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Noise-biased qubits are a promising route toward significantly reducing the hardware overhead associated
with quantum error correction. The squeezed-cat code, a nonlocal encoding in phase space based on squeezed
coherent states, is an example of a noise-biased (bosonic) qubit with exponential error bias. Here we propose
and analyze the error correction performance of a dissipatively stabilized squeezed-cat qubit. We find that for
moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit
while leaving the phase-flip rate unchanged. Additionally, we find that the squeezing enables faster and higher-
fidelity gates.
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I. INTRODUCTION

The interaction of a quantum system with its environment
leads to the loss of quantum coherence. By tailoring the
coupling of a quantum system to its environment, typically
through an ancilla, well-established reservoir engineering
methods allow overcoming the decoherence paradigm by cre-
ating an effective dissipative dynamics which evolves in the
long time to a target quantum state or a manifold of quantum
states [1–6].

In particular, in the field of circuit quantum electrodynam-
ics [7], reservoir engineering has been successfully exploited
to autonomously protect quantum information encoded in the
infinite Hilbert space of a harmonic oscillator, i.e., a bosonic
code, without the need of measurement-based feedback. This
is achieved through the engineering of an effective parity-
preserving dissipative evolution which drives the state of a
microwave resonator to a manifold spanned by even- and
odd-parity coherent superpositions of coherent states with
opposite displacements also known as Schrödinger cat states
[8–11]. In principle, these dissipative dynamics could be used
to prepare the logical states of the cat code [9]. Nevertheless,
this is not necessary as universal control of a microwave
resonator field using a dispersively coupled qubit is possible
using optimal control pulse sequences [10] or, as it has been
recently demonstrated, optimized sequences of continuous-
variable (CV) universal gate sets [12,13]. Therefore, reservoir
engineering is left for the sole purpose of stabilizing the cat
code.
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Superpositions of squeezed vacuum states were introduced
by Sanders [14]. Later, Hach and Gerry [15] and Xin et al.
[16] studied the nonclassical properties of coherent super-
positions of squeezed states. The latter are the states that
result from the sequential application of displacement and
squeezing operations on the photon vacuum with the squeezed
vacuum state corresponding to the special case of zero dis-
placement. In particular, in this work we will focus on the
so-called squeezed-cat states. These are generalizations of the
ordinary cat states and correspond to coherent superpositions
of squeezed states with displacements of opposite amplitude
and equal squeezing. The main interest in these states was
spawned by the fact that they actually represent superposi-
tions of macroscopic quantum states as opposed to cat states
which correspond to superpositions of nearly classical states.
Squeezed cat states were first realized in the optical domain
through breeding and heralding detection operations [17,18].
In Ref. [19] entangled states of two displaced squeezed states
of motion and the spin degrees of freedom of a trapped ion
were realized. This work already highlighted the potential of
these states for metrology. Later, Knott et al. [20] demon-
strated that squeezed cat states provided an advantage for
sensing in the low-photon regime as compared to more con-
ventional CV states.

Recently, Schlegel et al. introduced the squeezed-cat
bosonic code [21]. This is the squeezed counterpart of the or-
dinary cat code in which logical states correspond to squeezed
cat states. Contrary to the cat code, in the squeezed-cat code
it is possible to approximately satisfy the Knill-Laflamme
conditions for both single-photon loss and dephasing errors
simultaneously in the large squeezing limit as well as the large
coherent displacement limit. In other words, the squeezed-cat
code merges the most notable quantum error correction fea-
tures of both cat and Gottesman-Kitaev-Preskill (GKP) codes,
namely, the ability to correct pure dephasing and single-
photon loss errors, respectively [22–24].
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In this work we study the error correction potential of a
squeezed-cat qubit under a dissipative stabilization scheme
which confines the state of the harmonic oscillator to the
squeezed-cat qubit manifold. This mechanism is a gener-
alization of the cat qubit confinement [8,25] and here we
provide a possible implementation using superconducting cir-
cuits. While the results presented in [21] indicate an increased
performance of the squeezed-cat code for an optimal recovery
operation, their chosen metric, the average channel fidelity
[26], does not distinguish between bit- and phase-flip er-
rors. Because the squeezed-cat qubit represents a noise-biased
qubit, we independently evaluate bit- and phase-flip errors in
the presence of single-photon losses, photon gain, and pure
photon dephasing. In addition to these decoherence processes,
we also consider the effect of a residual Kerr interaction.

The subsequent sections of the article are organized as fol-
lows. We begin in Sec. II by reviewing relevant properties of
the squeezing and displacement operations and introduce the
necessary notation. Then, in Sec. III, we describe a theoretical
framework that allows the dissipative stabilization of coherent
superpositions of Gaussian states from which the stabilization
scheme for squeezed-cat states is derived. In Sec. IV we
utilize the aforementioned stabilization scheme to analyze the
error correction capabilities of the squeezed-cat qubit. To this
end, we introduce the squeezed-cat code in Sec. IV A before
presenting the main results of this article in Sec. IV B. Our
findings show an exponential (in terms of the peak squeez-
ing) reduction of the bit-flip error rate in comparison with
the ordinary cat qubit without affecting phase-flip error rates.
However, at the same time, our results also highlight the need
for small residual (Kerr) nonlinearities, as is the case for
the GKP code as well. The performance of the single-qubit
Z gate is evaluated as well, suggesting exponentially faster
and less noisy gates for the squeezed-cat qubit. To pave the
way towards an experimental implementation, we propose in
Sec. IV C a superconducting circuit based on Ref. [11] that
realizes the dissipative stabilization scheme. We conclude the
article with a discussion of the results in Sec. V.

II. DEFINITIONS

We restrict the study to a single-mode bosonic field with
annihilation (creation) operator â (â†) obeying the commuta-
tion relation [â, â†] = 1. The unitary displacement operator is
defined by

D̂(α) = exp(αâ† − α∗â) (1)

and the unitary squeezing operator is defined by

Ŝ(ξ ) = exp
[

1
2 (ξ ∗â2 − ξ â†2)

]
, (2)

with ξ = reiφ . Their action on the annihilation operator â is
given by

D̂†(α)âD̂(α) = â + α (3)

and

Ŝ†(ξ )âŜ(ξ ) = cosh(r)â − e−iφ sinh(r)â†, (4)

respectively.
Following Refs. [27–29], a squeezed state |α, ξ 〉 (also

squeezed coherent or squeezed displaced state) is the state

that results from the sequential application of the squeezing
operator (2) and the displacement operator (1) on the photon
vacuum state

|α, ξ 〉 = D̂(α)Ŝ(ξ )|0〉. (5)

The α = 0 case corresponds to the well-known squeezed
vacuum state. An alternative definition of a squeezed state
was given by Yuen [30]. This state is called the two-photon
coherent state |α〉ξ and it is defined by first displacing the
vacuum state and then squeezing it

|α〉ξ ≡ Ŝ(ξ )D̂(α)|0〉. (6)

From the relations (3) and (4) it is straightforward to show that

D̂(α)Ŝ(ξ ) = Ŝ(ξ )D̂[α cosh(r) + α∗e−iφ sinh(r)], (7)

which establishes the relation between squeezed and two-
photon coherent states

|α, ξ 〉 ≡ |α cosh(r) + α∗e−iφ sinh(r)〉ξ . (8)

In this work we stick to the squeezed states as defined by
Eq. (5).

The squeezed cat states are defined as the coherent super-
position of two squeezed cat states with opposite displacement
amplitudes and identical squeezing

|C±
α,ξ 〉 = 1

N±
α,ξ

(|α, ξ 〉 ± | − α, ξ 〉), (9)

where N±
α,ξ is a normalization constant. These states can be

thought of as generalizations of the cat states. Similarly, these
are parity eigenstates with |C+

α,ξ 〉 (|C−
α,ξ 〉) a superposition of

an even (odd) number states. This property makes them suit-
able candidates for designing a bosonic code as studied in
Ref. [21].

III. DISSIPATIVE STABILIZATION OF COHERENT
SUPERPOSITIONS OF GAUSSIAN STATES

Here we build on the result by Hach and Gerry [25].
Consider a single-mode bosonic system whose nonunitary
dynamics is described by a Gorini-Kossakowski-Sudarshan-
Lindblad master equation [31,32] of the form (we set h̄ = 1
throughout this paper)

d ρ̂

dt
= −i[�L̂† + �∗L̂, ρ] + κD[L̂]ρ̂, (10)

where D[Â]ρ̂ = Âρ̂Â† − 1
2 Â†Âρ̂ − 1

2 ρ̂Â†Â and the operator
L̂ is, in general, a function of the bosonic annihilation (â)
and creation (â†) operators. Then the steady state ∂t ρ̂SS = 0
of (10) is an eigenstate of the operator L̂ with eigenvalue
z = −2i�/κ , i.e.,

L̂ρ̂SS = zρ̂SS. (11)

This allows us to express Eq. (10) in a very concise form

d ρ̂

dt
= κD(L̂ − z)ρ̂. (12)

Following Eq. (11), the most general steady state of (10)
would be a statistical mixture of eigenstates of L̂ with a
common eigenvalue. This is the basis of the dissipative
stabilization of cat states [8–10]. A similar approach has
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been proposed for the stabilization of cat states in atomic
ensembles [33].

Now, starting from D̂(α)Ŝ(ξ )â|0〉 = 0, it is straightforward
to show the relation

b̂|α; ξ 〉 = βα,ξ |α; ξ 〉, (13)

where we have introduced the bosonic operator b̂ =
Ŝ(ξ )âŜ†(ξ ) = cosh(r)â + e−iφ sinh(r)â† and the related com-
plex eigenvalue βα,ξ = α cosh(r) + α∗e−iφ sinh(r). From
Eq. (13) the relation b̂n|α; ξ 〉 = βn

α,ξ |α; ξ 〉 for an arbitrary inte-
ger n immediately follows. In turn, from this relation it follows
that the squeezed cat states (9) are degenerate eigenstates of
the operator b̂2,

b̂2|C±
α,ξ 〉 = β2

α,ξ |C±
α,ξ 〉. (14)

Similarly to the case of (Schrödinger) cat states, higher-order
superpositions of squeezed states may yield higher-order pow-
ers of the eigenvalue βα,ξ . Nevertheless, in this work we
restrict the study to the case n = 2.

Following the above discussion, for L̂ = b̂2 the steady state
of the dissipative dynamics will be, in general, a mixture of
even- and odd-parity squeezed cat states. However, as in this
case photons are created and annihilated in pairs, the parity of
an initial state will be preserved throughout the dynamics. In
other words, an initial even (odd) state will evolve in the long
time to the state |C+

α,ξ 〉 (|C−
α,ξ 〉).

For convenience, in this work we will restrict the discus-
sion to the case of a superposition of two squeezed states with
squeezing ξ along the x quadrature, i.e., φ = 0, and displaced
along the x axis, i.e., α real. In this case, βα,ξ reduces to
βα,ξ = α exp(r). By setting the drive amplitude � = i�̄, with
�̄ real, we can fix the steady-state eigenvalue z = 2�̄/κ to
be real as well. Therefore, in order to stabilize a coherent
superposition of x squeezed states displaced along the x axis,
we choose the drive amplitude to be �̄ = κα2 exp(2r)/2.

IV. APPLICATION: SQUEEZED-CAT QUBIT

A. Introduction

We have seen above that the dynamics of an oscillator
described by the Lindblad equation

d ρ̂

dt
= κ2D

[
b̂2 − β2

α,r

]
, (15)

with b̂ = Ŝ(r)âŜ†(r), â the annihilation operator of the os-
cillator mode, and Ŝ(r) the squeezing operator, are restricted
to the two-dimensional subspace spanned by the orthogonal
squeezed cat states {|C+

α,r〉, |C−
α,r〉} with βα,r = αer . This mo-

tivates the definition of the squeezed-cat qubit (SCQ) logical
basis as

∣∣C0
α,r

〉 = 1√
2

(|C+
α,r〉 + |C−

α,r〉) ≈ |α, r〉, (16)

∣∣C1
α,r

〉 = 1√
2

(|C+
α,r〉 − |C−

α,r〉) ≈ | − α, r〉, (17)

where the approximation sign occurs because, in contrast to
|C±

α,r〉, the squeezed coherent states | ± α, r〉 are only qua-

siorthogonal, that is, their finite overlap is given by

〈−α, r|α, r〉 = exp(−2α2e2r ). (18)

A Bloch sphere representation of the SCQ is shown in
Fig. 1(a) . The squeezed-cat code is related to the ordinary cat
code in the sense that one recovers the ordinary cat code from
the squeezed version in the limit of zero squeezing (r → 0).
In the opposite limit r → +∞, the code becomes transla-
tionally invariant with respect to phase-space translations of
amplitude s = 2πk/|α|, k ∈ Z, along the p quadrature. The
translation invariance in this limit relates the code to the
GKP code. In fact, one can interpret the squeezed-cat code
as a (bad) approximation of the GKP code that has only two
(infinitely) squeezed peaks. This view explains intuitively the
finite error correction capabilities of the SCQ against phase
flips the authors of Ref. [21] found through an analysis of
the Knill-Laflamme conditions. From the perspective of the
ordinary cat code, the increased error correction capabilities
arise as the squeezed coherent state is not an eigenstate of the
annihilation operator anymore such that for r > 0 the state
â|C±

α,r〉 has a finite component that is orthogonal to the code
space, i.e., it lies outside the code space in the error space.

In Ref. [21] the authors also demonstrated numerically the
increased error correction performance of the squeezed-cat
qubit over the ordinary cat qubit by computing and applying
the optimal recovery operation obtained from a semidefinite
program. While one can argue that the optimal recovery
operation allows one to compute the maximally achievable
performance of a given quantum code, physically implement-
ing the required recovery is in many cases nontrivial. Thus,
dissipative stabilization schemes such as the one described
here are typically more practical and belong to the class of
confinement schemes that counteract the leakage of states
out of the code space. For the ordinary cat code, dissipative
[8,10,11,34], Hamiltonian [35–37], and combined [38] con-
finement schemes have been analyzed. In Appendix B we give
reasons why Hamiltonian confinement schemes realized in
superconducting circuits are impractical over the dissipative
scheme considered here.

B. Main results

Here we analyze numerically the error correction capabili-
ties of the dissipative confinement into the squeezed-cat code
manifold of an initially prepared ideal SCQ state by assessing
the suppression of bit-flip errors and scaling of phase-flip
errors. The master equation describing the confinement dy-
namics together with typical decoherence effects is

d ρ̂

dt
= −i[ĤKerr, ρ̂] + κ2D

(
b̂2 − β2

α,r

)
ρ̂

+ κ−D[â]ρ̂ + κφD[â†â]ρ̂ + κ+D[â†]ρ̂, (19)

where κ− = κ1(1 + nth ), κφ , and κ+ = κ1nth denote the rates
of photon loss, pure photon number dephasing, and pho-
ton gain, respectively, with nth the mean number of thermal
excitations and κ1 the spontaneous emission rate. The rate
κ2 determines the dissipative confinement rate and ĤKerr =
Kâ†2â2 is the Kerr Hamiltonian. We choose the effective bit-
and phase-flip rates �bit-flip and �phase-flip as a metric to evaluate
the performance of the SCQ which are obtained from the
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FIG. 1. (a) Sketch of the squeezed-cat code on the Bloch sphere. (b) and (c) Effective (b) bit- and (c) phase-flip rates for squeezed-cat codes
with different squeezing. Here we choose κ−/κ2 = 10−3. Markers show the rates obtained from numerical simulations, while solid lines show
exponential and linear fits in the range 2 � |α|2 � 5 for (b) and (c), respectively. We show results only for �bit-flip � 10−13 due to numerical
accuracy and stability issues for smaller rates. (d) Visual representation of the conversion from the dimensionless squeezing parameter r to
experimentally relevant squeezing values in decibels.

time evolution of the states |C0
α,r〉 and |C+

α,r〉, respectively.
These rates describe the timescale on which the expectation
values of the logical SCQ operators 〈σ̂Z (t )〉 and 〈σ̂X (t )〉 de-
cay in the presence of different decoherence processes, that
is, 〈σ̂Z (t )〉 ∼ e−�bit-flipt and 〈σ̂X (t )〉 ∼ e−�phase-flipt . Additional de-
tails about the explicit construction of the observables σ̂Z

and σ̂X , as well as our numerical methods, can be found in
Appendix C. Furthermore, to avoid overloading notation,
from here on we make the dependence of βα,r on α and r
implicit and instead write β.

1. Bit- and phase-flip error rates with single-photon losses

As already stated in the Introduction, the SCQ represents a
noise-biased qubit and therefore we will independently evalu-
ate bit- and phase-flip errors.

Since we consider the implementation of the dissipative
stabilization scheme in superconducting circuits, we begin by
investigating the effects of single-photon losses while ignor-
ing all other noise sources, that is, κ− �= 0 and K = κφ =
κ+ = 0. Our numerical results for �bit-flip and �phase-flip are
shown in Figs. 1(b) and 1(c), respectively. There we chose
κ− = 5 × 10−3κ2, but note that in the regime where κ−  κ2

both error rates scale linearly with κ−. i.e., �err ∝ κ−. We
show the error rates for various values of the dimension-
less squeezing parameter r which lie in an experimentally
feasible regime; see also Fig. 1(d), which visualizes the
conversion from the dimensionless quantity r to the exper-
imentally relevant dimensional quantify in decibels given
by r = 20r/ ln(10). We point out some relevant observa-
tions from the numerically determined bit-flip rate shown in
Fig. 1(b). Importantly, we find that the bit-flip rate decreases
monotonically for any value of |α|2. However, the exponential
suppression factor γ , defined such that �bit-flip ∝ e−γ |α|2 , only
increases once r > 0.2. This can also be seen from the ex-
ponential fits in the range 2 � |α|2 � 5 shown as solid lines
which are roughly parallel for r = 0 and r = 0.2 but become
steeper for any value of r > 0.2. The reason is that for the
ordinary cat qubit the exponential scaling factor γcat state is not
constant but (weakly) dependent on α with 2 � γcat state � 4.

Numerical simulations have shown [39] that the upper end of
this range, i.e., γcat state ≈ 4, is typically achieved for |α|2 ≈ 2.
For larger coherent displacements, γcat state steadily reduces
until it reaches γcat state ≈ 2 once |α|2 � 5. Associating a
squeezed-cat qubit with an ordinary cat qubit with displace-
ment amplitude β = αer , the observation of a constant (or
even decreased) effective scaling factor γ = γcat statee2r can be
explained if γcat state for |α|2 > 2 initially decays faster than
exp(2r).

At the same time we see that the slope of the phase-flip
rate �phase-flip shown in Fig. 1(c) does not increase with r and
�phase-flip is approximately independent of r. This behavior is
predicted from the corresponding transition matrix element,
i.e.,

|〈C+
α,r |â|C−

α,r〉|2 = β2| cosh(r) tanh(β2) − sinh(r) coth(β2)|2
αer�1−→ α2. (20)

Thus, it is possible to further increase the noise bias of the
dissipatively stabilized cat qubit if we instead stabilize a SCQ
with r > 0. Alternatively, it is possible to keep the bit-flip rate
�bit-flip fixed while reducing the phase-flip rate by decreasing
|α|2 and increasing r suitably.

While we have seen now that the stabilized SCQ outper-
forms the stabilized cat qubit in the presence of single-photon
losses, it is essential to establish that these advantages persist
in a more general error model. To this end, we analyze the
bit-flip rate1 �bit-flip of the stabilized SCQ in the presence of
pure dephasing, single-photon gain, and undesired coherent
Kerr evolution in the following sections.

2. Influence of pure dephasing noise

Pure dephasing is a noise process that is commonly over-
looked in theoretical studies of superconducting microwave

1We have verified numerically that the phase-flip rate remains
independent of the squeezing parameter r for the investigated de-
coherence processes.
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cavities. While it is usually a good assumption to neglect
pure dephasing in a linear resonator, this assumption is not
necessarily true once the resonator is (weakly) coupled to a
nonlinear element, e.g., an auxiliary qubit. The interplay of
spontaneous excitation of the qubit and the dispersive cou-
pling between the qubit and resonator can then be described
by an effective pure dephasing noise model if the qubit is
traced out. Additionally, number dephasing is also the result
of the coupling of the storage mode to a flux tunable device,
in general, a superconducting loop or loops interrupted by
Josephson junctions. In this case, the sensitivity of this de-
vice to the magnetic flux noise is inherited by the storage
mode with its frequency drifting stochastically in time which
results in number dephasing. Nevertheless, this is a second-
order effect as compared to the dephasing arising from the
dispersive coupling to a qubit. This motivates us to determine
the parameter regime in which the effects of pure dephasing
noise become relevant for the performance of the dissipatively
stabilized (squeezed-) cat qubit.

For the ordinary cat qubit it has been shown that if addi-
tionally to single-photon losses there is non-negligible pure
dephasing, the exponential suppression factor γ is expected
to be constant and equal to 2 [40]. We find that for the SCQ
pure dephasing effects become dominant once κφ/κ− � 10−2

and that these are also well described by a model for the
bit-flip rate with γ = 2er as we describe in more detail in the
forthcoming paragraphs.

Our results are summarized in Fig. 2. Here we show the
effective rate �bit-flip as a function of κφ for different values
of α in Figs. 2(a)–2(c) and the scaling of γ as a function of
the squeezing parameter r in Fig. 2(d). The numerical data are
obtained by simulating the evolution of the initial SCQ |C0

α,r〉
undergoing the dissipative dynamics given by Eq. (10) with
single-photon loss rate κ− = 5 × 10−3κ2 for various pure de-
phasing rates κφ while κ+ = K = 0. From these data the value
of γ shown in Fig. 2(d) is determined by an exponential fit of
�bit-flip in the range 2 � |α|2 � 5. There are a few noteworthy
observations that can be made from Fig. 2. First, we notice that
�bit-flip is only affected by pure dephasing for κφ/κ− � 10−2

for the chosen simulation parameters. However, we observe
that the transition point is independent of the code parameters
α and r and that the contribution of pure dephasing to the
bit-flip rate (�(κφ )

bit-flip) is well approximated by

�
(κφ )
bit-flip ≈ κφ cosh2(2r)|β|2 sinh−1(2|β|2). (21)

This approximation for �
(κφ )
bit-flip is obtained by the replacement

α → β in Eq. (A.9) of Ref. [8] and multiplying the expression
by cosh2(2r), which is a result of the squeezing transforma-
tion.2 A derivation of the exact expression of �

(κφ )
bit-flip for the

SCQ is left as an open problem. The predicted bit-flip rate
�bit-flip [Eq. (21)] due to pure dephasing noise is shown as

2In Ref. [8] �
(κφ )
bit-flip is calculated from the matrix element

〈C−
α |D[â†â]J†

+−|C+
α 〉, where J†

+− is defined in Eq. (C5). For the

SCQ �
(κφ )
bit-flip can be calculated from 〈C−

β |D[b̂†b̂]J†
+−|C+

β 〉, where

b̂ = cosh(r)â + sinh(r)â†. Under the crude approximation D[b̂†b̂] ≈
D[cosh(2r)â†â] one obtains Eq. (21).
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FIG. 2. (a)–(c) Bit-flip rate as a function of the pure dephasing
rate κφ for different combinations of the displacement amplitude α

and the squeezing parameter r. Note that we show results only for
�bit-flip � 10−13 due to numerical accuracy and stability issues for
smaller rates. (d) Exponential suppression factor of bit-flip errors
γ with �bit-flip ∝ exp(−γ |α|2) for the idling, dissipatively stabilized
SCQ as a function of the squeezing r. The inset shows the fraction
γ (κφ )/γ (0) as a function of κφ for selected values of r, indicating
that for r > 0 the suppression factor becomes increasingly indepen-
dent of κφ for the selected parameter range. The stabilized state is
subject to single-photon losses with rate κ− = 5 × 10−3κ2 as well as
pure dephasing with rates κφ = 0 (purple) and κφ = 10−3κ2 (green).
In (d) the value of γ is determined through an exponential fit in the
range 2 � |α|2 � 5. Connecting lines are a guide for the eye.

dashed lines in Figs. 2(a)–2(c). The existence of the above-
mentioned transition point also becomes apparent in the inset
of Fig. 2(d), which shows the exponential suppression factor
γ (κφ ) normalized to its value at κφ = 0 for different values
of r. The inset and main panel of Fig. 2(d) also show that
γ is only weakly dependent on κφ for r > 0.2. In the main
panel we have also shown the behavior of γ as a function of
r in the absence of pure dephasing noise (purple markers).
For r � 0.2, γ stays approximately constant, after which it
increases exponentially with a rate approximately equal to e2r ,
in agreement with the observation in Fig. 1(b).

3. Influence of single-photon gain

As noted at the beginning of Sec. IV B, the single-photon
excitation rate of the system is given by κ+ = nthκ1. Typically,
the effective temperature of the bath to which the system
couples is such that nth ≈ 10−2. The action of the creation
operator â† on a cat qubit will lead to leakage outside the
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FIG. 3. (a)–(c) Bit-flip rate as a function of the mean number of
thermal excitations nth for different combinations of the displacement
amplitude α and the squeezing parameter r. The spontaneous emis-
sion rate is chosen as κ1/κ2 = 10−3. Note that we show results only
for �bit-flip � 10−13 due to numerical accuracy and stability issues for
smaller rates. (d) Exponential suppression factor of bit-flip errors γ

with �bit-flip ∝ exp(−γ |α|2) for the idle, dissipatively stabilized SCQ
as a function of the squeezing r. See Fig. 2 for a description of
the parameter regime. The inset shows the fraction γ (nth )/γ (0) as
a function of nth for selected values of r, indicating that for r > 0 the
suppression factor becomes increasingly independent of nth for the
selected parameter range. Connecting lines are a guide for the eye.

cat qubit code space into an excited-state manifold. Even
though the engineered two-photon dissipation mechanism will
correct for this leakage, while in the excited-state manifold,
the probability of tunneling into the other potential well is
increased. Considering that the height of the potential well
scales with α for the ordinary cat qubit [11], we expect that
the SCQ should be less affected by thermal noise due to its
increased effective coherent displacement amplitude β = αer .

We now analyze the influence of single-photon gain in
the bit-flip rate in a manner similar to that for the case of
pure dephasing in the preceding section. For our numerical
simulations we have chosen κ1/κ2 = 10−3 while κφ = K = 0.

Using the same approximation that led to Eq. (21) for �
(κφ )
bit-flip,

we obtain the following expression for the bit-flip rate due to
single-photon gain, i.e.,

�
(κ+ )
bit-flip ≈ κ+ cosh2(2r) sinh−1(2|β|2). (22)

The contribution of �
(κ+ )
bit-flip to the total bit-flip rate �bit-flip

is shown as dashed lines in Figs. 3(a)–3(c). Comparing the

10−3 10−2 10−1

K/κ2
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Γ
b
it

-fl
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|α|2 = 2.5

(a)

r = 0.0 r = 0.2 r = 0.35 r = 0.5

10−3 10−2 10−1

K/κ2

|α|2 = 3.5(b)

10−3 10−2 10−1

K/κ2

|α|2 = 4.5(c)

FIG. 4. Bit-flip error rate �bit-flip in the presence of an undesired
coherent Kerr evolution. Each panel shows �bit-flip for different values
of the squeezing parameter r and for a fixed value of the displacement
α. Results are obtained from simulating Eq. (19) with κ−/κ2 = 10−3

and κφ = κ+ = 0.

different panels, it becomes apparent that a single transition
point does not exist in terms of the mean number of thermal
excitations nth after which the contribution of �

(κ+ )
bit-flip to the

total bit-flip rate becomes dominant. Instead, we observe that
this transition point depends on the squeezing parameter r,
with the transition point shifting towards larger values of nth

for increasing values of r. This becomes more apparent for
larger values of α [see Figs. 3(b) and 3(c). This behavior can
be understood by associating the SCQ with an ordinary cat
state with exponentially larger amplitude β = αer , leading to
exponentially deeper potential wells that postpone the tran-
sition into the regime dominated by thermal noise. In that
respect, our results show a decreased sensitivity of the SCQ
against thermal noise in comparison to the ordinary cat qubit
in an experimentally relevant parameter regime of nth ≈ 10−2.
For instance, a moderately squeezed SCQ (r = 0.3) shows no
performance loss in contrast with the ordinary cat qubit which
has a notably increased bit-flip rate �bit-flip [cf. Fig. 3(c)].
An interesting observation is that the exponential suppression
factor γ is not affected by thermal noise if r � 0.3, as apparent
from Fig. 3(d).

4. Susceptibility to coherent Kerr evolution

Any realistic implementation of the dissipative stabiliza-
tion scheme in a superconducting circuit architecture will
possess some form of undesired (Kerr) nonlinearity. For the
ordinary cat qubit, this does not pose an inherent problem
since a combined stabilization scheme exists [38]. Neverthe-
less, even though it is possible to implement a combined
stabilization scheme consisting of the dissipator D[b̂2 − β2]
and the squeezed Kerr parametric oscillator ĤSKPO ∝ (b̂†2 −
β2)(b̂2 − β2), doing so would require of a higher-order non-
linearity and the activation of multiple nonresonant photon
exchange processes as we detail in Appendix B.

Here we are interested in the effective bit-flip rate for the
stabilized SCQ in the presence of a coherent evolution under
the Kerr Hamiltonian ĤK = Kâ†2â2 in the general dynamics
described by Eq. (19). To this end, we consider single-photon
losses with rate κ−/κ2 = 10−3 while neglecting pure dephas-
ing (κφ = 0) and single-photon gain (κ+ = 0).
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The results of this section are summarized in Fig. 4, where
we plot the effective rate �bit-flip as a function of the Kerr
coupling K for various values of the displacement amplitude
α and squeezing parameter r. The main observation from
Fig. 4 is that for fixed squeezing r and displacement α, we
can identify a threshold value of the Kerr nonlinearity above
which the cat qubit outperforms the SCQ. More precisely, the
threshold is defined as the Kerr coupling where the bit-flip rate
of the cat code with code parameter α exceeds the bit-flip rate
of the squeezed-cat code with code parameters (α, r). As the
definition implies, this threshold depends on both the (achiev-
able) displacement amplitude α and the (stabilized) squeezing
parameter r. A relevant observation is that for r = 0.2 this
threshold seems to become smaller with increasing |α|2, i.e.,
less Kerr coupling can be tolerated, while for r = 0.35 it
stays approximately constant and for r = 0.5 the threshold
increases with increasing |α|2.

These results indicate strong requirements for the effec-
tive Kerr nonlinearity of the device similar to the case for
the dissipative stabilization of GKP states [41], likely with
|K/κ2| � 10−2, which is not surprising given that in the in-
finite squeezing limit (r → ∞) the SCQ attains properties
similar to those from the GKP code.

5. Bias-preserving Z gate

In this section we investigate the performance of the dis-
sipative Z gate for the SCQ. Note that one obtains a gate
GSCQ of the SCQ with code parameter (α, r) by applying
the squeezing operator to the corresponding gate Gcat of the
ordinary cat code with the code parameter αer , that is, GSCQ =
ŜGcatŜ†. A rotation around the Z axis can be implemented via
a resonant microwave drive with real amplitude εZ , that is,
the generator of a displacement along the p̂ quadrature. This
would lead to an actual displacement in the absence of the
dissipative stabilization scheme (κ2 = 0); however, if εZ/κ2

is small, the combined evolution described by the master
equation

d ρ̂

dt
= − i[εZ â† + ε∗

Z â, ρ̂] + κ2D(b̂2 − β2)ρ̂ (23)

results in a controlled rotation around the Z axis of the Bloch
sphere. Here the Hamiltonian part ĤZ = εZ â† + ε∗

Z â is due to
the resonant microwave drive applied to the oscillator. Notice
that the Hamiltonian does not change for the SCQ apart from
an exponential factor, that is, Ŝ(r)ĤZ Ŝ†(r) = erĤZ . Hence, to
implement the Z for the SCQ one applies the same resonant
drive. Initially, one might assume that the gate requires an
exponentially stronger drive; however, given a desired rotation
angle θ after a time Tgate, one chooses the drive amplitude

εZ = θ

4 Re(α)Tgate
, (24)

which is independent of the squeezing parameter r because the
exponential factor from the squeezing transformation above
cancels with the exponential factor obtained from the replace-
ment α �→ β = αer .

For a purely dissipative gate, one expects that the combined
phase flip error is the result of an interplay of idling and

10−1 100 101
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2 )

10−3

10−2

10−1

p
Z

(a)

r = 0.00 r = 0.20 r = 0.35 r = 0.50

10−1 100 101

T (in units of κ−1
2 )

(b)

2.0 2.5 3.0 3.5 4.0 4.5 5.0
|α|2

10−13

10−10

10−7

10−4

p
X

(c)

FIG. 5. Gate-induced phase and bit error for the Z gate for
|α|2 = 4 and various values of the squeezing parameter r. (a) and
(b) Phase error as a function of the gate time T where the two panels
correspond to different κ−/κ2 ratios: (a) κ−/κ2 = 0, i.e., phase errors
occur due to nonadiabaticity of the gate pZ = pNA

Z and (b) κ−/κ2 =
10−3. Markers represent numerical data obtained from the time evo-
lution (23), while dashed lines show theory results obtained from
Eq. (25). (c) Bit-flip error probability pX after the Z gate with optimal
gate time T opt

gate and single-photon loss rate κ−/κ2 = 10−3. Markers
show numerical data and solid lines are exponential fits.

nonadiabatic error pNA
Z [38],

pZ = κ−|α|2Tgate + pNA
Z , (25)

with pNA
Z given by

pNA
Z = π2

16|α|4κ2Tgate
e−4r, (26)

which decreases with e−4r . For any finite value of κ− this
interplay results in an optimal gate time T opt

gate which minimizes
the combined phase-flip error pZ . For the SCQ this optimal
gate time is given by

T opt
gate = π

4|α|3√κ−κ2
e−2r . (27)

Thus the Z gate is exponentially faster in the squeezing pa-
rameter r.

We have verified the above expressions by numerically
simulating Eq. (23) with an additional dissipator κ−D[â] ac-
counting for single-photon losses. Our results are summarized
in Figs. 5(a) and 5(b), where we have chosen a displacement
amplitude α such that |α|2 = 4 and have compared the two
cases κ−/κ2 = 0 and κ−/κ2 = 10−3 to separate out the effect
of idling errors in the first case. We see that the analyti-
cal model (25) (dashed lines) reproduces the numerical data
(markers) accurately. We emphasize that even though the here
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selected range for the squeezing parameter r is moderate [see
also Fig. 1(d)], the SCQ allows a reduction in the pZ error
by roughly an order of magnitude in comparison with the cat
qubit while also reducing the optimal gate time to a third of
it. Importantly, also for the SCQ our implementation of the Z
gate remains bias preserving. This can be seen in Fig. 5(c),
where we show the bit-flip error probability pX after the Z
gate with optimal gate time T opt

gate and single-photon loss rate
κ−/κ2 = 10−3. The solid lines show exponential fits to the
numerical data and we find that the slope scales approximately
as exp(2r).

The main takeaway message from this section is that the
increased performance of the SCQ over the ordinary cat qubit
remains during the Z gate operation. In particular, we find
that the existing model for the phase error pZ of the cat qubit
can be easily adapted to the SCQ by a replacement α �→ αer

with some caution, for example, in the first term in Eq. (25)
this substitution is not done because the phase-flip rate due to
single-photon losses is independent of the squeezing parame-
ter r [see Fig. 1(c)]. We omit here the analysis of multiqubit
gates, such as the CNOT gate, since the numerical simulations
become too demanding. However, we do expect results similar
to those for the Z gate, that is, an exponential suppression of
errors in the squeezing parameter r.

In the future it would be interesting to combine the dis-
sipative gate implementation with a squeezed version of
the two-photon exchange Hamiltonian originally proposed
in Ref. [38] as well as including derivative-based correc-
tions in the envelope of εZ as proposed in Ref. [42] for the
cat code.

C. Circuit QED implementation

Here we propose a possible superconducting circuit imple-
mentation for the dissipative stabilization of the squeezed-cat
code. Our scheme is based on a modification of the protocol
by Lescanne et al. [11] for the dissipative stabilization of the
ordinary cat qubit. It utilizes a high-quality resonator referred
to as the storage, coupled via a three-wave-mixing element to
a lossy auxiliary resonator referred to as the buffer. Recall that
to engineer the effective dissipator D(b̂2 − β2) for the storage
resonator, we first need to generate a resonant interaction
between the storage and buffer resonators of the form

Ĥint = g3(ŵ†b̂2 + ŵb̂†2) (28)

= g3ŵ
†[cosh(r)â − sinh(r)â†]2 + H.c., (29)

where ŵ and â are the annihilation operators of the buffer
and storage resonator, respectively. We propose to achieve
such an interaction with the superconducting circuit shown
in Fig. 6. For the coupler, we consider an asymmetrically
threaded SQUID (ATS) for its three-wave mixing capabilities.
The Hamiltonian of the sketched superconducting circuit in
Fig. 6 takes the form [43]

Ĥ = ωaâ†â + ωcĉ†ĉ + ωwŵ†ŵ

− 2EJ [cos(ϕ� ) cos(ϕ̂ + ϕ�)], (30)

where ĉ is the annihilation operator corresponding to the cou-
pler mode. Furthermore, ωa, ωc, and ωw correspond to the
frequencies of the respective modes, while ϕ̂ describes the

StorageBuffer

Coupler

φext ϕext

ωa

ωc

ωw

EJ,l EJ,r

κw

FIG. 6. Sketch of a possible circuit QED implementation of the
squeezed-cat confinement scheme. The storage resonator (red) that
hosts the stabilized squeezed-cat qubit and the buffer mode (teal)
are coupled capacitively through a nonlinear coupler (orange) made
from an asymmetric Josephson-junction loop to enable flux-pumped
three-wave mixing. By biasing the coupler loops with the external
fluxes φext and ϕext satisfying the relations in Eq. (31), residual Kerr
interactions can be dramatically minimized.

hybridized mode in the coupler and is given by ϕ̂ = (ϕcĉ +
ϕaâ + ϕwŵ + H.c.), where ϕx is the participation ratio of the
respective mode in the Josephson junction which will depend
on the macroscopic parameters of the circuit elements. We
have also introduced ϕ� = ϕext + φext and ϕ� = ϕext − φext,
which correspond to the sum and difference of the external
fluxes applied through the loops, respectively. To engineer the
desired interaction we operate the coupler with flux biases

ϕ� = π

2
+ ϕac

� (t ), ϕ� = π

2
, (31)

where ϕac
� (t ) is an additional three-tone flux modulation of the

form

ϕac
� (t ) = ε1 cos(ω1t ) + ε2 cos(ω2t ) + ε3 sin(ω3t ), (32)

with |ϕac
� (t )|  1. At the chosen flux bias the inductive energy

of the ATS becomes antisymmetric and the Hamiltonian (30)
reduces to

Ĥ = ωaâ†â + ωcĉ†ĉ + ωwŵ†ŵ − 2EJϕ
ac
� (t ) sin(ϕ̂). (33)

To obtain the desired ϕ̂3 interaction we expand the sine up to
third order in ϕ̂ leading to

Ĥ = ωaâ†â + ωcĉ†ĉ + ωwŵ†ŵ

− 2EJ

(
ϕac

� (t )ϕ̂ − ϕac
� (t )

ϕ̂3

6

)
. (34)

We can further eliminate the term linear in ϕ̂ by moving
to a time-dependent joint displaced frame specified by the
displacements

ξx(t ) =
3∑

k=1

−iEJϕxεk

i(ωx − ωk ) + κx/2
e−iωkt , x = a, c,w, (35)

where κa, κc, and κw denote the single-photon loss rates of the
storage, coupler, and buffer mode, respectively. As a result, ˆ̃ϕ
now takes the form

ˆ̃ϕ = [ϕc(ĉ + ξc) + ϕc(â + ξa) + ϕc(ŵ + ξw ) + H.c.], (36)
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leading to the Hamiltonian

Ĥ = ωaâ†â + ωcĉ†ĉ + ωwŵ†ŵ + EJϕ
ac
� (t )

ˆ̃ϕ3

3
. (37)

To obtain from this Hamiltonian the desired interaction
Hamiltonian (28), we choose the pump frequencies ωi such
that ω1 = 2ωa − ωw, ω2 = 2ωa + ωw, and ω3 = ωw. This
choice is necessary to enable all interactions in Eq. (28).
Then, in order to obtain the right coefficients the flux-pump
amplitudes are chosen such that ε1(r) = λ cosh2(r), ε2(r) =
λ sinh2(r), and ε3(r) = λ sinh(2r), with λ  1 the strength of
the drive tone. Furthermore, for us to assume that the coupler
stays in its ground state, i.e., 〈ĉ†ĉ〉 = 0, we require that the
frequency of the coupler mode ωc is sufficiently detuned from
all of the pump frequencies.

Note that the pump tone at ω3 = ωw will additionally
lead to a Hamiltonian term acting on the waste mode that is
given by

Ĥdr = �̃∗ŵ + �̃ŵ†, (38)

where �̃ describes the strength of this effective linear drive on
the waste mode given by

�̃ =
∑

x=a,c,w

iEJε3(r)ϕ2
x

i(ωx − ω3) + κx/2
≈ iEJε3(r)ϕ2

w

κw/2
. (39)

For the nonlinear interaction term in Eq. (28), the photons
injected in the waste mode by this drive are converted into
superpositions of displaced squeezed states. Thus, this term
is necessary to stabilize a squeezed cat state with nonzero
amplitude α �= 0. However, since the amplitude �̃ of this
effective drive is not an independent parameter, that is, it is
determined by the macroscopic properties of the supercon-
ducting circuit and the flux pump amplitude ε3(r), we consider
adding an additional charge drive of the form (38). Both the
driving Hamiltonian activated through the flux pump and the
additional one applied through the charge line are described
by the same Hamiltonian, but with different amplitudes. By
absorbing the amplitude of the charge pump into �̃, we can
define a renormalized driving amplitude, denoted by �. This
allows us to treat both sources of driving with a single effec-
tive Hamiltonian. Then, to prepare a squeezed cat state |C+

α,r〉
with amplitude α and squeezing r, one chooses the amplitude
of the charge line drive such that the effective driving ampli-
tudes become � = −g3α

2 exp(2r).
To obtain an effective single-mode description of the form

given by Eq. (15) from the previously described system and
drive Hamiltonian, we assume that the waste mode w exhibits
strong single-photon dissipation with rate κw described by
the dissipator κwD[ŵ]. In the limit where κw � g3 cosh r
one can adiabatically eliminate the waste mode to obtain
the effective two-photon dissipator κ2D[b̂2 − β2] with rate
κ2 = 4g2

3/κw. As described in Ref. [44], the validity of this
approximation will also depend on the size of the (squeezed)
cat state that one aims to prepare. For finite κw, the additional
condition 2|α|g3  κw arises. In practice, numerical master
equation simulations have shown that it is sufficient to achieve
2|α|g3/κw < 1

5 . This condition for the adiabatic elimination
remains in the case of squeezed cat states.

Finally, let us mention that a finite asymmetry η = (EJ,l −
EJ,r )/(EJ,l + EJ,r ) of the junction energies, e.g., due to fabri-
cation variances, will lead to an additional term −2EJη cos(ϕ̂)
in the Hamiltonian (33), which will lead to static Kerr-type
nonlinearities in the Hamiltonian of the storage mode. As
shown in Fig. 4, these nonlinearities significantly increase the
effective bit-flip rate of the squeezed-cat qubit. For example,
in the experiment by Lescanne et al. [11], the ratio of the
measured Kerr coupling K and two-photon dissipation rate
κ2 was |K/κ2| ≈ 1

5 . We expect that the resulting nonlinearity
could be reduced by operating the device at an altered dc flux
bias to take advantage of Kerr renormalization through the ϕ3

interaction [45].

V. DISCUSSION AND CONCLUSION

Bosonic codes offer a hardware-efficient way of redun-
dantly encoding logical information into a subspace of a much
larger Hilbert space. Furthermore, with the recent surge in
interest of quantum error correcting that are tailored to a noise
bias in the effective Pauli error model, noise-biased bosonic
qubits such as the cat qubit have received considerable ex-
perimental [11,37,46] and theoretical [34,35,38] attention.
However, while the cat qubit exhibits a large error bias, the
exponential reduction of bit-flip errors comes with the caveat
of a linearly increasing phase-flip rate. To overcome this short-
coming, recently Schlegel et al. introduced the squeezed-cat
qubit [21] that in principle allows further suppression of the
bit-flip rate at a fixed phase-flip rate by increasing the peak
squeezing.

In this article we have proposed a dissipative stabilization
mechanism for squeezed cat states and analyzed the error cor-
rection performance of the squeezed-cat qubit, the quantum
error correcting code derived from squeezed cat states, in a
superconducting circuit-inspired error model. To this end, we
have performed numerical simulations for various realistic
noise models to extract the effective phase- and bit-flip er-
ror rates within that model and compared the results to the
ordinary non-squeezed-cat qubit. We have found that for all
analyzed incoherent noise processes, the bit-flip error rates
of the SCQ are exponentially lower in the squeezing param-
eter r in comparison to the non-squeezed-cat qubit, while
phase-flip error rates are approximately independent of the
squeezing parameter. Thus, the squeezing allows further in-
creasing the noise bias of the encoded qubit which is relevant
for hardware-efficient fault-tolerant quantum computation us-
ing bias-tailored quantum error correcting codes which have
seen a great deal of interest recently. Importantly, our results
further suggest that the increased noise bias is preserved dur-
ing gate operation, that is, we find that the Z gate on the SCQ
can be performed exponentially faster and with exponentially
lower phase error probability than on the cat qubit while at the
same time significantly reducing the bit-flip error probability.
However, we identify a susceptibility to undesired coherent
Kerr evolution, imposing strong requirements on the residual
nonlinearity of the bosonic mode which hosts the stabilized
squeezed-cat qubit. While we believe that residual nonlin-
earities can be significantly reduced by carefully taking into
account terms beyond the rotating-wave approximation [43],
it is an open question whether alternative approaches exist.
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We conclude by noting that our suggested implementation of
the engineered dissipative dynamics within a superconducting
circuit platform is readily realizable in state-of-the-art devices
[11] and allows for tuning the squeezing parameter in situ. In
fact, this is exactly the same setup currently used for the sta-
bilization of cat states in which additional modulation drives
allow the parametrical activation of the full cavity squeezed
mode operator. We believe that, while theoretically possible,
the Hamiltonian confinement of a SCQ is challenging from
an experimental point of view. The study of its plausible
implementation in superconducting circuits is left for future
work.

Note added. Recently, we became aware of a similar
work analyzing the performance of dissipatively stabilized
squeezed-cat qubits [47].
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APPENDIX A: UNCONDITIONAL STATE PREPARATION

The protocol described in this work requires the initializa-
tion of the system (storage) into a parity eigenstate, i.e., Fock
states or SCQs. While this can be routinely done in circuit
QED it might not be the case for different quantum tech-
nologies. Alternatively, here we will show how to stabilize an
even-parity squeezed cat state unconditionally, that is, without
the need for initialization.

Consider a general non-Hermitian operator L̂ with a unique
dark state or zero eigenvalue eigenstate |ψ〉, i.e., L̂|ψ〉 = 0.
The steady state ∂t ρ̂SS = 0 of the dissipative dynamics ∂t ρ̂ =
κD[L̂]ρ̂ will therefore correspond to the dark state of L̂: ρ̂SS =
|ψ〉〈ψ |. The latter is true regardless of the initial state of the
system. Two well-known examples correspond to the case of
a reservoir at zero temperature which cools a resonator to the
photon vacuum state |0〉, where L̂ = â, and the cooling of a
resonator to a squeezed vacuum state |ξ 〉 = Ŝ(ξ )|0〉, where
L̂ = μâ + νâ†, with |μ|2 − |ν|2 = 1 [6].

As shown in Ref. [48] the dark state of the nonlinear
operator

L̂ = (μ0 + μ1â†â)â + νâ† (A1)

approaches asymptotically an even-parity (two-headed) cat
state of amplitude α = i

√
ν/μ1, i.e., L̂|C+

α 〉 = 0 in the limit
μ0/μ1 → 0. By means of a unitary transformation Û , we can
find the annihilator of the state Û |C+

α 〉,
(Û ẑÛ †)(Û |C+

α 〉) = 0. (A2)

By choosing Û ≡ Ŝ(ξ ) we have Û |C+
α 〉 = N (|α〉ξ + | − α〉ξ ),

with N a normalization factor. Using the relation Ŝ(ξ )D̂(α) =
D̂(βα,ξ )Ŝ(ξ ), with βα,ξ = α cosh(r) − α∗e−iφ sinh(r), we
have that Û |C+

α 〉 = |C+
βα,ξ ,ξ

〉 and thus we arrive at our desired
relation

X̂ |C+
βα,ξ ,ξ

〉 = 0, (A3)

with

X̂ = Ŝ(ξ )[(μ0 + μ1â†â)â + νâ†]S†(ξ ). (A4)

Expanding the above expression, we get

X̂ = [μ0 cosh(r) + νe−iφ sinh(r) + 3μ1 sinh2(r) cosh(r)]â

+ {μ0eiφ sinh(r) + ν cosh(r)

+ eiφ sinh(r)[cosh(2r) + sinh2(r)]}â†

+ μ1 cosh(r)[cosh(2r) + sinh2(r)]â†â2

+ μ1eiφ sinh(r)[cosh2(r) + cosh(2r)]â†2â

+ μ1e−iφ sinh(r) cosh2(r)â3

+ μ1e2iφ sinh2(r) cosh(r)â†3. (A5)

Therefore, the steady state of the Lindblad master equa-
tion ∂t ρ̂ = κD[X̂ ]ρ̂ is ρ̂SS = |C+

βα,ξ ,ξ
〉〈C+

βα,ξ ,ξ
|.

APPENDIX B: HAMILTONIAN CONFINEMENT SCHEME
FOR THE SQUEEZED-CAT QUBIT

A different approach to initialize and confine a cat qubit
utilizes a parametrically driven Kerr oscillator or Kerr para-
metric oscillator (KPO) described by the Hamiltonian

Ĥ = Kâ†2â2 + ε2(â†2 + â2). (B1)

By noting that the latter can be rewritten as Ĥ = K (â†2 −
α2)(â2 − α2) + Kα4, with α = √

ε2/K , it is straightforward
to see that the coherent states | ± α〉 or equivalently the cat
states |C±

α 〉 are degenerate eigenstates of the KPO Hamilto-
nian. Furthermore, the cat manifold is protected from the rest
of the spectrum by an energy gap [35–37].

An advantage of this approach compared to the dissipative
stabilization is that the KPO Hamiltonian is rather simple
to realize in experiments. It consists of a linear resonator
coupled to a dc SQUID or a SNAIL, flux or current modulated
at twice the frequency of the resonator mode, respectively.
Furthermore, this stabilization scheme is compatible with fast
gates which maintain the noise bias of the cat code [42]. In
addition, it has been recently shown that both dissipative and
Hamiltonian confinement can be merged in a single platform
with an improved gate performance compared to each individ-
ual scheme [38].
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One could argue that all of the above ideas can be straight-
forwardly extended to the SCQ. Indeed, this is the case
in which, by squeezing the Hamiltonian (B1), we arrive
at the squeezed Kerr parametric oscillator (SKPO) Hamil-
tonian ĤSKPO = Ŝ(r)Ĥ Ŝ†(r) = Kb̂†2b̂2 + ε2(b̂†2 + b̂2), with
b̂ = Ŝ(r)âŜ†(r) and squeezed cat states as its eigenstates. [We
have noticed some recent publications in which the authors
refer to the KPO (B1) as the squeezed Kerr-nonlinear os-
cillator. By squeezing the authors refer to the two-photon
drive.]

In principle, the full squeezed Kerr nonlinearity, i.e., b̂†2b̂2,
could be activated by means of parametric drives. Expanding
this nonlinear potential in terms of the storage bosonic op-
erator reveals rotating terms of the form â4, â†3â, and â2,
together with their Hermitian conjugates and the nonrotating
Kerr nonlinearity â†2â2. In order to parametrically activate
the rotating terms with frequencies 4ωa and 2ωa, a nonlinear
interaction of at least order 4 is necessary using flux driving
and at least of order 5 using current modulation. Regard-
less, while a modulation with frequency 2ωa allows selecting
quadratic and fourth-order terms from both nonlinear terms,
it may be challenging to modulate the system at 4ωa. For
typical values of resonator frequencies (few gigahertz), such a
high-frequency modulation might excite the plasma frequency
of the Josephson junctions, typically around 20 GHz. In order
to avoid this, one alternative would be to design a resonator
with a smaller frequency or utilize Josephson junctions based
on constrictions instead of tunnel junctions.

APPENDIX C: NUMERICAL METHODS

1. Observables of the encoded state

In order to accurately estimate the effective phase- and
bit-flip rates of the squeezed-cat code we relate them to
the properties of the full quantum harmonic-oscillator space.
Concretely, we relate the expectation value of the Pauli X ,
〈σX 〉 = Tr(Ĵxρ̂ ), where Ĵx is the Fock parity operator, that is,

Ĵx = Ĵ++ − Ĵ−−, (C1)

with

Ĵ++ =
∞∑

n=0

|2n〉〈2n|, (C2)

Ĵ−− =
∞∑

n=0

|2n + 1〉〈2n + 1|. (C3)

On the other hand, the expectation value of the Pauli Z ,
〈σZ〉 = Tr(ĴZ ρ̂ ), whether the state has support in the positive
or negative half plane of the phase space. Here we use an
adaption of the observable introduced in Ref. [8] which is a
good approximation of sgn(â + â†) and is defined as

Ĵz = Ĵ+− + Ĵ†
+−, (C4)

with

Ĵ+− =
√

2α2

sinh(2α2)

∞∑
q=−∞

(−1)q

2q + 1
Iq(α2)Ĵ (q)

+−, (C5)

where α ∈ R, Iq(x) is the modified Bessel function of the first
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FIG. 7. Exemplary data for pure dephasing and single-photon
gain noise from which the exponential suppression factor γ can
be extracted. Markers show numerical data, solid lines are ex-
ponential fits to the data, and dashed lines correspond to our
approximate theory (a) (21) and (b) (22). (a) Bit-flip rate with
pure dephasing and single-photon losses with rates κφ/κ2 = κ−/κ2 =
10−3. (b) Bit-flip rate with single-photon loss and gain with
rates κ+/κ2 = κ−/κ2 = 10−3.

kind, and Ĵ (q)
+− is further defined as

Ĵ (q)
+− =

⎧⎨
⎩

(â†â−1)!!
(â†â+2q)!! Ĵ++â2q+1, q � 0

Ĵ++â†(2|q|−1) (â†â)!!
(â†â+2|q|−1)!! , q < 0,

(C6)

where n!! = (n − 2)!!n denotes the double factorial. While
Ĵz also correctly captures the decay rate of the squeezed-cat
qubit, the SCQ basis states are eigenstates with eigenvalues
less than one. Thus, to correctly normalize Ĵz, we instead
compute Ŝ(r)ĴzŜ†(r) while additionally replacing α2 with
β2 = α2e2r in Ĵ+− [Eq. (C5)].

2. Estimating error rates

We numerically calculate the effective bit- and phase-flip
rates by fitting the decaying logical observables

Tr[Ĵzρ̂(t )] ∼ e−�bit-flipt , (C7)

Tr[Ĵxρ̂(t )] ∼ e−�phase-flipt . (C8)

To this end, we initialize the system in an ideal state |C0
β〉 or

|C+
β 〉 before time evolving it for a time t � tconf ≈ (4α2κ2)−1

under the dynamics generated by the Lindbladian (19). The
simulations are performed using the QUTIP package [49] and
then the data are analyzed and visualized utilizing PYTHON

libraries [50–52]. The exponential suppression factor γ is
obtained from fitting an exponential exp(−γα2) to the bit-flip
rate over a range of displacement amplitudes 2 � α2 � 5 for
all �bit-flip � 10−13, which is our numerical accuracy thresh-
old. For bit-flip rates below this value we observe numerical
instabilities in our fitting routines. We show additional data
for pure dephasing and single-photon gain noise in Fig. 7.
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