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Copper radical oxidases (CROs) are redox enzymes able to oxidize alcohols

or aldehydes, while only requiring a single copper atom as cofactor. Studied

CROs are found in one of two subfamilies within the Auxiliary Activities

family 5 (AA5) in the carbohydrate-active enzymes database. We here char-

acterize an AA5 enzyme outside the subfamily classification from the oppor-

tunistic bacterial pathogen Burkholderia pseudomallei, which curiously was

fused to a carbohydrate esterase family 3 domain. The enzyme was shown to

be a promiscuous primary alcohol oxidase, with an activity profile similar to

enzymes from subfamily 2. The esterase domain was inactive on all tested

substrates, and structural predictions revealed this being an effect of crippling

substitutions in the expected active site residues.

Keywords: alcohol oxidase; Auxiliary Activity family 5; Burkholderia;

copper-radical oxidase; multidomain enzyme

The use of redox enzymes to replace chemical reactions

in industrial settings could reduce hazardous waste or

improve process efficiency by harnessing the specificity

and regioselectivity of enzymes [1,2]. Copper-radical

oxidases (CROs) are attractive oxidizing tools, using

oxygen as the final electron acceptor and producing

hydrogen peroxide [3], and only requiring a copper

atom in the active site [4]. In the Carbohydrate-Active

Enzymes database (CAZy, www.cazy.org, [5]) CROs

are classified into the Auxiliary Activity family 5

(AA5). AA5 was recently divided into two subfamilies;

subfamily 1 (AA5_1) comprises characterized (methyl)-

glyoxal oxidases (GlOx, EC1.2.3.15) [6], active on a

variety of simple aldehydes, a-hydroxycarbonyl or a-
dicarbonyl compounds generating the corresponding

carboxylic acids [3,7–9], and galactose oxidases (GalOx,

EC1.1.3.9) [10,11]. Subfamily 2 (AA5_2) has been more

studied and several activities have been described:

GalOx [12–14], raffinose oxidase (RafOx, EC1.1.3.-)

[15], aryl alcohol oxidase (AAO, EC1.1.3.7) [16,17],

and general alcohol oxidase (AlcOx, EC1.1.3.13) [18–
23]. Some AA5_2 members oxidize their primary alco-

hol substrates to only the corresponding aldehydes and

not to carboxylic acids [24], making them emerge as

attractive biocatalysts within green chemistry and

biotechnology.

The first characterized AA5_2 CRO was the galac-

tose oxidase FgrGalOx from Fusarium graminearum,

which oxidizes the C6-hydroxyl group in D-galactose

[13]. This enzyme has been extensively studied and has

Abbreviations

AA5, Auxiliary Activities family 5; AAO, aryl alcohol oxidase; AlcOx, alcohol oxidase; CRO, copper-radical oxidase; HMF,

5-hydroxymethylfurfural; HMFCA, 5-hydroxymethyl-2-furancarboxylate.

1779FEBS Letters 597 (2023) 1779–1791 � 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-9238-0615
https://orcid.org/0000-0002-9238-0615
https://orcid.org/0000-0002-9238-0615
https://orcid.org/0000-0001-8386-2914
https://orcid.org/0000-0001-8386-2914
https://orcid.org/0000-0001-8386-2914
mailto:scott.mazurkewich@chalmers.se
mailto:johan.larsbrink@chalmers.se
http://www.cazy.org
https://enzyme-database.org/
https://enzyme-database.org/
https://enzyme-database.org/
https://enzyme-database.org/
https://enzyme-database.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2F1873-3468.14632&domain=pdf&date_stamp=2023-05-11


seen utilization in applications such as glycoprotein

labelling [25,26], development of biosensors [27], mono-

and polysaccharide modification [28–30] and even in

synthesis of an anti-HIV drug [31]. More recently, two

characterized AA5_2 enzymes from Colletotrichum

graminicola were found to be essentially inactive on

galactose [18]. The first, CgrAAO, instead oxidizes

aromatic primary alcohols and efficiently converts

5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran,

a compound with several uses in biopolymer synthesis

[16]. The second, CgrAlcOx, showed higher activity on

the primary hydroxyl group of diverse aliphatic alco-

hols, and has been evaluated for production of alde-

hydes in flavours and fragrances [22]. Since the

discovery of the C. graminicola enzymes, other AA5_2

members with similar substrate specificity profiles were

characterized from the same genus (C. tabacum,

C. destructivum, C. orbiculare, C. higginsianum) and

from Pyricularia oryzae [19,20,23]. Other enzymes from

Fusarium have shown preference for aryl alcohols and

furans in contrast to the well-known FgrGalOx [17].

More recently, the combination of phylogenetic and

sequence similarity network analysis allowed a broad

sampling across different fungal clades and led to char-

acterization of 12 new AA5 enzymes, including GalOx,

RafOx, and more AlcOx enzymes [21].

While CAZy has identified putative AA5 members

across all kingdoms of life, the lack of biochemically

characterized enzymes limits functional predictions, and

further exploration of its sequence diversity is needed.

To date, the vast majority of characterized AA5 mem-

bers are from eukaryotes and, apart from a few plant

enzymes from Arabidopsis thaliana [10], these are pre-

dominantly fungal. Bacterial enzymes comprise over a

third of AA5 but compared to fungal enzymes, few bac-

terial CROs have been studied. The first was from

Stigmatella aurantiaca, and encoded by the gene fbfB

[32]. It was annotated as a putative GalOx through the

identification of several Kelch motifs typical of the b-
propeller architecture of CROs, together with conserved

metal-binding residues. The enzyme was not character-

ized in vitro, but in vivo studies demonstrate a role in

the formation of fruiting bodies. With a similar

approach, the CRO SCO2837p was identified in

Streptomyces coelicolor, and shown to play a role in cell

wall remodelling associated with hyphal tip growth [33].

The enzyme was also assayed on a range of simple alco-

hols and had the highest activity on glycolaldehyde. A

comparable activity profile was displayed by the

Streptomyces lividans GlxA (SlGlxA), with the highest

specificity for glycolaldehyde and only weak activity on

glucose and galactose [34]. Notably, SlGlxA represents

the first structurally determined bacterial CRO.

A bacterium encoding several putative CROs is

Burkholderia pseudomallei, a soil-dwelling Gram-

negative opportunistic pathogen from the Pseudomo-

nadota phylum. Infections by B. pseudomallei can lead

to Melioidosis, with symptoms ranging from mild to

severe pneumonia and possibly fatal septic shock

[35,36]. While the species occupies various ecological

niches, it is not regarded as a major plant degrader,

and research has been focused on understanding its

virulence factors and role in pathogenesis [37]. Inter-

estingly, B. pseudomallei encodes three putative

unstudied AA5 enzymes, one of which being fused to

a putative catalytic Carbohydrate Esterase family 3

(CE3) domain. CE3 comprises acetyl xylan esterases

that cleave O-linked acetyl groups from xylan oligo-

and polysaccharides [38–40], making the fusion to an

AA5 domain puzzling. Here, we present our character-

ization of this unusual multidomain enzyme, where the

oxidase was shown to oxidize carbohydrates but was

more active on longer aliphatic alcohols, furans, and

polyols. The CE3 domain was in contrast completely

inactive, and from structure predictions we postulate

that this is an effect of peculiar substitutions in the

positions of the expected catalytic residues. We dem-

onstrate that the AA5 domain, BpAlcOx, is active on

primary alcohols, and that it appears unable to oxidize

the closed-ring conformation of aldoses but rather

only oxidizes open-chain forms.

Materials and methods

Phylogenetic analysis

All AA5 and CE3 sequences were accessed from CAZy

(February 2023) and trimmed to comprise only catalytic

domains. Identical sequences and fragments were removed,

and remaining sequences for each family aligned using

CLUSTAL OMEGA [41]. Phylogenetic trees were constructed

using IQ-TREE [42], with default settings, including choice of

optimal substitution model (WAG+F+I+G4 for both fami-

lies) and 1000 ultrafast bootstraps. Trees were visualized

using ITOL [43].

Molecular biology

The Uniprot entry for BpAlcOx-CE3 (Q63UA8) is longer at

the N-terminus by 10 residues compared to the NCBI record

(AIV61401.1). SIGNALP 5.0 [44] predicts the same signal pep-

tide cleavage site in both entries but with greater confidence

for the UniProt entry which thus is the more likely reading

frame (Fig. S1), and residue numbering refers to the Uniprot

entry. The gene encoding BpAlcOx5-CE3, lacking its pre-

dicted signal peptide, was codon optimized (Table S1)

for expression in Escherichia coli and synthesized (Twist
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Bioscience, San Francisco, CA, USA) into a pET-28a vector

in-frame with an N-terminal hexahistidine tag. Constructs to

express the individual BpAlcOx or BpCE3 domains were cre-

ated by ligating their respective PCR products into modified

pET-28a vectors containing an N-terminal hexahistidine tag

and a TEV protease cleavage site instead of the native

thrombin site. Protein variants were created by site-specific

mutagenesis by the QuikChange method [45]. Primer

sequences utilized for gene amplifications and mutagenesis

are provided in Table S2. All constructs were verified by

DNA sequencing.

Protein production and purification

Escherichia coli BL21 (kDE3) cells harbouring plasmids

encoding either BpAlcOx-CE3, BpAlcOx, or BpCE3 were

grown in lysogeny broth (LB) supplemented with

50 lg�mL�1 neomycin at 37 °C with 200 r.p.m. shaking to

an OD600 ~ 0.5, when expression was induced by addition of

0.2 mM isopropyl b-D-1-thiogalactopyranoside (IPTG), and

the cells were incubated at 16 °C overnight, then harvested

by centrifugation (5000 g, 10 min), resuspended in 20 mM

tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8, con-

taining 250 mM NaCl, and disrupted by sonication. Cell

debris was removed by centrifugation (18 000 g, 10 min)

and proteins were purified using immobilized metal ion affin-

ity chromatography (IMAC) on an €AKTA system (Cytiva,

Marlborough, MA, USA) with 5 mL HisTrap Excel col-

umns, using 50 mM Tris pH 8 with 250 mM NaCl as binding

buffer and elution using a linear gradient of the same buffer

containing 250 mM imidazole. Collected proteins were con-

centrated by ultrafiltration (Amicon Ultra-15; Merck-

Millipore, Burlington, MA, USA), loaded onto a HiLoad

Superdex 200 16/60 gel filtration column and resolved with

an isocratic gradient with the IMAC binding buffer. Protein

samples were treated with 1 mM EDTA overnight, 4 °C, to
remove exogenous metals, buffer exchanged by passing

through a Cytiva HiPrep 26/10 Desalting Column, then

treated with 500 lM CuCl2 overnight, 4 °C, and buffer

exchanged into 25 mM Tris pH 8 with 250 mM NaCl. Protein

samples were concentrated by ultrafiltration as before and

stored at 4 °C. Sodium dodecyl sulfate polyacrylamide gel

electrophoresis using Mini-PROTEAN TGX Stain-Free

Gels (Bio-Rad, Solna, Sweden) was used to verify protein

purity and protein concentrations were determined using a

Nanodrop 2000 Spectrophotometer (Thermo Fisher Scien-

tific, Waltham, MA, USA).

Enzyme characterization

The oxidase activity of BpAlcOx was monitored continu-

ously by coupling H2O2 production to horseradish peroxide

(HRP) oxidation of 2,20-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS). Standard assay reactions of 200 lL
were carried out in 50 mM sodium citrate pH 7, with 1 mM

ABTS (Sigma Aldrich, Solna, Sweden) and 1 lg HRP

(Thermo Scientific). Kinetic measurements were performed

in at least duplicate at 22 °C and followed at 420 nm using

the extinction coefficient of oxidized ABTS: 3.6 9

104 M
�1�cm�1. Substrates were from either Fisher Scientific,

Sigma Aldrich, or BioSynth (Compton, England) and were

dissolved in either water or DMSO, in the case of aromatic

substrates and the long-chain alkyl alcohols hexanol and

nonanol. DMSO concentrations up to 10% (v/v) did not

affect oxidase activity with ethanol and thus all assays

where substrates were dissolved in DMSO kept the solvent

concentrations ≤ 10% (v/v). Beyond the substrates tested in

Table S3, 2-propanol and the following aldehydes were

assayed but gave no detectable activity over 1 h: ethanal,

propanal, butanal, pentanal, hexanal, and benzaldehyde.

The pH dependency was determined with 250 mM 1,3-

propanediol (saturating conditions) in a three-component

buffer (25 mM acetic acid, 25 mM 2-(N-morpholino)

ethanesulfonic acid, and 50 mM Tris–HCl), covering pH

4.5–9.5 [46]. Acetyl esterase activity was assayed using 4-

nitrophenyl acetate (pNP-Ac; Sigma Aldrich), in sodium

phosphate pH 7.5, with pNP release monitored at 405 nm

using the extinction coefficient 13.3 mM
�1�cm�1. Nonlinear

data were fitted to either the Michaelis–Menten or sub-

strate inhibition equations using GRAPHPAD PRISM (Graph-

Pad, Boston, MA, USA) or ORIGINPRO (OriginLab,

Northampton, MA, USA). For unsaturable reactions, lin-

ear regression of velocity over substrate concentration was

used to determine kcat/Km values.

Results

Bioinformatic analyses

The fusion AA5 and CE3 proteins appear unusual, and

further sequence analysis showed that homologous

sequences are limited to B. pseudomallei strains and one

instance from B. savannae (91% sequence identity). The

individual domains of BpAlcOx-CE3 were then

analysed, excluding Burkholderiales, and the closest

homologs to the AA5 domain were found in other Pseu-

domonadota species, namely Luteimonas panaciterrae

(48.5% seq. id.) and species of Lysobacter (≤ 46.5%

seq. id.), while for the CE3 domain, top homologs were

from various Streptomyces species from Actinomyce-

tota, with sequence identities of ≤ 42%. A phylogenetic

tree of AA5 was constructed to visualize whether BpAl-

cOx clusters with previously characterized enzymes

(simplified in Fig. 1, and with all entries and bootstrap

values in Fig. S2). Following the subfamily annotations

in CAZy, BpAlcOx is found in a clade between the two

subfamilies and not close to previously characterized

enzymes. It is found in a larger bacterial clade where

S. aurantiaca FbfB is also positioned, to which
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BpAlcOx has 29% sequence identity. The other two

AA5 enzymes of B. pseudomallei in contrast belong to

AA5_2, though both are also located in an unexplored

subfamily clade (Fig. 1; Fig. S2). A similar phylogenetic

analysis of the enzyme’s CE3 domain was less informa-

tive (Fig. S3), as few CE3 members have to date been

characterized [5], and BpCE3 is not closely related to

any of these.

Biochemical characterization

We successfully recombinantly produced both the full-

length and individual domains of BpAlcOx-CE3. The

activity of the isolated AA5 catalytic domain

(11.84 � 0.862 s�1) with a saturating amount of 1,3-

propanediol (250 mM), one of its preferred substrates,

was very similar to that of the full-length protein

(8.579 � 0.296 s�1), with the small differences likely

attributable to experimental error, and thus the iso-

lated catalytic domain was utilized for in-depth charac-

terizations. The pH dependence on the CRO activity

with 1,3-propanediol was bell-shaped with a maximal

activity between pH 6–8 (Fig. S4), and pH 7 was used

as the standard condition for subsequent assays using

a wide range of alcohols known to be CRO substrates

(Fig. 2).

As a potential GalOx, BpAlcOx was assayed on

galactose and other carbohydrates. The enzyme oxi-

dized D-galactose and other monosaccharides

(Table S3), though these reactions could not be satu-

rated and the specificity constant for galactose was

minimal (0.2179 � 0.00514 M
�1�s�1) compared to

AA5_2

AA5_1

AtRUBY-GalOx
(NP_173419.1)

At1g75620-GalOx
(NP_177692.1)

AfAlcOx(KAF7627372.1)

AsAlcOx (XP_040706357.1)
PrAlcOx (CAP96757.1)

PfGalOx (382062-JGI)
SaFbfB (AAL25195.1)

BpAlcOx (AIV61401.1)

BpAA5 (AIV58379.1)
BpAA5 (AIV57939.1)

ScGlx (WP_011028609.1)
*SlGlx (D6EWM0)

At1g67290-GalOx (NP_176897.1)

At1g19580-GalOx (NP_197459.1)

UmGlo1 (CAD79488.1)

PcinGlo2 (ANJ20633.1)
PcinGlo3 (QCC62349.1)
PcinGlo1 (ANJ20632.1)
PchrGlyOx (AAA33747.1)

TrGlo (XP_006969947.1)
TvGlo (EHK15719.1)

TtGlo (XP_003658743.1)

MrGalOx (XP_033570565.1)

*CgAAO (EFQ27661.1)
PhRafOx (XP_012186969.1)

CdAlcOx (MZ269521)

ExGalOx (KIW55415.1)

*FgGalOx (AAO95371.1)
FaGalOx (M86819)

FsamGalOx (AIR07394.1)
FvGalOx (ADG08188.1)

FoGalOx (XP_01824690.1)
FsubGalOx (ADG08187.1)

FgAAO (XP_011322138.1)
FoAlcOx (X0H0F2)

FoGalOx-B (X0LXI7)

CoAlcOx (TDZ17043.1)
CgloAlcOx (ELA25906.1)

*CgraAlcOx (EFQ30446.1)
PoAlcOx (XP_003719369.1)

UmRafOx (XP_011389156.1)
CgRafOx (EFQ36699.1)

[ ]

Fig. 1. Phylogenetic tree of AA5. Bacterial enzymes are indicated by red branches, eukaryotic in black, and the sole archaeal in blue. AA5_1

sequences are shown in green shading and AA5_2 in yellow. Characterized members are indicated with their names and respective

Genbank (or Uniprot) identifiers as in [68], and structurally determined enzymes are further marked with asterisks. BpAlcOx is highlighted in

bold, and the two additional uncharacterized AA5 modules from Burkholderia pseudomallei are shown within square brackets.
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previously characterized AA5_2 GalOx enzymes such

as FgrGalOx (11 900 � 1320 M
�1�s�1 [47]). Notably,

BpAlcOx has comparable activity with D-galactose, D-

glucose, D-mannose, L-arabinose, and D-xylose, where

the latter lacks a primary alcohol in the pyranose form

leading to a hypothesis that the enzyme acts on non-

pyranose forms of these sugars. Aldoses can exist in

pyranose-, furanose- or open-chain forms, but usually

the latter represents only a small percentage in solu-

tion. For example, in solution glucose is found

approximately in 99.6 : 0.4 : < 0.1% ratios as

pyranose : furanose : open-chain [48,49]. The equilib-

ria of some monosaccharides tested here are supplied

in Table S4. To explore the hypothesis, we tested a

range of open-chain sugar alcohols and observed a

considerable increase in specificity constant relative to

the respective monosaccharides and, notably, observed

saturation kinetics for mannitol and ribitol (Table 1;

Fig. S5). No activity was observed on fucose, an

aldose lacking a primary alcohol in either the open or

cyclic forms, nor on the non-reducing disaccharides

sucrose and trehalose, which also lack open chain

forms. Minimal activity was however observed on

lactose, where the reducing-end glucose moiety can

exist in an open configuration, indicating that the inac-

tivity on non-reducing disaccharides is not caused by

the carbohydrate length. BpAlcOx was inactive on the

polysaccharides glucomannan, galactomannan, and

galactoglucomannan, consistent with requirement for

non-cyclic aldose substrates. Interestingly, the specific-

ity constant of BpAlcOx for the ketoses D-fructose and

D-tagatose was ≥ 10-fold higher than that of the

aldoses, and BpAlcOx could be saturated with D-

tagatose (Km 66 mM). However, the ketose L-sorbose

was a poor substrate with a specificity constant similar

to those for aldoses.

BpAlcOx was then assayed on a range of primary

alkyl alcohols but could again not be saturated with

any tested substrate. Assays revealed an increased

specificity for longer alkyl chain length with the speci-

ficity constant for nonanol being ~ 100- or ~ 10-fold

greater than for ethanol or hexanol, respectively, and

over 1000-fold higher than for galactose (Fig. 2;

Table S3). The enzyme was active on aryl alcohols

where, interestingly, increased chain lengths of the

alkyl group negatively affected the activity, with the

specificity constant for phenylmethanol being ~ 1000-

and ~ 10-fold greater than that for 2-phenylethanol

and 3-phenylpropanol, respectively, and apparently the

presence of methoxy substituents on the aryl group

diminishes the activity. BpAlcOx was active also on

the aldehydes glyoxal and formaldehyde but lacked

detectable activity on benzyl aldehyde or other tested

alkyl aldehydes. In aqueous solutions, aldehydes exist

in equilibrium with their hydrated geminal diol forms

and the equilibrium is shifted towards aldehyde func-

tionality with increasing chain length, but for both the

small glyoxal and formaldehyde compounds, the

hydrated forms are predominant in solution [50,51].

Given the significant activity observed with longer

chain alcohol substrates, and the lack of comparable

activity with their respective aldehydes, we postulate

that the hydrated geminal diol forms of glyoxal and

formaldehyde may be the actual substrates instead of

their aldehyde forms as similarly proposed for AA5

enzymes [9]. The enzyme was active with glycolalde-

hyde, a substrate shown to be preferred by the previ-

ously characterized bacterial AA5 member SCO2837p

from S. coelicolor [33]. Although SCO2837p preferred

this small compound as a substrate, it did not saturate

the enzyme. BpAlcOx could in contrast be saturated

by glycolaldehyde leading to the lowest Km value

(13.89 � 1.48 mM) of all substrates tested but the turn-

over rate (0.07737 � 0.00253 s�1) was more than 100-

fold lower than some other saturating compounds,

such as 1,3-propanediol described in more detail

,M

Fig. 2. Specificity constants of BpAlcOx with a range of

compounds. Assays were completed in sodium citrate at pH 7 at

25 °C as described in the Materials and methods. Kinetic

parameters for the substrates where saturating conditions could be

obtained are listed in Table 1, and the parameters for all the

compounds tested here are supplied in Table S3.
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below, leading to a low specificity constant similar to

glyoxal.

The recent characterization of a unique AA5_2

enzyme from C. graminicola (CgrAAO) highlighted the

specificity of the oxidase towards furan substrates

[16,18]. BpAlcOx was also active on furan alcohols

and had saturation kinetics leading to amongst the

highest observed specificity constants (Fig. 2, Table 1).

However, compared to CgrAAO, the turnover num-

bers (kcat) for BpAlcOx were at least 10-fold lower.

Substrate inhibition was observed for the BpAlcOx

catalysed reactions with both furfuryl alcohol and

HMF with inhibitory constant (Ksi) values close to the

observed Km values. To the best of our knowledge,

substrate inhibition has not been observed in

AA5 with furan substrates. Notably, no substrate inhi-

bition was observed with 5-hydroxymethyl-2-

furancarboxylate (HMFCA) indicating that the car-

boxylate restricts the unproductive binding modes

leading to the substrate inhibition observed with the

planar cyclic molecule. BpAlcOx was active on

HMFCA but inactive on the corresponding aldehyde,

5-formyl-2-furancarboxylate, and lacked activity with

furfural, further supporting the previous observation

of BpAlcOx not oxidizing aldehydes.

BpAlcOx was active on diols and glycerol, with the

greatest activity on 1,3-propanediol (Fig. 2, Table 1).

Interestingly, saturation kinetics was observed for glyc-

erol and 1,3-propanediol but not any other diol. The

Km value for 1,3-propanediol was similar to that for

furfuryl alcohol (25 mM) though a higher kcat for the

former resulted in the highest observed kcat/Km value.

The specificity constant for 1,3-propanediol is ~ 100-

fold higher than that of 1-propanol and ~ 30-fold

higher than that of glycerol, primarily resulting from a

~ 10-fold increase in Km for the latter. Activity on

diols and glycerol has been observed for other AA5_2

members such as CgrAAO [18], but the clear specificity

for 3-carbon units of BpAlcOx is unique within AA5

thus far.

The CE3 domain was produced as an isolated pro-

tein like the AA5 domain, but neither the full-length

protein nor the isolated CE3 domain had detectable

esterase activity. As discussed below, structural predic-

tions suggest this is not an experimental artefact but

an effect of the lack of an expected functional catalytic

triad.

Structural predictions and analyses

Attempts to crystallize either the full-length enzyme or

the isolated AA5 domain were unsuccessful, and we

instead predicted its structure using ALPHAFOLD2

[52,53], ESMFOLD [54], and transform-restrained Rosetta

[55–58]. These all gave reasonably high confidence

models for both the AA5 and CE3 domains, with the

main differences being the orientation of the domains

relative to each other (Fig. S6), and we chose the

ALPHAFOLD2 model for further analyses (found on Uni-

Prot, accession Q63UA8). As anticipated by the pri-

mary sequence, the overall structure contains two

distinct domains: an N-terminal b-propeller integrated

with an immunoglobulin-like domain consistent with

structurally determined AA5 members followed by a

short linker of ~ 12 residues to a C-terminal SGNH-

hydrolase domain consistent with CE3 enzymes

(Fig. 3A).

BpAlcOx does not contain an additional domain N-

terminally linked to the catalytic domain, like the

CBM32 domain in the F. graminicola GalOx [17,59] or

the PAN_1 domain in CgrAAO [16,60]. However,

after the predicted signal peptide cleavage site, starting

Table 1. Kinetic parameters of BpAlcOx with alcohol and aldehyde substrates. Substrates which led to saturating conditions are presented

here, and the parameters for all the compounds tested in this study are supplied in Table S3. Assays were completed in sodium citrate at

pH 7 at 25 °C as described in the Materials and methods. No activity was detected with 2-propanol, ethanal, propanal, butanal, pentanal,

hexanal, or benzaldehyde. ND, not detected.

Substrate Km (mM) Ksi (mM) kcat (s
�1) kcat/Km (M�1�s�1)

meso-Ribitol 72.58 � 4.43 ND 2.312 � 0.0516 31.86 � 2.07

D-Mannitol 99.66 � 10.2 ND 1.151 � 0.0632 11.55 � 1.34

D-Tagatose 67.08 � 3.34 ND 0.2205 � 0.00341 3.288 � 0.171

1,3-Propanediol 25.03 � 2.87 ND 7.909 � 0.332 316.0 � 38.5

Glycerol 211.7 � 16.7 ND 2.355 � 0.0882 11.12 � 0.971

Furfuryl alcohol 24.46 � 5.76 37.27 � 9.92 5.829 � 1.02 238.3 � 69.8

HMF 74.06 � 22.2 39.07 � 13.6 12.86 � 3.18 173.7 � 67.5

HMFCA 58.98 � 3.51 ND 1.159 � 0.0238 19.66 � 1.24

Glycolaldehyde 13.89 � 1.48 ND 0.07737 � 0.00253 5.570 � 0.621

Glyoxal 70.49 � 5.55 ND 0.1762 � 0.00552 2.499 � 0.212
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at residue 35, there is a ~ 19 residue region preceding

the b-propeller domain in BpAlcOx. The region, com-

prising many glycine and small side chain residues, is

unstructured in all predictions albeit with low confi-

dence, but being located on the opposite side of the

AA5 active site it is unlikely to contribute to activity.

A search of the PDB with the predicted BpAlcOx

domain (residues 55–546) using DALI [61] identified

CgrAAO of the three structurally determined AA5

members as the most closely related (Ca root mean

square deviation 2.0 �A; 32% structure-based sequence

identity). The overall topology of the BpAlcOx AA5

domain is similar to both CgrAAO and FgrGalOx,

with a solvent accessible active site cleft at the surface

of the proteins (Fig. 3B–E). The residues coordinating

the copper ion in CgrAAO and FgrGalOx are fully

conserved in BpAlcOx, as is the cysteine (Cys125 in

BpAlcOx) shown to form the unique thioether linkage

with the metal coordinating tyrosine residue in CROs

(Fig. 3B–E; Fig. S7) [18,62]. Characterized AA5 mem-

bers contain a secondary shell aromatic residue which

stacks on top of the thioether linked tyrosine residue

and the identity of the residue is important for defin-

ing GalOx activity in certain CROs [6,16,18,63]. Inter-

estingly, BpAlcOx has a tryptophan (Trp189) in the

equivalent position, but it originates from the same

loop as the tyrosine of the thioester linkage in contrast

to CgrAAO, CgrAlcOx, and FgrGalOx where it origi-

nates from a loop between b-strands of the b-
propeller, and a glycine is found in the equivalent posi-

tion as Trp189 in BpAlcOx. This differently originating

aromatic residue is also observed in GlxA from

S. lividans, a putative GalOx that lacks GalOx activity

in vitro but its deletion, which leads to a loss of glycan

accumulation at hyphal tips [34], showcases that sub-

strate specificity determinants are complex within the

family and the presence of a tryptophan at this loca-

tion alone is insufficient to define specificity. Sequence

identity between BpAlcOx differs compared to studied

enzymes beyond the conserved metal binding core, but

residues lining the active site typically have functional

similarities that likely contribute to similar substrate

specificities. A noticeable distinct feature of BpAlcOx

is the presence of a ~ 23-residue loop inserted between

two b-strands of the b-propeller on one side of the

Fig. 3. Predicted structure of BpAlcOx-CE3 and comparison of its

predicted AA5 active site formation with homologs. (A) The overall

structure of the BpAlcOx-CE3 protein as predicted by ALPHAFOLD

[52,53] coloured relative to the pLDDT confidence values in the col-

our bar. Note that the core of the protein domains is modelled with

relatively high confidence but the termini and loops around the

AA5 domain are of lower confidence. Putative metal binding resi-

dues in the AA5 domain are shown in grey sticks and the copper

ion is placed relative to CgrAAO ([16], PDB: 6RYV) derived by

structural alignment by the DALI server [61]. Residues correspond-

ing to the position of the catalytic triad in the CE3 SGNH-hydrolase

domain are also shown as grey sticks. The active sites of (B) the

BpAlcOx domain as predicted by ALPHAFOLD [52,53], (C) GlxA from

Streptomyces lividans (PDB: 4UNM), (D) FgrGalOx from

Fusarium graminearum (PDB: 2EIE), and (E) CgrAAO from

Colletotrichum graminicola (PDB: 6RYV). The copper ion shown in

BpAlcOx was generated by the copper ion observed in CgrAAO.

The secondary shell aromatic residue stacking on top of the

thioether linked tyrosine is highlighted in white text on black back-

ground in all structures. Note that in BpAlcOx and GlxA this second

shell aromatic residue precedes the thioether modified tyrosine in

primary sequence whereas in FgrGalOx and CgrAAO the residue

originates from a different loop. The long loop only present in BpAl-

cOx is shown in cyan and the open ridge in BpAlcOx created by

the absence of a conserved loop amongst AA5_2 members is

highlighted in red.
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active site, and a shorter loop region between b-
strands on the opposite side of the cleft. The shorter

loop region leads to a loss of putative substrate-

interacting residues found in other enzymes and may

create a more open cleft along that face. The position

of the long loop region is modelled with low confi-

dence, and while its position relative to the active site

remains unknown, it is comprised of hydrophilic resi-

dues which could possibly contribute to substrate

specificity.

The predicted C-terminal SGNH-hydrolase domain

contains a 5-stranded b-sheet packed by helices on

both faces similar to structurally determined CE3

enzymes (Fig. 3A). The DALI server [61] was utilized

to identify proteins similar in structure to the BpCE3

and revealed the two structural determined CE3 mem-

bers, the N-terminal catalytic module of CtCes3 from

Acetivibrio thermocellus (formerly Clostridium thermo-

cellum) (PDB: 2VPT) [40] and TcAXE from

Talaromyces cellulolyticus (PDB: 5B51, 5B5S) [64], as

close homologs (Ca root mean square deviation 1.5–
2.0, structure-based sequence identity 27–32%). CE3

enzymes utilize the classical Asp/Glu-His-Ser catalytic

triad common amongst SGNH hydrolases which is

found in a small solvent exposed cleft. Interestingly,

although being very similar in overall structure to

homologous enzymes, BpCE3 lacks both the catalytic

histidine and serine, which are instead predicted to be

a tyrosine (Tyr741) and alanine (Ala567), respectively

(Fig. 4). As the catalytic triad residues are necessary

for catalysis [65] we propose that the lack of esterase

activity is due to these drastic changes to crucial active

site residues. Substitution of the residues to create the

expected catalytic triad by site-directed mutagenesis

(A567S and Y741H) did not restore esterase activity

towards pNP-acetate, a common esterase substrate,

indicating that additional molecular determinants facil-

itating activity are absent in BpCE3.

Discussion

Interest in the utilization of enzymes for green chemis-

try has been increasing as often enzymes are specific

for both substrates and products and can be competi-

tive alternatives for complex and costly chemical reac-

tions. Oxidative reactions are particularly valuable in

chemical synthesis processes and investigations into

AA5 enzymes have uncovered a wide range of indus-

trially relevant activities [1,4]. BpAlcOx is promiscuous

for primary alcohol substrates, where its specificity

increases with alkyl chain length and its inactivity on

secondary alcohols such as isopropanol is similar to

many AA5_2 enzymes. While BpAlcOx oxidizes mono-

saccharides, our results indicate a lack of activity on

aldoses in their closed-ring forms, and oxidation only

of open-chain configurations. The enzyme was most

specific for nonanol, 1,3-propanediol, and furan alco-

hol, and notably catalysed only alcohol and not alde-

hyde oxidation. Some members of AA5_2, such as

CgrAAO, have been noted to oxidize primary alcohols

only to the corresponding aldehydes and not to the

fully oxidized carboxylic acid products [16]. Possibly,

this limited oxidation by BpAlcOx and similar enzymes

could be exploited to convert alcohols into aldehydes

for functionalization by e.g. imine and oxime click

chemistry [66,67].

Fig. 4. Comparison of the active site formation of predicted BpCE3 domain and homologs. The active site of (A) the BpCE3 domain as

predicted by ALPHAFOLD [52,53], (B) the N-terminal catalytic CE3 module of CtCes3 from Acetivibrio thermocellus (PDB: 2VPT), and (C) the

CE3 TcAE206 from Talaromyces cellulolyticus (PDB: 5B5S). The catalytic triad in each, and the associated residues predicted in BpCE3, are

coloured green.
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Protein structure models of BpAlcOx-CE3 were gen-

erated and although the AA5 domain has less than

35% sequence identity to structurally determined AA5

members, the residues supporting metal coordination

are conserved, suggesting an appropriate model. Sev-

eral studies have previously aimed to elucidate the

molecular determinants governing substrate specificity

in AA5 members [4,68]. However, phylogenetic ana-

lyses have revealed a diverse family regarding primary

sequences, resulting in enzymes with broad substrate

specificities and defined determinants for specificity

remain elusive, and consequently also functional pre-

dictions. The oxidase domain of BpAlcOx-CE3 is in a

distinct and unexplored clade within AA5, and the

closest studied homolog was not studied as a purified

enzyme but through gene deletion and phenotype

observation [32]. Similar to the AA5_2 member

CgrAAO, BpAlcOx has some specificity towards furan

compounds. However, the high Km values and low

turnover rates lead to specificity constants > 75 times

lower for BpAlcOx than CgrAAO suggesting the

sequence divergence has led to a distinct function for

BpAlcOx and members of the clade.

As for all AA5 enzymes, the native substrate(s) of

BpAlcOx-CE3 and its biological role is unknown, but

the signal peptide suggests it being exported out of the

cytoplasm. The homologous AA5_2 GlxA from

S. lividans is found in membrane fractions and com-

prises a predicted N-terminal transmembrane domain

which likely aids in this association [34]. BpAlcOx-

CE3 contains a 12-residue N-terminal region between

the predicted signal peptide cleavage site and the AA5

domain, and while sequence analysis does not suggest

this to be a transmembrane helix, it is a possibility.

BpAlcOx-CE3 could localize to either the periplasmic

space or extracellularly where it would encounter a

range of potential substrates to act upon. Possibly,

this enzyme could be involved in B. pseudomallei infec-

tions, similar to the phytopathogenic fungi, Colletotri-

chum orbiculare and Magnaporthe oryzae, where

deletion of AlcOx-encoding genes resulted in decreased

pathogenicity and penetration ability [23]. A role for

CROs to produce H2O2 as a co-substrate for other

enzymes has been postulated for lignin degradation [3]

and in fungal morphogenesis [69,70] possibly indicat-

ing that the biological role for BpAlcOx could be to

produce H2O2 for some as of yet unknown cellular

process. Our large substrate screen has shown many

unique features of the enzyme which could help eluci-

date a preferred substrate(s) in vivo. For example,

BpAlcOx has enhanced activity with ribitol compared

to pentanol and 1,5-pentanediol, and saturation kinet-

ics observed with ribitol where the Km of

72.3 � 4.43 mM indicates that the enzyme has specific-

ity for hydroxylated substrates. Similarly, the enzyme

prefers 1,3-propanediol over glycerol and considerably

more over 1-propanol which again supports the idea

of a preference for hydroxylated substrates. The com-

paratively low Km for 1,3-propanediol and glycolalde-

hyde could possibly help point towards a preferred

substrate skeleton for the enzyme. The Km was simi-

larly low for furfuryl alcohol, but also considerable

substrate inhibition was observed with an inhibitory

constant similar to its Km. Inhibition was absent for

5-hydroxymethyl-2-furancarboxylic acid indicating that

substitutions on the planar compound confer specific-

ity. It is interesting to speculate whether the activities

with furan alcohols indicate a preference for furanose

compounds. At equilibrium in solution, most mono-

saccharides tested here exist as furanoses only in small

proportions and given the diversity of sugar isomers

in solution it is difficult to ascribe the minimal activi-

ties of BpAlcOx observed here to a defined isomeric

form. However, the lack of activity on sucrose could

indicate a furanose preference being a faulty hypothe-

sis. In the cellular environment, certain anomeric con-

figurations could however be more common and serve

as substrates for BpAlcOx and possibly other homolo-

gous family members. Gene deletions of the GlxA

enzymes from S. coelicolor [71] and S. lividans [34]

lead to a loss of glycan build-up at hyphal tips. A role

in glycan modification also for BpAlcOx-CE3 could be

possible, and potentially pursued with genetic studies,

as well as determination of cellular localization and

potential enzyme activities with cell wall components.

Whether this enzyme has a role in Melioidosis or

other pathogenicity is not known, but a deeper under-

standing of the biochemical properties of BpAlcOx-

CE3 could lay a foundation for future therapeutic

developments.

In summary, our investigation of the unusual AA5-

CE3 fusion protein from B. pseudomallei revealed a

primary alcohol oxidase domain with specificity similar

to some AA5_2 members, and an inactive CE3

domain. BpAlcOx represents one of only a few charac-

terized bacterial CROs, and while it was not as active

as some fungal counterparts, its biochemical character-

ization here could still provide useful information in

the development of new CRO-based biotechnological

applications. The biological role for BpAlcOx-CE3 is

unclear, and the reason for combining an AlcOx and

an esterase domain remains unresolved, and though

physically linking CEs has previously been shown to

improve the catalytic potential of such multicatalytic

enzymes [72], a similar additive effect for BpAlcOx-

CE3 is unlikely given the inactive CE3 domain.
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