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Abstract
We investigate the differences between spoken language (in the form of radio show transcripts) and written language (Wiki-
pedia articles) in the context of text classification. We present a novel, interpretable method for text classification, involving 
a linear classifier using a large set of n−gram features, and apply it to a newly generated data set with sentences originating 
either from spoken transcripts or written text. Our classifier reaches an accuracy less than 0.02 below that of a commonly 
used classifier (DistilBERT) based on deep neural networks (DNNs). Moreover, our classifier has an integrated measure of 
confidence, for assessing the reliability of a given classification. An online tool is provided for demonstrating our classifier, 
particularly its interpretable nature, which is a crucial feature in classification tasks involving high-stakes decision-making. 
We also study the capability of DistilBERT to carry out fill-in-the-blank tasks in either spoken or written text, and find it 
to perform similarly in both cases. Our main conclusion is that, with careful improvements, the performance gap between 
classical methods and DNN-based methods may be reduced significantly, such that the choice of classification method comes 
down to the need (if any) for interpretability.

Keywords Text classification · Natural language processing · Interpretable methods

1 Introduction

Currently, the field of natural language processing (NLP) is 
dominated by large-scale statistical language models (LLMs) 
consisting of deep neural networks (DNNs). LLMs that use 
the transformer DNN architecture [1] offer state-of-the-art 
performance, as evidenced by systems such as BERT [2] and 
DistilBERT [3], GPT-2, GPT-3 [4], and the much-publicized 
ChatGPT. On the other hand, DNN-based systems also come 

with drawbacks [5, 6], one of the most important being their 
opaque nature: In most cases, it is near-impossible to deter-
mine precisely how such systems make decisions.

Now, in many cases, that does not matter. For example, 
when chatting on everyday topics or classifying, say, movie 
or restaurant reviews, the stakes are low and occasional 
errors do not matter much. However, there are also situations 
that involve high-stakes decision-making [6], for example 
when a person is conversing with an artificial system about 
a serious topic (e.g., a medical diagnosis, legal advice, or 
financial matters). Another example is the problem of clas-
sifying a particular text to determine whether it has offen-
sive content, contains biases against minorities, or represents 
fake news. In those situations, errors may have very serious 
consequences. Here, it should be noted that the problem is 
not the error in itself; after all, any decision-maker, whether 
human or artificial, can sometimes make errors. Instead, the 
problem that specifically pertains to the DNN-based LLMs 
is their limited interpretability. While the state-of-the-art 
LLMs generally exhibit very good average performance, 
they sometimes make catastrophic, inexplicable, and inscru-
table errors. A recent example is ChatGPT that, despite its 
impressive performance, also can fail spectacularly while at 
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the same time even offering bogus supporting arguments for 
preceding incorrect statements, typically with near-perfect 
grammar, often making it hard for an uninitiated human 
observer to detect the error [7]. Although many approaches 
exist to explain opaque models (including DNN-based 
LLMs), these remain limited in that they only represent 
partial explanations (e.g., attention maps) or approximate 
explanations (e.g., LIME and SHAP [8, 9]).

Turning now to the specific case of text classification, 
which is the topic of this paper, BERT (and models derived 
from it, such as DistilBERT) is a cornerstone model from 
which many other LLMs have followed in recent years [10]. 
In particular, as a result of its training, where one modality 
involved next-sentence prediction, i.e., determining whether 
or not a given sentence B logically follows another sentence 
A, the output corresponding to (the embedding of) the [CLS] 
(classification) token, which is preprended to every input 
token sequence, can be seen as a condensed representation 
of a string of tokens (e.g., a sentence). This part of BERT’s 
output can therefore be used for classification purposes, typi-
cally by adding a feedforward layer with softmax applied 
to its output, and then fine-tuning the system over a train-
ing data set with known labels, whereby the weights of the 
feedforward layer are optimized, while the weights of BERT 
itself are (optionally) fine-tuned.

This setup, involving transfer learning applied to BERT 
or one of its derived versions, has been applied in many 
classification problems; see, e.g., [11–14]. In such prob-
lems, it is common to compare BERT’s performance with 
a set of classical benchmark models, such as linear regres-
sion (with thresholding to turn it into a classifier), logistic 
regression, naïve Bayesian classifiers, decision trees, sup-
port vector machines, and so on. The typical finding is that 
the DNN-based models outperform the classical ones by a 
large margin, not seldom 5–10 percentage points or even 
more. This state of affairs presents a dilemma to an end-
user, assuming that the classification task at hand pertains 
to a high-stakes decision-making problem: Should one use 
a classical model that typically offers a high degree of inter-
pretability (albeit somewhat different between the different 
models) but inferior performance, or should one use a DNN-
based system that offers better performance but very limited 
interpretability?

In recent years, considerable efforts have been made to 
define, tweak, and optimize DNN-based text classifiers [13]. 
By contrast, the classical benchmark methods are generally 
given very little attention: To the extent that they are men-
tioned at all, they are often used off-the-shelf, just provid-
ing a backdrop against which the DNNs are compared. The 
large performance difference, in favor of the DNN-based 
text classifiers, is therefore perhaps not very surprising, but 
it also leads us to an interesting question, which we will 
attempt to answer in this paper: Is it possible to improve the 

performance of the classical methods, either by adjusting the 
features used or the methods themselves, so as to reduce or 
even close the performance gap, while maintaining a high 
degree of interpretability?

Here, we will consider a specific (binary) classification 
task involving a newly generated data set with texts (sen-
tences) belonging to either of two classes: Transcripts of 
spoken utterances (Class 0), and texts that were in written 
form from the beginning (Class 1). More specifically, the 
sentences in Class 0 are taken from publicly available tran-
scripts from radio shows, whereas the sentences in Class 1 
are taken from Wikipedia articles. Expressed differently, one 
may say that Class 0 is dominated by sentences in informal, 
spoken language, whereas Class 1 primarily contains sen-
tences with more formal language.

In order to investigate the question posed above, almost 
any text classification task would do. However, we will also 
investigate a second question, for which the data set just 
mentioned is well suited. During its development, BERT 
was (pre-)trained using two large data sets: Wikipedia (2.5 
billion tokens) and BooksCorpus (800 million tokens). Now, 
using the class definitions above, text in Wikipedia consists 
primarily of sentences that would belong to Class 1 (writ-
ten). There are sentences belonging to Class 0 in Wikipedia 
articles as well, for example, quotes and excerpts of dia-
logue, but it is reasonable to assume that they represent only 
a small fraction of Wikipedia’s content. The BooksCorpus 
is not described in detail by the original authors, but it nev-
ertheless contains a large amount of informal spoken lan-
guage. However, as the BooksCorpus is considerably smaller 
than Wikipedia, one may be concerned that BERT’s abil-
ity to deal with spoken, informal language (e.g., in fill-in-
the-blank tasks) may be less good than its ability to handle 
formal, written language. This question is made even more 
pertinent given the somewhat murky details of the (original) 
BooksCorpus, as discussed in [15].

The main result of this work is that, after feature selection 
and optimization, a custom linear classifier is able to obtain 
a classification performance approaching that of DNN-based 
models (in this case DistilBERT), while maintaining inter-
pretability, i.e., providing an easily human-understandable 
description of the different features and their contribution 
to the overall classification. We also provide a tool (see 
Sect. 5.4) making it possible even for a non-specialist human 
observer to understand how the classifier made its decision. 
An additional output is the data set itself, which we freely 
provide for use by researchers1 interested in studying the 
differences between spoken transcripts and written, formal 
text. Finally, we show that, perhaps somewhat contrary to 

1 The data set can be downloaded at https:// doi. org/ 10. 5281/ zenodo. 
76944 23.

https://doi.org/10.5281/zenodo.7694423
https://doi.org/10.5281/zenodo.7694423
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our expectations, DistilBERT is, in fact, more or less equally 
good at filling in blanks in either written text (Class 1) or 
transcripts of spoken utterances (Class 0).

The paper is organized as follows: In Sect. 2, we describe 
some related work. Section 3 describes our data set, and our 
custom linear classifier is presented in Sect. 4. In Sect. 5 we 
give our results, and then a discussion follows in Sect. 6. The 
conclusions are given in Sect. 7.

2  Related work

To our knowledge, this study is the first that considers the 
issue of comparing spoken utterances and written text, in 
the context of classification over a large data set. As men-
tioned above, we will show that our classifier exhibits good 
performance, approaching that of the DNN-based Distil-
BERT classifier, while maintaining interpretability. This is 
in stark contrast to the often very large reported performance 
difference between, on the one hand, DNN-based classifi-
ers and, on the other hand, any other method. For exam-
ple, in the case of text sentiment analysis using the IMDB 
data set of movie reviews, the best-performing DNN-based 
classifiers [16, 17] have a reported accuracy in the range 
of around 0.95 to 0.97, whereas classical methods such as 
kNN classifiers, naïve Bayesian classifiers, support vector 
machines (SVMs), logistic regression, and so on, typically 
do not exceed an accuracy of 0.9, thus indicating a difference 
in accuracy of around 0.05−0.07. Similarly, in the context 
of fake news detection, DNN-based methods outperform 
methods based on decision trees and SVMs by a differ-
ence in accuracy of up to about 0.30 depending on the data 
set [18]. Another example, involving fake news detection 
related to Covid-19, is given in [19], where a version of 
BERT achieved an accuracy very close to 1, compared to 
an accuracy of around 0.94 for a method combining a naïve 
Bayesian classifier and an SVM [20].

It should be noted that, possibly because of the results 
described above, recent papers on text classification barely 
even mention any approaches other than black box, DNN-
based methods, comparing them to each other, see e.g. [13] 
and the references therein. While the DNN-based methods 
undoubtedly are leading in performance at present, there 
may be other dimensions to consider as well, for example 
the level of interpretability of a classifier, an aspect where 
the complex and highly non-linear DNN-based classifiers 
are severely limited. The classical methods are generally less 
opaque, but were not explicitly designed for interpretability 
that, arguably, was not an important issue before the advent 
of large DNN-based text classifiers.

In the context of the interpretation of text classifica-
tion methods, [21] propose an approach similar to ours 

regarding the visualization of the contribution of indi-
vidual words. However, their approach is based on a sec-
ondary method (i.e.,  layer-wise relevance propagation, 
LRP) that aims to explain the output of another classi-
fication method (e.g., a CNN) rather than providing an 
explicitly interpretable recipe (as our method does) for 
how the emphasized words are combined in order to make 
the classification.

3  Data

For text classification of the kind considered in this paper, 
it is assumed that the data sets consist of k sentences, 
of which k0 belong to Class 0 and k1 to Class 1, i.e., the 
two classes defined in Sect. 1. In the case of the specific 
data set used here, sentences belonging to the spoken 
class (Class 0) were generated from publicly available 
data sets with transcripts from radio shows, namely several 
shows from National Public Radio (NPR) and the radio 
show This American Life. Texts from those sources were 
split into individual sentences, which were then added to 
the data set. For Class 1, sentences were generated from 
a large number of randomly selected Wikipedia pages 
(excluding special, redirect, disambiguation, and list-of 
pages), again splitting the text into individual sentences. 
Now, after visual inspection of the data set, it was deemed 
that very short sentences should be excluded, as there is 
often no possibility of reliably assigning a class label for 
such sentences; many short sentences could very well be 
seen as belonging to either class. In the end, the lower 
limit was set at 5 tokens (including the end-of-sentence 
marker, which is tokenized as well; see Sect. 4.1.1 below).

In total, after removing short sentences, 13,640,458 
sentences were retained, of which 6,374,487 in Class 0 
and 7,265,971 in Class 1. Next, the data set was split into 
three subsets, a training set (with approximately 5/7 of 
the total number of sentences), a validation set (1/7), and 
a test set (1/7). Thus, the training set contained 9,743,188 
sentences (of which 4,553,205 in Class 0 and 5,189,983 in 
Class 1), the validation set 1,948,639 sentences (of which 
910,641 in Class 0 and 1,037,998 in Class 1), and the test 

Table 1  Data set split information

The fraction of samples in each of the three subsets, and for each 
class label

Subset Class 0 Class 1 Total

Training 0.3336 0.3802 0.7138
Validation 0.0668 0.0761 0.1429
Test 0.0668 0.0761 0.1429
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set 1,948,631 sentences (of which 910,641 in Class0 and 
1,037,990 in Class1); see also Table 1.

3.1  Spoken vs. written text

In order to measure differences in token frequencies 
between spoken and written language, the spokenness 
measure (s) is here introduced as

where t denotes a token, fs(t) denotes its relative frequency 
among the spoken sentences (Class 0) and fw(t) its frequency 
among the written sentences (Class 1). The measure is com-
puted only for those tokens that appear at least once in both 
sets. The left column of Table 2 shows some examples of 
tokens with strongly positive spokenness, and the right col-
umn shows some examples with strongly negative spoken-
ness values, when computed over the training set defined 
above. As can be seen from the table, the relative token 
frequency differs by a factor 100 or more for some tokens.

The fact that many words have a spokenness value very 
different from zero (either negative or positive) may cause 
some concern regarding the performance (in any NLP 
task) of language models trained over predominantly writ-
ten data sources. An example is BERT, for which a large 
majority of the training data came from written sources 
(see Sect. 1). On the other hand, it is likely that the num-
ber of words considered in spoken dialogue is much 
smaller than the number of tokens used in written dia-
logue, perhaps making it easier to train a language model 
for spoken text. Indeed, for our data set, using the tokeni-
zation method described in Sect. 4.1.1 below, the spoken 
data (in the training set) contributes 128,689 tokens with 
at least 3 instances or more, whereas the written set con-
tributes 439,641 tokens. There is of course a considerable 
overlap between these two token sets: The total number 
of tokens with at least 3 total instances (regardless of the 
class) is equal to 481,452.

(1)s(t) = log10
fs(t)

fw(t)
,

4  Method

This section describes the proposed method in general terms, 
i.e., independent of the data set used, starting with feature 
generation. Next, the structure of the classifier is described 
and then the optimization method.

4.1  Classification features

In the proposed method, bag-of-words-style (or, rather, bag-
of-n-gram) features are used. Thus, the features are defined 
as the counts (number of instances) of n−grams in the text 
or utterance that is to be classified.

4.1.1  Tokenization

Starting with the unigram features ( n = 1 ), we have written 
a custom, very inclusive tokenizer, i.e., one that generates a 
very large set of tokens (i.e., unigrams), by keeping words as 
they are, essentially just splitting the data sets on the space 
character, and treating (some) special characters, e.g. paren-
theses, quotation marks, etc. as separate tokens. The number 
of tokens thus generated is generally orders of magnitude 
larger than, say, the 30,522 tokens used in standard BERT, 
and a bit larger than the number of tokens generated by the 
scikit-learn standard tokenizer.

4.1.2  Token sequences

The method also makes use of n−grams with n > 1 . In prin-
ciple, the feature generation could involve several values of 
n, up to a maximum value which is here denoted n

max

 . How-
ever, in practice, it is sufficient to stop the feature generation 
at a small value of n, in our case n = 2 (bigrams), as illus-
trated in Sect. 5 below. Once a text has been tokenized, from 
the m tokens, the m − n + 1 possible n−grams are generated, 
and the number of instances of each n−gram is counted, 
i.e., the same procedure as for the unigrams.

4.1.3  Generating the feature set

When generating a feature set, the tokenization is carried out 
first, resulting in a list of tokens for each text. In prepara-
tion for optimization, the training set is tokenized, and the 
resulting tokens (unigrams) are stored in a feature set, along 
with information about the number of instances in each of 
the two classes. Next, all bigrams are generated by consider-
ing consecutive tokens. In the specific case considered here, 
the training set consists of k individual sentences, so that 
the total number of bigrams is equal to m − k , where m is 
the total number of tokens in the training set. As in the case 

Table 2  Examples of spokenness values for different tokens

Examples of tokens with strongly positive spokenness (left column) 
and strongly negative spokenness (right column), in the training set 
used here; see also Eq.  1. Note that misspelled words and proper 
nouns, e.g., names, are not shown in the list (but are included in the 
tokens generated by our tokenizer)

Token Spokenness Token Spokenness

how’d 2.3385 relegation −3.0993
who’ve 2.2970 footballer −2.9392
yeah 2.2871 duchy −2.8519
here’s 2.1295 ventral −2.7050
they’re 2.0272 uncredited −2.6415
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of the unigrams, the number of instances (in each class) is 
noted for each bigram. The procedure can then, in principle, 
be extended to include trigrams, and so on.

From this large, preliminary feature set, rare features are 
removed to avoid overfitting during optimization, by simply 
counting the number of occurrences of each feature in the 
training set, and then removing those features that appear 
less than p times in that set, where p is an integer parameter. 
After that, the unigrams, bigrams, and so on, are sorted in 
alphabetical order to form the feature set.

Next, both the training set and the validation set are 
indexed, which can be done with an efficient binary search, 
resulting in a feature index list, such that features can be 
accessed by simple indexing, that is, an O(1) process, with 
minimal overhead. Note that, when indexing the validation 
set, in some cases there may be unigrams, bigrams, and so 
on that do not appear in the training set, and are therefore 
not included in the feature set. In such cases, the index is set 
to -1, and the corresponding feature will be ignored by the 
classifier (see below). However, due to the inclusive nature 
of the feature set, the vast majority of features in the valida-
tion set can also be found in the training set.

4.2  Classifier

The classifier has a simple, essentially linear, structure, but 
with a length-dependent adjustment term. Let fi denote the 
number of instances of feature i in a given text, where the 
features are the n−grams described above, and let V denote 
the total number of distinct features in the feature set. Fur-
thermore, let L1 denote the number of tokens (unigrams) 
in the text, L2 the number of bigrams, and so on, and let 
L = L1 + L2 +… denote the total number of features in the 
text, where the sum thus extends to the maximum value of 
n in the feature set; typically n = 2 , as mentioned above. In 
order to classify a text, the following sum is computed

where � is a bias term and wi are the feature weights that, as will 
be shown below, are initially in the range [−1, 1] . It should be 
noted here that, even though V is typically quite large (millions), 
most feature values fi are zero, as only the features actually 
present in the text under consideration are effectively included 
in the summation. Once s has been computed, it is normalized 
by the number of features actually present in the text, i.e.,

where the 1 accounts for the bias term � . Finally, a length 
adjustment factor is added, to form the final classification 
measure �

(2)s = � +

V∑

i=1

wifi,

(3)s =
s

1 + L1 + L2 +…

≡
s

1 + L
.

The classifier thus maintains a list of �(L1) , one for each 
value of the text length. If the length of a classified text 
exceeds the maximum length Lmax

1
 of any text in the training 

set, the value �(Lmax

1
) is used instead. The length adjustment 

gives a small, but positive, contribution to the classifica-
tion performance, at least for the data sets considered here. 
Note that, if the length of the classified texts happens to be 
irrelevant for classification, the optimizer will set the cor-
responding parameters to near-zero values, thus effectively 
removing them from consideration.

Classification is then straightforward: If � ≥ 0 , the text is 
classified as belonging to Class 1 (written text, in our case), 
otherwise it is classified as an instance of Class 0 (spoken 
utterances, here).

We remark here that the classification measure � itself 
has a dual purpose. It determines the class assignment as 
just described, but its magnitude, i.e., |�| , can also act as 
a reliable measure of the classifier’s confidence in its own 
classification, as discussed below; see Sect. 5.3. Note also 
that the normalization in Eq. 3 is not really needed from 
a classification perspective (since the classification thresh-
old is 0, and the length adjustment weights �(L1) could be 
re-scaled), but it is needed in order for |�| to be used as a 
confidence measure.

4.2.1  Generating and using the classifier

As can be seen above, our classifier is fully determined 
by the values of the bias term � , the V weights wi , and the 
length adjustment factors �(L1) . When generating a classifier 
(as a precursor to optimization; see below), the bias term and 
the length adjustment terms are typically set to zero. The 
weights wi are initialized based on the number of instances 
of the corresponding feature fi in the two classes. Consider-
ing the training set, let c0(i) and c1(i) denote the number of 
instances of feature i in the texts (sentences, in our case) 
belonging to Class 0 and Class 1, respectively. The initial 
value of wi is then assigned as

resulting in values in the range [−1, 1] , such that values close 
to 1 are indicative of a feature that predominantly occurs in 
Class 1, and values close to -1 signify a feature that chiefly 
appears in Class 0. Note that the values of c0(i) and c1(i) are 
available in the feature set by construction (see Sect. 4.1.3 
above), so that a classifier can be generated very fast.

Once the classifier has been generated, its performance 
over any indexed data set (e.g. the training set or the valida-
tion set considered here) can be computed very quickly. For 

(4)� = s + �(L1).

(5)wi =
c1(i) − c0(i)

c1(i) + c0(i)
,
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each feature fi that appears in a text under consideration, the 
corresponding index is available (as a result of the indexing 
step described above), so that the weight wi can simply be read 
off from the index. The length adjustment term can also easily 
be accessed, given information (which is stored as well) about 
the number of tokens in the text being classified. Thus, for the 
proposed classifier, the classification time complexity is O(L).

For a non-indexed text, such as when the classifier is actually 
used, after optimization, the text must first be indexed, some-
thing that involves a binary search over the features with time 
complexity O(L logL) (for the L features, in total) followed by 
the actual classification with time complexity O(L) as above.

4.3  Optimization

The optimization procedure is straightforward as well. Dur-
ing optimization, the performance over the validation set is 
computed first, using a suitable performance measure; here, 
the accuracy was used, i.e.,

where TP are the true positives, i.e., texts belonging to Class 
1 that are actually assigned (by the classifier) to Class 1, TN 
are the true negatives, FP the false positives, and FN the 
false negatives.

Next, the performance is computed over the training set. 
For that set, the feature errors, defined as

are computed, where �i = c0(i) + c1(i) is the total number 
of instances of fi in the entire training set, vij is the number 
of instances of feature fi in sentence j, whereas Cj and Ĉj 
respectively are the true and inferred classes (represented as 
integers) for sentence j, i.e., either 0 or 1. After computing 
ei for all features, the weights are updated as

where � is the learning rate. For the bias term, the error is 
instead simply defined as

and � is then updated as

Finally, for the length adjustment terms, �i , the error is com-
puted as

(6)a =

TP + TN

TP + FP + TN + FN

,

(7)ei =
1

𝛾i

k∑

j=1

vij
(
Ĉj − Cj

)
, i = 1,… ,V ,

(8)wi ← wi − �ei,

(9)e𝛼 =

1

k

k∑

j=1

(
Ĉj − Cj

)
,

(10)� ← � − �e� ,

where � is a delta function that takes the value one for the 
given value of L1 , and 0 for all other values, and kL1 is the 
number of texts with length L1 tokens. Here, given that the 
length adjustment is added to the normalized sum s (see 
Eq. 4), a different (smaller) learning rate � is used, such that

Once the new parameters (weights, biases, and length adjust-
ments) are available, the first training epoch (iteration) is 
completed. Next, all the sentences are classified again, using 
the new parameters, after which new errors can be computed 
so that the parameters can be updated again, and so on, for 
any number of epochs. Optionally, the learning rate can be 
set to decay, by modifying it (after every training epoch) as

where � is a positive constant, smaller than (or equal to) 1.
During optimization, holdout validation is used, in which 

both the training and validation sets are considered: The 
performance over the training set is used when updating 
the weights, whereas the validation performance is used for 
determining when to stop the training (but does not effect 
the parameters), so as to avoid overfitting. In other words, 
the best parameter set is taken as that which minimizes the 
error over the validation set.

Note that, while the learning rule bears some resemblance 
to the stochastic gradient descent learning rule that can be 
applied in linear (and logistic) regression, there are also dif-
ferences, notably the fact that, in our method, the weight 
update is based on the local error, i.e., the contribution of 
each feature, in isolation. Moreover, the error uses the dis-
crete class assignment (the inferred class vs. the ground truth 
class), rather than the classification measure, that is,  the 
squared weighted feature sum, as would be the case in linear 
regression.

5  Results

The method described above was implemented in C#.NET 
(i.e., without making use of ready-made functions for tokeni-
zation etc.). This was a deliberate choice in order to maintain 
flexibility over the various steps in the procedure.

The method was then applied to the training set pre-
sented in Sect. 3, considering unigrams and bigrams,2 i.e., 

(11)e𝛽,L1 =
1

kL1

k∑

j=1

𝛿(L1)
(
Ĉj − Cj

)
,

(12)�(L1) ← �(L1) − �e�,L1 .

(13)� ← ��,

2 The case n
max

= 3 was considered as well, but the results obtained 
were slightly worse than those reported below.
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Fig. 1  The performance of the classifier during the first 25 iterations 
of an optimization run with � = 2 , � = 0.975 , and � = 0.10 . The blue 
line shows the accuracy over the training set and the black line shows 
the accuracy over the validation set. The best classifier, with a valida-
tion accuracy of 0.9529 (marked with a bigger disc), was achieved in 
the 10th iteration

with n
max

= 2 . The tokenizer produced a set of 1,484,934 
distinct tokens. The threshold p was set to 3, meaning that 
any feature with less than 3 instances (in the training set) 
was eliminated. The resulting feature set contained a total 
of 4,467,598 features, of which 481,452 unigram features 
and 3,986,146 bigram features. Next, the training, valida-
tion, and test sets were indexed, using the feature set defined 
for the training set. As mentioned above, while not strictly 
necessary, the indexing greatly increases the speed of the 
classifier. Then, a classifier was generated assigning initial 
weights as described in Sect. 4.2.1. Several runs where then 
carried out, using the optimization procedure described 
above, and with different values of the learning rates � and � 
and the decay rate � . While the final results did not depend 
strongly on the values of the learning rate, the optimiza-
tion time was found to be shortest with the values � = 2 , 
� = 0.975 , and � = 0.10.

The performance over the validation and training set as 
functions of the number of training epochs, using the accu-
racy (Eq. 6) as the performance measure, is shown in Fig. 1. 
As can be seen from the figure, the best validation perfor-
mance, an accuracy of 0.9529, was found after 10 epochs. 
The corresponding classifier was saved, and was then, 
finally, applied to the previously unused test set, resulting 
in an accuracy of 0.9561. The optimization run was carried 
out on a standard desktop computer with 32 GB RAM and 
an Intel Core i9 processor running at 3.1 GHz, using which 
a training epoch (i.e., computing the performance over the 
validation and training sets, and then updating the param-
eters) took around 22.4 s, meaning that the best validation 
score was found after less than 4 min. of running time. As 
further discussed in Sect. 6, the speed could quite easily be 
significantly improved though, but it was not deemed neces-
sary to do so here. The main point is that the procedure can 
easily be carried out on standard hardware.

5.1  Comparing classification methods

For the purposes of comparison, several other classifica-
tion methods were tried as well. In all cases (including our 
method) the starting point was the same, namely the training 
and validation sets, described in Sect. 3, and the final evalua-
tion was based on the performance over the test set described 
in the same section.

The methods considered were divided into three classes: 
(i) Classical methods, a category that here involves linear 
regression (with thresholding to generate a classifier), logis-
tic regression, multinomial naïve Bayes, Bernoulli naïve 
Bayes, SVMs, a ridge classifier, and a decision tree; (ii) 
explicitly interpretable methods, a category that here con-
tains only our method (see also Sect. 5.4); and (iii) black box 
methods, comprising a shallow neural network (NN) and a 
DNN (DistilBERT).

For the classical methods, the Python implementations in 
scikit-learn (v. 1.2.1) were used, along with its default 
tokenizer, defining a total of 972,896 unique tokens, i.e., a 
bit less than the number obtained with our tokenizer. In the 
case of multinomial and Bernoulli naïve Bayes classifiers, the 
default settings were used, i.e., with the additive smoothing 
parameter set to one, and prior probabilities adjusted accord-
ing to the data. In the case of linear regression, an exact solu-
tion was generated via matrix inversion, rather than using sto-
chastic gradient descent. For logistic regression, we used the 
SAGA solver. Similarly, for the SVM, the stochastic gradient 
descent method with hinge loss function was used (i.e., the 
SGDClassifier implementation with default parameters). 
In the case of the ridge classifier, the default settings were 
used, i.e., with the regularization coefficient set to one. A 
maximum depth of 35 was set for the decision tree classifier, 
which was generated using the CART algorithm.

For black box methods, we used the same tokenization 
as in the classical methods for the shallow NN, while for 
the DNN the tokenization follows the pre-trained BERT 
scheme, with a vocabulary size of 30,522 tokens in total 
(much fewer than in the other cases). The shallow NN is 
structured as an embedding bag with an embedding size of 
64, plus a linear layer for classification. It has been imple-
mented with PyTorch and trained with cross entropy loss, 
the SGD optimizer (running five epochs), and a batch size 
of 128. As for the structure, the DNN is the Hugging Face 
pretrained DistilBERT uncased,3 fine-tuned to our clas-
sification task with the training and validation sets (using 
batch size: 32, epochs: 5, learning rate: 2 × 10−5).

3 https:// huggi ngface. co/ disti lbert- base- uncas ed.

https://huggingface.co/distilbert-base-uncased
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The results over the test set are presented in Table 3. 
As can be seen from the table, focusing on the F1 score, 
the classical methods (for which unigram features were 
used) range from 0.860 to 0.932, with an average of 0.913, 
whereas the DNN-based classifier (DistilBERT) reaches 
an F1 score of 0.974, i.e., a performance boost of around 
0.06, roughly in line with the findings from other stud-
ies, as discussed in Sect. 2 above. For our classifier, with 
n
max

= 1 , i.e., using only unigrams as features, and apply-
ing the optimization method from Sect. 4.3, the result 
over the test set was an F1 score of 0.947, which is better 
than all the classical methods. For n

max
= 2 , i.e., using 

unigrams and bigrams as features, the performance of our 
method, an F1 score of 0.956, is only less than 0.02 below 
the results from DistilBERT. This is an interesting result, 
in our view: With such a small performance difference, 
the choice of classifier comes down to the need (if any) for 
understanding exactly how the classifier arrived at its deci-
sion, something that our method easily offers (see Sect. 5.3 
below), but which is not the case for black box methods, 
including DistilBERT.

While Table 3 offers a fair relative comparison of the dif-
ferent methods, in all cases using the same training, valida-
tion, and test sets, one should be careful not to draw too firm 
conclusions regarding the absolute classification accuracy: It 
is possible that artifacts in the data, or the fact that the data 
are derived from just a few sources (albeit large ones), may 

inflate the classification performance in a way that would not 
apply for new, unseen data.

5.2  Running time comparison

Starting with the process of generating a classifier, one can 
divide it (for all methods) into two distinct steps: First, a 
preprocessing step is carried out, involving tokenization and 
indexing (or vectorization), which is rather similar for all 
methods, and can be carried out once and for all, for a given 
data set; see Sect. 4.1.3; Next, after preprocessing, the classi-
fier is optimized. For the proposed method, with the data set 
considered here, each iteration of the optimizer lasted around 
22 s so that the entire optimization run shown in Fig. 1 took 
around 9 min to complete, on a standard desktop computer. 
Note that, if needed, the optimization can be speeded up by 
around a factor three or so, by using the fact that the texts 
are classified independently of each other, meaning that the 
classifier could be modified to run over multiple processor 
cores. By way of comparison, the optimization time for the 
other classical methods were: A few seconds for naïve Bayes 
and SVM; a few minutes for logistic regression and the ridge 
classifier; about one hour for linear regression (executed in 
parallel over 24 cores); and about 5 h for the decision tree. 
For the black box methods, the optimization of the shallow 
NN took a few minutes, whereas fine-tuning DistilBERT 
took about 60 h. Note that the optimization time for the two 

Table 3  Performance over the test set for several different methods

Note: For the classical methods, the unigram bag-of-words features were used, obtained with the scikit-learn tokenizer. For our method, 
two cases are shown, namely n

max
= 1 (using only unigrams as features) and n

max
= 2 (using unigrams and bigrams). In both cases, features were 

generated with our tokenizer, and were included only if they had at least 3 instances in total, in the training set. The column marked r measures 
the F1 score relative to the F1 score for DistilBERT, whereas the right-most column shows the ordinal rank of the different methods

Classical methods

accuracy precision recall F1 r rank
Multinomial naïve Bayes 0.898 0.866 0.957 0.909 0.933 9
Bernoulli naïve Bayes 0.916 0.930 0.911 0.920 0.945 8
Linear regression 0.927 0.929 0.934 0.932 0.957 5
Logistic regression 0.922 0.913 0.944 0.928 0.953 7
Support vector machine 0.834 0.784 0.951 0.860 0.883 11
Ridge classifier 0.924 0.915 0.944 0.929 0.954 6
Decision tree 0.846 0.809 0.930 0.865 0.888 10

Explicitly interpretable methods

accuracy precision recall F1 r rank
Our classifier, n

max
= 1 0.943 0.947 0.946 0.947 0.972 3

Our classifier, n
max

= 2 0.953 0.951 0.961 0.956 0.982 2

Black box methods

accuracy precision recall F1 r rank
Shallow neural network 0.931 0.931 0.940 0.936 0.961 4
DNN DistilBERT 0.973 0.975 0.973 0.974 1.000 1
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methods based on neural networks is not directly comparable 
with the others since different hardware (GPU rather than 
CPU) was used in those cases.

Turning now to the use of the optimized classifier, run-
ning through the entire test set (with 1,948,631 sentences; 
see Sect. 3) took a few seconds with our method (and the 
classical methods), again using a standard desktop computer, 
whereas it took about 20 min with DistilBERT.

5.3  Confidence measure

As it turns out, the absolute value of the classification meas-
ure, i.e., |�| (see Eq. 4), can be used as the basis for a meas-
ure of confidence, as follows: After optimization, the clas-
sification performance for the k

val
 texts in the validation set4 

was used in order to form a confidence histogram, measuring 
the classification accuracy as a function of |�| . The values 
of |�| were binned in intervals of width d. For each bin, the 
fraction of correct classifications were computed for those 

texts whose value (whether negative or positive) of |�| fell 
into the bin in question. This fraction is henceforth referred 
to as the confidence, denoted c(|�|) , which is thus a local 
measure, pertaining to a narrow range of |�| values.

The resulting histogram is shown in the top panel of 
Fig. 2. As can be seen from the figure, the confidence rises 
very quickly with |�| . The bottom panel of the figure shows 
the fraction of samples in each bin. From the data underlying 
these figures, one can compute the fraction of samples for 
which the accuracy exceeds a given threshold; it turns out 
that 74.4% of samples have |𝜎| > 0.15 , where the accuracy is 
0.97 or better. Similarly, 67.4% of samples fall in bins with 
|𝜎| > 0.19 , for which the accuracy is 0.98 or better. Finally, 
54.6% of samples have |𝜎| > 0.24 , where the accuracy is 
0.99 or better.

Figure 3 illustrates that the confidence measure c(|�|) is 
reliable by showing its application to the test set. In this 
figure, every point represents one bin. The horizontal axis 
measures the expected confidence c(|�|) based on the vali-
dation histogram and the vertical axis shows the actual test 
set accuracy for the corresponding bin. As can be seen in 
the figure, c(|�|) matches almost perfectly the probability 
of classifying a test sentence correctly. As a specific exam-
ple, consider the bin with values of |�| in [0.200, 0.210]. 
For the validation histogram, there were 49,041 sentences 
in this range, of which 48,232, or 98.35%, were correctly 
classified, so that the confidence was equal to 0.9835 for 
this bin. For the test set, 49,338 sentences fell in this bin, of 

Fig. 2  Top panel: The confidence histogram, computed over the vali-
dation set, using a bin width of 0.01. For each bin, the correspond-
ing bar measures the fraction of correct classifications (whether in 
Class 0 or Class 1), i.e., the classification accuracy, for those texts 
whose value of |�| fell into the bin in question. Note that the histo-
gram extends all the way up to |�| = 1 , but the fraction of samples 
with |𝜎| > 0.75 (for which the accuracy is equal to 1) is a tiny frac-
tion of the total, and they are therefore not shown. Bottom panel: The 
fraction of samples in each bin. The bulk of the samples fall into bins 
for which the accuracy is very high; see also the main text

4 The validation set was used here, to avoid inflating the confidence 
score, keeping in mind that the accuracy over the training set is quite 
a bit higher than that obtained for the validation set; see also Fig. 1. 
For unseen data, the validation histogram provides a much better esti-
mate of the actual confidence, as evidenced by the fact that the histo-
gram for the test set (not shown here) is very similar to the validation 
histogram, as expected, given the very similar classification perfor-
mance over those two sets; see also Fig. 3.

Fig. 3  Fraction of correct classification on the test set for each con-
fidence c(|�|) bin. Note that only the bins up to |�| = 0.5 have been 
plotted. Beyond this point, the confidence values are near or at 1, for 
both histograms
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which 48,511, or 98.32%, were correctly classified, giving 
an accuracy of 0.9832. The corresponding point is among 
the aggregation of points near the top-right in the figure.

5.4  Visualization and interpretability

One of the main motivations behind this work has been to 
arrive at a classifier that exhibits high performance while, at 
the same time, offering a considerable degree of interpret-
ability. To this end, we devised a visual representation of the 
classifier, two examples of which are shown in Fig. 4. As can 
be seen in the figure, the individual tokens (unigrams) are 
color-coded, such that those with negative weights (promot-
ing classification into Class 0) are shown by highlighting the 
token in question in blue color, whereas positive weights 
(favoring Class 1) are associated with yellow-orange color. 
For the bigrams, the color coding is the same, but is indi-
cated using a form of bracket, such that negative weights are 
shown below the text, whereas positive brackets are shown 
above. Moreover, the height of the bracket is proportional 
to the value of the weight, thus providing a second way of 
understanding the impact of a given bigram. The bias, fea-
ture weights, and length adjustment are also (optionally) 
shown in numerical form, making it possible to retrace the 
classifier’s entire computation. Finally, the class assignment 
is shown, along with the confidence measure, computed by 
linear interpolation over the histogram described in the pre-
vious section.

We have also generated a basic web-based tool for clas-
sifying sentences using the two classes described here. The 
tool, which makes use of the best classifier (F1 = 0.9561) 
and the validation histogram, is available at http:// aaise rver. 
m2. chalm ers. se/ spoken_ vs_ writt en_ tool. Note that, given 
the fact that written text is often more formal than spoken 
text, the classifier can be used, for example, as an aid in 
writing, to determine whether a given sentence adheres to a 
formal or an informal style.

We remark that the visualization described above is an 
exact representation of the computation carried out by the 
classifier. That is, for our classifier, there is no need to resort 
to approximate methods for visualization; see also Sect. 6.

5.5  Fill‑in‑the‑blank performance of DistilBERT

Since BERT (and, by extension, DistilBERT) was trained 
mostly on written text, it may be that its ability for accurate 
classification comes down to an out-of-distribution detec-
tion, i.e., determining whether or not a given text is similar 
in its construction to the texts over which it was trained. In 
that case, its fill-in-the-blank performance might be worse 
for spoken text than for written text. In order to investigate 
this issue, as a first experiment we ran the pre-trained Distil-
BERT, without fine-tuning, over the test set, masking whole 
words randomly with a probability of 0.15. A resulting per-
plexity of 27.50 was obtained for Class 0 (spoken) and 20.96 
for Class 1 (written) sentences, meaning that the classifier is 
slightly more accurate with written text, in this case.

However, as a more detailed, second experiment, we 
masked words according to their spokenness measure (see 
Eq. 1) and their frequency, to investigate whether Distil-
BERT performs better with words that are more common 
in written text. Specifically, we considered for mask-
ing only words with similar number of instances, in this 
case 10, 000 ± 2, 000 , in the training set. Then, for each sen-
tence (all of which contain at least 5 tokens, as mentioned 
above) in the test set, we masked a single word with spo-
kenness in the range [ −1.5, 1.5], so as to obtain a uniform 
distribution of masked words in that range, over the entire 
test set. The results of the model predictions, in terms of the 
probability of selecting the correct word, are listed in the 
Table 4. In summary, there is no clear correlation between 
the spokenness of masked words and the performance of 
the model.

Fig. 4  Two examples of the visualization of our classifier, obtained 
from the web-based tool at http:// aaise rver. m2. chalm ers. se/ spoken_ 
vs_ writt en_ tool. The left panel shows an informal (spoken) version of 
a sentence, and the right panel shows a formal (written) version of the 

same sentence. Both sentences are correctly classified, i.e., Class 0 
for the first sentence and Class 1 for the second. Note that the visual-
izer can also (optionally) show the numerical values for the bias, the 
weights, and the length adjustment

http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
http://aaiserver.m2.chalmers.se/spoken_vs_written_tool
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6  Discussion

The main motivation behind this work has been to determine 
whether a method derived from classical ones can achieve a 
performance at least approaching that of DNN-based meth-
ods. We have shown that, with careful choices of tokeniza-
tion, feature selection, and the optimization method, it is 
possible to reduce the performance gap, at least for the data 
set considered here, to such a small value that the choice of 
classifier depends on the need for interpretability (if any) 
rather than performance considerations.

Comparing with the classical methods, our approach 
offers better performance, even when only unigram fea-
tures are used, and even more so once bigram features are 
included as well. More importantly, the proposed method 
is associated with a confidence measure and an exact visu-
alization tool, which are crucial components with regard to 
reliability and interpretability, respectively.

The contributions from the individual unigrams and 
bigrams towards a given class assignment are easy to deter-
mine from the visualizer (see Fig. 4 and the online tool), 
where also (optionally) the numerical weights for each fea-
ture can be shown. Since the features are combined linearly, 
it is also possible to assess how the overall classification is 
obtained from the individual components. This is in contrast 
to the transformer-based approaches, such as DistilBERT: 
Even though it is possible to visualize how the attention 
mechanism emphasizes certain tokens, the highly non-linear 
manner in which the values are then used renders the trans-
former opaque [22]. Furthermore, using another form of 
explanation method (e.g., LIME or SHAP [8, 9]) leads to an 
approximation of the transformer’s decision [23], while the 
explanation obtained by our approach is, by construction, 
precisely the computation performed by the classifier. Thus, 
we believe that our method, with the associated visualiza-
tion tool and confidence measure, provides a deeper and 
more intuitive understanding of how the classifier arrives at 
a decision than explainability measures and other tools that 
are sometimes applied to DNNs [24].

As for the sentences that are misclassified by our method, 
we found that the sentence length is an important factor. 
Sentences with few tokens are more likely to be classified 
incorrectly than those with many tokens. In a short sentence, 
a single feature (unigram or bigram) may have a large impact 

on the assigned class. Thus, if a short sentence in one of 
the classes contains one or two features that are more fre-
quent in the other class, the result may be an incorrect class 
assignment. In sentences incorrectly classified as belong-
ing to Class 1 (written), such features include proper nouns, 
dates, and scientific terminology. In sentences misclassified 
as belonging to Class 0 (spoken), the crucial features are 
mainly pronouns, contractions of words, and interroga-
tive tokens (question words as well as question marks). An 
additional interesting finding is that some of the sentences 
misclassified as Class 0 contain quotes or excerpts of dia-
logue. For those cases it is arguably the true class label that 
is wrong, rather than the label assigned by our classifier.

The proposed method can be applied to other text clas-
sification tasks, many of which might benefit from the con-
fidence measure c(|�|) . A possible application is in customer 
service, where an automated system may need to decide 
whether to handle a particular classification task (e.g., clas-
sifying incoming messages as a precursor to formulating an 
automated response) by itself, or send it onward to a human 
operator, a problem where the decision can be based on the 
confidence measure.

As mentioned in Sects. 4.1.1 and 5, our method uses 
many more features than is commonly generated by sub-
word tokenizers, such as the tokenizer used in BERT. It is 
interesting to investigate how much of the performance boost 

Table 4  Fill-in-the-blank results in terms of the probability of selecting the ground-truth word, for different levels of spokenness 

Note: spokenness of the masked word vs. the probability of DistilBERT predicting the correct word. The spokenness values in the table represent 
the center of the bins. Results are shown in terms of average and standard deviation of the predicted probability of the correct word

Spokenness −1.35 −1.05 −0.75 −0.45 −0.15 0.15 0.45 0.75 1.05 1.35

Average 0.136 0.284 0.296 0.232 0.209 0.186 0.229 0.234 0.289 0.142
Std. dev 0.248 0.362 0.356 0.323 0.307 0.291 0.314 0.301 0.341 0.250

Table 5  Results obtained (over the test set) for different values of the 
inclusion threshold p 

For a given value of p, features are included only if they occur at least 
p times in the training set. For each entry in the table, an optimiza-
tion run was carried out, using the same learning rate parameters as 
in Sect. 5. The resulting classifier was then evaluated over the test set. 
The left part of the table shows the results obtained with n

max
= 1 , 

i.e., using only unigrams as features, whereas the right part of the 
table displays the results obtained for n

max
= 2 , i.e., with unigrams 

and bigrams as features

n
max

= 1 n
max

= 2

p # features F1 p # features F1

3 481,452 0.9466 3 4,467,598 0.9561
10 195,339 0.9452 10 1,456,495 0.9558
30 94,662 0.9436 30 584,505 0.9549
100 45,096 0.9413 100 219,376 0.9525
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of our method, relative to the classical benchmark methods 
(see Table 3), stems from the tokenization. To this end, sev-
eral additional optimization runs were made, using different 
values of the inclusion cutoff p; see also Sect. 4.1.3. The 
results are presented in Table 5. As expected, the results 
drop as the number of features is reduced. However, the drop 
is quite small, and even for n

max
= 1 and with the smallest 

number of features (for p = 100 ) our method still outper-
forms all of the classical methods, as well as the shallow 
neural network. We also reran our method, with n

max
= 1 

and p = 3 , using the default scikit-learn tokenizer, 
which, as mentioned above, uses roughly two-thirds the 
number of tokens used by our tokenizer. The result was an 
F1 score of 0.9388, i.e., less than the F1 score obtained with 
our tokenizer.

The large token sets generated by our method may pose a 
severe problem for DNN-based methods, where the networks 
(already very large) would have to be scaled up (in size) by 
several orders of magnitude to accommodate such a token 
set. However, the method proposed here easily handles large 
token sets; as soon as the training and validation sets have 
been indexed (something that must be done only once), the 
computation time for classification is independent of the size 
of the token set, and the time required for weight adjustment 
(during optimization), already a small fraction of the total 
computation time, grows only linearly with the size of the 
token set.

7  Conclusion

In this paper, we have introduced a method for text clas-
sification whose performance approaches that of a bench-
mark DNN-based method (DistilBERT) over a large data 
set involving spoken transcripts vs. written text, thus making 
the choice of a suitable method (e.g., ours or a DNN-based 
method) largely a question of whether interpretability is 
required. For the proposed method, a visual representation 
(available as an online tool) has been defined, making it pos-
sible even for a non-expert to understand why a given text 
is classified as belonging to a particular class. Moreover, in 
our method, the scalar value that underlies the classifica-
tion also acts as a measure of confidence, a measure whose 
validity has been confirmed over the test set considered here. 
Finally, as a secondary point, we also investigated the per-
formance of DistilBERT on fill-in-the-blank tasks, finding 
that the DNN performs similarly on written and spoken text, 
even though written text represents the majority of its train-
ing data.
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