
An interpretable method for automated classification of spoken transcripts
and written text

Downloaded from: https://research.chalmers.se, 2024-03-13 07:19 UTC

Citation for the original published paper (version of record):
Wahde, M., Della Vedova, M., Virgolin, M. et al (2024). An interpretable method for automated
classification of spoken transcripts and written text. Evolutionary Intelligence, 17(1): 609-621.
http://dx.doi.org/10.1007/s12065-023-00851-1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Vol.:(0123456789)1 3

Evolutionary Intelligence
https://doi.org/10.1007/s12065-023-00851-1

SPECIAL ISSUE

An interpretable method for automated classification of spoken
transcripts and written text

Mattias Wahde1 · Marco L. Della Vedova1 · Marco Virgolin2 · Minerva Suvanto1

Received: 3 March 2023 / Revised: 18 April 2023 / Accepted: 19 April 2023
© The Author(s) 2023

Abstract
We investigate the differences between spoken language (in the form of radio show transcripts) and written language (Wiki-
pedia articles) in the context of text classification. We present a novel, interpretable method for text classification, involving
a linear classifier using a large set of n−gram features, and apply it to a newly generated data set with sentences originating
either from spoken transcripts or written text. Our classifier reaches an accuracy less than 0.02 below that of a commonly
used classifier (DistilBERT) based on deep neural networks (DNNs). Moreover, our classifier has an integrated measure of
confidence, for assessing the reliability of a given classification. An online tool is provided for demonstrating our classifier,
particularly its interpretable nature, which is a crucial feature in classification tasks involving high-stakes decision-making.
We also study the capability of DistilBERT to carry out fill-in-the-blank tasks in either spoken or written text, and find it
to perform similarly in both cases. Our main conclusion is that, with careful improvements, the performance gap between
classical methods and DNN-based methods may be reduced significantly, such that the choice of classification method comes
down to the need (if any) for interpretability.

Keywords Text classification · Natural language processing · Interpretable methods

1 Introduction

Currently, the field of natural language processing (NLP) is
dominated by large-scale statistical language models (LLMs)
consisting of deep neural networks (DNNs). LLMs that use
the transformer DNN architecture [1] offer state-of-the-art
performance, as evidenced by systems such as BERT [2] and
DistilBERT [3], GPT-2, GPT-3 [4], and the much-publicized
ChatGPT. On the other hand, DNN-based systems also come

with drawbacks [5, 6], one of the most important being their
opaque nature: In most cases, it is near-impossible to deter-
mine precisely how such systems make decisions.

Now, in many cases, that does not matter. For example,
when chatting on everyday topics or classifying, say, movie
or restaurant reviews, the stakes are low and occasional
errors do not matter much. However, there are also situations
that involve high-stakes decision-making [6], for example
when a person is conversing with an artificial system about
a serious topic (e.g., a medical diagnosis, legal advice, or
financial matters). Another example is the problem of clas-
sifying a particular text to determine whether it has offen-
sive content, contains biases against minorities, or represents
fake news. In those situations, errors may have very serious
consequences. Here, it should be noted that the problem is
not the error in itself; after all, any decision-maker, whether
human or artificial, can sometimes make errors. Instead, the
problem that specifically pertains to the DNN-based LLMs
is their limited interpretability. While the state-of-the-art
LLMs generally exhibit very good average performance,
they sometimes make catastrophic, inexplicable, and inscru-
table errors. A recent example is ChatGPT that, despite its
impressive performance, also can fail spectacularly while at

 * Mattias Wahde
 mattias.wahde@chalmers.se

 Marco L. Della Vedova
 marco.dellavedova@chalmers.se

 Marco Virgolin
 marco.virgolin@cwi.nl

 Minerva Suvanto
 minerva.suvanto@chalmers.se

1 Chalmers University of Technology, 412 96 Gothenburg,
Sweden

2 Evolutionary Intelligence Group, Centrum Wiskunde
and Informatica, Science Park 123, Amsterdam 1098 XG,
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-023-00851-1&domain=pdf

 Evolutionary Intelligence

1 3

the same time even offering bogus supporting arguments for
preceding incorrect statements, typically with near-perfect
grammar, often making it hard for an uninitiated human
observer to detect the error [7]. Although many approaches
exist to explain opaque models (including DNN-based
LLMs), these remain limited in that they only represent
partial explanations (e.g., attention maps) or approximate
explanations (e.g., LIME and SHAP [8, 9]).

Turning now to the specific case of text classification,
which is the topic of this paper, BERT (and models derived
from it, such as DistilBERT) is a cornerstone model from
which many other LLMs have followed in recent years [10].
In particular, as a result of its training, where one modality
involved next-sentence prediction, i.e., determining whether
or not a given sentence B logically follows another sentence
A, the output corresponding to (the embedding of) the [CLS]
(classification) token, which is preprended to every input
token sequence, can be seen as a condensed representation
of a string of tokens (e.g., a sentence). This part of BERT’s
output can therefore be used for classification purposes, typi-
cally by adding a feedforward layer with softmax applied
to its output, and then fine-tuning the system over a train-
ing data set with known labels, whereby the weights of the
feedforward layer are optimized, while the weights of BERT
itself are (optionally) fine-tuned.

This setup, involving transfer learning applied to BERT
or one of its derived versions, has been applied in many
classification problems; see, e.g., [11–14]. In such prob-
lems, it is common to compare BERT’s performance with
a set of classical benchmark models, such as linear regres-
sion (with thresholding to turn it into a classifier), logistic
regression, naïve Bayesian classifiers, decision trees, sup-
port vector machines, and so on. The typical finding is that
the DNN-based models outperform the classical ones by a
large margin, not seldom 5–10 percentage points or even
more. This state of affairs presents a dilemma to an end-
user, assuming that the classification task at hand pertains
to a high-stakes decision-making problem: Should one use
a classical model that typically offers a high degree of inter-
pretability (albeit somewhat different between the different
models) but inferior performance, or should one use a DNN-
based system that offers better performance but very limited
interpretability?

In recent years, considerable efforts have been made to
define, tweak, and optimize DNN-based text classifiers [13].
By contrast, the classical benchmark methods are generally
given very little attention: To the extent that they are men-
tioned at all, they are often used off-the-shelf, just provid-
ing a backdrop against which the DNNs are compared. The
large performance difference, in favor of the DNN-based
text classifiers, is therefore perhaps not very surprising, but
it also leads us to an interesting question, which we will
attempt to answer in this paper: Is it possible to improve the

performance of the classical methods, either by adjusting the
features used or the methods themselves, so as to reduce or
even close the performance gap, while maintaining a high
degree of interpretability?

Here, we will consider a specific (binary) classification
task involving a newly generated data set with texts (sen-
tences) belonging to either of two classes: Transcripts of
spoken utterances (Class 0), and texts that were in written
form from the beginning (Class 1). More specifically, the
sentences in Class 0 are taken from publicly available tran-
scripts from radio shows, whereas the sentences in Class 1
are taken from Wikipedia articles. Expressed differently, one
may say that Class 0 is dominated by sentences in informal,
spoken language, whereas Class 1 primarily contains sen-
tences with more formal language.

In order to investigate the question posed above, almost
any text classification task would do. However, we will also
investigate a second question, for which the data set just
mentioned is well suited. During its development, BERT
was (pre-)trained using two large data sets: Wikipedia (2.5
billion tokens) and BooksCorpus (800 million tokens). Now,
using the class definitions above, text in Wikipedia consists
primarily of sentences that would belong to Class 1 (writ-
ten). There are sentences belonging to Class 0 in Wikipedia
articles as well, for example, quotes and excerpts of dia-
logue, but it is reasonable to assume that they represent only
a small fraction of Wikipedia’s content. The BooksCorpus
is not described in detail by the original authors, but it nev-
ertheless contains a large amount of informal spoken lan-
guage. However, as the BooksCorpus is considerably smaller
than Wikipedia, one may be concerned that BERT’s abil-
ity to deal with spoken, informal language (e.g., in fill-in-
the-blank tasks) may be less good than its ability to handle
formal, written language. This question is made even more
pertinent given the somewhat murky details of the (original)
BooksCorpus, as discussed in [15].

The main result of this work is that, after feature selection
and optimization, a custom linear classifier is able to obtain
a classification performance approaching that of DNN-based
models (in this case DistilBERT), while maintaining inter-
pretability, i.e., providing an easily human-understandable
description of the different features and their contribution
to the overall classification. We also provide a tool (see
Sect. 5.4) making it possible even for a non-specialist human
observer to understand how the classifier made its decision.
An additional output is the data set itself, which we freely
provide for use by researchers1 interested in studying the
differences between spoken transcripts and written, formal
text. Finally, we show that, perhaps somewhat contrary to

1 The data set can be downloaded at https:// doi. org/ 10. 5281/ zenodo.
76944 23.

https://doi.org/10.5281/zenodo.7694423
https://doi.org/10.5281/zenodo.7694423

Evolutionary Intelligence

1 3

our expectations, DistilBERT is, in fact, more or less equally
good at filling in blanks in either written text (Class 1) or
transcripts of spoken utterances (Class 0).

The paper is organized as follows: In Sect. 2, we describe
some related work. Section 3 describes our data set, and our
custom linear classifier is presented in Sect. 4. In Sect. 5 we
give our results, and then a discussion follows in Sect. 6. The
conclusions are given in Sect. 7.

2 Related work

To our knowledge, this study is the first that considers the
issue of comparing spoken utterances and written text, in
the context of classification over a large data set. As men-
tioned above, we will show that our classifier exhibits good
performance, approaching that of the DNN-based Distil-
BERT classifier, while maintaining interpretability. This is
in stark contrast to the often very large reported performance
difference between, on the one hand, DNN-based classifi-
ers and, on the other hand, any other method. For exam-
ple, in the case of text sentiment analysis using the IMDB
data set of movie reviews, the best-performing DNN-based
classifiers [16, 17] have a reported accuracy in the range
of around 0.95 to 0.97, whereas classical methods such as
kNN classifiers, naïve Bayesian classifiers, support vector
machines (SVMs), logistic regression, and so on, typically
do not exceed an accuracy of 0.9, thus indicating a difference
in accuracy of around 0.05−0.07. Similarly, in the context
of fake news detection, DNN-based methods outperform
methods based on decision trees and SVMs by a differ-
ence in accuracy of up to about 0.30 depending on the data
set [18]. Another example, involving fake news detection
related to Covid-19, is given in [19], where a version of
BERT achieved an accuracy very close to 1, compared to
an accuracy of around 0.94 for a method combining a naïve
Bayesian classifier and an SVM [20].

It should be noted that, possibly because of the results
described above, recent papers on text classification barely
even mention any approaches other than black box, DNN-
based methods, comparing them to each other, see e.g. [13]
and the references therein. While the DNN-based methods
undoubtedly are leading in performance at present, there
may be other dimensions to consider as well, for example
the level of interpretability of a classifier, an aspect where
the complex and highly non-linear DNN-based classifiers
are severely limited. The classical methods are generally less
opaque, but were not explicitly designed for interpretability
that, arguably, was not an important issue before the advent
of large DNN-based text classifiers.

In the context of the interpretation of text classifica-
tion methods, [21] propose an approach similar to ours

regarding the visualization of the contribution of indi-
vidual words. However, their approach is based on a sec-
ondary method (i.e., layer-wise relevance propagation,
LRP) that aims to explain the output of another classi-
fication method (e.g., a CNN) rather than providing an
explicitly interpretable recipe (as our method does) for
how the emphasized words are combined in order to make
the classification.

3 Data

For text classification of the kind considered in this paper,
it is assumed that the data sets consist of k sentences,
of which k0 belong to Class 0 and k1 to Class 1, i.e., the
two classes defined in Sect. 1. In the case of the specific
data set used here, sentences belonging to the spoken
class (Class 0) were generated from publicly available
data sets with transcripts from radio shows, namely several
shows from National Public Radio (NPR) and the radio
show This American Life. Texts from those sources were
split into individual sentences, which were then added to
the data set. For Class 1, sentences were generated from
a large number of randomly selected Wikipedia pages
(excluding special, redirect, disambiguation, and list-of
pages), again splitting the text into individual sentences.
Now, after visual inspection of the data set, it was deemed
that very short sentences should be excluded, as there is
often no possibility of reliably assigning a class label for
such sentences; many short sentences could very well be
seen as belonging to either class. In the end, the lower
limit was set at 5 tokens (including the end-of-sentence
marker, which is tokenized as well; see Sect. 4.1.1 below).

In total, after removing short sentences, 13,640,458
sentences were retained, of which 6,374,487 in Class 0
and 7,265,971 in Class 1. Next, the data set was split into
three subsets, a training set (with approximately 5/7 of
the total number of sentences), a validation set (1/7), and
a test set (1/7). Thus, the training set contained 9,743,188
sentences (of which 4,553,205 in Class 0 and 5,189,983 in
Class 1), the validation set 1,948,639 sentences (of which
910,641 in Class 0 and 1,037,998 in Class 1), and the test

Table 1 Data set split information

The fraction of samples in each of the three subsets, and for each
class label

Subset Class 0 Class 1 Total

Training 0.3336 0.3802 0.7138
Validation 0.0668 0.0761 0.1429
Test 0.0668 0.0761 0.1429

 Evolutionary Intelligence

1 3

set 1,948,631 sentences (of which 910,641 in Class0 and
1,037,990 in Class1); see also Table 1.

3.1 Spoken vs. written text

In order to measure differences in token frequencies
between spoken and written language, the spokenness
measure (s) is here introduced as

where t denotes a token, fs(t) denotes its relative frequency
among the spoken sentences (Class 0) and fw(t) its frequency
among the written sentences (Class 1). The measure is com-
puted only for those tokens that appear at least once in both
sets. The left column of Table 2 shows some examples of
tokens with strongly positive spokenness, and the right col-
umn shows some examples with strongly negative spoken-
ness values, when computed over the training set defined
above. As can be seen from the table, the relative token
frequency differs by a factor 100 or more for some tokens.

The fact that many words have a spokenness value very
different from zero (either negative or positive) may cause
some concern regarding the performance (in any NLP
task) of language models trained over predominantly writ-
ten data sources. An example is BERT, for which a large
majority of the training data came from written sources
(see Sect. 1). On the other hand, it is likely that the num-
ber of words considered in spoken dialogue is much
smaller than the number of tokens used in written dia-
logue, perhaps making it easier to train a language model
for spoken text. Indeed, for our data set, using the tokeni-
zation method described in Sect. 4.1.1 below, the spoken
data (in the training set) contributes 128,689 tokens with
at least 3 instances or more, whereas the written set con-
tributes 439,641 tokens. There is of course a considerable
overlap between these two token sets: The total number
of tokens with at least 3 total instances (regardless of the
class) is equal to 481,452.

(1)s(t) = log10
fs(t)

fw(t)
,

4 Method

This section describes the proposed method in general terms,
i.e., independent of the data set used, starting with feature
generation. Next, the structure of the classifier is described
and then the optimization method.

4.1 Classification features

In the proposed method, bag-of-words-style (or, rather, bag-
of-n-gram) features are used. Thus, the features are defined
as the counts (number of instances) of n−grams in the text
or utterance that is to be classified.

4.1.1 Tokenization

Starting with the unigram features (n = 1), we have written
a custom, very inclusive tokenizer, i.e., one that generates a
very large set of tokens (i.e., unigrams), by keeping words as
they are, essentially just splitting the data sets on the space
character, and treating (some) special characters, e.g. paren-
theses, quotation marks, etc. as separate tokens. The number
of tokens thus generated is generally orders of magnitude
larger than, say, the 30,522 tokens used in standard BERT,
and a bit larger than the number of tokens generated by the
scikit-learn standard tokenizer.

4.1.2 Token sequences

The method also makes use of n−grams with n > 1 . In prin-
ciple, the feature generation could involve several values of
n, up to a maximum value which is here denoted n

max

 . How-
ever, in practice, it is sufficient to stop the feature generation
at a small value of n, in our case n = 2 (bigrams), as illus-
trated in Sect. 5 below. Once a text has been tokenized, from
the m tokens, the m − n + 1 possible n−grams are generated,
and the number of instances of each n−gram is counted,
i.e., the same procedure as for the unigrams.

4.1.3 Generating the feature set

When generating a feature set, the tokenization is carried out
first, resulting in a list of tokens for each text. In prepara-
tion for optimization, the training set is tokenized, and the
resulting tokens (unigrams) are stored in a feature set, along
with information about the number of instances in each of
the two classes. Next, all bigrams are generated by consider-
ing consecutive tokens. In the specific case considered here,
the training set consists of k individual sentences, so that
the total number of bigrams is equal to m − k , where m is
the total number of tokens in the training set. As in the case

Table 2 Examples of spokenness values for different tokens

Examples of tokens with strongly positive spokenness (left column)
and strongly negative spokenness (right column), in the training set
used here; see also Eq. 1. Note that misspelled words and proper
nouns, e.g., names, are not shown in the list (but are included in the
tokens generated by our tokenizer)

Token Spokenness Token Spokenness

how’d 2.3385 relegation −3.0993
who’ve 2.2970 footballer −2.9392
yeah 2.2871 duchy −2.8519
here’s 2.1295 ventral −2.7050
they’re 2.0272 uncredited −2.6415

Evolutionary Intelligence

1 3

of the unigrams, the number of instances (in each class) is
noted for each bigram. The procedure can then, in principle,
be extended to include trigrams, and so on.

From this large, preliminary feature set, rare features are
removed to avoid overfitting during optimization, by simply
counting the number of occurrences of each feature in the
training set, and then removing those features that appear
less than p times in that set, where p is an integer parameter.
After that, the unigrams, bigrams, and so on, are sorted in
alphabetical order to form the feature set.

Next, both the training set and the validation set are
indexed, which can be done with an efficient binary search,
resulting in a feature index list, such that features can be
accessed by simple indexing, that is, an O(1) process, with
minimal overhead. Note that, when indexing the validation
set, in some cases there may be unigrams, bigrams, and so
on that do not appear in the training set, and are therefore
not included in the feature set. In such cases, the index is set
to -1, and the corresponding feature will be ignored by the
classifier (see below). However, due to the inclusive nature
of the feature set, the vast majority of features in the valida-
tion set can also be found in the training set.

4.2 Classifier

The classifier has a simple, essentially linear, structure, but
with a length-dependent adjustment term. Let fi denote the
number of instances of feature i in a given text, where the
features are the n−grams described above, and let V denote
the total number of distinct features in the feature set. Fur-
thermore, let L1 denote the number of tokens (unigrams)
in the text, L2 the number of bigrams, and so on, and let
L = L1 + L2 +… denote the total number of features in the
text, where the sum thus extends to the maximum value of
n in the feature set; typically n = 2 , as mentioned above. In
order to classify a text, the following sum is computed

where � is a bias term and wi are the feature weights that, as will
be shown below, are initially in the range [−1, 1] . It should be
noted here that, even though V is typically quite large (millions),
most feature values fi are zero, as only the features actually
present in the text under consideration are effectively included
in the summation. Once s has been computed, it is normalized
by the number of features actually present in the text, i.e.,

where the 1 accounts for the bias term � . Finally, a length
adjustment factor is added, to form the final classification
measure �

(2)s = � +

V∑

i=1

wifi,

(3)s =
s

1 + L1 + L2 +…

≡
s

1 + L
.

The classifier thus maintains a list of �(L1) , one for each
value of the text length. If the length of a classified text
exceeds the maximum length Lmax

1
 of any text in the training

set, the value �(Lmax

1
) is used instead. The length adjustment

gives a small, but positive, contribution to the classifica-
tion performance, at least for the data sets considered here.
Note that, if the length of the classified texts happens to be
irrelevant for classification, the optimizer will set the cor-
responding parameters to near-zero values, thus effectively
removing them from consideration.

Classification is then straightforward: If � ≥ 0 , the text is
classified as belonging to Class 1 (written text, in our case),
otherwise it is classified as an instance of Class 0 (spoken
utterances, here).

We remark here that the classification measure � itself
has a dual purpose. It determines the class assignment as
just described, but its magnitude, i.e., |�| , can also act as
a reliable measure of the classifier’s confidence in its own
classification, as discussed below; see Sect. 5.3. Note also
that the normalization in Eq. 3 is not really needed from
a classification perspective (since the classification thresh-
old is 0, and the length adjustment weights �(L1) could be
re-scaled), but it is needed in order for |�| to be used as a
confidence measure.

4.2.1 Generating and using the classifier

As can be seen above, our classifier is fully determined
by the values of the bias term � , the V weights wi , and the
length adjustment factors �(L1) . When generating a classifier
(as a precursor to optimization; see below), the bias term and
the length adjustment terms are typically set to zero. The
weights wi are initialized based on the number of instances
of the corresponding feature fi in the two classes. Consider-
ing the training set, let c0(i) and c1(i) denote the number of
instances of feature i in the texts (sentences, in our case)
belonging to Class 0 and Class 1, respectively. The initial
value of wi is then assigned as

resulting in values in the range [−1, 1] , such that values close
to 1 are indicative of a feature that predominantly occurs in
Class 1, and values close to -1 signify a feature that chiefly
appears in Class 0. Note that the values of c0(i) and c1(i) are
available in the feature set by construction (see Sect. 4.1.3
above), so that a classifier can be generated very fast.

Once the classifier has been generated, its performance
over any indexed data set (e.g. the training set or the valida-
tion set considered here) can be computed very quickly. For

(4)� = s + �(L1).

(5)wi =
c1(i) − c0(i)

c1(i) + c0(i)
,

 Evolutionary Intelligence

1 3

each feature fi that appears in a text under consideration, the
corresponding index is available (as a result of the indexing
step described above), so that the weight wi can simply be read
off from the index. The length adjustment term can also easily
be accessed, given information (which is stored as well) about
the number of tokens in the text being classified. Thus, for the
proposed classifier, the classification time complexity is O(L).

For a non-indexed text, such as when the classifier is actually
used, after optimization, the text must first be indexed, some-
thing that involves a binary search over the features with time
complexity O(L logL) (for the L features, in total) followed by
the actual classification with time complexity O(L) as above.

4.3 Optimization

The optimization procedure is straightforward as well. Dur-
ing optimization, the performance over the validation set is
computed first, using a suitable performance measure; here,
the accuracy was used, i.e.,

where TP are the true positives, i.e., texts belonging to Class
1 that are actually assigned (by the classifier) to Class 1, TN
are the true negatives, FP the false positives, and FN the
false negatives.

Next, the performance is computed over the training set.
For that set, the feature errors, defined as

are computed, where �i = c0(i) + c1(i) is the total number
of instances of fi in the entire training set, vij is the number
of instances of feature fi in sentence j, whereas Cj and Ĉj
respectively are the true and inferred classes (represented as
integers) for sentence j, i.e., either 0 or 1. After computing
ei for all features, the weights are updated as

where � is the learning rate. For the bias term, the error is
instead simply defined as

and � is then updated as

Finally, for the length adjustment terms, �i , the error is com-
puted as

(6)a =

TP + TN

TP + FP + TN + FN

,

(7)ei =
1

𝛾i

k∑

j=1

vij
(
Ĉj − Cj

)
, i = 1,… ,V ,

(8)wi ← wi − �ei,

(9)e𝛼 =

1

k

k∑

j=1

(
Ĉj − Cj

)
,

(10)� ← � − �e� ,

where � is a delta function that takes the value one for the
given value of L1 , and 0 for all other values, and kL1 is the
number of texts with length L1 tokens. Here, given that the
length adjustment is added to the normalized sum s (see
Eq. 4), a different (smaller) learning rate � is used, such that

Once the new parameters (weights, biases, and length adjust-
ments) are available, the first training epoch (iteration) is
completed. Next, all the sentences are classified again, using
the new parameters, after which new errors can be computed
so that the parameters can be updated again, and so on, for
any number of epochs. Optionally, the learning rate can be
set to decay, by modifying it (after every training epoch) as

where � is a positive constant, smaller than (or equal to) 1.
During optimization, holdout validation is used, in which

both the training and validation sets are considered: The
performance over the training set is used when updating
the weights, whereas the validation performance is used for
determining when to stop the training (but does not effect
the parameters), so as to avoid overfitting. In other words,
the best parameter set is taken as that which minimizes the
error over the validation set.

Note that, while the learning rule bears some resemblance
to the stochastic gradient descent learning rule that can be
applied in linear (and logistic) regression, there are also dif-
ferences, notably the fact that, in our method, the weight
update is based on the local error, i.e., the contribution of
each feature, in isolation. Moreover, the error uses the dis-
crete class assignment (the inferred class vs. the ground truth
class), rather than the classification measure, that is, the
squared weighted feature sum, as would be the case in linear
regression.

5 Results

The method described above was implemented in C#.NET
(i.e., without making use of ready-made functions for tokeni-
zation etc.). This was a deliberate choice in order to maintain
flexibility over the various steps in the procedure.

The method was then applied to the training set pre-
sented in Sect. 3, considering unigrams and bigrams,2 i.e.,

(11)e𝛽,L1 =
1

kL1

k∑

j=1

𝛿(L1)
(
Ĉj − Cj

)
,

(12)�(L1) ← �(L1) − �e�,L1 .

(13)� ← ��,

2 The case n
max

= 3 was considered as well, but the results obtained
were slightly worse than those reported below.

Evolutionary Intelligence

1 3

Fig. 1 The performance of the classifier during the first 25 iterations
of an optimization run with � = 2 , � = 0.975 , and � = 0.10 . The blue
line shows the accuracy over the training set and the black line shows
the accuracy over the validation set. The best classifier, with a valida-
tion accuracy of 0.9529 (marked with a bigger disc), was achieved in
the 10th iteration

with n
max

= 2 . The tokenizer produced a set of 1,484,934
distinct tokens. The threshold p was set to 3, meaning that
any feature with less than 3 instances (in the training set)
was eliminated. The resulting feature set contained a total
of 4,467,598 features, of which 481,452 unigram features
and 3,986,146 bigram features. Next, the training, valida-
tion, and test sets were indexed, using the feature set defined
for the training set. As mentioned above, while not strictly
necessary, the indexing greatly increases the speed of the
classifier. Then, a classifier was generated assigning initial
weights as described in Sect. 4.2.1. Several runs where then
carried out, using the optimization procedure described
above, and with different values of the learning rates � and �
and the decay rate � . While the final results did not depend
strongly on the values of the learning rate, the optimiza-
tion time was found to be shortest with the values � = 2 ,
� = 0.975 , and � = 0.10.

The performance over the validation and training set as
functions of the number of training epochs, using the accu-
racy (Eq. 6) as the performance measure, is shown in Fig. 1.
As can be seen from the figure, the best validation perfor-
mance, an accuracy of 0.9529, was found after 10 epochs.
The corresponding classifier was saved, and was then,
finally, applied to the previously unused test set, resulting
in an accuracy of 0.9561. The optimization run was carried
out on a standard desktop computer with 32 GB RAM and
an Intel Core i9 processor running at 3.1 GHz, using which
a training epoch (i.e., computing the performance over the
validation and training sets, and then updating the param-
eters) took around 22.4 s, meaning that the best validation
score was found after less than 4 min. of running time. As
further discussed in Sect. 6, the speed could quite easily be
significantly improved though, but it was not deemed neces-
sary to do so here. The main point is that the procedure can
easily be carried out on standard hardware.

5.1 Comparing classification methods

For the purposes of comparison, several other classifica-
tion methods were tried as well. In all cases (including our
method) the starting point was the same, namely the training
and validation sets, described in Sect. 3, and the final evalua-
tion was based on the performance over the test set described
in the same section.

The methods considered were divided into three classes:
(i) Classical methods, a category that here involves linear
regression (with thresholding to generate a classifier), logis-
tic regression, multinomial naïve Bayes, Bernoulli naïve
Bayes, SVMs, a ridge classifier, and a decision tree; (ii)
explicitly interpretable methods, a category that here con-
tains only our method (see also Sect. 5.4); and (iii) black box
methods, comprising a shallow neural network (NN) and a
DNN (DistilBERT).

For the classical methods, the Python implementations in
scikit-learn (v. 1.2.1) were used, along with its default
tokenizer, defining a total of 972,896 unique tokens, i.e., a
bit less than the number obtained with our tokenizer. In the
case of multinomial and Bernoulli naïve Bayes classifiers, the
default settings were used, i.e., with the additive smoothing
parameter set to one, and prior probabilities adjusted accord-
ing to the data. In the case of linear regression, an exact solu-
tion was generated via matrix inversion, rather than using sto-
chastic gradient descent. For logistic regression, we used the
SAGA solver. Similarly, for the SVM, the stochastic gradient
descent method with hinge loss function was used (i.e., the
SGDClassifier implementation with default parameters).
In the case of the ridge classifier, the default settings were
used, i.e., with the regularization coefficient set to one. A
maximum depth of 35 was set for the decision tree classifier,
which was generated using the CART algorithm.

For black box methods, we used the same tokenization
as in the classical methods for the shallow NN, while for
the DNN the tokenization follows the pre-trained BERT
scheme, with a vocabulary size of 30,522 tokens in total
(much fewer than in the other cases). The shallow NN is
structured as an embedding bag with an embedding size of
64, plus a linear layer for classification. It has been imple-
mented with PyTorch and trained with cross entropy loss,
the SGD optimizer (running five epochs), and a batch size
of 128. As for the structure, the DNN is the Hugging Face
pretrained DistilBERT uncased,3 fine-tuned to our clas-
sification task with the training and validation sets (using
batch size: 32, epochs: 5, learning rate: 2 × 10−5).

3 https:// huggi ngface. co/ disti lbert- base- uncas ed.

https://huggingface.co/distilbert-base-uncased

 Evolutionary Intelligence

1 3

The results over the test set are presented in Table 3.
As can be seen from the table, focusing on the F1 score,
the classical methods (for which unigram features were
used) range from 0.860 to 0.932, with an average of 0.913,
whereas the DNN-based classifier (DistilBERT) reaches
an F1 score of 0.974, i.e., a performance boost of around
0.06, roughly in line with the findings from other stud-
ies, as discussed in Sect. 2 above. For our classifier, with
n
max

= 1 , i.e., using only unigrams as features, and apply-
ing the optimization method from Sect. 4.3, the result
over the test set was an F1 score of 0.947, which is better
than all the classical methods. For n

max
= 2 , i.e., using

unigrams and bigrams as features, the performance of our
method, an F1 score of 0.956, is only less than 0.02 below
the results from DistilBERT. This is an interesting result,
in our view: With such a small performance difference,
the choice of classifier comes down to the need (if any) for
understanding exactly how the classifier arrived at its deci-
sion, something that our method easily offers (see Sect. 5.3
below), but which is not the case for black box methods,
including DistilBERT.

While Table 3 offers a fair relative comparison of the dif-
ferent methods, in all cases using the same training, valida-
tion, and test sets, one should be careful not to draw too firm
conclusions regarding the absolute classification accuracy: It
is possible that artifacts in the data, or the fact that the data
are derived from just a few sources (albeit large ones), may

inflate the classification performance in a way that would not
apply for new, unseen data.

5.2 Running time comparison

Starting with the process of generating a classifier, one can
divide it (for all methods) into two distinct steps: First, a
preprocessing step is carried out, involving tokenization and
indexing (or vectorization), which is rather similar for all
methods, and can be carried out once and for all, for a given
data set; see Sect. 4.1.3; Next, after preprocessing, the classi-
fier is optimized. For the proposed method, with the data set
considered here, each iteration of the optimizer lasted around
22 s so that the entire optimization run shown in Fig. 1 took
around 9 min to complete, on a standard desktop computer.
Note that, if needed, the optimization can be speeded up by
around a factor three or so, by using the fact that the texts
are classified independently of each other, meaning that the
classifier could be modified to run over multiple processor
cores. By way of comparison, the optimization time for the
other classical methods were: A few seconds for naïve Bayes
and SVM; a few minutes for logistic regression and the ridge
classifier; about one hour for linear regression (executed in
parallel over 24 cores); and about 5 h for the decision tree.
For the black box methods, the optimization of the shallow
NN took a few minutes, whereas fine-tuning DistilBERT
took about 60 h. Note that the optimization time for the two

Table 3 Performance over the test set for several different methods

Note: For the classical methods, the unigram bag-of-words features were used, obtained with the scikit-learn tokenizer. For our method,
two cases are shown, namely n

max
= 1 (using only unigrams as features) and n

max
= 2 (using unigrams and bigrams). In both cases, features were

generated with our tokenizer, and were included only if they had at least 3 instances in total, in the training set. The column marked r measures
the F1 score relative to the F1 score for DistilBERT, whereas the right-most column shows the ordinal rank of the different methods

Classical methods

accuracy precision recall F1 r rank
Multinomial naïve Bayes 0.898 0.866 0.957 0.909 0.933 9
Bernoulli naïve Bayes 0.916 0.930 0.911 0.920 0.945 8
Linear regression 0.927 0.929 0.934 0.932 0.957 5
Logistic regression 0.922 0.913 0.944 0.928 0.953 7
Support vector machine 0.834 0.784 0.951 0.860 0.883 11
Ridge classifier 0.924 0.915 0.944 0.929 0.954 6
Decision tree 0.846 0.809 0.930 0.865 0.888 10

Explicitly interpretable methods

accuracy precision recall F1 r rank
Our classifier, n

max
= 1 0.943 0.947 0.946 0.947 0.972 3

Our classifier, n
max

= 2 0.953 0.951 0.961 0.956 0.982 2

Black box methods

accuracy precision recall F1 r rank
Shallow neural network 0.931 0.931 0.940 0.936 0.961 4
DNN DistilBERT 0.973 0.975 0.973 0.974 1.000 1

Evolutionary Intelligence

1 3

methods based on neural networks is not directly comparable
with the others since different hardware (GPU rather than
CPU) was used in those cases.

Turning now to the use of the optimized classifier, run-
ning through the entire test set (with 1,948,631 sentences;
see Sect. 3) took a few seconds with our method (and the
classical methods), again using a standard desktop computer,
whereas it took about 20 min with DistilBERT.

5.3 Confidence measure

As it turns out, the absolute value of the classification meas-
ure, i.e., |�| (see Eq. 4), can be used as the basis for a meas-
ure of confidence, as follows: After optimization, the clas-
sification performance for the k

val
 texts in the validation set4

was used in order to form a confidence histogram, measuring
the classification accuracy as a function of |�| . The values
of |�| were binned in intervals of width d. For each bin, the
fraction of correct classifications were computed for those

texts whose value (whether negative or positive) of |�| fell
into the bin in question. This fraction is henceforth referred
to as the confidence, denoted c(|�|) , which is thus a local
measure, pertaining to a narrow range of |�| values.

The resulting histogram is shown in the top panel of
Fig. 2. As can be seen from the figure, the confidence rises
very quickly with |�| . The bottom panel of the figure shows
the fraction of samples in each bin. From the data underlying
these figures, one can compute the fraction of samples for
which the accuracy exceeds a given threshold; it turns out
that 74.4% of samples have |𝜎| > 0.15 , where the accuracy is
0.97 or better. Similarly, 67.4% of samples fall in bins with
|𝜎| > 0.19 , for which the accuracy is 0.98 or better. Finally,
54.6% of samples have |𝜎| > 0.24 , where the accuracy is
0.99 or better.

Figure 3 illustrates that the confidence measure c(|�|) is
reliable by showing its application to the test set. In this
figure, every point represents one bin. The horizontal axis
measures the expected confidence c(|�|) based on the vali-
dation histogram and the vertical axis shows the actual test
set accuracy for the corresponding bin. As can be seen in
the figure, c(|�|) matches almost perfectly the probability
of classifying a test sentence correctly. As a specific exam-
ple, consider the bin with values of |�| in [0.200, 0.210].
For the validation histogram, there were 49,041 sentences
in this range, of which 48,232, or 98.35%, were correctly
classified, so that the confidence was equal to 0.9835 for
this bin. For the test set, 49,338 sentences fell in this bin, of

Fig. 2 Top panel: The confidence histogram, computed over the vali-
dation set, using a bin width of 0.01. For each bin, the correspond-
ing bar measures the fraction of correct classifications (whether in
Class 0 or Class 1), i.e., the classification accuracy, for those texts
whose value of |�| fell into the bin in question. Note that the histo-
gram extends all the way up to |�| = 1 , but the fraction of samples
with |𝜎| > 0.75 (for which the accuracy is equal to 1) is a tiny frac-
tion of the total, and they are therefore not shown. Bottom panel: The
fraction of samples in each bin. The bulk of the samples fall into bins
for which the accuracy is very high; see also the main text

4 The validation set was used here, to avoid inflating the confidence
score, keeping in mind that the accuracy over the training set is quite
a bit higher than that obtained for the validation set; see also Fig. 1.
For unseen data, the validation histogram provides a much better esti-
mate of the actual confidence, as evidenced by the fact that the histo-
gram for the test set (not shown here) is very similar to the validation
histogram, as expected, given the very similar classification perfor-
mance over those two sets; see also Fig. 3.

Fig. 3 Fraction of correct classification on the test set for each con-
fidence c(|�|) bin. Note that only the bins up to |�| = 0.5 have been
plotted. Beyond this point, the confidence values are near or at 1, for
both histograms

 Evolutionary Intelligence

1 3

which 48,511, or 98.32%, were correctly classified, giving
an accuracy of 0.9832. The corresponding point is among
the aggregation of points near the top-right in the figure.

5.4 Visualization and interpretability

One of the main motivations behind this work has been to
arrive at a classifier that exhibits high performance while, at
the same time, offering a considerable degree of interpret-
ability. To this end, we devised a visual representation of the
classifier, two examples of which are shown in Fig. 4. As can
be seen in the figure, the individual tokens (unigrams) are
color-coded, such that those with negative weights (promot-
ing classification into Class 0) are shown by highlighting the
token in question in blue color, whereas positive weights
(favoring Class 1) are associated with yellow-orange color.
For the bigrams, the color coding is the same, but is indi-
cated using a form of bracket, such that negative weights are
shown below the text, whereas positive brackets are shown
above. Moreover, the height of the bracket is proportional
to the value of the weight, thus providing a second way of
understanding the impact of a given bigram. The bias, fea-
ture weights, and length adjustment are also (optionally)
shown in numerical form, making it possible to retrace the
classifier’s entire computation. Finally, the class assignment
is shown, along with the confidence measure, computed by
linear interpolation over the histogram described in the pre-
vious section.

We have also generated a basic web-based tool for clas-
sifying sentences using the two classes described here. The
tool, which makes use of the best classifier (F1 = 0.9561)
and the validation histogram, is available at http:// aaise rver.
m2. chalm ers. se/ spoken_ vs_ writt en_ tool. Note that, given
the fact that written text is often more formal than spoken
text, the classifier can be used, for example, as an aid in
writing, to determine whether a given sentence adheres to a
formal or an informal style.

We remark that the visualization described above is an
exact representation of the computation carried out by the
classifier. That is, for our classifier, there is no need to resort
to approximate methods for visualization; see also Sect. 6.

5.5 Fill‑in‑the‑blank performance of DistilBERT

Since BERT (and, by extension, DistilBERT) was trained
mostly on written text, it may be that its ability for accurate
classification comes down to an out-of-distribution detec-
tion, i.e., determining whether or not a given text is similar
in its construction to the texts over which it was trained. In
that case, its fill-in-the-blank performance might be worse
for spoken text than for written text. In order to investigate
this issue, as a first experiment we ran the pre-trained Distil-
BERT, without fine-tuning, over the test set, masking whole
words randomly with a probability of 0.15. A resulting per-
plexity of 27.50 was obtained for Class 0 (spoken) and 20.96
for Class 1 (written) sentences, meaning that the classifier is
slightly more accurate with written text, in this case.

However, as a more detailed, second experiment, we
masked words according to their spokenness measure (see
Eq. 1) and their frequency, to investigate whether Distil-
BERT performs better with words that are more common
in written text. Specifically, we considered for mask-
ing only words with similar number of instances, in this
case 10, 000 ± 2, 000 , in the training set. Then, for each sen-
tence (all of which contain at least 5 tokens, as mentioned
above) in the test set, we masked a single word with spo-
kenness in the range [−1.5, 1.5], so as to obtain a uniform
distribution of masked words in that range, over the entire
test set. The results of the model predictions, in terms of the
probability of selecting the correct word, are listed in the
Table 4. In summary, there is no clear correlation between
the spokenness of masked words and the performance of
the model.

Fig. 4 Two examples of the visualization of our classifier, obtained
from the web-based tool at http:// aaise rver. m2. chalm ers. se/ spoken_
vs_ writt en_ tool. The left panel shows an informal (spoken) version of
a sentence, and the right panel shows a formal (written) version of the

same sentence. Both sentences are correctly classified, i.e., Class 0
for the first sentence and Class 1 for the second. Note that the visual-
izer can also (optionally) show the numerical values for the bias, the
weights, and the length adjustment

http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool

Evolutionary Intelligence

1 3

6 Discussion

The main motivation behind this work has been to determine
whether a method derived from classical ones can achieve a
performance at least approaching that of DNN-based meth-
ods. We have shown that, with careful choices of tokeniza-
tion, feature selection, and the optimization method, it is
possible to reduce the performance gap, at least for the data
set considered here, to such a small value that the choice of
classifier depends on the need for interpretability (if any)
rather than performance considerations.

Comparing with the classical methods, our approach
offers better performance, even when only unigram fea-
tures are used, and even more so once bigram features are
included as well. More importantly, the proposed method
is associated with a confidence measure and an exact visu-
alization tool, which are crucial components with regard to
reliability and interpretability, respectively.

The contributions from the individual unigrams and
bigrams towards a given class assignment are easy to deter-
mine from the visualizer (see Fig. 4 and the online tool),
where also (optionally) the numerical weights for each fea-
ture can be shown. Since the features are combined linearly,
it is also possible to assess how the overall classification is
obtained from the individual components. This is in contrast
to the transformer-based approaches, such as DistilBERT:
Even though it is possible to visualize how the attention
mechanism emphasizes certain tokens, the highly non-linear
manner in which the values are then used renders the trans-
former opaque [22]. Furthermore, using another form of
explanation method (e.g., LIME or SHAP [8, 9]) leads to an
approximation of the transformer’s decision [23], while the
explanation obtained by our approach is, by construction,
precisely the computation performed by the classifier. Thus,
we believe that our method, with the associated visualiza-
tion tool and confidence measure, provides a deeper and
more intuitive understanding of how the classifier arrives at
a decision than explainability measures and other tools that
are sometimes applied to DNNs [24].

As for the sentences that are misclassified by our method,
we found that the sentence length is an important factor.
Sentences with few tokens are more likely to be classified
incorrectly than those with many tokens. In a short sentence,
a single feature (unigram or bigram) may have a large impact

on the assigned class. Thus, if a short sentence in one of
the classes contains one or two features that are more fre-
quent in the other class, the result may be an incorrect class
assignment. In sentences incorrectly classified as belong-
ing to Class 1 (written), such features include proper nouns,
dates, and scientific terminology. In sentences misclassified
as belonging to Class 0 (spoken), the crucial features are
mainly pronouns, contractions of words, and interroga-
tive tokens (question words as well as question marks). An
additional interesting finding is that some of the sentences
misclassified as Class 0 contain quotes or excerpts of dia-
logue. For those cases it is arguably the true class label that
is wrong, rather than the label assigned by our classifier.

The proposed method can be applied to other text clas-
sification tasks, many of which might benefit from the con-
fidence measure c(|�|) . A possible application is in customer
service, where an automated system may need to decide
whether to handle a particular classification task (e.g., clas-
sifying incoming messages as a precursor to formulating an
automated response) by itself, or send it onward to a human
operator, a problem where the decision can be based on the
confidence measure.

As mentioned in Sects. 4.1.1 and 5, our method uses
many more features than is commonly generated by sub-
word tokenizers, such as the tokenizer used in BERT. It is
interesting to investigate how much of the performance boost

Table 4 Fill-in-the-blank results in terms of the probability of selecting the ground-truth word, for different levels of spokenness

Note: spokenness of the masked word vs. the probability of DistilBERT predicting the correct word. The spokenness values in the table represent
the center of the bins. Results are shown in terms of average and standard deviation of the predicted probability of the correct word

Spokenness −1.35 −1.05 −0.75 −0.45 −0.15 0.15 0.45 0.75 1.05 1.35

Average 0.136 0.284 0.296 0.232 0.209 0.186 0.229 0.234 0.289 0.142
Std. dev 0.248 0.362 0.356 0.323 0.307 0.291 0.314 0.301 0.341 0.250

Table 5 Results obtained (over the test set) for different values of the
inclusion threshold p

For a given value of p, features are included only if they occur at least
p times in the training set. For each entry in the table, an optimiza-
tion run was carried out, using the same learning rate parameters as
in Sect. 5. The resulting classifier was then evaluated over the test set.
The left part of the table shows the results obtained with n

max
= 1 ,

i.e., using only unigrams as features, whereas the right part of the
table displays the results obtained for n

max
= 2 , i.e., with unigrams

and bigrams as features

n
max

= 1 n
max

= 2

p # features F1 p # features F1

3 481,452 0.9466 3 4,467,598 0.9561
10 195,339 0.9452 10 1,456,495 0.9558
30 94,662 0.9436 30 584,505 0.9549
100 45,096 0.9413 100 219,376 0.9525

 Evolutionary Intelligence

1 3

of our method, relative to the classical benchmark methods
(see Table 3), stems from the tokenization. To this end, sev-
eral additional optimization runs were made, using different
values of the inclusion cutoff p; see also Sect. 4.1.3. The
results are presented in Table 5. As expected, the results
drop as the number of features is reduced. However, the drop
is quite small, and even for n

max
= 1 and with the smallest

number of features (for p = 100) our method still outper-
forms all of the classical methods, as well as the shallow
neural network. We also reran our method, with n

max
= 1

and p = 3 , using the default scikit-learn tokenizer,
which, as mentioned above, uses roughly two-thirds the
number of tokens used by our tokenizer. The result was an
F1 score of 0.9388, i.e., less than the F1 score obtained with
our tokenizer.

The large token sets generated by our method may pose a
severe problem for DNN-based methods, where the networks
(already very large) would have to be scaled up (in size) by
several orders of magnitude to accommodate such a token
set. However, the method proposed here easily handles large
token sets; as soon as the training and validation sets have
been indexed (something that must be done only once), the
computation time for classification is independent of the size
of the token set, and the time required for weight adjustment
(during optimization), already a small fraction of the total
computation time, grows only linearly with the size of the
token set.

7 Conclusion

In this paper, we have introduced a method for text clas-
sification whose performance approaches that of a bench-
mark DNN-based method (DistilBERT) over a large data
set involving spoken transcripts vs. written text, thus making
the choice of a suitable method (e.g., ours or a DNN-based
method) largely a question of whether interpretability is
required. For the proposed method, a visual representation
(available as an online tool) has been defined, making it pos-
sible even for a non-expert to understand why a given text
is classified as belonging to a particular class. Moreover, in
our method, the scalar value that underlies the classifica-
tion also acts as a measure of confidence, a measure whose
validity has been confirmed over the test set considered here.
Finally, as a secondary point, we also investigated the per-
formance of DistilBERT on fill-in-the-blank tasks, finding
that the DNN performs similarly on written and spoken text,
even though written text represents the majority of its train-
ing data.

Acknowledgements The authors wish to thank two master students,
Jens Ifver and Calvin Smith, who carried out a preliminary analysis
on a smaller data set, comparing BERT and a naïve bayesian classifier.

Author contributions The corresponding author (MW) carried out the
implementation, optimization, and analysis of the proposed classifier,
and wrote the bulk of the text. MDV carried out the benchmark runs
for classical methods and black box methods and wrote part of the text.
MV and MS contributed to the analysis and discussion, and wrote part
of the text. All authors reviewed the manuscript.

Funding Open access funding provided by Chalmers University of
Technology. The authors declare that no specific funding or grant was
used for the preparation of this manuscript.

Data availability The data used when preparing the manuscript can be
downloaded at https:// doi. org/ 10. 5281/ zenodo. 76944 23.

Code availability An online tool that implements our best text classi-
fier can be found at http:// aaise rver. m2. chalm ers. se/ spoken_ vs_ writt
en_ tool. The program code for generating and optimizing a classifier
is available from the authors upon request.

Declarations

Conflict of interest The authors have no relevant financial or non-fi-
nancial interests to disclose.

Consent to participate Not applicable.

Consent for publication Not applicable.

Ethics approval Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv
Neural Inform Process Syst 30. https:// doi. org/ 10. 48550/ arXiv.
1706. 03762

 2. Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-train-
ing of deep bidirectional transformers for language understanding.
arXiv preprint arXiv: 1810. 04805

 3. Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a dis-
tilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv: 1910. 01108

 4. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal
P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, et al
(2020) Language models are few-shot learners. In: Proceedings of
the 33rd international conference on neural information process-
ing systems. NeurIPS’20. Curran Associates Inc., Red Hook, NY,
USA

 5. Wahde M, Virgolin M (2022) Conversational agents: Theory
and applications. In: Handbook on Computer Learning and

https://doi.org/10.5281/zenodo.7694423
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1910.01108

Evolutionary Intelligence

1 3

Intelligence vol. 2. Deep Learning, Intelligent Control and Evo-
lutionary Computation, pp. 497–544. World Scientific, Singapore.
Chap. Chapter 12. https:// doi. org/ 10. 1142/ 12498

 6. Rudin C (2019) Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nat Mach Intell 1(5):206–215. https:// doi. org/ 10. 1038/
s42256- 019- 0048-x

 7. Venuto G (2023) LLM failure archive (ChatGPT and beyond).
GitHub repository. Accessed March 2nd. https:// github. com/ giuve
n95/ chatg pt- failu res

 8. Ribeiro MT, Singh S, Guestrin C (2016) “Why Should I Trust
You?”: Explaining the Predictions of Any Classifier. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. KDD’16, pp. 1135–1144.
Association for Computing Machinery, New York, NY, USA.
https:// doi. org/ 10. 1145/ 29396 72. 29397 78

 9. Lundberg SM, Lee S-I (2017) A unified approach to interpret-
ing model predictions. In: Proceedings of the 30th international
conference on neural information processing systems. NIPS’17,
pp. 4768–4777. Curran Associates Inc., Red Hook, NY, USA

 10. Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx
S, Bernstein MS, Bohg J, Bosselut A, Brunskill E, et al (2021) On
the opportunities and risks of foundation models. arXiv preprint
arXiv: 2108. 07258

 11. Sun M, Huang X, Ji H, Liu Z, Liu Y (2019) Chinese Computa-
tional Linguistics. In: 18th China national conference, CCL 2019,
Kunming, China, October 18–20, 2019, Proceedings (Vol. 11856).
Springer Nature. https:// doi. org/ 10. 1007/ 978-3- 030- 32381-3

 12. Gonzalez-Carvajal S, Garrido-Merchan EC (2020) Comparing
BERT against traditional machine learning text classification.
arXiv preprint arXiv: 2005. 13012.

 13. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu
M, Gao J (2021) Deep learning-based text classification: a com-
prehensive review. ACM Comput Surv. https:// doi. org/ 10. 1145/
34397 26

 14. Khadhraoui M, Bellaaj H, Ammar MB, Hamam H, Jmaiel M
(2022) Survey of BERT-base models for scientific text classifica-
tion: COVID-19 case study. Appl Sci 12(6):2891. https:// doi. org/
10. 3390/ app12 062891

 15. Bandy J, Vincent N (2021) Addressing" documentation debt" in
machine learning research: A retrospective datasheet for bookcor-
pus. arXiv preprint arXiv: 2105. 05241

 16. Tan KL, Lee CP, Anbananthen KSM, Lim KM (2022) RoBERTa-
LSTM: a hybrid model for sentiment analysis with transformer

and recurrent neural network. IEEE Access 10:21517–21525.
https:// doi. org/ 10. 1109/ ACCESS. 2022. 31528 28

 17. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV
(2019) XLNet: Generalized autoregressive pretraining for lan-
guage understanding. In: Proceedings of the 32nd international
conference on neural information processing systems. Neu-
rIPS’19, vol. 32. Curran Associates Inc., Red Hook, NY, USA

 18. Liu Y, Wu Y-F (2018) Early detection of fake news on social
media through propagation path classification with recurrent and
convolutional networks. In: Proceedings of the AAAI conference
on artificial intelligence 32(1). https:// doi. org/ 10. 1609/ aaai. v32i1.
11268

 19. Qasim R, Bangyal WH, Alqarni MA, Ali Almazroi A et al (2022)
A fine-tuned BERT-based transfer learning approach for text clas-
sification. J Healthcare Eng 2022:1–17. https:// doi. org/ 10. 1155/
2022/ 34981 23

 20. Jain A, Shakya A, Khatter H, Gupta AK (2019) A smart system
for fake news detection using machine learning. In: 2019 Interna-
tional conference on issues and challenges in intelligent comput-
ing techniques (ICICT), vol. 1, pp. 1–4. https:// doi. org/ 10. 1109/
ICICT 46931. 2019. 89776 59

 21. Arras L, Horn F, Montavon G, Müller K-R, Samek W (2017)
What is relevant in a text document?: an interpretable machine
learning approach. PLoS ONE 12(8):1–23. https:// doi. org/ 10.
1371/ journ al. pone. 01811 42

 22. Adadi A, Berrada M (2018) Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI). IEEE Access
6:52138–52160. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28700 52

 23. Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H (2020) Fooling
LIME and SHAP: Adversarial attacks on post hoc explanation
methods. In: Proceedings of the AAAI/ACM conference on AI,
ethics, and society. AIES’20, pp. 180–186. https:// doi. org/ 10.
1145/ 33756 27. 33758 30

 24. Atanasova P, Simonsen JG, Lioma C, Augenstein I (2020) A diag-
nostic study of explainability techniques for text classification.
In: Proceedings of the 2020 conference on empirical methods in
natural language processing (EMNLP), pp. 3256–3274. https://
doi. org/ 10. 18653/ v1/ 2020. emnlp- main. 263

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1142/12498
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://github.com/giuven95/chatgpt-failures
https://github.com/giuven95/chatgpt-failures
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/2108.07258
https://doi.org/10.1007/978-3-030-32381-3
http://arxiv.org/abs/2005.13012
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.3390/app12062891
https://doi.org/10.3390/app12062891
http://arxiv.org/abs/2105.05241
https://doi.org/10.1109/ACCESS.2022.3152828
https://doi.org/10.1609/aaai.v32i1.11268
https://doi.org/10.1609/aaai.v32i1.11268
https://doi.org/10.1155/2022/3498123
https://doi.org/10.1155/2022/3498123
https://doi.org/10.1109/ICICT46931.2019.8977659
https://doi.org/10.1109/ICICT46931.2019.8977659
https://doi.org/10.1371/journal.pone.0181142
https://doi.org/10.1371/journal.pone.0181142
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263

	An interpretable method for automated classification of spoken transcripts and written text
	Abstract
	1 Introduction
	2 Related work
	3 Data
	3.1 Spoken vs. written text

	4 Method
	4.1 Classification features
	4.1.1 Tokenization
	4.1.2 Token sequences
	4.1.3 Generating the feature set

	4.2 Classifier
	4.2.1 Generating and using the classifier

	4.3 Optimization

	5 Results
	5.1 Comparing classification methods
	5.2 Running time comparison
	5.3 Confidence measure
	5.4 Visualization and interpretability
	5.5 Fill-in-the-blank performance of DistilBERT

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

