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A B S T R A C T   

Steam pyrolysis is a thermochemical process that converts carbon-based materials into valuable gases. In general, 
the products of the reaction are syngas (H2, CO, CO2), low-molecular-weight hydrocarbon gases (methane, 
ethylene, and propylene), pyrolytic gasoline and oils, monoaromatic and polyaromatic species (tar), and 
carbonaceous residues (char) with ashes. However, the intricacy of the reactions comprising the process, the 
diversity of the product species, and the constraints linked to the sampling and measurement equipment, create a 
highly complex system. In this work, a method for data representation is presented based on a special Parametric 
System Model (PSM) that portrays product species measurements in a way that provides relevant information 
and valuable insights into the process. The method incorporates generic knowledge of the chemical nature of the 
reactions to create a constrained system in which the data can be expressed in parametric terms with meaningful 
statistical functions. The evaluated data were obtained from a high-temperature steam pyrolysis process per
formed in the 2–4-MW Dual Fluidized Bed reactor at Chalmers University using polyethylene as feedstock. The 
quantities of the hydrocarbon species detected in the gas product were taken for the PSM as a probabilistic 
system that can be described with a set of distribution functions. The carbon, hydrogen and oxygen balances 
were taken into account to build a constrained set of equations to find the parameters of the functions. The 
resulting model was proven to be useful as a prediction tool to quantify unmeasured carbon group species and to 
estimate process variables, such as the oxygen transport of the bed material. Also, it was demonstrated the 
potential of the model as a method to identify and estimate inconsistencies in the measurements, which improve 
the quality of the characterization data. The modelś outcomes find application in providing critical information 
for the control and evaluation of pyrolysis process and downstream operation of biorefineries.   

1. Introduction 

In the high-temperature steam pyrolysis process, conversion of a 
carbon feedstock takes place in the presence of steam, which acts as a 
dilution and almost inert agent, at relatively high temperatures 
(~800 ◦C). The endothermic conversion leads to the production of a 
combustible gas, called the “producer gas”, which contains H2, CO, CO2 
and hydrocarbons in the forms of paraffins, olefins and aromatics that 
can subsequently be used in further chemical or energy processes. This 
distribution of species in the producer gas is defined by the pyrolysis 
conditions and feedstock characteristics. 

In general, pyrolysis reactions are endothermic in nature, which 
means that heat must be added to the reactor to cover the process energy 
demands. The reactor type and design exert an important influence on 

the gas product species distribution. Several types of reactors are 
currently in use in industry with different design and working principles 
[1]. Dual Fluidized Beds (DFBs) are notable for their heat transfer and 
mixing characteristics, providing robust transformation of different 
kinds of feedstocks. The DFB technology is used in this work. The 
fluidization conditions, and in particular the bed type, are among the 
most-relevant operational variables that have impacts on the contents of 
the pyrolysis products. In fact, depending on the molecular structure of 
the bed material and its oxygen transport characteristics, the chemical 
balances of the pyrolysis products align towards a certain component, 
thereby modifying its share. 

Once the pyrolysis process is completed, the producer gas passes 
through a series of setups to clean it for further processing and charac
terization. The online species quantification can be performed in a gas 

* Corresponding author. 
E-mail address: rforero@chalmers.se (R. Forero-Franco).  

Contents lists available at ScienceDirect 

Fuel 

journal homepage: www.elsevier.com/locate/fuel 

https://doi.org/10.1016/j.fuel.2023.128518 
Received 2 November 2022; Received in revised form 7 April 2023; Accepted 21 April 2023   

mailto:rforero@chalmers.se
www.sciencedirect.com/science/journal/00162361
https://www.elsevier.com/locate/fuel
https://doi.org/10.1016/j.fuel.2023.128518
https://doi.org/10.1016/j.fuel.2023.128518
https://doi.org/10.1016/j.fuel.2023.128518
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2023.128518&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Fuel 348 (2023) 128518

2

chromatograph equipped with a species detector (see Section 3). The 
chromatographic results for the different species found in the producer 
gas are compiled as %v/v (based on calibration curves) and usually 
presented in tables, where the volume concentration is converted to, e. 
g., moles/kgfuel or %wt according to the fuel flow and internal or external 
standard methods. Following this tabulation, the results are graphically 
presented in sets of column bars for the relevant species obtained 
(Fig. 1). 

Though very straightforward to display, this “plain” graphical rep
resentation of the results presents some challenges. First, the informa
tion is limited to the species that the analytical instrument can detect, so 
it cannot give information about the non-measured species to close the 
systeḿs carbon balance. Second, when dealing with many different 
process conditions and feedstocks, numerous and large tables are usually 
produced and reported, entailing a difficult data mining task when 
trying to extract the relevant information even from a single case. 
Additionally, the lack of generic knowledge of the process nature in the 
plain graphical representation makes any inter-case study very limited 
and not very useful for behavior prediction or operational space explo
ration. Third, when progressing towards heterogeneous mixtures and 
wide variations in operational conditions, the source of the variation in 
the results is obscured. Thus, it becomes problematic to determine cor
relations between the response in the graph and the operational vari
ables that were modified. 

In general, three factors can be identified as the main sources of 
variation in the results: 1) changes in the feedstock; 2) changes in the 
thermodynamics of the operation; and 3) errors or constraints associated 
with the measurements from the setup used. These three sources are 
influential to greater or lesser degrees depending on the process evalu
ated and its operational conditions. In that sense, a representation of the 
data that allows to correlate any relevant changes in the measurements 
with these sources of variation must be implicitly connected to the na
ture of the process itself. Such a method must be capable of providing 
generic knowledge of the evaluated system, while facilitating compari
sons between similar processes. To the best of our knowledge, this is 
something that has not been performed previously for pyrolysis pro
cesses. Therefore, this work constitutes an attempt to develop a model 
built on a special data representation method that can deal with the 
challenges of the plain data way and can provide broader and more- 
meaningful information regarding the process measurements. 

For the purpose of this article, experimental data from steam py
rolysis in a DFB is here employed. To show the ability of the method to 
extract information of process variables, we focus on the example of 
estimating the Bed’s Oxygen Transport (BOT) based on the method 
outputs. 

The BOT is a phenomenon that occurs in DFB reactors when the bed 
material contains oxygen carrying species. In DFB reactors the circu
lating bed acts as a carrier medium that transports: heat from the 
combustor to the pyrolysis chamber; char from the pyrolyzer to the 
combustor; and active species between the combustor and the pyrolyzer. 
Regarding the latter, the bed material can contain, or transport from the 
combustor side, active components that interact with the feedstock in 
the pyrolyzer, thereby modifying its gas product composition. Silica 
sand is normally used as reference case due to its low chemical reactivity 
with the feedstock. Although silicate molecules can be considered 
virtually inert at the typical steam pyrolysis temperatures ( 750◦C), even 
traces of transition metal oxides, such as Fe2O3, can act as oxygen donors 
in the pyrolysis process [2]. Furthermore, ashes coming from the 
combustor side can be a source of oxygen in reducing environments as 
pointed out by Berdugo et al. [3]. For instance, ashes that contain cal
cium can participate in a redox cycle in the presence of sulphur. CaSO4 
transforms into CaS in the pyrolyzerś reducing environment, looping 
back to form CaSO4 under the oxidative conditions in the combustor. 
These redox processes have been studied for Chemical Looping Cycle 
(CLC) systems [4], and are also relevant to other DFB applications. 

The aim of this work is to develop a validated model that captures the 
product distribution of a pyrolysis process based on known mathemat
ical distribution functions governed by chemical and statistical consid
erations. The model’s framework will be defined by hard constraints 
such as elemental balances, functions’ topology and convergence 
criteria. By creating a highly constrained system, the ultimate goal is to 
define a model that be able to get physical and mathematical consistent 
information about the chemical system that can lead to 1) validation of 
the results through data quality assessment, 2) estimation of hard-to- 
measure species and 3) establishment of a parametric function as a 
way to compress the information and potentially be used as a fingerprint 
of a particular process condition. Specifically, the focus here will be on 
presenting the development of the model and its validation. Addition
ally, the application of the model as a predictive tool is investigated to 
estimate unmeasured species as well as important process variables such 

Fig. 1. Example of a pathway for data collection and processing to get a “plain” graphical compilation of the species information. The gas sampling system schema 
depicts the one used in this work, but this can differ from one experimental setup to another. 
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as the BOT. Finally, the potential of the model to assess data quality and 
experimental error identification is explored by deliberately introducing 
a systematic error in the data set. 

In the grand scheme of things, this study lays the chemical and 
mathematical foundations of a parametric model that can be utilized as a 
tool for the operation and control of pyrolysis process plants. 

2. Model description 

2.1. Theoretical framework 

The method consists of introducing the measured data into a Para
metric System Model (PSM), which is enclosed in a framework governed 
by certain chemical and statistical characteristics of the pyrolytic con
version process. The modelś kernel is a set of mathematical functions 
with characteristic topologies, which introduce additional constraints to 
the framework (see Fig. 2). Within its formulation, the final constrained 
system will contain global knowledge about the process that in
corporates not only the measured data, but also the unknown data. This 
provides possibilities to: perform estimations of important unknown 
quantities that could not be measured due to equipment constraints; 
identify inconsistencies in the measured data; and rank certain mea
surements according to relevance for the system in terms of accuracy 
improvements and setting minimum values for the sampling charac
terization effort. 

In practice, it was observed that the results from the measured spe
cies could be separated into four groups: Paraffins, Olefins, Aromatics, 
and Syngas. These groups represent different molecular systems based 
on which the original feedstock is converted. They are also governed by 
mass and energy conservation laws, which represent the main con
straints on the model framework. In our case, only the mass conservation 
is considered and expressed in terms of the elemental balances of the 
system. In particular, for a steam pyrolysis process and a fuel based on 
carbon, hydrogen and oxygen (C, H, O), Equations (1)–(3) are obtained: 
∑∞

k=1
npf

C,k +
∑∞

k=1
nof

C,k + narom
C + nCO

C + nCO2
C + ncharout

C = nfuel
C + ncharin

C (1)  

∑∞

k=1
npf

H,k +
∑∞

k=1

∑

l
nof

H,k,l + narom
H,total + nH2 ,out

H + nH2O,out
H

= nfuel
H + nH2 ,in

H + nH2O,in
H (2)  

nCO
O + nCO2

O + nHC,out
O + nH2O,out

O + nO2 ,out
O = nfuel

O + nH2O,in
O + nO2 ,in

O (3) 

Here, na,k corresponds to the moles of a particular chemical element 
(a ∈ {C, H, O}), and the superscript indicates the evaluated molecule or 
system (pf and of indicate paraffins and olefins, respectively). The term 
k represents the number of carbons that a particular paraffin or olefin 
chain contains, referred to hereinafter as the carbon group (or just the k- 
group). In Equation (2), l covers all possible olefin species of a particular 
k-group. In Equation (3), nHC,out

O corresponds to the moles of oxygen in 
the produced hydrocarbon species with oxygen atoms in their structures 
(for instance, some oxygenated aromatic species). The term ncharin

C ac
counts for external sources of char entering the system, for instance, char 
transported from the combustor side during the DFB cycle. 

This mode of representation in terms of carbon groups or carbon 
number, known as the carbon number distribution, has been employed 
in the petrochemical industry to elucidate typical distributions of carbon 
species coming from refinery and cracking/pyrolysis processes [5–7] 
(the cited references depict this kind of distribution for thermal cracking 
of polyolefins and Fischer-Tropsch waxes, and use them to evaluate the 
general species distribution for different severity levels). This repre
sentation is normally brought up in research on pyrolysis decomposition 
when comparing the yields of certain organic species of a particular size, 
so as to evaluate the quality of the products from a particular pyrolysis 
process for liquid fuels [8,9]. For the purposes of the present study, the 
usefulness of this representation lies in the possibility to represent the 
mole quantities of the paraffins and olefins as mathematical sequences 
that can be summed over an infinite range of k-groups, as expressed in 
Equations (1)–(3). In reality, the polymers in a feedstock comprise 
hundreds of thousands of monomer units. Thus, relative to such high 
numbers of arranged carbon atoms, the limit to the infinite is simply a 
mathematical formality to avoid any restriction on the length of a spe
cies that can be formed from the process. These series must be conver
gent, which imposes certain behavioral rules for the sequences or the 

Fig. 2. Conceptual schema of the “plain data” transformation into the proposed parametric model.  
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functions associated with them. 
Equations (1)–(3) can be rewritten in terms of molar fractions and 

the H/C mole ratio of each k-group to get the system of equations that 
define the PSM as a chemical system. By taking the number of moles nC,k 

as nC,k = nC,totXC,k, where nC corresponds to the total moles of the 
paraffin or olefin system and XC,k is the molar fraction over all k, the final 
equations will be: 

npf
C,tot

∑∞

k=1
Xpf

C,k + nof
C,tot

∑∞

k=1
Xof

C,k + narom
C + nCO

C + nchar,out
C = nfuel

C + nchar,in
C

(4)  

npf
C,tot

∑∞

k=1
Xpf

C,kγpf
k + nof

C,tot

∑∞

k=1
Xof

C,kγof
k,eff + narom

H,total + nH2 ,out
H + nH2O,out

H

= nfuel
H + nH2O,in

H + nH2 ,in
H (5)  

γpf
k =

(

2 +
2
k

)

; γof
k,eff =

∑2⌊k/2⌋− 1

g=0
Xof

C,k,g

(

2 −
2g
k

)

(6) 

The term, γof
k,eff , as defined in Equation (6), arises when simplifying 

the hydrogen equation by grouping together the olefin species 
depending on their chemical formulas (the expression ⌊x⌋ indicates the 
greatest integer less than or equal to x). It can be regarded as the 
effective H/C ratio, given the different olefin species that can be found 
for each k-group. Thus, g corresponds to the olefin group of a particular 
k-group with 2(k − g) hydrogens. In other words, g is the number of 
hydrogen pairs that are missed from the mono-ene case (g = 0). For 
instance, taking k = 4 and g = 1 means that a four-carbon chain is 
evaluated that has one pair of H less than the butene case, i.e., a chain 
with molecular formula C4H6, which is a diene. 

2.2. Parametric model definition 

In most of the online sampling setups, the amounts of C1–C3 paraffin 
and olefin species are usually measured with relative ease. After C3, the 
number of species per k-group grows exponentially and with ever-lower 
amounts. This means that not only does it take more time to perform the 
analysis, but that also specialized and costly equipment are required, 
sometimes corresponding even with offline setups. This is one of the 
main reasons why it is uncommon to find reports in the literature 
describing the total amounts of C4 or higher k-groups. For the aromatics 
case, a reasonable number of species can be measured (from C6 to C14) 
using SPA analysis, which provides a good estimation of the total moles 
for this system, as presented by Israelsson et. Al. and Berdugo et. Al. in 

references [10,11]. However, this is an offline method, since the aro
matics must be extracted from the gas sampling line with an SPA syringe 
and thereafter eluated for analysis in a GC. Moreover, the SPA method 
can include some errors, as not all the measurable species are being 
adsorbed in the column, although this can be mitigated to some extent 
by using an adequate adsorption column [11]. 

From the carbon balance (Eq. (4), by definition, the sum over all k of 
XS

C,k must be equal to one (S ∈ {pf ,of}). This molar fraction XS
C,k can be 

seen as a discrete probability function or, more precisely, a mass density 
function (mdf) for the evaluated molecular system. As explained previ
ously, in practice, the full extent of the XS

C,k sequences are virtually 
unknown, so the modelś core is to replace those infinite sequences with 
discrete probability functions that are defined based on a finite set of 
parameters. 

In that sense, the unknown molar fractions of paraffins (Xpf
C,k) and 

olefins (Xof
C,k) in Equations (4) and (5) can be expressed as: 

Xpf
C,k = f pf

C,k

(
αpf

1 ,αpf
2 ,⋯,αpf

n

)
;

Xof
C,k = f of

C,k

(
αof

1 ,α
of
2 ,⋯,αpf

n

) (7)  

Xpf
H,k = Xpf

C,kγpf
k = f pf

H,k

(
αpf

1 ,αpf
2 ,⋯,αpf

n

)
;

Xof
H,k = Xof

C,kγof
k,eff = f of

H,k

(
βof

1 , βof
2 ,⋯, βof

m

) (8)  

npf
a,tot =

∑Kpf
ms

k=1npf ,ms
a,k

∑Kpf
ms

k=1f pf
a,k

; nof
a,tot =

∑Kof
ms

k=2nof ,ms
a,k

∑Kof
ms

k=2f of
a,k

(9)  

where Kpf
ms and Kof

ms correspond to the maximum measured k-group for 
the paraffin and olefin species, respectively. The term fS

a,k is a discrete 
function with a semi-infinite support k ∈ {1, 2, 3⋯}, which is defined 
with a finite set of shape parameters {α1,⋯,αn} or {β1,⋯, βm}; a ∈

{C,H} and S ∈ {pf ,of}. 
The advantages of this approach reside in that it can provide a closed 

form solution to the equation system formed by Equations (4) and (5), 
and at the same time it can deliver the topology and the convergence 
criteria needed to satisfy the model’s mathematical constraints. 

2.3. Model implementation 

The more shape parameters that the function has, the more flexible it 
will be for highly skewed data. However, the goal is to define a function 
fk that can be fitted to the measured data with the minimum number of 
shape parameters and give a good estimation of the unknown species 
according to the carbon and hydrogen balances. The search for a suitable 
function is not a simple task, owing to the characteristic form of the 
measured data in the pyrolysis processes, as well as to the stringent 
restrictions imposed on its mathematical definition and topology. In 
general, the function must satisfy the following conditions: 1) it must 
present a decaying behavior with the possibility of becoming a mono
modal and positively skewed function; 2) it must be sufficiently flexible 
to handle relatively large changes in the concentration of species while 
still fitting with the measured data; 3) it needs to be defined with the 
lowest number of parameters possible; and 4) the function’s form and 
predicted area must be such that the conservation laws are satisfied. 
Further discussion on the functiońs topological conditions can be found 
in Section 7.1 of the Appendix. 

Several types of functions are candidates for the test proving that 
they can fit with the results obtained, ranging from well-known discrete 
functions (such as Negative Binomial and Poisson) to discretized ver
sions of continuous distribution functions. Table 1 shows the different 
probability distribution functions assessed in this work. It is worth 
noting that given that the continuous functions family is larger than the 
discrete one, most of the bi-parametric functions used here come from 
discretizing well-known continuous probability distributions [12]. 

Table 1 
List of mono-parametric and bi-parametric distribution functions used in this 
work. The asterisk marked rows correspond with heavy-tailed distributions. 
(Con-Max, Conway-Maxwell Distribution; Gamma-Inv, Gamma Inverted 
Distribution).  

Distribution’s 
Name 

Mathematical Expression 

Geometric fk(α) = α(1 − α)k− 1
;0 < α < 1 

Flory-Schultz fk(α) = α2k(1 − α)k− 1
;0 < α < 1 

Poisson fk(α) = αk− 1e− α/(k − 1)!; α > 0 
Neg. Binomial fk(α, β) = Γ(k+ β − 1)αr(1 − α)k− 1

/(Γ(k)Γ(β) ); β > 0,α ∈ [0,
1]

Con-Max fk(α, β) = α(k− 1)/
(

Z(α, β)*((k − 1)!)β
)
; α,β > 0 

Burr * fk(α, β) = (1 + (k − 1)α
)
− β

− (1 + kα)
− β
; α,β > 0 

Fréchet * fk(α, β) = e− (k/α)− β
− e− ((k− 1)/α)− β

; α,β > 0 
Dagum * fk(α, β) = (1 + k− α)

− β
− (1 + (k − 1)− α

)
− β
; α,β > 0 

Gompertz fk(α, β) = e− α(eβ(k− 1) − 1) − e− α(eβk − 1); α,β > 0 
Weibull * fk(α, β) = e− ((k− 1)/α)β

− e− (k/α)β
; α,β > 0 

Gamma fk(α, β) = γ(α,β(k − 1))/Γ(α) − γ(α,βk)/Γ(α); α,β > 0 
Lomax * fk(α, β) = (1 + (k − 1)/α)− β

− (1 + k/α)− β
; α,β > 0 

Gamma_Inv * fk(α, β) = γ(α,β/(k − 1))/Γ(α) − γ(α,β/k)/Γ(α); α,β > 0  
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Bi-parametric functions are highly adaptable and widely studied 
functions that describe physical phenomena that occur in many fields. 
They are sufficiently robust to describe strong variations in a dataset 
with a high number of outliers. As an example, the highlighted functions 
in Table 1 (marked with *) are known as heavy-tailed functions, i.e., the 
tail decays slower than the ones with exponential decay (Weibull is 
heavy-tailed for 0 ≤ b ≤ 1). This characteristic confers upon the func
tions the potential to be applied to extreme scenarios in which the 
dataset presents numerous outliers. They are used to describe systems 

that encompass extreme events, such as maximum one-day rainfall 
levels, river discharges, and survival times associated with medical 
treatments [13]. It is interesting to notice that although they may appear 
to be defined different mathematically, some of them can show a similar 
behavior when evaluated over a large domain. For instance, a quick look 
at the Fréchet function reveals that it behaves as a power-type distri
bution, since the expression 1 − e− xβ is asymptotically equivalent to k− α, 
which means that it will not decay as rapidly as an exponential function 
but will behave similarly to the Burr function in the infinite. 

Overall, irrespective of the type of function, the idea is to take the 
measured data as anchoring points, the experimental uncertainties as 
constraints and Equations (4) and (5), to create a new system of equa
tions to find the shape parameters {αi} of the particular function. If a 
finite and real set of parameters {αi} is found, the respective function 
will be by consequence a solution to the PSM equation system. Given the 
nature of most of the distribution functions, non-linear solvers or a 
Monte Carlo method can be used to perform the task of finding the set of 
parameters that satisfies the conditions imposed by the system of 
equations. Once the shape parameters are identified, the function can be 
plotted on top of a column bar graph depicting the species in mol/kgf 
versus the k-groups. 

2.4. Bed’s oxygen Transport 

To quantify the Bed Oxygen Transport based on the product 
composition, both the Hydrogen and Oxygen balances must be investi
gated. When considering the Hydrogen case, fulfilling the elemental 
balance in Equation (5) implies defining the amount of water that 
participated in the conversion (ΔnH2O

H = nH2O,in
H − nH2O,out

H ).   

Thus, knowing that water has a H:O ratio of 2:1, Equation (5) can be 
rearranged in terms of ΔnH2O

H and be reinserted into the oxygen balance 
(Equation (3)), to give Equation (11), according with the next 
derivation: 

nCO
O + nCO2

O + nHC,out
O −

(
nH2O,in

O − nH2O,out
O

)
= nfuel

O + nO2 ,in
O − nO2 ,out

O

⇒nCO
O + nCO2

O + nHC,out
O −

1
2
(
nH2O,in

H − nH2O,out
H

)
− nfuel

O = nO2 ,in
O − nO2 ,out

O = ΔnOext
O

⇒ΔnOext
O = nCO

O + nCO2
O + nHC,out

O −
1
2

ΔnH2O
H − nfuel

O

(11) 

Here, ΔnOext
O refers to the reacted oxygen that enters the process from 

an external source, i.e., oxygen that does not originate from the feed
stock itself or the fluidization steam. If positive, it means that external 
oxygen was consumed during the reaction. If negative, it means that 
oxygen was removed from the reaction environment by an external 
agent. For our studied case, there were two identified external oxygen 
sources: unexpected air leakage into the reactor, and the circulating bed 
material. The former can be estimated by assuming that all the nitrogen 
detected in the micro-GC arises from air and by applying the O2 : N2 

ratio of air. This can be done straight away when no other source of 
nitrogen is present (as for instance in the fuel). Nonetheless, this value 
tends to be relatively low due to the precautions taken during setup 

Fig. 3. Schema of the Chalmers DFB Gasifier used in this work (modified from [15]).  

ΔnH2O
H =

(

npf
C,tot

∑∞

k=1
Xpf

C,kγpf
k + nof

C,tot

∑∞

k=1
Xof

C,kγof
k,eff + narom

H,total + nH2 ,out
H

)

−
(
nfuel

H + nH2 ,in
H
)

(10)   
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construction and periodic maintenance to avoid air leaks. 
Under usual DFB conditions, Equation (11) is an expression that links 

the hydrogen balance with the oxygen transported by the bed during the 
fuel conversion. From the perspective of the model, the parametric 
functions assigned to the paraffin and olefin species in the hydrogen case 
(Equation (8)) will contain all the information on the species distribu
tion, so they may be used as a way to estimate the BOT in the pyrolysis 
system. 

An alternative experimental method to quantify the oxygen transport 
is here applied for the purpose of validating the estimates given by the 
PSM model. The experimental method is based on a High-Temperature 
Reactor (HTR) [14] (later described in Section 3), where the gas product 
reacts further with the steam to generate only syngas. The calculation of 
the BOT based on the measurements from the HTR is also done by 
Equation (10) but in a greatly simplified form. In this case, by reforming 
each and every one of the hydrocarbon species the products out of the 
reactor will be CO, CO2 and H2. Thus, the first parenthesis in Equation 
(10) collapses into only the Hydrogen measured at the outlet (nH2 ,out

H 
term), as follows: 

⇒ΔnOext
O = nCO

O + nCO2
O + nHC,out

O −
1
2
(
nH2 ,out

H −
(
nfuel

H + nH2 ,in
H
) )

− nfuel
O (12) 

The result obtained from Equation (12) must be the same as that 
estimated by Equation (11), since the measurements came from the 
same sampled gas batch. Table A5 in the Appendix shows the results 
obtained from the HTR setup. 

2.5. Hydrogen to carbon ratio constraint 

An additional constraint is set for the Hydrogen functions and is related to 
the term γof

k,eff presented in Equation (6). This is defined as the effective H/C 
ratio of the olefin species in each k-group. For each k, this quantity varies 
between 2 and the lowest possible H/C ratio given the chain length and the 
carbon valency, i.e., when g = 2⌊k/2⌋ − 1. The olefińs Hydrogen function 
will be constrained in a region formed by the function fhigh

H = 2nof
C,k (only 

mono-enes) and the fully unsaturated scenario, f low
H =

1
k ((2k + 2) − 4⌊k/2⌋ )nof

C,k, when every possible hydrogen has been extrac
ted from the chain of the group k. An intermediate case can also be defined, 
and this is the fully conjugated one, fmid

H = 1
k ((2k + 2) − 2⌊k/2⌋ )nof

C,k, where 
the chain only contains intercalated double bonds along its length. Any of the 
olefińs Hydrogen functions must be within this range to fulfil the chemical 
characteristics of the molecular system. 

3. Experimental setup 

The data used in the present work were obtained from experiments 
carried out in the 2–4-MW DFB gasifier of the Chalmers Power Central 
facility. Here, the fluidized bed gasifier is coupled with a 12-MW 
Circulating Fluidized Bed combustor that fed with biomass wood chips 
(see Fig. 3). 

The gasifier is fluidized with steam, using silica sand as bed material, 
and it is operated in high-temperature pyrolysis mode, i.e., 750◦–850 ◦C. 
To create the bulk of data to test the model, different experiments were 
performed using polyethylene (C: 84%w, H: 15%w) as the feedstock, and 
under different conditions of temperature and steam-fuel ratio. The 
silica sand, biomass and ash compositions as well as the operative 
conditions can be found in Table A1 to Table A4 of the appendix 
respectively. 

A sampling stream was taken from the product gas at the reactor’s 
exit, and it was split in two. One part went to an isopropanol quench 
loop that washes out the aromatics, long hydrocarbon chains and water 
from the gases. Thereafter, the gases are cooled further (effectively to ~ 
0 ◦C), so as to guarantee that there is no downstream condensation of 
species (only survived by C4 species and below), and then pumped into 
the Varian CP4900 micro-GC (GC1) with TCD detector, where the H2, 
C1, C2 and C3 species were quantified online. Before going into the 
isopropanol quench loop, there is a septa port through which aromatic 
samples are acquired using the solid-phase adsorption (SPA) method. In 
brief, 100-mL of raw gases are sucked through an adsorbent column, 
which consists of a layer of activated carbon followed by an amine 
absorbent layer (Supelclean ENVI-Carb/NH2 SPE columns). The content 
of the vial is subsequently analyzed in a Bruker GC430 gas chromato
graph coupled with a flame ionization detector (FID). In the same point, 
a gas sample was taken for the characterization of C4+ species in an 
offline GC-VUV chromatograph. The second slipstream was sent for full 
steam reforming at 1700 ◦C in the High Temperature Reactor (HTR), 
with subsequent online characterization of the gases in another similar 
micro-GC (GC2). A detailed description of the experimental and sam
pling setup can be found elsewhere [11], and a schematic of the sam
pling setup is presented in Fig. 4. 

The purpose of the HTR reactor in this work was double fold. Firstly, 
it was used for measuring the total carbon and indirectly estimate the 
yield of char. And secondly, it served as the experimental tool to mea
sure the Bed’s Oxygen Transport (BOT) and thereby validate the model 
estimations. Regarding the BOT in the system, the silica sand contains 
small amounts of Fe2O3 and the biomass used in the combustor also 
contained traces of sulphur, iron and other transition metals that tend to 

Fig. 4. Gas Sampling Setup connected to the Gasifierś outlet (Modified from [11]).  
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accumulate in the bed, along with 22% of calcium in the ashes [16,17]. 
Thus, it was expected that some oxygen be transported by the bed ma
terial in this reactor’s system. The detailed description of the HTR is 
presented elsewhere [14]. The results obtained from GC1 and GC2 are 
reported respectively in Table A4 and Table A5 in Section 7.3 of the 
Appendix. 

Furthermore, to test the capabilities of the model in assessing the 
quality of experimental data, an out-of-range calibration curve was used 
to induce a systematic error in the measured concentration of certain 
measured species. This will be further discussed in Section 4.3. The 
maximum concentrations used on this calibration as well as the species 
data obtained with the out-of-range calibration are shown in Table A7 
and Table A8, for GC1 and GC2 respectively. As shown in Table A7, some 
of the species surpassed by 4 or 5 times the maximum value of the %vol 
calibration. A similar situation is presented also with the GC2 mea
surements in Table A8, where the %vol for H2 was somewhat higher 
than the maximum calibration point. Note that this set of data also gave 
a more skewed carbon distribution, which has been applied to the model 
for testing its robustness as described in Section 4.1. 

4. Model results and discussion 

4.1. Assessment of function’s suitability 

As explained in Section 2.2, to apply the concept underlying the PSM, 
a function with the minimum number of shape parameters (α) must be 
found that fulfills the data topological conditions and the carbon bal
ance. After testing the functions presented in Table 1, it was found that 
the high variability of adjacent species in the measurements prevented a 
good fit for the mono-parametric functions evaluated (Geometric, 
Poisson and Flory-Schultz). Therefore, an additional parameter was 
required to facilitate better control of the decaying behavior of the 
distribution in the tail and in lower k-groups. Taking advantage of the 
number of observables obtained for each molecular system, (C1,C2,C3) 
for paraffins and (C2,C3,C4) for olefins, the bi-parametric functions can 
be related to the ratios among adjacent k-groups, to derive a closed 
system of equations. (C5 is not considered a reliable observable to fit the 
function, since only two out of approximately ten possible olefin species 
could be measured with the analytic instruments applied). 

Although most of the bi-parametric functions in Table 1 adapted very 
well to the paraffin system measurements, very few complied with the 
characteristic skewness imposed by the large ratios found in adjacent 
k-groups for the olefins case. In general, the heavy-tailed functions of 
Table 1 were those that presented the highest degree of flexibility to 

Fig. 5. Results of some of the parametric functions tested upon the species’ carbon distribution, expressed in molC/kgfuel vs. k-group, obtained at different severity 
cases (Exp 1, 3 and 5 from left to right). The results are considered for the paraffins and olefins cases. Bottom row: Zoomed-in plots. (Red column: incomplete group 
species measured). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Results of the total area, tail area (sum of C5 + ), and the parameters associated with the functions tested. (Nan = No results; *= Heavy-tailed functions).   

Exp 1 Exp 3 Exp. 5 
Function Area Area Tail α1 α2 Area Area Tail α1 α2 Area Area Tail α1 α2 

Neg-Binom nan nan nan nan nan nan nan nan 35.079 11.480 0.943 0.128 
Con-Max nan nan nan nan nan nan nan nan nan nan nan nan 
Burr * 40.048 10.742 1.204 1.117 40.323 13.025 1.243 0.867 36.204 12.574 1.620 0.465 
Frechet * 42.774 13.965 0.854 0.589 40.254 12.788 0.811 0.481 36.281 12.080 0.498 0.158 
Dagum * 40.077 10.789 0.442 1.399 nan nan nan nan nan nan nan nan 
Gompertz nan nan nan nan nan nan nan nan nan nan nan nan 
Weibull * nan nan nan nan nan nan nan nan 36.164 13.042 0.686 0.315 
Gamma nan nan nan nan nan nan nan nan 34.500 10.594 0.066 0.126 
Lomax * 40.134 10.865 2.538 1.380 40.335 12.994 1.949 0.691 35.713 11.120 1.444 0.076 
Gamma_Inv * 43.458 14.631 0.760 0.429 40.438 12.940 0.744 0.342 36.122 11.622 0.439 0.061  
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satisfy the system conditions. Fig. 5 shows the results obtained for the 
carbon moles per kilogram of fuel vs. the k-group when the functions 
were applied to Experiments 1, 3 and 5 (from left to right) for the data 
shown in Table A4. Although the study was performed for all five ex
periments, for graphical purposes, only these three cases are shown due 
to their relevance in terms of the ranges of severity achieved in this work 
(severity was measured as the ratio of the ethylene to the propylene 
carbon moles). The bars in the upper row of Fig. 2 show the experi
mental results for paraffin (orange) and aggregated paraffins and olefins 
(purple), and the different functions applied to describe the systems. The 
“pfof” function refers to the one formed by summing the paraffin and 
olefin functions for each k. The bottom row of Fig. 2 is a zoomed-in 
version of the respective figures in the upper row. The different 
paraffin functions tested showed no appreciable difference in terms of 
the area prediction (total moles of carbon). However, the Burr function 
was the only one capable of handling large ratios between adjacent k- 

groups; so, this is the only function that will be shown here for the 
paraffin system. C5 is shown in a red column due to the lack of species 
data, which is attributed to equipment constraints. 

As can be seen in Fig. 5, the bi-parametric functions overall describe 
well the data behaviors in the experiments, within the experimental 
uncertainty intervals for each carbon group. The heavy-tailed functions 
Burr, Fréchet, Lomax and Inverse Gamma (Gamma_Inv) were the only 
ones flexible enough to fit the data at all severity levels. It is a charac
teristic of these kind of functions that their tails stretch out over longer 
carbon groups with a lower decaying rate, which has an enlargement 
effect on their total enclosed areas, i.e., on the total carbon moles pre
dicted, as can be seen in Table 2. This is an important characteristic 
specially in low severity cases where long chain species are expected to 
be present after the cracking process. At high severities, the long chains 
start to disappear to produce shorter hydrocarbon species causing the 
observed increase in the data skewness. Also, topologies with a fast- 
decaying behavior and relatively low estimated areas are able to fit in 
such a skewness, e.g. Negative Binomial and Gamma, as presented in 
Table 2 results. Nonetheless, even in this case, still the set of heavy-tailed 
functions mentioned previously were flexible enough to keep up with 
the high-level skewness of the experimental data without causing a 
significant difference in the total area. This exemplifies the robust nature 
of this family of functions when working in cases with large and low 
ratios between the carbon groups. 

Table 2 shows the results for the area predicted, tail area (sum of the 
C5 + species prediction), and the parameters for each evaluated olefins 
function in the selected experimental cases (Experiments 1, 3 and 5). 

As mentioned before, from Table 2 it is possible to see that the heavy- 
tailed function distributions (asterisk marked), in general predicted a 
greater area, i.e., more total moles for the olefins system than for the 
non-heavy-tailed ones. Overall, with the set of functions that could fit all 
the experimental cases, a prediction uncertainty range could be estab
lished for the C5 + species between the functions with the minimum and 
maximum areas. This range can be narrowed down by discarding 
functions that do not fit into the hydrogen constraints for the molecular 
system (this will be analyzed later). A further reduction can be obtained 
either by acquiring data for larger k-group species or by exploring in 
greater detail the statistical characteristics of the chemical system. 

Fig. 6. Results of the discriminated parametric functions applied to the Hydrogen distribution of the species, expressed in molH/kgfuel vs. k-group, for Experiments 1, 
3 and 5. Upper row, Burr function results. Bottom row, zoom in and evaluation of the functions according with the gamma effective. (Red column: incomplete group 
species measured). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Bed’s oxygen transport calculated from the HTR and estimated from the model 
(PSM).  

BOT HTR BOT PSM %dif  

8.27  8.91  7.74  
10.8  9.52  11.85  
10.21  9.51  6.86  
8.92  8.87  0.56  
8.14  7.18  11.79  

Table 4 
BOT results obtained from HTR and PSM in the 
miss calibrated data case.  

BOT HTR BOT PSM  

15.62  5.49  
16.48  6.56  
15.72  6.79  
14.23  5.68  
17.18  8.24  
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However, probing in-depth into the kinetics and physical nature of the 
pyrolysis phenomena to discover which function could be most suitable 
from a mathematical perspective will be a topic for future research. 

Regarding the Hydrogen distribution case, Fig. 6 shows the same 
experimental cases as in Fig. 5. For graphical purposes and adapt
ableness reasons that will be presented later, only the Burr function is 
shown in the upper row plots in Fig. 6. Nevertheless, in the plots in the 
bottom row, which present zoomed-in versions for the evaluated 
experimental cases, all the tested functions are shown. 

The graphs in the bottom row of Fig. 6 show the allowable hydrogen 
per k-group. The grey, blue and purple-dashed curves correspond 
respectively to the three theoretical scenarios of only mono-enes, the 
fully unsaturated and fully conjugated case of the olefin’s gamma 
effective function (γof

k,eff ) introduced at the end of Section 2.5. As shown 
in the bottom row of graphs, for C7 + species, not all functions stayed 
within the allowed range of hydrogen, with the exception of Burr, 
Fréchet and Inverse Gamma, which were within range for all the 
k-groups and all the experimental cases. This means that these three 
functions have such a shape that its predicted hydrogen quantities for 
C5 + species satisfy the chemical characteristics of the olefin system, 
which provides greater confidence regarding their estimations. 

As a robustness test, the functions were tried out in a more drastic 
skewed scenario using the data coming from the out-of-range calibration 
test mentioned at the end of Section 3. In Fig. A2 and Fig. A3 of the 
appendix, the results for the carbon and hydrogen data are shown 
respectively. From the test, Burr was the only function that could keep 
up with the even higher data skewness while still fulfilling the systems 
constraints. Hence, given its robustness for all tested cases, Burr was the 
selected function for the analysis done in the next sections, and it is the 
function recommended in this work for the PSM application at the 
evaluated process conditions. 

4.2. Validation of the model’s outcomes 

Once the complete hydrogen series of paraffins and olefins are 
defined by suitable functions, i.e., enclosed within the PSM framework, 
Equation (11) can be used to calculate the Bed’s Oxygen Transport 
(BOT) in the reactor. On the other hand, the experimental setup includes 
an HTR reactor capable of reforming all the hydrocarbons coming from 
the process. As pointed out in Section 2.4, the results derived from this 
setup can be used as validation because it is based on the fact that the 
BOT estimated by PSM must render the same results as as Equation (12), 
which is based on the HTR setup, since they originate from the same 
sampled chemical system (see Fig. 4). In Table 2 the reader can find the 
results of the BOT calculated from the HTR results and the PSM esti
mation respectively. Also, in Table A6 in the appendix, the reader is 

Fig. A2. Results of some of the parametric functions tested upon the species’ carbon distribution, expressed in molC/kg_fuel vs. k-group, obtained from the study case 
of miss-calibrated species for Experiments 1, 3 and 5 (from left to right). The results are considered for the paraffins and olefins cases. Bottom row: Zoomed-in plots. 
(Red column: incomplete group species measured). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 5 
Percentage difference of the out-ranged species due to the miss calibration with 
respect to the original calibration.  

CH4 C2H4 C2H6 C3H6 C3H8 Average  

− 8.68  − 11.94  − 7.57 − 21.15  − 4.52  − 10.77  
− 8.62  − 11.93  − 7.07 − 21.14  7.82  − 8.19  
− 8.94  − 11.94  − 6.76 − 21.15  − 4.05  − 10.57  
− 9.13  − 11.93  − 6.64 − 21.10  0.00  − 9.76  
− 9.34  − 11.94  − 2.21 − 20.80  − 10.00  − 10.86    

Global Avg. (%)  ¡10.03  

Fig. A1. Simplified view of the breakdown process. (Flory-Schultz 
distribution). 
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invited to check that the transported oxygen calculated by HTR per kg of 
bed material circulation is in line with the value measured in other ex
periments using silica sand as the bed material in the Chalmers boiler, i. 
e., 0.1%w/wBM (see [3]). 

As it is possible to observe in Table 3 all the model BOT values 
calculated using PSM present an error of < 12% with respect to the 
values given by the HTR. This is acceptable, considering other random 
errors that can be involved in the unavoidable variations of a large-scale 
process or even due to the intrinsic numerical uncertainty of the model 
when predicting the carbon and the hydrogen tail. 

4.3. Data quality assessment 

In order to evaluate the capabilities of the model for data quality 
assessment, the data was then altered by taking calibration curves which 
contain certain species out of calibration range. The results and func
tions for the carbon and hydrogen of the new data are shown in Fig. A2 
and Fig. A3 of the appendix respectively. As mentioned previously, this 
case was highly skewed, and Burr was the only function that proved 
robust enough to keep with such extreme case. When applying Equation 
(12) to calculate the BOT by the HTR results and Equation (11) to 
calculate it by the PSM, the results with the new altered data are shown 
in Table 4. 

As it is possible to observe in Table 4, now there is a significant 
mismatch between the results obtained with the two approaches indi
cating the presence of an inconsistency. No matter which function was 
used or which experimental case was evaluated, the BOT value calcu
lated using Equation (12) based on the HTR measurements was 2–3-fold 
higher than that estimated by PSM from Equation (11). When checking 
the predictions made by the method for the olefins, it became apparent 
that the measured species occupy between 80 and 90% of the functiońs 
area (see Table 2). Given the topological constraints of the functiońs tail, 

Table A1 
Typical silica sand composition used as the 
bed material in the Chalmers DFB gasifier 
(See [3]).  

Comp. %wt 

SiO2 88–92 
Al2O3 4.5–6.6 
Fe2O3 0.4–0.7 
K2O 0.9–2.7 
Na2O 1.0–1.4  

Table A2 
Typical averaged elemental compositions of the biomass used as a feedstock in 
the Chalmers gasifier (See [15,21]). %wdb: weight percentage dried basis.  

Parameter Wood Chips Method 

C [%wdb] 49–50 SS_EN_ISO 16,948 
H [%wdb] 6–6.2 SS_EN_ISO 16,949 
O [%wdb] 43 By difference 
N [%wdb] 0.11–0.13 SS_EN_ISO 16,948 
S [%wdb] <0.02 SS_EN_ISO 16,994 
Cl [%wdb] <0.01 SS_EN_ISO 16,994 
LHV [MJ/kgdb] 18.7–18.3 ISO-1928 
Ash [%wdb] 0.5–0.7 SS_EN_ISO 18,122 
Moisture [%w] 36–47 Difference wet - dry  

Table A3 
Elemental compositions of the ashes in the Biomass used as a feedstock in the 
Chalmers gasifier. The column “Ash Rel.” refers to the percentage relative to the 
biomass ash fraction (See [15,21]). %wdb: weight percentage dried basis.  

Element %wdb Ash Rel. (%) 

Al  0.002  0.4 
Si  0.008  1.4 
Fe  0.002  0.4 
Ti  <0.001  <0.3 
Mn  0.006  1.1 
Mg  0.022  3.8 
Ca  0.130  22.3 
Ba  0.001  0.2 
Na  0.005  0.9 
K  0.082  14.1 
P  0.010  1.7  

Fig. A3. Results of some of the parametric functions tested upon the species’ Hydrogen distribution, expressed in molC/kg_fuel vs. k-group, obtained from the study 
case of miss-calibrated species for Experiments 1, 3 and 5 (from left to right). The results are considered for the paraffins and olefins cases. Bottom row: Zoomed-in 
plots. (Red column: incomplete group species measured). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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there was insufficient area remaining to predict a probabilistic mean
ingful share of the unknown species (C5 + ) for each k-group. This in
dicates the systematic error that is affecting the measurements, resulting 
in inflation of their quantities, which translates into a lower BOT value 
predicted by Equation (11). In fact, the overestimation in terms of the 
moles of the measured species must be on average for all the experi
ments around 15%, to ensure that the PSM estimation matches the HTR 
measurement. 

In conditions where no information of the discrepancy’s origin is 

known before hand, such an error can be explored either in the cali
bration of the analytical instrument, environmental changes or inade
quate methods of observation. For instance, in this case, it is possible to 
observe in Table A7 of the appendix that the sum of the volume con
centrations of the species detected by the micro-GC1 (see Fig. 4) was >
100%, which is a clear support to place the inaccuracies in the analytical 
instrument calibration. Indeed, given the sampling system, the total 
detected species concentration is expected to be < 100%. The carbon- 
containing species detected by GC1 were those in the range of C1–C3. 
However, the setup connected to that chromatograph is cooled effec
tively to a point where, based on the boiling temperatures, it becomes 
highly likely that the C4 species will also reach the micro-GC (~0 ◦C). 
According with the GC-VUV results, C4 species must account for 2–5 % 
vol of the final gas; therefore, the total sum of species detected by the 
micro-GC1 should be around 95–98 %vol. 

Table A4 
Measurements obtained from the gas species obtained from the steam pyrolysis of Polyethylene. SG, Steam to gasifier flow; SE, steam to extruder flow; TPD, tem
perature particle distributor (T1 in Fig. 3); TG1, temperature of the gasifier (T2); TRG, temperature of the raw gas (T5); BM, bed material flow; He, helium gas flow. The 
experiments are sorted according to process severity, defined here as the ratio of the ethylene to the propylene carbon moles.  

Operative Conditions 
Variable EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 

Feedstock Polyethylene Polyethylene Polyethylene Polyethylene Polyethylene 
Feed (kg/h) 90 90 90 90 90 
SG (kg/h) 150 150 150 150 150 
SE (kg/h) 80 80 80 80 80 
TPD (◦C) 833 830 822 807 870 
TG1 (◦C) 781 787 788 793 843 
TRG (◦C) 710 717 723 717 762 
BM (ton/h) 16.9 15.7 21.2 22.7 28.1 
He (L/min) 35 35 35 35 35  

Products (kg/kgf)     
H2 0.012 0.013 0.014 0.013 0.022 
CH4 0.130 0.128 0.137 0.141 0.167 
CO 0.017 0.017 0.018 0.022 0.027 
CO2 0.076 0.107 0.085 0.073 0.128 
C2H4 0.313 0.312 0.320 0.311 0.333 
C2H2 0.004 0.003 0.004 0.004 0.008 
C2H6 0.037 0.034 0.033 0.032 0.023 
C3H6 0.103 0.102 0.087 0.083 0.038 
C3H8 0.005 0.010 0.005 0.006 0.003 
C4H6 0.037 0.037 0.030 0.029 0.020 
C4H8 0.007 0.007 0.005 0.006 0.001 
C4H10 0.000 0.000 0.000 0.000 0.000 
C5HX 0.054 0.040 0.045 0.044 0.027 
H2S 0.010 0.011 0.003 0.003 0.003  

Aromatics (kg/kgf)     
Benzene 0.092 0.090 0.093 0.108 0.117 
Toluene 0.029 0.025 0.025 0.027 0.022 
Xylenes 0.002 0.002 0.002 0.003 0.001 
Styrene 0.014 0.014 0.014 0.016 0.018 
Naphthalene 0.016 0.016 0.017 0.019 0.030 
Anthracene 0.001 0.001 0.001 0.001 0.001 
Other arom. 0.024 0.023 0.024 0.026 0.033 
Soot 0.399 0.081 1.115 2.179 2.424  

Total 1.380 1.075 2.078 3.146 3.447  

Table A5 
Measurements obtained from the HTR setup.  

Operative Conditions     
Variable EXP 1 EXP 2 EXP 3 EXP 4 EXP 5 

HTR temp. (◦C) 1700 1700 1700 1700 1700  

Products (kg/kgf)     
H2 0.298 0.296 0.293 0.282 0.291 
CH4 0.008 0.000 0.000 0.013 0.001 
CO 1.551 1.566 1.509 1.436 1.426 
CO2 0.586 0.611 0.611 0.587 0.624 
C2H4 0.000 0.000 0.000 0.003 0.000 
C2H2 0.000 0.000 0.000 0.000 0.000 
C2H6 0.000 0.000 0.000 0.000 0.000 
C3H6 0.000 0.000 0.000 0.000 0.000 
C3H8 0.000 0.000 0.000 0.000 0.000  

Table A6 
Bed́s Oxygen Transport values based on the HTR results for each experiment. 
BM, bed material circulation flow.  

Exp. mol O/kgfuel mol O/kgBM kgO/kgBM (%) 

1  8.27  0.03  0.04 
2  10.80  0.05  0.07 
3  10.21  0.06  0.09 
4  8.92  0.05  0.08 
5  8.14  0.03  0.05  
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After calculating the percentage difference for the miss-calibrated 
species in GC1 (see Table 5), the global averaged discrepancy 
(10.03%) is of the same order of magnitude as the PSM prediction ( 
15%), which confirms once again the model’s error estimation. This 
outcome reveals the high potential of the PSM approach to identify 
shortcomings in the quality of the experimental data, where further 
research could be performed to refine the PSM implementation to ach
ieve an error allocation for each measured k-group. 

4.4. Final Remarks 

As shown here, the reduction in the degrees of freedom of the 
measured system, ranging from a whole list of experimentally deter
mined species to just two parameters that shape a specific distribution 
function, allows the PSM to capture and compress the information in 
such a way that useful knowledge can be extracted. The important re
sults obtained show that, in terms of data representation, the PSM has 
great potential to become a versatile tool, not only for use in the pre
diction of unknown data, but also to improve measurement accuracy 
and ensure that the measurements make statistical and chemical sense in 
line with the evaluated system. 

In practical applications, the ability of the model to estimate the 
share of non-measured C5 + carbon species could be valuable for any 
pyrolysis process, especially for the downstream operation of a refinery 
connected to such a process. Furthermore, the modelś concept of 
condensing the data into a constrained function with a set of parameters 
opens the possibility to characterize not only the results of the pyrolysis 
process but the process itself; and this is where it shows its full potential. 

The results of the chemical system created by the process conditions 
define a particular function profile that corresponds to a unique set of 

shape parameters. In general, each set of process conditions defines a 
hyper-state in the infinite multidimensional space formed by the per
mutations of the key operative variables, e.g., the feedstock type, bed 
type, temperature, steam-to-fuel ratio, etc. In the same manner, the 
shape parameters can form an infinite space, although they may have 
equal or less-complex dimensionality. In sets theory, if both spaces share 
the same cardinality (same size), there exists a bijective transformation, 
albeit non-linear, that connects the operative space with the one formed 
by the shape parameters. In practical terms, this means that a set of 
shape parameters can map into a single hyper-state of operative condi
tions. Therefore, the resulting modelś statistical function can be regar
ded as a signature, or fingerprint, of the process under a specific set of 
conditions. Each time that the conditions are met, the signature will 
appear. Consequently, the model can be used as a means to propagate 
the systeḿs information in two ways, and to obtain useful outcomes 
from them. In the first way, operational conditions are introduced, and 
the model will predict the process outputs. This can be considered as 
forward propagation of the information. In the second way, the process 
outcomes are given as an input to go backwards into the model and 
determine the conditions that yielded these results. This corresponds to 
backward propagation. 

5. Conclusions 

A Parametric System Model (PSM) was developed to represent the 
data emerging from a steam pyrolysis process. The main characteristic of 
the PSM is that it contains generic knowledge of the evaluated chemical 
system in terms of conservation laws and probabilistic properties. By 
including elemental (C, H, O) balances and a topology that has statistical 
meaning, it encloses the system in a way that useful information can be 

Table A7 
Volume concentrations of the species measured in GC1 (main sampling line). The “Max. Calib.” column lists the maximum volume concentrations used to build the GC 
calibration curves used in this work. The asterisk marked species were outside the maximum calibration point.   

Volumen Concentration (%vol) GC1  
Species Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Max. Calib. 

He  2.964  3.032  3.046  2.997  3.007  2.625  14.973 
H2  14.407  15.380  17.040  18.528  16.242  24.628  50.050 
O2  0.305  0.253  0.288  0.292  0.338  0.444  0.501 
N2  7.997  5.372  5.041  5.507  9.212  5.525  94.273 
CH4 *  28.084  24.423  24.206  25.625  26.440  27.360  16.009 
CO  2.216  1.655  1.693  1.748  2.111  2.250  39.428 
CO2  4.979  5.301  7.363  5.835  5.082  7.588  69.893 
C2H4 *  29.125  34.880  34.839  35.237  34.321  32.134  5.003 
C2H2  0.454  0.441  0.417  0.508  0.474  0.860  1.001 
C2H6 *  3.232  3.657  3.354  3.195  3.133  1.868  0.508 
C3H6 *  11.326  8.512  8.497  7.138  6.810  2.746  0.498 
C3H8 *  0.524  0.310  0.588  0.296  0.400  0.200  0.501 
H2S  0.179  0.728  0.831  0.291  0.232  0.214  0.503 
Total  105.791  103.944  107.203  107.197  107.802  108.440   

Table A8 
Volume concentrations of the species measured in GC2 (HTR line). The “Max. Calib.” column lists the maximum volume concentrations used to build the GC calibration 
curves used in this work. The asterisk marked species were outside the maximum calibration point.   

Volumen Concentration (%vol) GC2 (HTR)  
Specie Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Max. Calib. 

He  0.468  0.400  0.487  0.494  0.517  0.494  14.973 
H2 *  65.553  53.338  64.751  65.213  66.208  64.696  50.050 
O2 *  0.641  4.170  0.800  0.707  0.553  0.837  0.501 
N2  2.803  14.260  2.866  2.654  2.942  3.154  94.273 
CH4  0.327  0.197  0.000  0.000  0.405  0.000  16.009 
CO  24.656  20.198  24.631  24.147  24.227  23.880  39.428 
CO2  6.493  5.035  6.351  6.463  6.519  6.683  69.893 
C2H4  0.000  0.000  0.000  0.000  0.000  0.000  5.003 
C2H6  0.000  0.000  0.000  0.000  0.000  0.000  1.001 
C2H2  0.000  0.000  0.000  0.000  0.000  0.000  0.508 
C3Hx  0.000  0.000  0.000  0.000  0.000  0.000  0.498 
Total  100.941  97.597  99.886  99.679  101.371  99.744   
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extracted. Three main outcomes from the model were identified in this 
work:  

1) Based on fitting tests performed with a list of different kinds of 
known statistical functions, the PSM approach is able to compress the 
species’ carbon and hydrogen data, from a long table of measure
ment data, into bi-parametric statistical functions. The heavy-tailed 
distributions as Burr, Fréchet and Inverse Gamma, were the func
tions that best represented the provided data within the model’s 
constraints. Among them, the Burr function exhibited the highest 
levels of flexibility against all the different grades of data skewness 
caused by the process severity, while still retaining the fundamental 
chemical characteristics of the system (as the total allowed hydrogen 
in the olefin species).  

2) The provided functions’ robustness and good fit to the measured 
data, also shown the PSM’s possibility to render estimations of un
measured carbon group species in the gas product due to charac
terization equipment constraints. In that way, the model allowed to 
fully describe the carbon and hydrogen balance of the aliphatic 
systems (paraffins and olefins) to estimate important process quan
tities as the Bed́s Oxygen Transport (BOT) with good approximation 
respect to the experimental determination in an HTR setup.  

3) After inducing some error in the provided data, the capabilities of the 
model to identify shortcomings in the quality of the experimental 
data were shown. The PSM outcomes in the BOT calculation allowed 
to pinpoint and estimate with good approximation the existence of 
the systematic error that was affecting the species measurements. 
This revealed the high potential of the PSM approach for data quality 
assessment and brings forth the possibility to refine the PSM imple
mentation for allocation of the error at each measured k-group. 

In general, this work shows the potential of the PSM for application 
not only as a predictive method but also as a way to improve the quality 
of the measurements. In that context, the ability of the model to profile 

the shares of the whole carbon group set in the gas product suggests 
valuable applications in the control and design of biorefineries con
nected to a pyrolysis process. Along with that, this study establishes the 
grounds for further development of the model towards usage for pyro
lyzer downstream predictions, as well for evaluations of key upstream 
conditions. 
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Appendix 

Remarks About the Functiońs Topology 

As presented in Section 2.3, the function used in the model must satisfy the following conditions: 1) it must present a decaying behavior with the 
possibility of becoming a monomodal and positively skewed function; 2) it must be sufficiently flexible to allow relatively large changes in the 
concentrations of species while still fitting with the measured data; 3) it needs to be defined with as few parameters as possible; and 4) the function’s 
form and predicted area must be such that the conservation laws are satisfied. 

The first condition is based on the characteristic decaying form of the measured paraffin and olefin data when the species are grouped together 
according to carbon group (see Section 4 and reference [18] for typical results for the polyolefin pyrolysis process). This distributed behavior is a result 
of the free radical-mediated breakdown process suffered by the feedstock hydrocarbon chains as soon they enter the hot reactor medium. The pyrolytic 
reaction progresses as the resulting molecules try to find more-stable structures and lengths. As a rule of thumb, the shorter the chain, the more stable 
it becomes. 

This degradation process can be regarded as stochastic in nature, albeit governed by particular reactions and probabilistic behaviors [19]. In its 
simplest form as a concept, consider the chemical system as being comprised of two kinds of elements: broken and unbroken bonds. If N0 is the number 
of initial bonds, the probability p of finding a bond in the chemical system is defined as q = Nb/N0, with Nb being the number of remaining bonds at 
time t. Then, the probability of finding a broken bond is p = 1 − q (this also could be seen as the probability of breaking a bond at time t). Let us make 
blinded pick-ups from that system. The probability of finding n consecutive unbroken bonds in n number of pickups is defined as qn. A chain molecule 
of k carbons consists in a set of k − 1 unbroken bonds and 2 broken bonds at its extremities. Therefore, the probability of finding such a set of elements 
in the system will be p2qk− 1. Now, from the carbońs perspective, the probability of finding a particular carbon in such a set will be Pk = kp2qk− 1 =

kp2(1 − p)k− 1. This distribution is commonly known as Flory-Schultz, and it is a special case of the Negative Binomial Distribution for k − 1 successes 
and exactly 2 failures (see Fig. A1). 

This simple conceptualization is used merely to highlight the probabilistic nature of the process involved. However, it is useful to understand how 
the shorter C1, C2 and C3 chains start to show up and become more abundant while the probability of finding longer chains will decrease in an 
exponential way as the reaction time progresses. The behavior will become more pronounced as the severity of the process increases, which in the 
given example is equivalent to an increase of the probability p. Though the real case may be more complex, this simplified view offers a reasonable 
picture of the stochastic process that leads to the results obtained. As an application example of this concept, Zhao et. al. [20] applied this distribution 
as a first order approximation on top of the carbon number distribution of the products of Polyethylene pyrolysis. 

The second and third conditions are grounded in the requirement that the model should be sufficiently robust to provide a good fit for the results 
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obtained from the process at different conditions. Consequently, the model can be considered as a way to compress the information contained in the 
data so as to represent it in a more-readable and optimal way than the traditional one for correlative and predictive analysis purposes (see Section 1). 

Finally, the fourth condition is connected to the fact that it is very difficult (if not impossible in practical and economic terms) to obtain in detail 
information on all the possible species of paraffins, olefins and aromatics, so as to close the carbon balance. This means that the total number of moles 
for each of these molecular systems will be an unknown from an empirical point of view (although, to date, good approximations have been obtained 
for the aromatics system [11]). Therefore, for paraffins and olefins, the total number of moles must be estimated based on predictions of a function that 
be consistent with the chemical characteristics of the evaluated process. 

Additional Figures 

Figs. A2, A3 

Additional Tables 

Table A1–A8 

References 

[1] R. Praveen Kumar, J. Kenthorai Raman, E. Gnansounou, G. Baskar, eds., Refining 
Biomass Residues for Sustainable Energy and Bioproducts, Elsevier, 2020. https:// 
doi.org/10.1016/C2018-0-05005-7. 

[2] Mandviwala C, Berdugo Vilches T, Seemann M, Faust R, Thunman H. 
Thermochemical conversion of polyethylene in a fluidized bed: Impact of transition 
metal-induced oxygen transport on product distribution. J Anal Appl Pyrolysis 
2022;163:105476. 

[3] Berdugo Vilches T, Marinkovic J, Seemann M, Thunman H. Comparing Active Bed 
Materials in a Dual Fluidized Bed Biomass Gasifier: Olivine, Bauxite, Quartz-Sand, 
and Ilmenite. Energy Fuel 2016;30:4848–57. https://doi.org/10.1021/acs. 
energyfuels.6b00327. 

[4] Pecho J, Schildhauer TJ, Sturzenegger M, Biollaz S, Wokaun A. Reactive bed 
materials for improved biomass gasification in a circulating fluidised bed reactor. 
Chem Eng Sci 2008;63:2465–76. https://doi.org/10.1016/J.CES.2008.02.001. 

[5] Weitkamp J. Catalytic Hydrocracking—Mechanisms and Versatility of the Process. 
ChemCatChem 2012;4:292–306. https://doi.org/10.1002/cctc.201100315. 

[6] Mikulec J, Vrbova M. Catalytic and thermal cracking of selected polyolefins. Clean 
Technol Environ Policy 2008;10:121–30. https://doi.org/10.1007/s10098-007- 
0132-5. 

[7] de Klerk A. Thermal Cracking of Fischer− Tropsch Waxes. Ind Eng Chem Res 2007; 
46:5516–21. https://doi.org/10.1021/ie070155g. 

[8] Luo G, Suto T, Yasu S, Kato K. Catalytic degradation of high density polyethylene 
and polypropylene into liquid fuel in a powder-particle fluidized bed. Polym 
Degrad Stab 2000;70:97–102. https://doi.org/10.1016/S0141-3910(00)00095-1. 

[9] Wang J, Jiang J, Wang X, Liu S, Shen X, Cao X, et al. Polyethylene upcycling to 
fuels: Narrowing the carbon number distribution in n-alkanes by tandem 
hydropyrolysis/hydrocracking. Chem Eng J 2022;444:136360. https://doi.org/ 
10.1016/J.CEJ.2022.136360. 

[10] Israelsson M, Seemann M, Thunman H. Assessment of the Solid-Phase Adsorption 
Method for Sampling Biomass-Derived Tar in Industrial Environments. Energy Fuel 
2013;27:7569–78. https://doi.org/10.1021/ef401893j. 

[11] Berdugo Vilches T, Seemann M, Thunman H. Influence of In-Bed Catalysis by Ash- 
Coated Olivine on Tar Formation in Steam Gasification of Biomass. Energy Fuel 
2018;32:9592–604. https://doi.org/10.1021/acs.energyfuels.8b02153. 

[12] Chakraborty S. Generating discrete analogues of continuous probability 
distributions-A survey of methods and constructions. J Stat Distrib Appl 2015;2:6. 
https://doi.org/10.1186/s40488-015-0028-6. 

[13] Coles S. An Introduction to Statistical Modeling of Extreme Values, Springer, 
London. London 2001. https://doi.org/10.1007/978-1-4471-3675-0. 

[14] Israelsson M, Larsson A, Thunman H. Online Measurement of Elemental Yields, 
Oxygen Transport, Condensable Compounds, and Heating Values in Gasification 
Systems. Energy Fuel 2014;28:5892–901. https://doi.org/10.1021/ef501433n. 

[15] Berguerand N, Berdugo Vilches T. Alkali-Feldspar as a Catalyst for Biomass 
Gasification in a 2-MW Indirect Gasifier. Energy Fuel 2017;31:1583–92. https:// 
doi.org/10.1021/acs.energyfuels.6b02312. 

[16] J. Maric, Choice of bed material: a critical parameter in the optimization of dual 
fluidized bed systems, in: 2016. 

[17] Faust R, Berdugo Vilches T, Malmberg P, Seemann M, Knutsson P. Comparison of 
Ash Layer Formation Mechanisms on Si-Containing Bed Material during Dual 
Fluidized Bed Gasification of Woody Biomass. Energy Fuel 2020;34:8340–52. 
https://doi.org/10.1021/acs.energyfuels.0c00509. 

[18] W. Kaminsky, The Hamburg Fluidized-bed Pyrolysis Process to Recycle Polymer 
Wastes and Tires, in: Feedstock Recycling and Pyrolysis of Waste Plastics, John 
Wiley & Sons, Ltd, 2006: pp. 475–491. https://doi.org/https://doi.org/10.1002/ 
0470021543.ch17. 

[19] Levine SE, Broadbelt LJ. Detailed mechanistic modeling of high-density 
polyethylene pyrolysis: Low molecular weight product evolution. Polym Degrad 
Stab 2009;94:810–22. https://doi.org/10.1016/J. 
POLYMDEGRADSTAB.2009.01.031. 

[20] Zhao D, Wang X, Miller JB, Huber GW. The Chemistry and Kinetics of Polyethylene 
Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem 2020;13: 
1764–74. https://doi.org/10.1002/cssc.201903434. 

[21] T.B. Vilches, Operational strategies to control the gas composition in dual fluidized 
bed biomass gasifiers, in: 2018. 

R. Forero-Franco et al.                                                                                                                                                                                                                         

http://refhub.elsevier.com/S0016-2361(23)01131-6/h0010
http://refhub.elsevier.com/S0016-2361(23)01131-6/h0010
http://refhub.elsevier.com/S0016-2361(23)01131-6/h0010
http://refhub.elsevier.com/S0016-2361(23)01131-6/h0010
https://doi.org/10.1021/acs.energyfuels.6b00327
https://doi.org/10.1021/acs.energyfuels.6b00327
https://doi.org/10.1016/J.CES.2008.02.001
https://doi.org/10.1002/cctc.201100315
https://doi.org/10.1007/s10098-007-0132-5
https://doi.org/10.1007/s10098-007-0132-5
https://doi.org/10.1021/ie070155g
https://doi.org/10.1016/S0141-3910(00)00095-1
https://doi.org/10.1016/J.CEJ.2022.136360
https://doi.org/10.1016/J.CEJ.2022.136360
https://doi.org/10.1021/ef401893j
https://doi.org/10.1021/acs.energyfuels.8b02153
https://doi.org/10.1186/s40488-015-0028-6
https://doi.org/10.1007/978-1-4471-3675-0
https://doi.org/10.1021/ef501433n
https://doi.org/10.1021/acs.energyfuels.6b02312
https://doi.org/10.1021/acs.energyfuels.6b02312
https://doi.org/10.1021/acs.energyfuels.0c00509
https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.01.031
https://doi.org/10.1016/J.POLYMDEGRADSTAB.2009.01.031
https://doi.org/10.1002/cssc.201903434

	Developing a parametric system model to describe the product distribution of steam pyrolysis in a Dual Fluidized bed
	1 Introduction
	2 Model description
	2.1 Theoretical framework
	2.2 Parametric model definition
	2.3 Model implementation
	2.4 Bed’s oxygen Transport
	2.5 Hydrogen to carbon ratio constraint

	3 Experimental setup
	4 Model results and discussion
	4.1 Assessment of function’s suitability
	4.2 Validation of the model’s outcomes
	4.3 Data quality assessment
	4.4 Final Remarks

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix Acknowledgments
	Remarks About the Functiońs Topology
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