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Abstract: We demonstrate the frequency stabilization of a terahertz quantum-cascade laser
(QCL) to the Lamb dip of the absorption line of a D2O rotational transition at 3.3809309 THz.
To assess the quality of the frequency stabilization, a Schottky diode harmonic mixer is used to
generate a downconverted QCL signal by mixing the laser emission with a multiplied microwave
reference signal. This downconverted signal is directly measured by a spectrum analyzer showing
a full width at half maximum of 350 kHz, which is eventually limited by high-frequency noise
beyond the bandwidth of the stabilization loop.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Terahertz (THz) spectroscopy is used in several research fields such as astronomy, atmospheric
research and metrology as well as in laboratory spectroscopy [1–3]. A large number of atomic
fine-structure lines and molecular rotational lines is located in the THz range. Spectroscopic
methods like heterodyne spectroscopy require sources with small linewidths in the MHz or
sub-MHz range with a sufficient power level. In heterodyne spectroscopy, quantum-cascade
lasers (QCLs) are used as local oscillators (LO) as they offer output power in the range of several
milliwatts above 3 THz, where other available sources offer output powers in the microwatt range
[4–8]. The theoretical linewidth limit of QCLs, due to spontaneous emission (Schawlow-Townes),
lies in the sub-kHz range [9]. However, their practically achievable linewidth is governed by the
technical limitations of the respective setup. Due to instabilities of the operating current and
temperature as well as other noise sources such as vibrations and optical feedback, the practical
linewidth of QCLs is much larger and can exceed several ten MHz [10]. Several methods to
control and stabilize the emission frequency have been realized, e.g. phase locking to a multiplied
microwave source or frequency comb [11,12] or locking to a THz gas laser [13]. Another
well established method is the stabilization to a molecular or atomic absorption line based on
wavelength modulation spectroscopy. This has also been demonstrated for QCLs, where the
frequency stability is indirectly measured by converting the proportional-integral-derivative (PID)
error signal into a frequency scale [14,15]. The stabilization to the Lamb dip of a molecular
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transition has been shown for a mid-infrared QCL in Refs. [16,17]. The general feasibility of
saturation spectroscopy with THz QCLs has been demonstrated in [18,19]. In this work, we
demonstrate the frequency stabilization of a THz QCL to the Lamb dip of a D2O rotational
transition by means of a wavelength modulation technique. Due to the much smaller linewidth of
the Lamb dip compared to the unsaturated transition, an improvement in frequency stability by
an order of magnitude can be expected. By downconverting the THz signal with the help of a
Schottky diode mixer and a multiplied microwave reference, we are able to directly measure the
width of the signal with a spectrum analyzer. This allows for an assessment of the performance
of the Lamb dip stabilization approach.

2. Experimental setup

The experimental configuration is shown in Fig. 1. The QCL used in our work is based on a
3-THz active-region structure [20] with a single-plasmon waveguide [21]. It is mounted inside a
He flow cryostat (Oxford, Optistat CF-V), and its temperature is stabilized to 40 K. The QCL
beam exits the cryostat through a high-density polyethylene (HDPE) window and is focused by a
polymethylpentene (TPX) lens with a focal length of 45 mm into a 35-cm-long D2O gas cell. To
minimize the optical feedback and to redirect the probe signal to the photoconductive Ge:Ga
detector, a λ/4 plate and a wire grid polarizer are used. Additionally, an aperture after the λ/4
plate is used to suppress higher-order spatial modes and to minimize optical feedback. The shorter
gas cell as well as better filtering of spatial modes led to significantly reduced interferences
caused by optical feedback compared to our previous work [15,22]. A shorter gas cell also allows
for a better focus and higher power density. The Lamb dip of the 3.3809-THz absorption line of
D2O [23] was used for this experiment as shown in Fig. 2. This transition is one of the strongest
for D2O in the 3 to 4 THz range and close to the 3.5 THz transition of the OH radical, which is of
importance in atmospheric chemistry [24]. A lock-in amplifier with an integrated PID controller
(Zurich Instruments, UHF) is used to obtain the 1f signal at 1-MHz modulation frequency, which
corresponds to the derivative of the direct signal. This is used by the PID controller to stabilize
the QCL frequency to the zero crossing of the 1f signal. The locking range of the stabilization
loop is defined by the linear range of the 1f signal indicated by the grey area in Fig. 2, which
corresponds to a range of 40 µA equivalent to 750 kHz. To establish the lock, the QCL frequency
needs to stay within these 750 kHz for the capture time of the control loop. Additionally to the
Millikelvin temperature control (40 K ± 2 mK), a star-shaped electrical grounding was used to
reduce ground loops, and an optimized detector readout circuitry was employed for increased
bandwidth and reduced pick-ups.
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Fig. 1. Experimental setup for frequency stabilization. WGP: wire grid polarizer, LNA:
low-noise amplifier, QCL: quantum-cascade laser.
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Fig. 2. 1f (red) and direct-detection (black) absorption spectrum of the rotational tran-
sition of D2O at 3380.9309 GHz at 0.75 Pa pressure. The line corresponds to the
D2O(4,4,0)←D2O(3,3,1) transition [23]. The Lamb dip is clearly visible in both signals.
The grey area indicates the locking range of the PID loop of 750 kHz.

A small portion of the pump signal is redirected onto the harmonic Schottky diode mixer
[25]. We downconvert the THz QCL signal to a range of 100 to 200 MHz by mixing it with the
6th harmonic of a 563-GHz multiplier chain. The latter is generated by an amplifier multiplier
chain from a microwave source at 11.74 GHz (VDI, Tx 249), referenced to an internal 10 MHz
oscillator (Wenzel Associates 501-04609A). This downconverted intermediate-frequency (IF)
signal is further amplified and measured by a spectrum analyzer to obtain the spectral width of
the QCL emission.

3. Results and discussion

Figure 2 displays the D2O absorption line as measured by sweeping the QCL current. The
black line shows the Ge:Ga detector signal as directly recorded with a data acquisition module
(National Instruments, NI-9239), while the red line shows the 1f signal after demodulation by the
lock-in amplifier. The frequency tuning coefficient of the QCL is 18.71 MHz/mA and the total
measurement time in Fig. 2 is 25 s.

Once the lock is engaged, the frequency stability of the QCL increases significantly. Figure 3(a)
depicts the time-dependent frequency deviation of the IF signal of the laser modulated at 1 MHz
with a modulation amplitude of 65 µA, which corresponds to a tuning of 1.2 MHz, over a time
interval of 25 s. Each spectrum was integrated over 100 ms. In the first 12 s (A), the laser is
stabilized without any drift. After about 12 s (B), the laser setpoint is slowly drifting outside
the locking range of the PID controller, and an increase in the frequency fluctuations appears.
In the third part (C), the active stabilization is turned off, and the frequency fluctuations of the
unstabilized QCL are observed. The increase of frequency stability can also be seen in Fig. 3(b),
where the maximum of the spectral power of the IF signal of the unstabilized and stabilized QCL
emission with respect to the stable multiplier reference is recorded over 10 s. The stabilized signal
shows the expected narrow central peak along with sidepeaks caused by the 1-MHz modulation,
while the unstabilized signal is broadened due to frequency fluctuations.
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Fig. 3. (a) Time-dependent frequency deviation of the IF signal. The integration time
for each slice is 100 ms. A: the QCL is stabilized without any drift, B: the setpoint of the
stabilized laser is drifting outside the locking range, and C: the stabilization is turned off
and the frequency fluctuations of the free-running laser are visible. (b) Maximum-hold
measurement of the IF power for the unstabilized and stabilized case recorded over 10 s.

The power spectrum of the stabilized QCL at different modulation amplitudes measured by the
spectrum analyzer is presented in Fig. 4(a). These measurements were performed to quantify the
influence of the modulation amplitude on the stabilized laser linewidth. The signal was integrated
for 78 s to obtain a better signal-to-noise ratio in the side lobes. The modulation depths range
from 0.6 to 1.8 MHz. The central peaks have a full width at half maximum (FWHM) of about
350 kHz for all modulation depths. The sidepeaks are caused by the 1-MHz modulation and are
located at the center frequency of the main peak ±N × 1 MHz. To identify the individual peak
areas, each peak has been fitted by a Gaussian. Note that although overlapping on a logarithmic
scale the peaks would appear well separated on a linear power scale. The area of the central peak
decreases linearly with the modulation depth, while the areas of the sidepeaks increase linearly
as more power is shifted from the central peak to the sidepeaks (Fig. 4(b)). Although the power
ratio changes slightly, the widths of the central peak and the sidepeaks are unaffected by the
modulation depths in the exploited range.
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Fig. 4. (a) Power spectrum of the stabilized and downconverted QCL signal at different
modulation depths. The central peak has a FWHM of 350 kHz for all modulation depths,
integrated over 78 s. Sidepeaks emerge at multiples of the modulation frequency of 1 MHz.
The solid lines represent a multi-peak fit to precisely calculate the peak areas. (b) Peak area
of the central peak and first-order peaks of (a). Solid lines represent linear fits. The peak
area of the central peak decreases linearly with the modulation depth, while the areas of the
sidepeaks increase.

Aside from the slope of the 1f signal of the Lamb dip, the performance of the stabilization
is limited by the loop-bandwidth and the sensitivity of the detector. The loop bandwidth is
determined by the bandwidth of the detector (1.3 MHz), and the required lock-in integration time.
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Typical values as used for Fig. 4 are 9.3 and 1.8 kHz for the lock-in bandwidth, i.e. for the 1f
signal, and the PID loop, respectively.

Fig. 5(a) shows the spectral power density of the frequency noise of the QCL (1f signal) and
the β-separation line [26], which is used to calculate the width of the emission, resulting in an
FWHM of 16 kHz. The width of the QCL emission can also be derived from the frequency
fluctuations during the stabilization by scaling the linear range of the 1f signal to its frequency
range as shown in Fig. 5(b). This procedure yields an FWHM of the frequency distribution of
28 kHz. Although both in-loop methods yield similar results, the linewidth differs significantly
from the 350-kHz width measured directly with the spectrum analyzer. This significantly larger
linewidth was unexpected and is most likely explained by the insufficient loop bandwidth to
detect and counteract high-frequency electronic noise, which appears to be intrinsic to the QCL
structure. An explanation for high-frequency noise might be unavoidable growth imperfections
and defects, which are known to cause flicker noise [27]. To eliminate errors due to one
specific instrument, these measurements have been performed with several different lock-in
amplifiers (Zurich Instruments UHF, Toptica Digilock 110) and QCL current drivers (QCL
1000 LAB, QubeCL). There have been no notable changes in performance between the different
instruments. Therefore, we conclude that a substantially larger detector bandwidth and sensitivity
would be necessary to improve the stabilization with respect to high-frequency electronic
noise.

Fig. 5. (a) Spectral power density of the frequency noise of the stabilized QCL signal and the
β-separation line. Calculating the width of the laser emission with the β-separation method
yields an FWHM of 16 kHz. (b) Histogram of the stabilized QCL frequency deviation,
indicating an FWHM of about 28 kHz.

4. Conclusion

A QCL was locked to the Lamb dip of a D2O rotational at 3.38 THz transition by using a PID
controller to adjust the QCL current based on the 1f signal generated by a lock-in amplifier. The
width of the stabilized laser measured with respect to a multiplier reference is 350 kHz. The
results indicate that the linewidth of the QCL is not limited by spontaneous emission, but by the
intrinsic electronic noise of the QCL. We expect to achieve the required larger loop bandwidth by
using a detector with a higher specific detectivity such as a hot-electron bolometer.
Funding. Deutsche Forschungsgemeinschaft (468535812).
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