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Abstract 

Background To increase the chances of finding efficacious anticancer drugs, improve development times and 
reduce costs, it is of interest to rank test compounds based on their potential for human use as early as possible in the 
drug development process. In this paper, we present a method for ranking radiosensitizers using preclinical data.

Methods We used data from three xenograft mice studies to calibrate a model that accounts for radiation treatment 
combined with radiosensitizers. A nonlinear mixed effects approach was utilized where between-subject variability 
and inter-study variability were considered. Using the calibrated model, we ranked three different Ataxia telangiec-
tasia-mutated inhibitors in terms of anticancer activity. The ranking was based on the Tumor Static Exposure (TSE) 
concept and primarily illustrated through TSE-curves.

Results The model described data well and the predicted number of eradicated tumors was in good agreement 
with experimental data. The efficacy of the radiosensitizers was evaluated for the median individual and the 95% 
population percentile. Simulations predicted that a total dose of 220 Gy (5 radiation sessions a week for 6 weeks) was 
required for 95% of tumors to be eradicated when radiation was given alone. When radiation was combined with 
doses that achieved at least 8 µg/mL of each radiosensitizer in mouse blood, it was predicted that the radiation dose 
could be decreased to 50, 65, and 100 Gy, respectively, while maintaining 95% eradication.

Conclusions A simulation-based method for calculating TSE-curves was developed, which provides more accu-
rate predictions of tumor eradication than earlier, analytically derived, TSE-curves. The tool we present can poten-
tially be used for radiosensitizer selection before proceeding to subsequent phases of the drug discovery and 
development process.

Keywords Radiation therapy, Combination therapy, Tumor static exposure, Non-linear mixed effects, Inter-study 
variability
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Background
Radiosensitizers are given in combination with radiation 
treatment to make tumor tissue more sensitive to radia-
tion [1]. Hypoxic cells are more resistant to radiation 
treatment and an important class of radiosensitizers, 
Oxygen Mimetics, function by reducing the number of 
them [2]. Another important class of radiosensitizers is 
those that regulate important pathways, such as inhibi-
tors of enzymes involved in the DNA repair mechanism 
for single- and double-stranded breaks [3]. Examples of 
such radiosensitizers are Ataxia telangiectasia-mutated 
(ATM) inhibitors. ATM is an important serine/threo-
nine kinase in the body’s DNA damage repair system 
and as the name implies, the radiosensitizers work 
by inhibiting this kinase [3, 4]. New possibilities have 
arisen in the development of radiosensitizers thanks to 
the advent of nanotechnology. High Z (atomic number) 
heavy-metal nanomaterials, such as gold and silver par-
ticles, have been shown to be promising radiosensitizers 
because of their ability to absorb, scatter, and emit radia-
tion energy [5, 6]. Moreover, the physical properties of 
these particles can be tailored to, e.g., increase the accu-
mulation at the tumor target site [7]. With the help of 
radiosensitizers, the radiation dose can thus be adjusted 
to maximize anticancer efficacy while reducing harmful 
side effects. However, despite showing promising results 
in preclinical studies, only about 15% of all novel anti-
cancer drugs that enter clinical trials eventually gain reg-
ulatory approval [8].

Both preclinical and clinical results in oncology [9, 10] 
can be hard to replicate and commonly cited factors are 
poor experimental design and faulty use of statistical 
tools [11]. Another contributing factor is large inter-study 
variability. Inter-study variability can be caused by, e.g., 
experiments being carried out at different times of the day 
and differences in experimental conditions for sampling 
[12, 13]. Therefore, when evaluating the efficacy of a test 
compound, it is important to take these limitations into 
consideration. Doing so allows for more robust model pre-
dictions, increasing the chances that findings can be suc-
cessfully replicated. Furthermore, more robust preclinical 
model predictions would also help design better clinical 
studies to test efficacy in humans.

Mathematical modeling is a powerful tool that can 
support preclinical drug discovery and development 
in oncology [14, 15]. Using, for example, human tumor 
xenograft data, one can evaluate the efficacy of an anti-
cancer compound and make predictions of its potential 
for clinical use [16]. Mathematical modeling is also useful 
for ranking test compounds based on anticancer efficacy 
and toxicity [17, 18] as well as predicting optimal dose 
levels or treatment schedules [19–21]. Quantitative tech-
niques are particularly useful for analyzing combination 

therapies since all possible combinations of doses and 
treatment agents cannot be tested experimentally [22]. 
Several models for both preclinical and human data have 
been developed to describe the effects of radiation treat-
ment [23–25] as well as combination therapies [26–30].

One is often interested in finding a threshold value for 
the exposure of a compound, that when exceeded results 
in the desired treatment outcome, e.g., tumor shrinkage 
or eradication [27, 31–33]. One such threshold value is 
the so-called Tumor Static Exposure (TSE), sometimes 
referred to as Tumor Static Concentration. TSE is defined 
as all combinations of exposure levels that if kept con-
stant result in tumor stasis and therefore separate the 
space of all possible exposures into a region of tumor 
growth and a region of tumor shrinkage [26, 34]. Admin-
istering combinations of test compounds and radiation 
yielding an exposure above the TSE-curve is predicted 
to lead to tumor shrinkage and eventually tumor eradi-
cation. Analytical expressions for TSE are typically found 
from the mathematical model describing the anti-tumor 
activity of the investigated compounds. One of the ben-
efits of this is that one can immediately read from such 
an expression how different model parameters affect the 
TSE [28]. However, when complex models describe the 
anti-tumor activity, it may not be possible to derive ana-
lytical expressions for TSE without simplifications. One 
way of getting around this problem is that instead of find-
ing an analytical expression for TSE, one can resort to 
numerical methods and simulations.

This paper has three aims: (i) Investigate tumor vol-
ume data from three xenograft studies where radiation 
treatment (here with external photon beam) in combina-
tion with three different ATM inhibitors was tested. To 
accomplish this, we fit and evaluate a nonlinear mixed 
effects (NLME) model to the data [35]. Both between-
subject variability and inter-study variability are con-
sidered. (ii) Develop a simulation-based method for 
calculating the TSE for complicated tumor growth mod-
els and evaluate the tumor eradication predictions from 
this method with those of an analytically derived TSE 
expression. (iii) Use TSE to rank the three radiosensitiz-
ers based on their anticancer efficacy.

Methods
Experimental data
Data from three different studies were jointly analyzed 
in this paper. All three studies were carried out to inves-
tigate the efficacy of three radiosensitizers, which we 
denote by Rs1 , Rs2 , and Rs3.
Rs1 was used in all three studies, whereas the other two 

radiosensitizers were only present in study 1. An over-
view of the three studies is given in Table 1. Part of the 
data from study 1 has previously been published and 



Page 3 of 19Baaz et al. BMC Cancer          (2023) 23:409  

used for modeling [35, 36]. Data from study 2 have also 
previously been published and used for modeling but, 
with a different radiation model [37]. Data from study 3 
have not been previously published. The experimental 
conditions were the same for all three studies and have 
been described previously in [29, 30]. The conditions are 
repeated below with minor additions to the text.

The study designs and animal usage for the xenograft 
studies were approved by local animal welfare authori-
ties (Regierungspräsidium Darmstadt, Germany, proto-
col numbers DA4/Anz. 397, DA4/Anz. 398, and DA4/
Anz.1014). Female 7–9-week-old CD1 or NMRI nude 
mice were purchased from Charles River Laboratories 
(Sulzfeld, Germany) and allowed to adapt to local housing 
conditions for at least 1 week. All animals were implanted 
with electronical transponders to enable individual iden-
tification. Tumors were grafted upon subcutaneous injec-
tions of 2.5 × 106 cultured FaDu (ATCC HBT-43, human 
pharyngeal squamous carcinoma) cells in the flank or 
thigh (radiotherapy with total doses > 10 Gy). Cells were 
injected in 100 µl PBS/Matrigel (BD MatrigelTM Matrix) 
(1:1) (thigh) or PBS only (flank). Tumor sizes were meas-
ured with electronic calipers twice weekly. Length (L) 
was measured along the longest axis of the tumor and 
width (W) was measured perpendicular to the length. 
Volumes were calculated using the equation L × W^2/2. 
Mice with established xenografts were randomized (typi-
cal sample size n = 9–10 from 15 mice/arm) to obtain a 
similar mean and median within nonblinded treatment 
groups (average starting volume ~ 100 mm3).

Mice were treated on the same or the following day 
after randomization. Test agents were suspended in vehi-
cle of 0.5% Methocel K4M, 0.25% Tween20, 300  mM 
sodium citrate buffer pH 3.2, or 100  mM sodium cit-
rate buffer pH 4.5, and given by oral gavage in a volume 
of 10  ml/kg,10  min before each irradiation (IR) frac-
tion. IR was administered locally by positioning the 

tumor-bearing area under the beam while shielding the 
rest of the body with a lead shield. Mice were anesthe-
tized and irradiated in groups of 9 or 10 with 2 Gy/frac-
tion using the same X-RAD320 cabinet (Precision X-ray 
Inc.) set to 10 mA, 250 kV, 58 s, 50 cm FSD collimator, 
2 mm A1 filter with the same voltage and filters on the 
tubes.

Animals were euthanized at the end of the experiment 
by either exposition to  CO2, or overdosing on narcotic 
agents (ip application of Ketamine (160  mg/kg)/Rom-
pune (75 mg/kg), or Ketamine (75 mg/kg)/Medetomidine 
(1 mg/kg)) and subsequent axillary cut.

Pharmacokinetic and pharmacodynamic data
In study 1, mice were given radiation and radiosensitizer 
treatment 5 days a week for 6 weeks. The study contained 
the following treatment groups; vehicle, 2  Gy radiation, 
and 2  Gy radiation in combination with either 100  mg/
kg Rs1 , 25  mg/kg Rs2 , 100  mg/kg Rs2 , or 20  mg/kg Rs3 . 
Efficacy was assessed twice a week (sample size 9) and 
plasma was sampled for pharmacokinetics (PK) evalua-
tion in additional animals 2, 4, and 6 h after the first dose.

Study 2 was a shorter study where the mice were 
treated 5 times for 1  week. Tumor volumes were, how-
ever, still recorded for 120 days for the highest dose. The 
study contained the following treatment groups; 2  Gy 
radiation and 2 Gy radiation in combination with either 
25  mg/kg, 50  mg/kg, or 100  mg/kg Rs1 . Efficacy was 
assessed twice a week (sample size 10) and PK was sam-
pled after 0.5, 2, 4, 6, and 24 h after the first dose.

In study 3, mice were given radiation and radiosen-
sitizer treatment 5  days a week for 6  weeks. This study 
contained 4 treatment groups, 2  Gy radiation and 2  Gy 
radiation in combination with either 25  mg/kg, 50  mg/
kg, or 100 mg/kg Rs1 . Efficacy was assessed twice a week 
(sample size 10) and PK was sampled 2, 4, and 6 h after 
the dose was given on days 1 and 8. A higher pH of buffer 

Table 1 The study number, sample size, duration, treatment groups, and PK sampling times for each of the three xenograft studies 
used in this paper

a Per treatment group
b After a single dose

Study Sample  sizea Duration of 
treatment

Treatment Groups (listed treatment applied daily for 
5 days a week)

PK sampling  timesb

1 9 6 weeks Vehicle, 2 Gy Radiation
100 mg/kg Rs1 + 2 Gy Radiation
25 mg/kg and 100 mg/kg Rs2 + 2 Gy Radiation
20 mg/kg Rs3 + 2 Gy Radiation

2, 4, and 6 h

2 10 1 week Vehicle, 2 Gy Radiation
10, 50 and 200 mg/kg Rs1

0.5, 2, 4, 6, and 24 h

3 10 6 weeks 2 Gy Radiation
25, 50 and 100 mg/kg Rs1 + 2 Gy Radiation

2, 4, and 6 h
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was used for Rs1 in study 1 compared to the other two 
studies.

Exposure to radiosensitizer
The pharmacodynamic model is driven by a single phar-
macokinetic value per radiation application. We tested 
using the exposure of the radiosensitizers at the instance 
of each radiation application as well as the average expo-
sure of the radiosensitizers during treatment. Both PK 
models and direct reading of the observed maximum 
concentration, averaged over all individuals in the same 
dose groups, Cmax , were used in the model building 
process.

Pharmacodynamics
To quantify the long-term effects of radiation combined 
with radiosensitizer, a model previously developed by 
Cardilin et  al. was utilized [35]. In the model, the total 
tumor volume is assumed to be divided into three dif-
ferent types of compartments: proliferating cells, dying 
cells, and radiation damaged cells. A schematic represen-
tation of the model is shown in Fig. 1.

Tumor growth
Proliferating tumor cells are located in the first com-
partment V1 and before the treatment start, these cells 
exhibit exponential growth at a rate equal to the differ-
ence between the growth rate,kg , and the natural cell death 
rate, kk . As proliferating cells start to succumb to natural 

cell death, they undergo three stages of degradation before 
dying. These stages are represented by three transit com-
partmentsV2,V3 , andV4 , and once this process has started 
the cells lose the ability to proliferate. The number of tran-
sit compartments is chosen based on previous publications 
[35, 38]. Differentiating between proliferating and non-
proliferating cells allows for a more biologically reasonable 
model and accounts for a delayed treatment response [31].

Long‑term effect of radiation
The model assumes that the radiation treatment has two 
effects on proliferating cells: long–term and short-term. 
The long-term effect is described as a reduction of the 
growth rate based on the accumulated radiation dose used 
during treatment. This reflects the reduced growth rate 
after treatment that is observed in the data. Such phenom-
enon has been observed in other studies as well and may 
be explained by mutations and reduced vascularization in 
the tumor, as well as changes in the tumor microenviron-
ment [39]. Accounting only for the long-term effect and 
assuming that the tumors are irradiated with the same 
radiation dose each time, DR , turnover of proliferating cells 
after n radiation applications is described by the following 
equation,

Radiation applications occur at ti , DAcc is the accumu-
lated radiation dose, and I(DAcc ) is an inhibitory function 

(1)
DAcc = nDR,

dV1

dt
= kg I(DAcc)− kk V1, t �= ti i = 1 . . . n,

Fig. 1 A schematic representation of the long-term radiation and radiosensitizer model. V1 consists of proliferating tumor cells.V2 , V3 , and V4 are 
transit compartments consisting of damaged tumor cells. The growth rate of the proliferating cells is denoted by kg and the rate of natural cell 
death of all cells by kk . As a result of the radiation treatment cells become radiation damaged and this affects them in two ways. Firstly, the growth 
rate is inhibited and secondly, a fraction of proliferating cells is irreversibly damaged at each radiation session. These damaged cells are moved to 
U1 and can go through mitosis once, but their daughter cells ( U2 ) cannot. Therefore, these radiation damage cells eventually also die. Both radiation 
effects are stimulated by the radiosensitizers. DR denotes the radiation dose and Rsi denotes the exposure of radiosensitizer i at the instant of 
radiation application
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depending on the accumulated radiation dose. In earlier 
work [35], the inhibition was described by an exponen-
tial function, whereas we test three different functions to 
determine best fit with data. The three functions are: (i) 
an exponential function, (ii) a saturation function, and 
(iii) a linear function,

where γ is a parameter associated with the degree of inhi-
bition of each function and ID50 is the radiation dose that 
gives the half-maximal response.

Short‑term effect of radiation
The most critical damage from radiation is double-
stranded DNA breaks, although single-stranded DNA 
breaks can also occur [40]. The DNA strand breaks lead 
to apoptosis and mitotic catastrophe, which are thought 
to be two of the primary responses of tumor cells to 
irradiation [41]. These and other death mechanisms 
are accounted for in the model by a short-term radia-
tion effect. This effect is described by a proportion of 
the proliferating cells being instantaneously damaged at 
each radiation application. The proportion of cells that 
are damaged is determined through the so-called linear-
quadratic equation, given by,

where α and β are radiosensitivity parameters. This 
equation is commonly used in radiobiology to quantify 
cell death due to radiation treatment [40]. Turnover of 
proliferating cells at each radiation application can be 
described by

where t−i  and t+i  denotes the time immediately before and 
after each radiation application, respectively. The prolif-
erating cells that suffer this kind of irreversible radiation 
damage are instantaneously moved from compartment 
V1 to U1 . These cells are then allowed to go through mito-
sis once and for each cell that does, two daughter cells 
enter compartment U2 . As a result of the radiation these 
daughter cells cannot go through mitosis, but instead 
enters the chain of damaged compartments, V2 , V3 , and 
V4 , eventually leading to death. The compartments U1 
and U2 are included to describe a delayed treatment 
response that agrees with the observation that irradi-
ated cells can survive one or a few cell cycles before dying 
[42]. Turnover of radiation damaged cells is described by 
the equations,

(2)
I(DAcc) = e−γDAcc

I(DAcc) = 1− γDAcc
ID50+DAcc

I(DAcc) = 1− γDAcc

(3)F(DR) = 1− e−
(

αDR+βD2
R

)

,

(4)V1(t
+
i ) = V1(t

−
i )− F(DR)V1(ti)i = 1, . . . , n,

Note that as one cell in U1 undergoes mitosis, two 
daughter cells enter U2 , hence the additional factor 2 in 
the equation for U2.

Damaged cells and initial conditions
Turnover of damaged cells is described by the following 
set of equations,

The initial conditions for the system of differential 
Eqs. 1, 5, and 6 are

where V0 is the initial volume of proliferating cells. The 
initial conditions are chosen such that in the absence 
of treatment the tumor cells have strictly exponential 
growth. For a detailed derivation, see [28]. Combining 
Eqs. 1, 4, 5, 6, and 7 gives the complete set of equations 
describing proliferating and non-proliferating cells’ turn-
over. The total tumor volume is given by

Radiosensitizing effect
The radiosensitizers investigated in this paper are all 
ATM inhibitors and thus, have similar mechanisms of 
action. Once a single or double-stranded DNA break has 
occurred due to radiation, the body will try to repair it 
[43]. The radiosensitizers stimulate the effect of the radia-
tion by interfering with these repair mechanisms, as 
described in [3]. For the long-term radiation effect, this 
stimulation is modeled by scaling the accumulated radia-
tion dose DAcc in the alternative expressions for inhibi-
tion in Eq. 2 by a factor (1+ bC),

where C is the average or maximum plasma concentra-
tion of radiosensitizer after each radiation application. 
Both PK models and Cmax were evaluated to find best fit 
to data.

(5)

dU1
dt

= −kgU1 − kkU1, t �= ti,

U1

(

t+i
)

= U1

(

t−i
)

+ F(DR)V1, i = 1, . . . , n,
dU2
dt

= 2kgU1 − kkU2

(6)

dV2
dt

= kkV1 + kkU1 + kkU2 − kkV2
dV3
dt

= kkV2 − kkV3
dV4
dt

= kkV3 − kkV4

(7)Vi(0) = V0

(

kk
kg

)i−1
i = 1, 2, 3, 4,

Uj(0) = 0, j = 1, 2,

(8)Vtot = V1 + V2 + V3 + V4 +U1 +U2.

(9)
I(DAcc) = e−γDAcc(1+bC)

I(DAcc) = 1− γDAcc(1+bC)
ID50+DAcc(1+bC)

I(DAcc) = 1− γDAcc(1+ bC)
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For the short-term radiation effect, the stimulating 
effect of the radiosensitizer is described by an increase in 
the proportion of tumor cells that are radiation damaged 
at each radiation application and the modified version of 
the linear-quadratic equation which accounts for this is,

Parameters a and b are associated with the potency of 
each specific radiosensitizer.

Tumor static exposure
Tumor Static Exposure (TSE) is a concept used for quan-
tifying the efficacy of different combination therapies as 
well as predicting optimal dose schedules and ranking 
different compounds [26, 34, 35]. In this paper, we con-
sider and compare both a simulation-based and an ana-
lytical method of finding the TSE.

Analytical solution for tumor static exposure
TSE is used to determine the necessary exposure of one 
or several treatments to keep the tumor in stasis. Math-
ematically this occurs when the derivative of the tumor 
volume is zero, i.e., we can define TSE for our model as 
all combinations of C and DAcc such that

Here and henceforward the fractionation of the radia-
tion treatment is assumed to be the same as in the 
6 weeks studies. This results in a curve in a diagram with 
one axis representing drug plasma concentration and the 
other radiation dose, referred to as a TSE-curve. Admin-
istering doses yielding an exposure above the TSE-curve, 
the model predicts tumor regression and eventual eradi-
cation. An example of a TSE-curve is shown in Fig. 2.

To find an analytical expression for the TSE-curve, as 
in [35], some simplifying assumptions are made. Since 
all proliferating cells are in the V1 compartment, it is suf-
ficient that V1 is in stasis for the tumor to reach stasis 
eventually. An analytical expression for turnover of pro-
liferating cells, i.e., Eq. 1 combined with Eq. 4, leads to a 
complex expression that is hard to evaluate because of 
the treatment schedule. The short-term radiation effect 
only contributes to tumor regression during the treat-
ment period, hence once the treatment stops, only the 
long-term effect will impact tumor growth. Thus, an 
analytical expression can be found by considering only 
the long-term radiation effect. We set the derivative of 
V1 in Eq. 1 equal to zero. Using a linear inhibition func-
tion (last expressions in Eq. 2), one obtains the following 
expression for the TSE-curve,

(10)F(DR,C) = 1− e−(1+aC)(αDR+βD2
R)

(11)
dVtot(C ,DAcc)

dt
= 0.

Equation  12 describes the total radiation dose required 
for tumor stasis for different values of plasma concentra-
tion of the radiosensitizer C.

Simulation‑based solution for tumor static exposure
The simplified approach outlined above neglects the 
short-term radiation effect. Therefore, we propose a 
simulation-based method for calculating the TSE-curve, 
which considers both the long-term and short-term 
treatment effects.

The calibrated tumor model can be used to simulate 
tumor volume over time, and can therefore be used to 
evaluate the derivative for different combinations of 
radiosensitizer exposure, C, and accumulated dose, DAcc . 
A specific time point t∗ must be selected for the evalu-
ation of the derivative and to construct a TSE-curve 
means finding combinations of C and DAcc , which makes 
the derivative sufficiently small. This is done by solving 
the following optimization problem for a range of fixed 
values of DAcc,

where ǫ is a sufficiently small number. Thus, solving this 
optimization problem for different DAcc , we obtain com-
bination pairs (C, DAcc ) that all keep the tumor in sta-
sis. The simulated TSE-curve depends on the selected 
time t∗ . Since the short-term effect is only active during 
the treatment period, its contribution to the simulated 

(12)DAcc =
1−

kk
kg

γ (1+ bC)

(13)
minimizeC

subject to dVtot (C ,DAcc)
dt

|t=t∗ ≤ ǫ

Fig. 2 Tumor Static Exposure curve for two different exposures. Both 
axes can represent plasma concentration of an anticancer drug, one 
axis can also represent radiation dose. All exposure pairs on the blue 
line result in the tumor being in stasis and thus, exposures below it 
(red area) lead to tumor growth while exposures above it (green area) 
lead to tumor shrinkage. The values on the axes are only chosen for 
illustrative purposes
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TSE-curve is reduced for large t∗ . Letting t∗ → ∞ leads 
to a TSE-curve based only on the long-term effect, i.e., 
the one in Eq.  12. We chose t∗ = 60 days and ǫ = 10−4 
based on simulations for a range of potential t∗ and ǫ.

Parameter estimations are performed using the 
NLME framework [44] and thus, some parameters 
in the model are defined by a population distribution. 
However, using the median parameters result in a simu-
lated TSE-curve that describes the necessary exposure 
combinations for the median individual. We have devel-
oped an algorithm that computes this TSE-curve and it 
works in the following way. The model is first simulated 
for a fixed radiation dose and the optimization problem 
in Eq. 13 is solved to find the corresponding C such that 
the exposure pair (C, DAcc ) results in tumor stasis. The 
curve is then constructed by repeating this procedure 
for several different radiation doses The algorithm is 
shown in Fig. 3a.

We have also developed a similar algorithm that utilizes 
Monte Carlo simulations to predict exposure pairs neces-
sary for a given percentile of tumors to be in stasis. The 
first step in this algorithm is to create a large set of vir-
tual individuals (here 1000) by drawing parameter values 
from the population parameter distribution. Then, for a 
set of given radiation doses covering the explored range, 
the optimization problem is solved to find the radiosen-
sitizer concentration leading to tumor stasis for each 
virtual individual. In this way, we compute an empirical 
distribution of C-values for a fixed DAcc . A given per-
centile, e.g., 95%, is then extracted from this empirical 

distribution for each radiation dose and the TSE-curve 
for that percentile is drawn through interpolation. This 
algorithm is shown in Fig. 3b.

Computational methods
Mathematical modeling and parameter estimation were 
performed using an NLME modeling approach based on 
the first-order conditional estimation (FOCE) method 
[45]. The computational framework used was devel-
oped at the Fraunhofer–Chalmers Research Centre for 
Industrial Mathematics (Gothenburg, Sweden) [46]. The 
tumor model was simultaneously fitted to tumor vol-
ume data from all treatment groups in all three studies. 
The quotient α/β was set to the typical value of 10  Gy 
[35]. The observation error model used included both 
a proportional and additive term. The model was vali-
dated based on the precision of estimated parameters, 
in terms of relative standard error (RSE), individual fit, 
empirical Bayes estimates (EBEs) [47], Akaike informa-
tion criterion (AIC) [48], and visual predictive checks 
(VPC) [49]. Log-normal between-subject variability was 
accounted for in the parameters γ, α, and V0 (no corre-
lation assumed). Furthermore, there was also a differ-
ence in mean initial tumor volume between the studies, 
and thus the median of V0 was allowed to vary between 
the studies. To avoid biased EBEs, the median of γ was 
also allowed to vary between the studies. Taking into 
consideration both the between-subject variability and 
between-study variability, the individual γ value for 
individual j was represented by the following expression

Fig. 3 a The algorithm used to construct the median TSE-curve. The optimization problem formulated in Eq. 13 is iteratively solved to find the 
radiosensitizer exposure, which renders the median individual’s tumor to be in stasis for different radiation doses. The TSE-curve is then created 
through interpolation. b The algorithm used to construct percentile TSE-curves. A virtual dataset of individuals (here 1000) is first created. The 
optimization problem formulated in Eq. 13 is then iteratively solved for each individual, to find the radiosensitizer exposure that renders that 
individual’s tumor to be in stasis at different radiation doses. For a given percentile of interest, e.g., 95%, the radiosensitizer exposure that is sufficient 
for this percentile of tumors to be in stasis can be calculated for each radiation dose and the TSE-curve is then constructed through interpolation
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where Studyk = 1 if individual j is in study k and 0 other-
wise and γ1, γ2, and γ3 are the specific median γ value for 
each study [12, 13].

We also performed cross-validation by re-calibrating 
the model without the data from the 100 mg/kg Rs1 group 
in study 3 and then predicting the dynamics of this group 
by performing a VPC. Furthermore, we performed a sen-
sitivity analysis around the point estimates at the time 
t∗ = 60 days to determine which parameters affect tumor 
volume the most. Sensitivities were calculated for each 
treatment group and normalized against the largest value 
within each group. Parameters of the same type, e.g., γ1 , 
γ2 , and γ3 were lumped together as γ  and the mean and 
standard deviation over all treatment groups affected by 
the parameter were estimated.

Results
Exposure to radiosensitizer
We found that using the observed average maximum 
concentration, Cmax , to represent the exposure to the 
radiosensitizers provided the best fit to data. See Figure 7 
in Appendix for a VPC comparing Cmax and average con-
centration. Moreover, none of the radiosensitizers were 
accumulated in the plasma as a result of the repeated dos-
ing.Cmax for each treatment group is shown in Table  2. 
Box whisker charts of the observed maximum concen-
tration of the test compounds in the different treatment 
groups are also shown in Figure 8 in Appendix.

Pharmacodynamics
The model described the xenograft data from each treat-
ment group of each study well. To illustrate this, exam-
ples of individual fits for each treatment group and study 
are shown in Fig.  4. The model was able to distinguish 
between regrowth and eradication for all tumors. The 
observed fractions of eradicated tumors in each treat-
ment group, given radiosensitizer, and study are shown in 
Table 3.

Parameter estimation
Based on AIC, it was determined that the linear inhibi-
tory function gave the best fit to the data. The estimated 
parameters for the model are shown in Table  4 and 
VPCs for all treatments group are shown in Figures  10, 
11 and 12 in Appendix. The system parameters were all 
estimated with reasonable precision (RSE < 25%), the 
parameter with the highest RSE was γ2 with 20%. The test 
compound parameters, except for aRs1 , were all estimated 
with precision above RSE 25%. The between-subject vari-
ability was high for all three parameters assumed to have 

(14)
γj =

(

γ1 · Study1 + γ2 · Study2 + γ3 · Study3
)

eηj .

a distribution in the population. To investigate why the 
RSE was over 25% for most of the test compound param-
eters, we simulated a new dataset for study 1 and Rs2 with 
artificially lowered between-subject variability and re-
estimated the parameters (see Table 6 in Appendix). The 
result from the cross-validation is shown in Figure 13 in 
Appendix and as can be seen, the model was able to pre-
dict this treatment group well.

Since there is a difference in median initial tumor 
volume in the three studies, inter-study variability was 
introduced to V0 . The estimated medians were 56  mm3 
for study 1, 110  mm3 for study 2, and 66  mm3 for study 
3, which was in accordance with the data. The estimated 
γ-values, inhibition of the growth rate after a total radi-
ation dose of 60  Gy, corresponding to a 16%, 26%, and 
13% inhibition, for γ1 , γ2 , and γ3 , respectively. These 
numbers represent the inhibition if radiation treat-
ment is given alone. Concomitant radiation treatment 
with a radiosensitizer further reduces the growth rate. 
For example, for γ1 , Rs1 increased the inhibition of the 
growth rate to 20% and 55% at the lowest and highest 
dose, respectively. The estimate of α to 0.06 1/Gy, cor-
responds to 11% of the proliferating cells being lethally 
damaged each time the tumors are irradiated with 2 Gy. 
This fraction is increased to 17% and 55% at the low-
est and highest dose of Rs1 . Using the estimate for the 
natural growth and kill rates, the doubling time for an 
untreated tumor was approximately 5  days. Table  5 
shows the estimated growth rate from several other 
studies. The estimated growth rates range from 0.024 
to 1.14 1/day, which compares well with our estimate of 
0.14 1/day. The results from the sensitivity analysis are 
presented in Table 7 in Appendix. The two most impor-
tant parameters were kg and kk .

Table 2 Observed average maximum concentration for each 
treatment group

Test Compound Dose [mg/kg] Cmax(SD) [ µg/mL]

Study 1

 Rs1 100 1 (0.5)

 Rs2 25 2 (0.2)

 Rs2 100 5 (1.2)

 Rs3 20 7 (2.2)

Study 2

 Rs1 10 1 (0.4)

 Rs1 50 2 (0.5)

 Rs1 200 9 (2.9)

Study 3

 Rs1 25 5 (1.6)

 Rs1 50 6 (4)

 Rs1 100 7 (2.4)
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Tumor static exposure
Using the parameters from Table  4, TSE-curves were 
created using both the simulation-based and the ana-
lytical long-term methods (Eq.  12). Figure  5a illustrates 
the difference between the two methods using the spe-
cific parameters from study 3. The exposure combina-
tions required for tumor stasis are predicted to be lower 
using the simulation-based method compared to using 
the long-term analytical method. However, the radiosen-
sitizer concentrations predicted to induce tumor stasis in 
only half of the population with the analytical method led 
to the eradication of most tumors in the three experimen-
tal studies. These experimental data are better captured 
by the simulation-based method, as shown in Fig. 5b. The 
simulated TSE-curve for the 80%, 90%, and 95% popula-
tion percentiles agree well with the results of the efficacy 
studies, in which respectively 8 out of 10, 8 out of 9, and 
10 out of 10 tumors were eradicated with the treatments.

To rank the radiosensitizers, inter-study variability 
was accounted for by choosing the smallest γ-value, 

Fig. 4 Tumor volume versus time for one individual per treatment group and study. The continuous lines are the model predictions, and the dots 
are the experimental observations. Radiosensitizer and/or radiation treatment were given 5 days a week for either 1 or 6 weeks, and the black line 
along the x-axis denotes the treatment period of each study

Table 3 Observed fraction of eradicated tumors observed in 
each treatment group

a One early dropout not included

Test Compound Dose [mg/kg] Observed fraction 
of eradicated 
tumors

Study 1

 Rs1 100 1/9

 Rs2 25 9/9

 Rs2 100 8/9

 Rs3 20 6/9

Study 2

 Rs1 10 0/10

 Rs1 50 1/10

 Rs1 200 3/9a

Study 3

 Rs1 25 8/10

 Rs1 50 8/9a

 Rs1 100 10/10
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i.e., γ3 , leading to a more conservative estimation of 
the TSE-curve. Radiation treatment without radiosen-
sitizer was predicted to require a total radiation dose 
of 220 Gy for 95% of the tumors to be eradicated. The 
TSE-curves, shown in Fig. 6, predict that this dose can 
be reduced to 50 Gy, 65 Gy, and 100 Gy for Rs1 , Rs2 , and 
Rs3 , respectively, at a Cmax of 8 µg/mL.

Discussion
This paper focuses on ranking radiosensitizers based 
on their anticancer efficacy. To accomplish this, a radia-
tion and radiosensitizer model was calibrated to human 

tumor xenograft data, and a simulation-based TSE 
method was developed and used to rank three radiosen-
sitizers based on their ability to induce tumor stasis and 
eradication.

Exposure to radiosensitizer
It has previously been explored whether the maxi-
mum or the average plasma concentration is the bet-
ter predictor of anticancer efficacy [29]. We tested 
both measures and found that the maximum plasma 
concentration of the radiosensitizers was best to drive 
the radiosensitizing effect in the pharmacodynamic 

Table 4 Estimated pharmacodynamic parameters after fitting the radiation and radiosensitizing model to the data of studies 1, 2, and 
3

a Calculated as the square root of the diagonal entries of the population covariance matrix

Parameter Population Median (RSE%) Between-subject  variabilitya 
(RSE%)

Description

kg[1/day] 0.44 (1.3) - Natural growth rate

kk[1/day] 0.3 (1.7) - Natural kill rate

α[1/Gy] 0.06 (7) 50 (25) Linear radiation parameter

γ1, γ2, γ3[1/Gy] 0.027 (11), 0.044 (20), 0.02 (15) 64 (34) Growth rate inhibition parameter

V0,1, V0,2, V0,3[mm3] 26 (4.3), 44 (4.4), 22 (5) 40 (18) Initial volume of proliferating cells

aRs1[mL/µg] 0.65 (13) - Stimulation of short-term effect

aRs2[mL/µg] 0.2 (30) -

aRs3[mL/µg] 0.14 (32) -

bRs1[mL/µg] 0.26 (31) - Stimulation of long-term effect

bRs2[mL/µg] 0.4 (34) -

bRs3[mL/µg] 0.16 (40) -

σprop[%] 0.35 (2.2) - Proportional error

σadd[mm3] 4.4 (7.3) - Additive error

Table 5 Estimated growth rates for human xenografts of different cancer types in mice reported in the literature

- Not estimated
a Units [mm/day]

knet[1/day] kg[1/day] kk[1/day] Paper Cancer Type

0.127 0.127 - Koch et al. [27] Colorectal

0.144 0.144 - Goteti et al. [32] Colorectal

0.27 0.27 - Simeoni et al. [31] Colorectal

0.166 0.166 - Ouerdani et al. [50] Kidney

0.024 0.024 - Watanabe et al. [23] Lung

0.05 0.14 0.09 Cardilin et al. [28] Lung

0.14 0.44 0.3 Baaz et al Lung

0.14 0.4 0.26 Cardilin et al. [35] Lung

0.22 0.22 0.28 Cardilin et al. [37] Lung

0.146 0.146 - Simeoni et al. [31] Ovarian

0.57696a 0.577a 3.86 (10−5)a Gabrielsson et al. [26] Leukemia

1.14 1.14 - Miao et al. [33] Pancreatic
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model (see Figure 7 in Appendix). We also investigated 
using Cmax and one-compartment pharmacokinetic 
models to drive the pharmacodynamics and found 
that the Cmax approach gave a better model fit, likely 
because only the concentration at the time of irradia-
tion impacts the dynamics.

Different test compound formulations of Rs1 can 
explain the seemingly large variation in exposure 
between studies 1 and 2/3. The variation in exposure 
between studies 2 and 3 could additionally be explained 
by the fact that different compound batches were used 
and due to experimental variability [12].

Fig. 5 TSE curves where the total radiation dose is plotted against the concentration of radiosensitizer. Exposure pairs on the curves are predicted 
to result in tumor stasis for the given population percentile. a Median TSE predictions using the simulation-based method (blue) and the analytical 
long-term method (yellow). b 80%, 90%, and 95% percentile predictions using the simulation-based TSE. The three black markers in both subfigures 
represent the exposure combinations of three treatment groups in study 3. The corresponding number of eradicated tumors observed for different 
exposure combinations is shown in the legend

Fig. 6 Median (a) and 95% population TSE-curves (b) for each of the three radiosensitizers as continuous and dashed lines, respectively. Rs1 , Rs2 , 
and Rs3 are shown in blue, yellow, and green, respectively. The total radiation dose has been plotted versus the concentration of radiosensitizer. 
Exposure pairs on the curves are predicted to result in stasis for a 50% and b 95% of the tumors in a population. The ranking of the radiosensitizers 
is based on this figure
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Pharmacodynamics
Model-based assessment of data from combination therapy 
studies uses data effectively and yields a deeper understanding 
of the disease and/or treatment. In addition, modeling enables 
simulation-based analysis, potentially reducing the need for 
animal testing and thus improving animal welfare [51].

Our radiation and radiosensitizing model can describe 
xenograft data for different radiosensitizing agents and 
across multiple studies. Recently, it has also been used 
to model diffuse intrinsic pontine glioma xenograft data 
[52]. The model was able to distinguish between tumor 
eradication and regrowth for all individuals in all stud-
ies. Minor trends could be observed in the VPC for the 
10  mg/kg Rs1 study 2 group, however, a large majority 
of the observed medians for this treatment group were 
still contained inside the 90% confidence region (see 
Figure 11 in Appendix).

Parameter estimation
The estimated growth rate compared well with what 
has been reported earlier, see Table  5. Moreover, other 
sources have estimated the α parameter in the linear 
quadratic model between 0.0055 and 0.41 1/Gy, simi-
lar to our estimate of 0.06 1/Gy [23, 24, 35, 53, 54]. The 
somewhat high RSE for some radiosensitizer parameters 
is likely due to the large between-subject variability in 
the corresponding radiation parameters α and γ , which 
makes it difficult to distinguish between test compound 
effect and population variability. We verified this by 
using the model to simulate a population with artificially 
reduced between-subject variability for study 1 (only Rs2 
dose groups) and then re-estimating the model param-
eters to these data, which resulted in RSE below 25% for 
all drug parameters.

Inter‑study and between‑subject variability
Initially, inter-study variability was not included on any 
parameter, but this resulted in clear bias between studies 
in the EBEs for both γ and V0 . Therefore, we introduce it 
to both of these parameters.

The variability in γ and α were slightly larger than the 
values reported in an earlier work [35], which is to be 
expected, given the larger dataset with multiple studies 
and radiosensitizers. Some shrinkage was observed in the 
EBEs for γ (see Figure  8 in Appendix) in study 3, likely 
because most tumors in this study were eradicated early 
in the study. The median predictions were still in good 
agreement with the data (see Figure 11 in Appendix).

Two crucial issues in oncology are high attrition rates 
for compounds as they enter clinical trials and failure to 
reproduce published results [8–11]. Different reasons for 
these two issues are commonly cited, but one that they 
all share is the complexity of the disease [55–57]. Tumors 

and individuals are highly heterogeneous and therefore 
do not respond the same way [58]. Therefore, quantifying 
between-subject variability is essential particularly when 
such variability is large, as in the present studies. Moreo-
ver, quantification of between-subject variability allows 
for model predictions on a population level, thereby cap-
turing the biological heterogeneity of the disease.

Another factor to consider to address the above issues 
is inter-study variability. Differences in pharmacodynam-
ics or pharmacokinetics are often observed across studies 
and can help explain why a test compound that showed 
promise in preclinical studies failed in a clinical trial. In 
our study, the long-term radiation parameter γ varies 
depending on the study used. Therefore, we have taken 
a conservative approach by using the parameters associ-
ated with the lowest efficacy for our predictions, to not 
overpredict the efficacy.

Although researchers have shown that preclinical effi-
cacy is correlated with clinical efficacy, translating results 
from preclinical studies to a clinical setting is still an 
extremely challenging task [59–61]. This is also cited as 
one of the reasons for the high attrition rates of drugs 
tested in the clinic [62]. Therefore, the translational 
potential of the model we present here must be thor-
oughly investigated before it can be used to make clini-
cal predictions. This could for example take the form of 
calibrating the model using clinical longitudinal data 
and comparing the parameter estimates to the ones we 
present in this paper. Performing such a study would 
hence give an idea of how to scale preclinically estimated 
parameters for clinical use. More comprehensive frame-
works for performing preclinical to clinical translation, 
based on similar models and data as we use in this paper, 
have recently been published and these could be interest-
ing to apply to our model [63, 64].

Tumor static exposure
TSE is a model-based tool to predict the efficacy of anti-
cancer agents given as single agents or in combination 
[27, 28, 33, 34]. In this paper, we have used TSE to analyze 
and compare the effects of radiation with three different 
radiosensitizing compounds. Three different TSE-curves 
were generated to predict tumor shrinkage for different 
combinations of radiation dose and radiosensitizer con-
centration. An earlier work computed an approximate 
TSE-curve based only on the long-term effects of radia-
tion and radiosensitizing treatment [35]. Using this TSE-
curve comes with two potential problems, the first being 
that this simplification is only valid when the dominating 
effect is the long-term effect. The other problem is that 
the potency of each radiosensitizer is described by two 
parameters, a and b, but only the b parameter is present 
in Eq.  12. In this paper, we propose a simulation-based 
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method for calculating the TSE-curve, which takes into 
consideration both the long-term and short-term treat-
ment effects.

We see in Fig.  5a, that the earlier method for calcu-
lating the TSE-curve results in an overprediction of the 
exposure levels necessary for the median tumor to be 
eradicated compared with experimental data. In contrast, 
Fig.  5b shows that the simulation-based approach gives 
predictions that are in excellent agreement with observed 
tumor eradication for each treatment group. Thus, high-
lighting the importance of considering both short-term 
and long-term effects.

To develop efficacious anticancer drugs, there is a need 
for preclinical tumor models that better predict how well 
a test compound would perform in a clinical setting [55, 
56]. To accomplish this, phenomena of growing com-
plexity, such as drug/radioresistance, DNA repair, and 
long-term treatment effects, have been incorporated into 
preclinical tumor models [35, 40, 54, 65]. This increased 
model complexity makes it hard to compute, e.g., TSE 
analytically. Thus, the simulation-based method pre-
sented here becomes more suitable for complex tumor 
models where compounds may have more than one effect 
(e.g., act on more than one model compartment).

Moreover, when analytical equations are derived for 
the TSE (see, e.g., [28, 34, 37, 66]), the resulting predic-
tions are generally valid only for a given treatment sched-
ule (with varying dose levels). The simulation-based 
method allows for predictions using different treatment 
schedules, although great caution should be taken when 
extrapolating far from the schedules used in the underly-
ing studies. This gives the simulation-based method fur-
ther benefit as finding optimal treatment schedules is an 
integral part of mathematical oncology [19–21].

Ranking of radiosensitizers
Our analysis and comparison of the three radiosensitiz-
ing agents are based on efficacy and do not account for 
toxicological effects. Moreover, since the exposure levels 
associated with the highest dose of all three radiosensi-
tizers were similar, we implicitly assume that the toxico-
logical profiles of the three compounds are similar. Thus, 
we only rank the three radiosensitizers based on their 
anticancer efficacy and we found Rs1 to perform best of 
the three candidate compounds.

Developing a toxicological model is still essential for 
determining the potential of a test compound [36]. Toxico-
logical models can take different forms, e.g., a model that 
describes the decrease in absolute neutrophil count and 
platelet count due to chemotherapy has previously been 
developed [67]. Another type of toxicological model is one 
that determines the probability that a dose-limiting toxic-
ity event occurs at different concentration levels [29, 68].

Though we have quantified the variability in the data, cer-
tain sources of error and uncertainty remain in our predic-
tions. For example, the drugs and radiation treatment were 
only tested at specific dose levels and treatment schedules, 
and thus to make predictions outside these specific regi-
mens requires extrapolation. In addition, the model param-
eters are estimated with uncertainty (measured in RSE) and 
this could potentially also be incorporated into the pre-
dictions to give a confidence interval for the predictions. 
However, we did not do this in this paper since the most 
important parameters, found through the sensitivity analy-
sis, were estimated with such high precision.

Conclusions
The radiation and radiosensitizer model was able to 
describe data from multiple studies and different radio-
sensitizing agents. Moreover, a cross-validation was per-
formed to investigate the model’s predictive capabilities 
and the median behavior of the treatment group left out 
was successfully captured by the model. Both inter-study 
variability and between-subject variability were quanti-
fied using the NLME framework and the estimated model 
parameters compare well with values previously reported 
in the literature. A sensitivity analysis showed that the 
most important model parameters for predicting tumor 
eradication were estimated with especially high precision.

The simulation-based method of calculating the TSE-
curve for the radiation and radiosensitizer model was 
shown to provide better tumor eradication predictions 
than an earlier version that only considered the long-
term effect. The resulting TSE-curves from the simu-
lated-based method better agreed with the observed 
number of eradicated tumors and may provide a more 
accurate ranking of radiosensitizers. This demonstrates 
the importance of using the simulation-based method for 
predicting the efficacy or ranking novel radiosensitizers. 
Furthermore, the simulation-based TSE was shown to be 
a generalization of the analytical TSE, i.e., the analytical 
method for computing TSE [35] can be considered a spe-
cial case of the simulation-based TSE introduced in this 
paper. A crucial aspect that has not yet been accounted 
for is the translational potential of the model. TSE pre-
dictions may be particularly useful here since clinical 
studies commonly report treatment progress in terms of 
tumor growth, shrinkage, or stable disease [15].

The three radiosensitizers analyzed in this paper were 
ranked based on their anticancer efficacy and Rs1 was found 
to be the best, with Rs2 and Rs3 in second and third place. 
Including inter-study variability in the analysis was shown 
to be crucial, as excluding it may result in overprediction of 
anticancer efficacy. Furthermore, investigating inter-study 
variability for different treatments can also lead to better 
clinical predictions, e.g., recommended phase I/II doses.
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Appendix

Fig. 7 VPCs for the 100 mg/kg Rs1 using Cmax (left) and average radiosensitizer concentration (right). The continuous line in the middle of the grey area 
is the simulated median, and the grey area is a 90% confidence interval for the median. The red dots are the observed median from the experimental 
data. Tumor volume is shown on the y-axis and time on the x-axis

Fig. 8 Boxplots showing the maximum observed plasma concentrations for each dose level of radiosensitizer in each study. Black horizontal lines 
represent the average maximum observed plasma concentration, which was used to drive the pharmacodynamics of the model

Fig. 9 EBEs for the three log-normally distributed parameters. The different colors signify which study the different treatment groups are from, and the 
placement on the x-axis signifies which treatment group it is. The order the treatment groups are placed in is vehicle, radiation and then combination 
groups in increasing dose order. The different radiosensitizers in study 1 are placed in numerical order
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Fig. 10 VPCs for the different treatment groups in study 1. The continuous line in the middle of the grey area is the simulated median, and the grey 
area is a 90% confidence interval for the median. The red dots are the observed median from the experimental data. Tumor volume is shown on the 
y-axis and time on the x-axis

Fig. 11 VPCs for the different treatment groups in study 2. The continuous line in the middle of the grey area is the simulated median, and the grey 
area is a 90% confidence interval for the median. The red dots are the observed median from the experimental data. Tumor volume is shown on the 
y-axis and time on the x-axis
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Fig. 12 VPCs for the different treatment groups in study 3. The continuous line in the middle of the grey area is the simulated median, and the grey 
area is a 90% confidence interval for the median. The red dots are the observed median from the experimental data. Tumor volume is shown on the 
y-axis and time on the x-axis

Table 7 Mean normalized sensitivity of the tumor volume at time 
t∗ for each type of model parameter. Parameters of the same type, 
e.g.,γ1 , γ2 , and γ3 were analyzed together as γ

Mean normalized sensitivity (SD)

kg 0.87 (0.25)

kk -0.84 (0.13)

α -0.2 (0.13)

γ -0.11 (0.08)

v0 0.05 (0.01)

a -0.14 (0.09)

b -0.06 (0.05)

Table 6 Estimated pharmacodynamic parameters after fitting 
the radiation and radiosensitizing model to simulate data with 
artificially lowered variance for study 1 (only dose groups for Rs2 
were used)

Parameter Population 
Median 
(RSE%)

Between-
subject 
 variabilitya 
(RSE%)

Description

kg[1/day] 0.45 (3.88) - Natural growth 
rate

kk[1/day] 0.3 (5.5) - Natural kill rate

α[1/Gy] 0.07 (4) 10 (8) Linear radiation 
parameter

γ1[1/Gy] 0.04 (4) 10 (2) Growth rate inhibi-
tion parameter

V0,1[mm3] 26 (5) 39(14) The initial volume 
of proliferating 
cells

aRs2[mL/µg] 0.13 (16) - Stimulation of 
short-term effect

bRs2[mL/µg] 0.3 (15) - Stimulation of 
long-term effect

σprop[%] 0.23 - Proportional error

σadd[mm3] 8.7 - Additive error

a Calculated as the square root of the diagonal entries of the population 
covariance matrix
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Fig. 13 Cross-validation VPC for the 100 mg/kg Rs3 treatment group in study 3. The continuous line in the middle of the grey area is the simulated 
median, and the grey area is a 90% confidence interval for the median. The red dots are the observed median from the experimental data. Tumor 
volume is shown on the y-axis and time on the x-axis
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