of rules. A major type of
patterns is atom-based patterns. Atom-based patterns exhaustively explore
circular patterns around each heavy atom, where the radius of the circular
patterns is incremented up to a pre-defined radius. Because of this, fingerprints
computed using atom-based patterns are known as circular fingerprints.

A well-known family of circular fingerprints is the extended-connectivity
fingerprints (ECFPs), which are obtained by utilizing an algorithm based on
the Morgan algorithm (Morgan, 1965; Rogers & Hahn, 2010). The ECFP
generation process consists of three sequential stages, as described by Rogers
and Hahn (2010): (1) each atom is assigned an integer identifier, e.g., their
atomic number, but ignoring hydrogen atoms and bonds. Subsequently, these
initial atom identifiers are collected into an initial fingerprint set; (2) each atom
identifier is iteratively updated to reflect the identifiers of each atom’s neighbors.
This is done by each atom collecting its own and immediate neighbors’ identifiers
into an array and, subsequently, applying a hash function to produce a new
integer identifier. Note that the size of the space of identifiers depends on the
output size of the hash function. The old atom identifiers are thereafter replaced
by the new identifiers, and the new identifiers are added to the fingerprint set.
The number of iterations of this procedure is determined by the prespecified
radius of this circular fingerprint; (3) duplicate identifiers in the fingerprint set
are removed and the final set defines an ECFP fingerprint. Alternatively, the
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duplicate identifiers can be kept and hence keep information about multiple
occurrences, providing a final fingerprint set that defines an ECFP fingerprint
with counts. To be used in practice, the remaining identifiers are usually
represented by a vector, e.g., where identifier x implies that bit x is active (1)
in the vector, optionally including counts of multiple occurrences.

To evaluate how similar two molecules are, it is common to compute the
similarity (or dissimilarity) between their corresponding fingerprint sets. A
commonly used similarity metric is the Jaccard (or Tanimoto) coefficient. For
two finite sets A and B, e.g., set of bits, the Jaccard coefficient is defined as

J(A,B) =
|A ∩B|
|A ∪B| , (2.1)

which gives a value between 0 and 1. As a result, the dissimilarity between
two sets, the so-called Jaccard distance, is obtained by dJ (A,B) = 1− J(A,B).
Identical fingerprints do not imply that the corresponding molecules have
identical structures since different characteristics in the molecular structure
can lead to the same bit being active.

2.2.2 Scaffold Analysis

The scaffold of a molecule is defined as its core structure. This is a common
structure characterizing a group of molecules. This provides a basis for a
systematic investigation of molecular core structures and building blocks. A
popular approach for deriving molecular scaffolds from molecules was formu-
lated by Bemis and Murcko in 1996, therefore known as the Bemis-Murcko
scaffold (Bemis & Murcko, 1996). It identifies side chain atoms in the graph
representation of a molecule and removes these from the graph, as illustrated
in Fig. 2.4. It is also common to derive a more generic scaffold to analyze
the topological relationships between molecules. A topological scaffold can be
derived by the Bemis-Murcko scaffold, e.g., by converting all atom types into
carbon atoms and all bonds into single bonds.

Cc1cc(Oc2nccc(CCC)c2)ccc1 C1CCC(CC2CCCCC2)CC1

Molecular scaffold Topological scaffold

c1ccc(Oc2ccccn2)cc1

Figure 2.4: The structural formula and SMILES strings for an arbitrary
molecule, and its molecular scaffold and a corresponding topological scaffold
based on the Bemis-Murcko algorithm.

When the core structure of a molecule has been derived, it can be used
to find structurally distinct molecules having similar activity, known as scaf-
fold hopping (Hu, Stumpfe & Bajorath, 2016). This can aid in providing
several structural alternatives when designing drug molecules, e.g., utilizing
computational (virtual) screening approaches.
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2.3 in silico Drug Design

Drug design relies more frequently on computational methods, also known as
in silico methods, to generalize knowledge to unseen molecules and aid the
human expert in making informed decisions (P. Schneider et al., 2020). This
section presents some of the key computational concepts and methods in drug
design.

2.3.1 Quantitative Structure-Activity Relationship (QSAR)

Quantitative structure-activity relationship (QSAR) methods aim to predict
a molecule’s chemical bioactivity and physical properties, given its structure
(Tyrchan et al., 2022). In fact, they are regression or classification models that
seek to learn a relationship between a complex property and observable, so-called
descriptors. These models are based on the principle that similar molecules
tend to have similar properties (Bender & Glen, 2004). The descriptors encode
structurally derived properties from both the 2D and 3D structure of a molecule,
such as topological, geometrical, or electronic features. For instance, molecular
fingerprints can be used to encode relevant structural properties. These models
are often used for the computational (virtual) screening of millions of compounds
to reduce the number of candidates to be synthesized and tested experimentally,
ultimately speeding up the identification of possible drug candidates (Neves
et al., 2018). Random forest models are still considered the standard for QSAR
methods, but gradient boosting and deep learning methods are nowadays
popular alternatives (Muratov et al., 2020).

Logically, the descriptors should be selected to represent the molecular
features relevant to the properties of interest (Danishuddin & Khan, 2016).
Hence, setting up a QSAR model requires careful consideration of both experi-
mental errors in the data and generalization errors of the model. Experimental
errors can be caused by errors in the chemical structures in the data, while
generalization error is possibly caused by an insufficient relationship between
the descriptor of the considered molecular properties and the response variables
(Tropsha, 2010). QSAR models utilize descriptors of the chemical structure
and small errors in the chemical structure can lead to a significant reduction of
predictive ability (Young et al., 2008).

2.3.1.1 Inverse QSAR

In the inverse QSAR problem, the aim is to identify a molecular structure
fulfilling desired properties (Tyrchan et al., 2022). This makes it a suitable
problem for molecular de novo design, described in Section 2.3.2, which recently
has gained a lot of attention. A fundamental problem for inverse QSAR is that
molecular descriptors are not continuous and unique, while the same holds for
the property space. Hence, molecules with the same descriptor can display
different properties, while molecules with different descriptors can display
similar properties.
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2.3.2 de novo Drug Design

The fundamental goal of molecular de novo design is to identify novel chemical
structures that satisfy a set of predefined criteria (Tyrchan et al., 2022). This
can be formulated as an optimization problem where the objective is to find a
molecular structure that optimizes the ground truth property values, which
are represented by the pre-defined criteria. de novo drug design refers to this
problem for drug design. As a result of the recent progress in machine learning,
especially in deep learning, generative models are now widely used in de novo
drug design to traverse the chemical space (Meyers, Fabian & Brown, 2021).
The goal is that these models should learn to effectively identify chemical
structures in the chemical space that fulfills the predefined criteria. A vast
number and variety of different machine learning techniques have been used for
this, including techniques such as genetic algorithms, monte-carlo tree search,
variational autoencoders, Bayesian optimization, and reinforcement learning
(Gao et al., 2022; Sanchez-Lengeling & Aspuru-Guzik, 2018; Thomas, O’Boyle
et al., 2022). Another aspect to consider is the use of a suitable molecular
representation, e.g., string-based representations and molecular graphs. The
work of this thesis focus on SMILES-based de novo drug design utilizing
reinforcement learning to optimize the predefined criteria.

2.3.3 Computer-Aided Synthesis Planning

There are two main problems in computer-aided synthesis planning: synthetic
route prediction (retrosynthesis) and forward prediction (Johansson et al.,
2019). The former problem aims to predict synthesis routes and building
blocks necessary to synthesize a specific molecule. The latter problem tries to
predict the reaction outcomes, given building blocks (reactants) and reaction
conditions (e.g., temperature, solvent, and catalyst). Hence, such a predictive
model can be used to validate that the desired product is produced by the
proposed reaction and suggest suitable reaction conditions (Schwaller et al.,
2019). Synthetic route prediction algorithms are usually either template-based
or template-free (Segler & Waller, 2017; Zheng et al., 2019). Template-based
algorithms follow manually encoded chemical transformation rules of known
reactions, while template-free algorithms are not constrained to follow such
transformation rules. A problem related to forward prediction is reaction yield
prediction where the objective is to predict the yield of a reaction (Schwaller
et al., 2021). The reaction yield describes the quantity (usually in percentage)
of the building blocks that are converted to the desired product(s) in the
reaction. This is normally done by either explicitly predicting the reaction
yield or predicting if the yield will reach a desired quantity. The latter is of
more interest in drug design where the objective is to find a successful synthetic
route to experimentally test properties; while the former is usually of more
interest when preparing for drug development since the desired product then
needs to be manufactured in a sufficient quantity. The work of this thesis
considers reaction yield prediction for predicting if a reaction will successfully
provide a desired minimum reaction yield.
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2.3.4 Data Curation

Modern methods often require a vast amount of data, especially with the
recent rise of deep learning. Large datasets utilized in drug design originate
from various sources, such as ChEMBL consisting of extracted and manually
curated structure-activity relationship (SAR) data from the primary medicinal
chemistry and pharmacology literature (Gaulton et al., 2012). Hence, data
curation is an important aspect of machine learning in drug design. Data
curation includes several steps of cleaning and standardization of the chemical
data, such as the removal of mixtures, inorganics and salts, and standardization
of chemical structure and bioactivity data (Tropsha, 2010). It also includes
the removal of duplicates and treatment of tautomeric forms. Tautomers of
a molecule only differ by an intramolecular movement of a hydrogen atom
from one atom to another. Tautomers usually have different molecular finger-
prints and other properties, such that similar molecules encoded as different
tautomers are unintentionally considered, which can influence the predictive
ability (Martin, 2009; Masand et al., 2014). Removal of duplicates can be
accomplished by standardizing the representation of the chemical structure,
e.g., canonicalization of SMILES string, and removing all chemical structures
with the same representation. In addition, descriptors calculated from a 2D
representation will usually recognize molecules with minor differences in 3D
structure (e.g., molecules that are mirror images of each other) as duplicates
(Tropsha, 2010).

2.4 Active Learning Problems

In supervised learning, a learner chooses a mapping between data instances X
and labels Y, with the objective of outputting a desired label y ∈ Y given a
data instance x ∈ X . A suitable mapping is usually decided by using a training
set L = {(x, y)(l)}Ll=1 ⊂ X × Y of tuples of a data instance and a desired label
to output. To construct such a training set, for each data instance of interest,
the desired label needs to be acquired. In some cases, these labels can be easily
obtained or are already available; while in other cases these labels can be more
difficult to obtain. Active learning concerns how to improve the generalization
of the learning by utilizing a carefully chosen training set. The learner then
sequentially decides on what label(s) to query from an oracle, e.g., a human
annotator, by utilizing the information acquired up to this point. On the other
hand, in passive learning the learner has no control over the training set, e.g.,
what data instance to query is chosen randomly.

Two common active learning scenarios are stream-based and pool-based
active learning (Settles, 2012). In stream-based active learning, the learner gets
prompted with one unlabelled data instance at a time and has to immediately
choose between two options: keep the data instance and query its label, or
discard the data instance. This is in contrast to pool-based active learning,
where the learner has access to a pool of unlabelled data instances. At each
iteration, the learner needs to decide on what data instance(s) to add to the
training set from the pool, and consequently query the label from the oracle.
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Figure 2.5: Pool-based active learning.

The strategy used to decide on what label(s) to query is known as the query
strategy. A well-known and established type of query strategy is uncertainty
sampling (Schein & Ungar, 2007; Yang et al., 2015). The philosophy of this
type of strategy is that if the learner is uncertain about the label of an instance,
then the label of this instance is more informative for the learner to know,
compared to knowing the labels of an instance that the learner is certain about.
The work of this thesis focuses on uncertainty sampling in the pool-based active
learning setting.

2.5 Multi-Armed Bandit Problems

Imagine going to a casino with M slot machines, also known as one-armed
bandits. In each round, you can choose a slot machine to play by pulling its
“lever”. For each machine, there is a chance of winning a certain payout. Over
a total of T rounds, you want to maximize the sum of payouts by identifying
the slot machine with the highest average payout. Hence, in each round, you
need to decide whether to try a new machine, play a machine that you have
only tried a few times or play the machine that has given the highest average
payout so far. This is known as the multi-armed bandit (MAB) problem, first
discussed by Robbins (1952) and later formalized by Lai, Robbins et al. (1985).
It models the exploitation-exploration dilemma, described above, where in each
round one has to determine whether to keep exploring new alternatives or
be satisfied with the current best alternative. A näıve strategy to tackle this
dilemma is to choose the action with the largest empirical expected outcome
with a probability ϵ and otherwise choose a random action. This is known as
the epsilon-greedy strategy (ϵ-greedy), where the greedy strategy (i.e., ϵ = 1)
always chooses the best action in hindsight. When choosing the best action
in hindsight we are exploiting our current knowledge, while when choosing a
random action we are exploring to learn more about the general outcomes of
actions.
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Algorithm 1 The multi-armed bandit problem

Input: time horizon T , policy π
Initialization: history H0 = ∅
for t = 1, . . . , T do

Choose and perform action at ∼ π (·|Ht−1)
Observe reward rt
Update history Ht ← (Ht−1, (at, rt))

end for

The multi-armed bandit problem is a sequential game between a learner
and an environment where the learner tries to learn probable outcomes of the
environment for different actions. In general, it is possible to model numerous
sequential decision-making problems as a MAB problem, extending the original
problem, e.g., the design of clinical trials, news recommendation, finance,
navigation, and bottleneck identification (Åkerblom, Chen & Chehreghani,
2020; Åkerblom, Hoseini & Chehreghani, 2022; Li et al., 2010a; Press, 2009;
Shen et al., 2015; Villar, Bowden & Wason, 2015).

The problem is formally defined as follows. In each round t ∈ [T ], a learner
chooses an action at from a set M of M possible actions, also known as
arms. Subsequently, the learner observes a reward rt ∈ R from the environ-
ment. The learner decides on what action at to choose, based on the history
Ht−1 = ((a1, r1), . . . , (at−1, rt−1)) ∈ (M× R)t−1 of previous actions and re-
wards, using a mapping from histories to actions — a policy. The most common
objective for the learner is to learn a policy to optimize the total cumulative
reward of the learner

∑T
t=1 rt. This is done for an unknown environment where

the learner only knows that the environment is part of environments class E ,
i.e., a set of possible environments.

One type of environment class is the stochastic MAB problem, so-called
stochastic bandits, where the reward of each action is drawn independently
from a fixed probability distribution with prior unknown parameters, e.g., a
Bernoulli distribution with unknown parameters. For each possible action
a ∈M there exists an unknown expected value µa that (partially) determines
the reward distribution for that action. To optimize the cumulative reward
of the learner, the objective is to identify the best action a∗ = argmaxa∈Mµa,
i.e., the action with the highest expected value. We wish to do this in the least
number of rounds, usually with the aim to minimize the regret over all each
round

R(T ) = µ∗ − E

[
T∑

t=1

rt

]
= µ∗ −

T∑

t=1

µat
, (2.2)

where µ∗ is the true expected reward of the optimal arm. Hereafter, for the
relevance of this thesis, we focus on stochastic bandits and refer to the work
by Slivkins (2022) and Lattimore and Szepesvári (2020) for a comprehensive
overview of different extensions of the original MAB problem. Below follows a
brief introduction to some more advanced types of stochastic MAB problems,
relevant to this thesis, based on the introduction in appended Paper II.
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2.5.1 Contextual Bandits

In the contextual MAB problem, before choosing which arm to play in the
current round, the learner observes a feature vector, known as the context. The
reward of each round is assumed to depend on both the observed context and
the chosen action. The contextual MAB problem has been broadly studied
under the linear realizability assumption, introduced by Abe, Biermann and
Long (2003), where the expected reward is assumed to be linear with respect
to the context vector of each arm (S. Agrawal & Goyal, 2013; Auer, 2002; Chu
et al., 2011; Li et al., 2010b). There have been several successes in using the
contextual MAB problem to model real-life applications, such as recommender
systems, health applications, and information retrieval (Bouneffouf, Rish &
Aggarwal, 2020).

2.5.2 Multiple-Play Bandits

Up to this point, we have assumed that the learner only chooses one arm
(K = 1) in each round. Allowing the learner to choose more than one arm in
each round (K > 1) is known as the multiple-play MAB problem (R. Agrawal,
Hegde, Teneketzis et al., 1990; Komiyama, Honda & Nakagawa, 2015), first
introduced by (Anantharam, Varaiya & Walrand, 1987). In this problem, a
super arm consisting of a combination of K ≤M base arms A ⊆M is played
in each round. In the multiple-play problem, all combinations of (unique) K
base arms are usually allowed and a reward is observed for each individual base
arm. However, there are other similar problems (e.g., the combinatorial MAB
problem) where not all combinations of base arms are allowed and the reward
of each individual arm is not necessarily observed (instead the sum of rewards
of all chosen base arms is possibly observed).

2.5.3 Sleeping and Volatile Bandits

The standard MAB problem assumes that there is a fixed setM of M available
arms in each round. However, in real-life applications, it is possible that the
set of available arms differs between rounds, e.g., a slot machine is occupied
by another player for some rounds. Hence, in each round t there is a set
Mt ⊆M of available arms in this round. This setting is studied by Kleinberg,
Niculescu-Mizil and Sharma (2010) by introducing sleeping bandits. In each
round, the set of available arms in each round is chosen from a fixed and finite
pool of actions by an adversary. They propose an algorithm that prioritizes
playing an arm that has become available for the first time. Otherwise, it
plays the arm with the largest upper confidence bound, inspired by the UCB1
algorithm (Auer, Cesa-Bianchi & Fischer, 2002). The volatile MAB problem
is a similar problem but does not necessarily restrict the problem to a finite
pool of arms (Bnaya et al., 2013). Both variants consider volatile arms that
can “appear” and “disappear” in each round.
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2.5.4 Bandits With Similarity Information

Although an extensive collection of MAB algorithms for problems with a fixed
small number of arms have been proposed in the literature, MAB problems
with infinite or exponentially large arm sets are relatively little studied. For
such a problem, one common approach is to use similarity information (or a
metric) between contexts and/or arms, by assuming that similar actions yield
similar rewards.

For instance, Kleinberg, Slivkins and Upfal (2008) introduce the Zooming
algorithm, where the similarity information is given as a metric space of arms
Kleinberg, Slivkins and Upfal, 2019. Their algorithm tries to approximately
learn the expected rewards over the metric space by probing different “regions”
of the space, which leads to an adaptive partitioning of the metric space
(Slivkins, 2022). At each round t, there is a set of active arms, determined
by an activation rule. Each active arm x covers a region of the metric space.
This region is given by the confidence ball of the arm B(x, rt(x)), which is a
ball with the arm at its center. The radius of the ball is the confidence radius
rt(x) of the empirical average reward (of the active arm) at round t. The
confidence radius is related to the size of the one-sided confidence interval of
the empirical average reward and guarantees, with high probability, that the
difference between the true expected reward and empirical average reward is
not larger than the confidence radius. To determine what active arm to play,
it chooses an arm with the largest upper confidence bound, similar to the arm
selection of UCB1 algorithm (Auer, Cesa-Bianchi & Fischer, 2002).

Slivkins (2011) extends the Zooming algorithm to the contextual setting,
where the similarity information is provided by a metric space of context-arm
pairs. The work of this thesis extends the techniques developed in this work to
allow volatile arms and multiple-play. We relax the contexts and define the
space of arms by their corresponding feature vectors.

2.6 Reinforcement Learning Problems

Agent

Environment

action
at

st+1

rt+1

state
st

reward
rt

Figure 2.6: Interaction between the agent (learner) and environment in rein-
forcement learning problems.
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A more general type of sequential decision-making problem is the reinforce-
ment learning problem, which is extensively described and overviewed by the
work of Sutton and Barto (2018) and Szepesvári (2010). In each round t, a
learner observes a state st ∈ S of the environment and given this state chooses
an action at ∈ M using a policy π(·|st) : S 7→ M. The policy is a learnable
mapping from states to a possible action, often providing probabilities of each
possible action. Subsequently, a reward rt+1 ∈ R and new state st+1 ∈ S is
observed by the learner. The objective of the learner is to learn an optimal
policy. The optimality is usually measured in terms of maximization of the
discounted future reward, defining the (infinite) return Gt following round t

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=0

γkrt+k+1, (2.3)

where γ is the discount factor, 0 ≤ γ ≤ 1, which is used to penalize the
uncertainty of future rewards. For an infinite number of rounds, the re-
turn could itself be infinite, which is not desired since we want to maxim-
ize it. This can be handled using the discounted cumulative reward where
γ < 1 holds. Multi-armed bandits problems, as described above, can be
seen as reinforcement learning problems with only one state, but the history
Ht−1 = ((a1, r1), . . . , (at−1, rt−1)) of previous actions and rewards can also
be considered as the information state of the problem.

Reinforcement learning problems are usually assumed to be described by
a Markov decision process (MDP). A Markov decision process is described
by a tuple (S,M, Pa, γ). As introduced above, S is the set of states, M
is the set of possible actions and γ is the discount factor. Furthermore,
Pa(r, s, s

′) = Pr(st+1 = s′, rt+1 = r|st = s, at = a) is the probability of
observing s′ and r as the next state and reward, respectively, when at state s
and performing action a. The state transitions of the MDP satisfy the Markov
property since, given the current state s and action a, the probability of the
next state s′ and reward r is independent of all previous states and actions.

The expected return following a policy π starting at state s is known as
the value vπ(s) and is defined as follows

vπ(s) = Eπ [Gt|st = s] = Eπ

[ ∞∑

k=0

γkrt+k+1|st = s

]
. (2.4)

In the same way, the expected return of taking action a at state s and sub-
sequently following a policy π is known as the action-value, and is defined as
follows

qπ(s, a) = Eπ [Gt|st = s, at = a] = Eπ

[ ∞∑

k=0

γkrt+k+1|st = s, at = a

]
. (2.5)

vπ(s) and qπ(s, a) are called the state-value function and state-action function
(for policy π), respectively.

There are two main classes of algorithms to solve reinforcement learning
problems: model-free and model-based algorithms. Model-based algorithms
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either learn or have access to a model of the environment (Anthony, Tian
& Barber, 2017; Chua et al., 2018; Kaiser et al., 2020; Silver et al., 2017).
By utilizing a model of the environment that infers the state transitions
and rewards, it is possible to learn without interacting with the environment,
reducing the sample complexity. Model-free algorithms do not utilize a model of
the environment, instead, they only learn using experiences by interacting with
the environment. There are two main types of model-free algorithms: policy-
based and value-based algorithms. The objective of value-based algorithms is
to learn the state-action function of the optimal policy and use the learned
state-action function to interact with the environment. If the state-action
function of the optimal policy is known, it is possible to determine the optimal
action at each state, learning a deterministic policy. Value-based algorithms
usually use a more explorative policy to interact with the environment, known
as the behavior policy, compared to the policy we want to learn, the so-called
target policy. For policy-based algorithms, the policy is directly learned by
parameterizing the policy. This is also known as policy optimization since the
objective is to optimize the policy to maximize the return. Learning the policy
directly enables the agent to directly build a stochastic policy and is especially
more efficient in continuous action and/or state space, where a continuous
policy can be directly learned. To (explicitly or inexplicitly) learn a policy from
experience gathered by another policy is known as off-policy learning. On the
contrary, in on-policy learning, the same policy is used to gather experiences
from the environment and, subsequently, is updated using these experiences.
Off-policy learning uses different target and behavior policies, while the same
policy is used for both in on-policy learning.

To scale to problems with large action and/or state spaces, it is common to
use neural networks as function approximators. Neural networks can approx-
imate a wide range of functions (Hornik, Stinchcombe & White, 1989). Most
modern reinforcement learning algorithms use deep neural networks to learn
policies, value functions, and models that generalize to unobserved or rarely
observed state-action pairs (Arulkumaran et al., 2017; Lillicrap et al., 2015;
Silver et al., 2017). This gives rise to the term deep reinforcement learning con-
sisting of reinforcement learning algorithms using deep learning. Several recent
deep reinforcement learning algorithms utilize a technique called experience
replay, where past experiences are stored in a replay buffer and are replayed
during the learning phase (Silver et al., 2017; Wang et al., 2016). Hence, the
learning is averaged over its previous states and actions. This provides a way
to remove correlations of trajectories used for update and not forget possibly
rare experiences, ultimately stabilizing the learning (Schaul et al., 2015).

The focus of the work of this thesis lies in policy-based algorithms utiliz-
ing neural networks. In particular, this thesis considers policy optimization
algorithms based on Proximal Policy Optimization (PPO), Advantage Actor-
Critic (A2C), Soft-Actor Critic (SAC), Actor-Critic with Experience Replay
(ACER), and REINFORCE (Haarnoja et al., 2018; Mnih et al., 2016; Schulman
et al., 2017; Wang et al., 2016; Williams, 1992).
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2.7 Research Challenges and Questions

In this section, we describe three challenges that motivate our research based
on the gaps in the literature. Furthermore, we formulate six research questions
based on these challenges.

2.7.1 Reseach Challenges

This thesis seeks to address the following research challenges (Qs), which are
motivated by gaps in the literature:

C1 Unclear performance gain in using active learning for reaction
yield prediction.

For reaction yield prediction, active learning still struggles to show a
significant performance gain compared to randomly selecting data points
to query, so-called random sampling, when only a few data points have
been labeled (Eyke, Green & Jensen, 2020). Existing work on active
learning investigates how the performance of active learning depends on
conditions such as the initial size of labeled data and capacity of neural
network (Bossér, Sörstadius & Chehreghani, 2021). However, this can
be task-dependent and no existing work studies the effect of different
conditions for active learning on the reaction yield prediction task.

C2 No existing approach considers what to make next based on
suggestions developed by de novo drug design.

There has been a large focus on de novo drug design to optimize a fixed
objective function in the Design step of the DMTA cycle (Meyers, Fabian
& Brown, 2021). However, to our knowledge, no previous work has
considered the sequential decision of which molecules to make next in
the DMTA cycle when the design objective is iteratively updated. This a
problem that should be addressed to enable closed-loop drug design.

C3 There is no systematic comparison of how the sample efficiency
of reinforcement learning-based de novo drug design is affected
by iteratively learning from a subset of current and/or previous
samples.

For de novo drug design utilizing reinforcement learning, several existing
work studies approaches using a Hill-Climb algorithm to learn from a
subset of previous samples (Brown et al., 2019; Neil et al., 2018; Thomas,
O’Boyle et al., 2022). However, to our knowledge, no existing work in this
domain systematically studies approaches to utilize current and previous
samples.

2.7.2 Research Questions

Motivate by the above challenges, we formulate the following research questions
(RQs) which are considered in this thesis:
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RQ1 How is the performance of active learning for reaction yield prediction
affected by different conditions?

To tackle challenge (C1), we propose to study how active learning per-
forms under different conditions, compared to passive learning (e.g.,
random sampling), such as initial sizes of labeled data, machine learning
algorithms, and reaction datasets.

RQ2 How many data instances are needed to be queried by active learning,
compared to passive learning, when the objective is to reach a certain level
of predictive ability on a reaction yield prediction task?

In real-life applications, such as reaction yield prediction, a predictive
model should have a sufficiently “good” predictive ability on a valid-
ation/test set to be usable. Hence, to tackle challenge (C1), we also
propose to investigate how much training data is needed when using
active learning to reach a certain level of predictive ability, compared to
passive learning (e.g., random sampling).

RQ3 Can the problem of what to make next in the DMTA cycle be formulated
as a multi-armed bandit problem?

To tackle challenge (C2), we propose to find a solution by formulating
the problem as a multi-armed bandit problem, which is introduced in
Section 2.5.

RQ4 Can the contextual Zooming algorithms be extended to provide a solution
to the problem of what to make next in the DMTA cycle? How should it
select arms covered by the same ball?

To tackle challenge (C2), we propose to extend the contextual Zooming
algorithm (Slivkins, 2011) to the formulated multi-armed bandit problem
of what to make next in the DMTA cycle. Also, we consider how the
extended version should distinguish between arms covered by the same
balls to improve the sample efficiency and novelty.

RQ5 How can string-based de novo drug design utilizing reinforcement learning
improve its sample efficiency by learning from a subset(s) of previous
and current samples? How does it compare with using all samples in the
current round for learning?

To tackle challenge (C3), we propose to systematically investigate different
approaches for learning from a subset(s) of previous and current samples.
This should obviously be compared with learning from the full set of
samples in the current round.

RQ6 For string-based de novo drug design, how does the reinforcement learning
algorithm affect the sample efficiency when learning from a subset(s) of
previous and current samples?

To tackle challenge (C3), we propose to systematically study different
reinforcement learning algorithms when learning from a subset(s) of
previous and current samples.



Chapter 3

Summary of Included
Papers

In this chapter, the three papers included in this thesis are summarized,
including the research contributions. All papers concern sequential decision-
making for drug design. Paper I investigates the use of active learning to
improve reaction yield prediction. Paper II formulates what to make next in
the DMTA cycle as a multi-armed bandit problem and suggests an algorithm
for solving this problem. Paper III systematically investigates different deep
reinforcement learning algorithms and replay buffers for SMILES-based de novo
drug design.

3.1 Paper I

In Paper I, we investigate the use of active learning to iteratively improve
machine learning models for predicting a reaction to be either successful or
unsuccessful, i.e., binary reaction yield prediction of if a reaction will obtain a
sufficiently high percentage yield. Given an initial set of labeled reaction data,
we iteratively query the label of an unlabelled data point and subsequently
retrain the model utilizing the newly acquired label. The objective is to, under
different conditions, study how the predictive performance is affected by using
active learning for querying labels, and the relative change in the amount of
training data needed to achieve different levels of predictive ability.

For the task of predicting whether a reaction will be successful or not, we
compare a neural network with a single hidden layer, a neural network with
three hidden layers, a Bayesian matrix factorization model, and a random forest
model. For these models, we evaluate active learning by utilizing a well-known
uncertainty sampling approach based on the output margin. We compare this
strategy with random sampling, i.e., passive learning where which label to
query is chosen randomly. Also, we investigate how the size of the initial pool
of labeled data affects the predictive ability. We evaluate the use of active
learning on two fully combinatorial data sets of two different reaction types,

21
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with different reaction variables varied. Hence, this is a retrospective study
where all true labels (a successful reaction or not) are known a priori but in
our setting we assume that they are unknown until they have been queried.

One-hot encodings are utilized to study how the predictive ability is affected
by active learning when only trying to learn the combinatorial patterns in
the data. Our findings suggest a relationship between how well the machine
learning models have learned the observed reaction data and how large the
positive impact of active learning is on predictive performance. We also
conduct a feature importance analysis that provides further indications of this.
Furthermore, the better predictive ability we require the models to have, the
larger gain in using active learning is observed.

Contributions Hampus Gummesson Svensson and Simon Viet Johansson
equally performed the main work, and the work was jointly supervised by
Morteza Haghir Chehreghani, Ola Engkvist, Esben Jannik Bjerrum, Alexander
Schliep and Christian Tyrchan.

3.2 Paper II

Paper I seeks to benefit the problem of how to synthesize a molecule to be
able to experimentally test its properties. Prior to this problem, it has to be
decided which molecules to make next. In paper II, we formulate the problem
of which molecules to make next, a decision made between the Design and
Make step of the DMTA cycle, as a stochastic multi-armed bandit problem.
In a potential closed-loop drug design platform, de novo drug design can be
utilized in the Design step to generate a large set of molecules that optimizes a
function that scores each generated molecule, the so-called scoring function.
The goal is then to update the parameters of the scoring function, to provide
a more precise molecular generation, by using experimental data. However,
experimental data is both costly and time-consuming to acquire, and therefore
it is not possible to make, test and analyze all of the generated molecules.
Näıvely one could acquire experimental data for the top-scoring molecules, but
this is not necessarily the best approach.

To formulate this as a stochastic multi-armed bandit problem we consider
a setting with multiple-plays and volatile arms. The multiple-play setting is
appropriate since it should be possible to select several molecules to make,
test and analyze in parallel before designing new molecules. The volatile arms
setting is considered because a completely new set of molecules can be generated
in every design step, due to the randomness in the generation and the iterative
update of the scoring function.

To solve this bandit problem, we propose a Zooming algorithm with multiple
plays and volatile arms, which extends the contextual Zooming algorithm by
(Slivkins, 2011) to our problem. The algorithm partitions the dissimilarity
space of feature vectors of each base arm into balls with different radii, where
the initial partition consists of a ball covering the entire dissimilarity space.
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Given observed rewards for base arms covered by a ball, the empirical mean
reward and corresponding confidence radius are computed. If the confidence
radius of the empirical mean reward is less than or equal to the radius of
the ball, the partition is refined by creating a new ball with half the radius.
The radius of the ball is fixed, while the confidence radius is updated when
rewards for base arms covered by the ball are observed. A set of available base
arms and corresponding feature vectors are observed at the beginning of each
round, and subsequently, a super arm of multiple available base arms is chosen.
Each base arm is chosen based on its index, which is computed from the mean
empirical mean reward, radius, and confidence radius of the ball covering the
accompanied feature vector.

For a fixed budget of molecules to be selected, we evaluate the proposed
algorithm by comparing it with random selection, selecting the top-scoring
molecules with respect to the current scoring function (greedy selection), and
a combination of these two (ϵ-greedy selection). We use a dissimilarity space
consisting of Morgan fingerprints where the dissimilarity is measured using the
Jaccard distance. For the proposed bandit algorithm, to investigate the effect of
distinguishing arms covered by the same ball, we study the usage of a weighted
index that takes into account the current score of the corresponding molecule.
We find that the unweighted variant of our proposed algorithm performs among
the best in the early cycles, while the weighted variant performs better in the
later cycles. This suggests that utilizing the benefits of both the unweighted
and weighted variants can provide the overall best performance.

Contributions Hampus Gummesson Svensson performed the main work,
and Morteza Haghir Chehreghani, Ola Engkvist, Esben Jannik Bjerrum, and
Christian Tyrchan jointly supervised the work.

3.3 Paper III

The selection of what to make next in Paper II depends on the molecular de
novo design in the Design step of the DMTA cycle. Ideally, a structurally
diverse set of molecules should be generated, to allow for sufficient exploration
and exploitation in the selection of what to make next. Previous work has
shown promising results using reinforcement learning for molecular de novo
design, compared to other approaches such as variational autoencoders (Gao
et al., 2022; Thomas, O’Boyle et al., 2022). Moreover, several works have
proposed to combine reinforcement learning with a Hill-climb algorithm, which
learns from the k top-scoring sequences (Brown et al., 2019; Neil et al., 2018;
Thomas, O’Boyle et al., 2022).

In Paper III, we investigate various reinforcement learning algorithms for
iteratively performing SMILES-based generation of batches of molecules. The
policy optimization reinforcement learning algorithms that we investigate in
the paper are Proximal Policy Optimization (PPO), Advantage Actor-Critic
(A2C), Soft Actor-Critic (SAC), Actor-Critic with Experience Replay (ACER),
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and Regularized Maximum Likelihood Estimation (MLE). SAC and ACER
are off-policy algorithms developed for off-policy learning, while the others are
developed for on-policy learning. All algorithms iteratively update a policy,
pre-trained on the ChEMBLE dataset, that provides probabilities over the
next character to append in a SMILES string. Multimodal sampling is used to
choose the next character given the current policy and the SMILES string is
finalized when the stop token is chosen as the next character.

For a pre-defined budget of generated molecules, we compare the number
of active molecules and the corresponding number of scaffolds when restricting
to seven different ways to learn from sets of molecules generated in the current
iteration and previous iteration: (1) learn from the batch of molecules generated
in the current iteration; (2) learn from the batch of current molecules and
previously generated molecules with diverse rewards; (3) learn from a subset
of the current batch with diverse rewards; (4) learn from the current batch
and high- and low-rewarding molecules from previous batches; (5) learn from
a subset of the current batch that only includes high- and low-rewarding
molecules; (6) learn from the current batch and high-rewarding molecules
from previous batches; (7) learn from a subset of the current batch that only
includes high-rewarding molecules. We collect all these approaches under the
term replay buffers, due to their nature to store and provide both current
and previously generated molecules. These approaches are inspired by the
proposals to combine reinforcement learning with a Hill-climb algorithm. Since
the off-policy algorithms SAC and ACER already include an on-policy update
step, where the full current batch was utilized, they were compared using only
the second, fourth, or sixth replay buffer.

We evaluate the different combinations of policy optimization algorithms
and replay buffers for the generation of molecules predicted to be active against
the dopamine receptor DRD2. This is evaluated both with and without a
diversity filter which penalizes the generation of molecules with similar scaffolds
between different iterations. Generally, we find that using at least both high-
and low-rewarding molecules is advantageous for generating a large number
of active compounds with diverse scaffolds. Using off-policy algorithms with
several off-policy updates does not necessarily gain a larger number of active
molecules and scaffolds, but displays the potential to display a larger number
than the on-policy algorithms.

Contributions Hampus Gummesson Svensson performed the main work,
and the work was jointly supervised by Morteza Haghir Chehreghani, Ola
Engkvist, and Christian Tyrchan.
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Concluding Remarks and
Future Directions

In this thesis, we investigate three sequential decision-making problems for
drug design using machine learning. Active learning, multi-armed bandit,
and reinforcement learning problems are concerned. The main research result
of Paper I was that increasing the training data by utilizing active learning
can enhance the predictive ability of reaction yield prediction, compared to
training on the same amount of random data. In particular, this was done in
the fundamental setting using one-hot encoding and increasing the training
data by one point at a time. There is a potential larger gain of using active
learning in settings with more elaborate feature vectors for each reaction
and when a combination of points are simultaneously added to the training
data. However, such a problem is more complex and most likely requires more
elaborate active learning methods, e.g., considering the diversity of queried set
and uncertainty in feature vectors. In Paper II, the main research outcomes
include the formulation of which molecules to make and test next as a multi-
armed bandit problem. In addition, an algorithm for solving this problem
was proposed. The proposed algorithm displayed promising performance for
handling the trade-off between exploration and exploitation in the formulated
problem. In Paper III, the main research outcomes include the systematic
study of on- and off-policy policy optimization algorithms for SMILES-based de
novo drug design. This also includes the comparison of different ways to learn
from both current and previously generated samples. To generate a structurally
diverse set of molecules, it is crucial to penalize the generation of similar
structures. To facilitate agents not utilizing a copy of the pre-trained policy,
it could be interesting to consider gradual penalization of similar molecules,
e.g., based on the number of similar molecules, compared to the step function
penalization used in this work. It can also be essential to distinguish between
generated SMILES that are chemically invalid and molecules being penalized
for being similar to previously generated molecules.
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4.1 Future Directions

The research area of reinforcement learning is constantly making progress with
several different research directions. This enables interesting future directions
in utilizing reinforcement learning for de novo drug design. Recent work in de
novo drug design has focused on sampling efficiency, for which reinforcement
learning has demonstrated promising performance (Gao et al., 2022; Thomas,
O’Boyle et al., 2022). Hence, it would be interesting to further investigate
how to improve the sample efficiency in deep reinforcement learning for de
novo drug design. For this purpose, different sampling strategies could be
studied. This work only considers multimodal sampling without temperature,
wherein future work can compare temperature sampling and beam search. A
future direction for investigating the sample efficiency can also be to analyze
the convergence rate to the optimal policy of current deep learning-based
algorithms. For instance, the neural tangent kernel provides a technique to
analyze the convergence in neural networks (Jacot, Gabriel & Hongler, 2018).
To improve sample efficiency, and because experimental data is both costly and
time-consuming to obtain, a future direction could be to further investigate
offline reinforcement learning, which learns from stored data (Levine et al.,
2020).

Another interesting problem is the design of the scoring function (i.e.,
objective function), which consists of several scoring components. Inverse
reinforcement learning considers the problem of learning an agent’s objectives,
e.g., by observing a human expert (Arora & Doshi, 2021). Also, instead of only
having one agent trying to maximize a reward function of several components,
one could investigate the use of multiple agents where each agent tries to
optimize a specific reward component while globally maximizing the cumulative
reward by sharing knowledge.
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