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Abstract

In the present chapter, interpretations of the mathematics of the past are
problematized, based on examples such as archeological artifacts, as well as
written sources from the ancient Egyptian, Babylonian, and Greek civilizations.
The distinction between history and heritage is considered in relation to Euler’s
function concept, Cauchy’s sum theorem, and the Unguru debate. Also, the
distinction between the historical past and the practical past, as well as the
distinction between the historical and the nonhistorical relations to the past,
are made concrete based on Torricelli’s result on an infinitely long solid from
the seventeenth century. Two complementary but different ways of analyzing
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the mathematics of the past are the synchronic and diachronic perspectives,
which may be useful, for instance, regarding the history of school mathematics.
Furthermore, recapitulation, or the belief that students’ conceptual development
in mathematics is paralleled to the historical epistemology of mathematics, is
problematized emphasizing the important role of culture.

Keywords
History of mathematics · Epistemology of mathematics · Interpretations ·
History and heritage · Synchronic and diachronic perspectives · Recapitulation

Introduction

Why should we study the history of mathematics? That is a question often
encountered among students of mathematics, as well as among people within other
areas. One reason for studying the history of mathematics is to throw some light on
the nature of the subject; to truly appreciate mathematics, it may be necessary to be
acquainted with its history. The historical development of mathematics is also very
closely linked to the cultural development of society: when studying the history of
mathematics, at the same time, we learn something about ourselves and the society
of today.

Based on a variety of examples, the intention of this chapter is to problematize
interpretations of the mathematics of the past. The chapter begins by considering
interpretations of ancient artifacts, as well as written sources. Probably already the
first humans had a need for counting; by investigating surviving artifacts, such
as notched bones, we can learn about the mathematical ideas they developed.
However, it is difficult to make fair interpretations of isolated archeological findings.
Also, it can for various reasons be problematic to interpret written sources from
early civilizations such as ancient Egypt, Babylonia, and ancient Greece. From
Egypt there are very few preserved papyri containing mathematics, which makes it
difficult to derive an adequate interpretation of the mathematical knowledge of the
ancient Egyptians. From Babylonia there is a large amount of preserved clay tablets
containing mathematics, but the cuneiform symbols have been difficult to decode.
There are also rather few original sources containing mathematics preserved from
ancient Greece; instead, commentaries and translations of older texts in order to
learn about their mathematical knowledge must be studied.

After considering the problems of interpreting ancient mathematics, we turn to
different postures one can take toward the mathematics of the past. One important
question within the research of history of mathematics concerns how historical texts
should be interpreted in a proper way. The two approaches history and heritage are
considered, where history deals with what happened in the past regardless of the
modern situation, and heritage refers to the impact of a certain mathematical notion
upon later work. Also, the distinction between historical past and practical past,
both being experiences in the present dealing with artifacts from the past preserved
to the present, are considered. Historical past is understood as the distinctness
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from the present, while practical past considers the past in terms of present values,
needs, and ideas. Depending on the intention of the person who is exploring
the past, both a more historical and nonhistorical relation to the past may be
beneficial. Furthermore, the synchronic and diachronic perspectives, which are two
complementary ways of analyzing, for example, the history of mathematics, are
considered. The diachronic approach refers to the development along the time axis,
while the synchronic approach refers to mathematics at a specific moment in time,
without taking its history or further development into account.

The chapter will be concluded by considering the so-called recapitulation theory:
the belief of a parallel between the historical development of mathematics and
students’ conceptual development in mathematics. The recapitulation theory was
for a long time accepted among mathematicians as well as among mathematics
educators. By considering the concrete example of the historical development of
negative numbers, it is argued that local and cultural ideas about mathematics
influence this development, and therefore it becomes problematic to assume that
students of today, with very different cultural conditions compared to different
periods and cultures in the history, would recapitulate the historical development.

Traces of Mathematics of the First Humans

Humanity has a long history. Several million years ago, humanity emerged when it
separated from the common ancestor we have with the chimpanzees. Homo sapiens
originated in Africa about 200,000 years ago and eventually replaced Homo erectus
and Homo neanderthalensis. Typical recognizable human characteristics, involving
the development of language and abstract thought, are believed to have arisen more
than 40,000 years ago, marking the beginning of the Upper Paleolithic. Presumably
already the first humans had a need for counting and developed mathematical
thinking. There are obviously no written sources left from the Upper Paleolithic;
instead, archeological artifacts have to be interpreted in order to say something about
the mathematical knowledge of that time. However, it is not always easy to make
credible interpretations.

The earliest known mathematical artifact is the Lebombo bone, estimated to
have originated from around 37,000 years ago. It is a small piece of a fibula of a
baboon, marked with 29 clearly defined notches, found in the Border cave between
Swaziland and South Africa. The bone has been interpreted as a tally stick used for
counting and may thus be the first hint of the emergence of calculation in human
history. Generally, the notches are thought to represent counting by the principle of
one-to-one correspondence, i.e., by pairing; each notch could represent one object,
one person, or one day.

Since the Lebombo bone resembles the calendar stick still in use during the
twentieth century by Bushman clans in Namibia, it is also believed that it may
have been used as a lunar phase counter. With the 29 notches, in this interpretation,
humans would be able to predict when the moon will be full. The close link between
mathematics and astronomy has a long history. It is not unbelievable to suppose that
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Fig. 1 A drawing of two sides of the Ishango bone showing the grouped notches

early humans felt the need to record the passage of time out of practical necessity or
just out of curiosity. A lunar count, as, for example, a count from full moon to full
moon or from new moon to new moon, would be the simplest possible early system
of time reckoning. Reflecting about that women would benefit from keeping track
of the menstrual cycle, which requires a lunar calendar, it is not difficult to draw the
conclusion that the first mathematicians probably were women.

Another interesting prehistoric artifact is the Ishango bone, found at Ishango, on
the shore of Lake Edward in the Democratic Republic of Congo. This bone was
found during the excavation led by the geologist and archeologist Jean de Heinzelin
(1920–1998) in the 1950s. It was first estimated to be about 8500 years old, but a
re-dating of the archeological site where it was found suggests that it may be more
than 20,000 years old. At one end of the bone is a piece of quartz, most probably
for engraving purposes. There are asymmetrically grouped notches cut in the bone
in three rows (see Fig. 1). The number of notches in each group in the three rows is,
from left to right, as follows:

First row: 3, 6, 4, 8, 10, 5, 5, and 7
Second row: 11, 13, 17, and 19
Third row: 11, 21, 19, and 9

The carvings of this bone are more complex than the ones of the Lebombo bone,
and there have been several interpretations of this bone’s markings. The initial
interpretation suggests that the notches are tally marks used for counting objects.
However, the grouping of the notches indicate that they are more than a tally.
One interpretation is that the bone indicates knowledge of simple arithmetic (De
Heinzelin 1962). The first row indicates duplications, i.e., multiplication by two,
among the first four groups of notches: the double of three is six and the double
of four is eight. Furthermore, the ten in the first row has been interpreted to be
divided into two equal groups of five, i.e., the two groups of five notches that follow
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the group of ten notches. The third row indicates the numbers 10 and 20 plus and
minus 1, which may indicate a link to the number 10 which today is a well-known
number base. The second row, however, has caused a lot of speculations about
early humans’ advanced knowledge of numbers, since it has been interpreted as
a table of prime numbers, i.e., positive integers having exactly two positive integer
factors (one and itself). However, to develop the concept of prime numbers, you
first have to develop the concept of division, and there are no indications that this
was understood at this time; it has been suggested that the concept of division was
developed after 10,000 BC and that the concept of prime numbers was understood
around 500 BC. Therefore, it is disputable that humans would have this knowledge
already 20,000 years ago.

Pletser and Huylebrouck (1999) have proposed that the Ishango bone provides
evidence for early humans’ use of the base 12 and the subbases 3 and 4. Their
main argument is that the numbers in the left and right column add up to 60
and the numbers in the middle column add up to 48, and since 60 = 5 • 12 and
48 = 4 • 12, they suggest that the bone indicates a numerical system in base 12.
Also, the duplications of the 3 and the 4 in the middle column indicates that these
numbers may be used as subbases, and since 3 • 4 = 12, this furthermore indicates
a base 12. The base 12 interpretation could also explain the numbers in the left
column: they can be seen as 12 ± 1 and 18 ± 1. Furthermore, the base 12 is, just as
the base 10, obvious considering the anatomy of human hands: on one hand we can
count the phalanges of the four fingers with the thumb. This way of counting is still
practiced today by some populations. If we also keep track of the number of dozens
on the five fingers of the other hand, the total will be 60.

Another interpretation is that the Ishango bone, just as the Lebombo bone,
may be a lunar calendar. In a microscopic investigation of the bone, Marshack
(1972) found additional markings and suggested that there is a strong evidence of a
correspondence between the markings on the bone and the phases of the moon.

There is also evidence of early use of mathematics in Europe. In Dolni Vestonice
in the Czech Republic, a 33,000-year-old wolf bone, believed to have been a tally
stick, was found. In it 55 notches are carved, in groups of five. This suggests a use
of a base five counting system. This special attention to five is probably due to the
five fingers of one hand and has in fact been found in many primitive cultures.

The development of other research fields, for example, linguistics, may be helpful
in learning more on early mathematical ideas. By studying how the numerals are
structured in different languages, traces of how humans in past times may have
comprehended numbers can be found. For example, the problem of a number base
for handling bigger numbers has not been solved in the same way in all cultures.
Many languages have numerals clearly in base ten, probably as a result of our
ten fingers on our two hands. Based on their numerals, some people seem to have
instead collected objects to be counted in groups of five, just like the humans of
Dolni Vestonice possibly did 33,000 years ago. Thus, the human hand provided an
important model for the structuring of numbers. One example of this is found when
the Api language, spoken on the New Hebrides, is studied. The numerals from one
to ten in the Api language are the following:
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Tai 1 Otai (“the new one”) 6
Lua 2 Olua (“the new two”) 7
Tolu 3 Otula (“the new three”) 8
Vari 4 Ovari (“the new four”) 9
Luna (“hand”) 5 Lualuna (“two hands”) 10

It is noted, however, that the word for hand is not mentioned in the words for the
numbers from six to nine – this notion seems to be already implied in the presence
of the morpheme “new.”

Also, in many African languages, the word for 10 means “two hands” or “two
fives,” and 15 may be expressed as “two hands and one hand.” In some languages
the word for 20 means “take one man,” probably referring to the ten fingers and ten
toes of a man. For example, in the Central African Banda language, the word for 15
means “three fists,” and the word for 20 means “take one person.” In this sense 20
could be seen as a number base. Traces of the base 20 can also be found in other
cultures. For example, in the Inuit language, the numerals are structured with a base
20 and with subbases 5, 10, and 15.

History of Ancient Mathematics: The First Written Sources

Archeological discoveries such as notched bones provide evidence that the idea of
numbers is much older than the art of writing and technological advances such as the
use of metals. The humans using tally sticks were likely nomadic hunter-gatherers.
When they transitioned to an agricultural lifestyle about 10,000 years ago, it allowed
for a great social change: the opportunity to begin the development of permanent
settlements and stable civilizations. The rise of civilizations first took place in river
valleys, such as those in Egypt, Mesopotamia, China, and India. In ancient Egypt
and Mesopotamia, forms of writing had developed before the end of the fourth
millennium BC. Written sources can reveal knowledge of mathematics in ancient
civilizations, but it can also be problematic to interpret historical texts, for different
reasons. For example, there are very few mathematical texts from ancient Egypt
preserved to our days. On the other hand, the Babylonians have left us many written
sources containing mathematics, but the cuneiform symbols have been difficult to
decode. From ancient Greece there are very few original sources preserved; instead
commentaries and translations of older texts must be interpreted.

The ancient Egyptian society is the oldest culture of which it is known a bit more
about their mathematical knowledge due to preserved written sources containing
mathematics. Egypt had become a unified state when the Pharaoh Menes unified
the Upper and Lower Nile valleys around 3150 BC, and it lasted until the Roman
conquest in 30 BC with Cleopatra as the last pharaoh. The knowledge we have
today of Egyptian mathematics mainly originates from two important sources in
hieratic writing: the Rhind papyrus (also called the Ahmes papyrus, approximately
1550 BC) and the Moscow papyrus (approximately 1850 BC). The Rhind papyrus is
a mathematical text resembling a practical handbook and contains 85 mathematical
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problems with solutions. The Moscow papyrus contains another 25 problems with
solutions. All problems in these two papyri are numerical, and most of them have
a practical origin. From these two papyri, it is known that the ancient Egyptians
had knowledge of, for example, arithmetic, fractions, and basic geometry. However,
it is not known in what context these papyri were used. Also, since papyri are a
very fragile material, it is not known how many papyri containing mathematics that
have not been preserved to our time. Therefore, it is difficult to make an adequate
interpretation of the mathematical knowledge of the ancient Egyptians.

Around 2000 BC the Babylonians invaded Mesopotamia and defeated the
Sumerians. The Sumerians had developed writing based on cuneiform symbols, and
the Babylonians adopted the same style of writing. They wrote on soft clay tablets
using the triangular end of a reed stalk, and the tablets were then baked in the sun
or in ovens. Clay tablets are far less vulnerable to the influence of time; hundreds
of thousands of these clay tablets have survived and are well preserved to our days.
Many hundreds of these have been identified as strictly mathematical, containing
mathematical tables and mathematical problems. For example, the tablets contain
multiplication tables, tables of squares and cubes, and tables of square and cube
roots, possibly with the aim to aid in calculations. During a long time period, several
failed attempts were made to decode the cuneiform symbols. Finally, in the 1840s,
the English archeologist Sir Henry Creswicke Rawlinson (1810–1895) succeeded.

The Egyptian and the Babylonian number systems are strikingly different. The
Egyptians used an additive hieroglyphic number system with different symbols for
powers of ten (see Fig. 2). In the hieratic script (which is found in the Rhind and
Moscow papyri), a different numeral system was utilized. This was also an additive
number system but included individual symbols for the numbers 1 to 10, multiples
of 10 from 10 to 90, multiples of 100 from 100 to 900, and so on. In this way large
numbers could be written with fewer symbols than when written with hieroglyphic
number symbols. Also, the hieratic script seems to be better suited to the use of
writing with pen and ink on papyrus. The Babylonians used a cuneiform positional
number system with the base 60 and with the subbase 10 within each position.
That way they only needed two symbols: a vertical wedge representing one and a
horizontal wedge representing ten. Possibly it was the inflexibility of the cuneiform

Fig. 2 The Egyptian hieroglyphic numerals
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writing in clay that prompted an insight that the two symbols for one and ten together
with the positional notation were sufficient for representing any integer without too
much repetitiveness.

The ancient Greek civilization is impressive and most influential in the develop-
ment of the modern Western culture, in particular regarding mathematics. Ancient
Greek can be divided into three periods: the Archaic period (c. 800–c. 500 BC),
the Classical period (lasting to the death of Alexander the Great 323 BC), and the
Hellenistic period (ending with the emergence of the Roman Empire as signified
by the Battle of Acticum in 31 BC). During the Archaic period, the Greek alphabet
developed and replaced various hieroglyphic systems of writing. Traditionally, the
beginning of Greek mathematics is placed at the time of the pre-Socratic philosopher
and mathematician Thales of Miletus (c. 624–548 BC). The Greeks were highly
influenced by Egyptian and Babylonian mathematics. However, the Greeks moved
beyond the use of mathematics developed only for practical purposes, toward a
theoretical approach. For example, Thales is presumably the first mathematician
to have used deductive reasoning when he derived Thales theorem, stating that if a
triangle is inscribed in a circle where one side of the triangle is the diameter of the
circle, then the angle opposite to that side is a right angle.

Until about 450 BC, the Greeks had an oral tradition on passing on knowledge
through their students. When they began to write their texts, they used papyrus
rolls as well as wooden writing boards and wax tablets. These materials are very
fragile and easily become damaged. Therefore, it is not surprising that no original
manuscripts of the most important Greek mathematicians, for example, Euclid and
Apollonius, are preserved to our days. The main sources for Greek mathematics that
are preserved to our days are Byzantine Greek manuscripts written as commentaries
to older texts, as well as Arabic translations and Latin versions derived from Arabic
works (Kline 1972). When these texts are studied, it is not known what changes
the editors and translators may have done. Therefore, it is problematic when, for
example, Euclid’s Elements is studied. The Elements originates from about 300 BC
and is considered to be the most successful and influential mathematics book ever
written. Euclid’s version of the Elements is believed to have been written on a
papyrus roll, and has not been preserved to our days, but it is believed that, to a large
extent, it was a compilation of texts by earlier Greek mathematicians. Most certainly,
the Elements was continually copied, but in this process, errors could have been
made, and material could also have been added. It is known that the Alexandrian
Greek Heron, in his edition of Euclid’s Elements, made numerous changes, such
as giving alternative proofs. Also, Theon of Alexandria in his edition of Euclid’s
Elements made additions and attempted to remove difficulties that students studying
the text may have experienced. Modern editions of the Elements are often based on
the Vatican Euclid, dating from the ninth century, and discovered at the Vatican in
the nineteenth century. It is widely believed that this manuscript is the closest to
Euclid’s original text.

Two of the main sources to our knowledge of the classical and Alexandrian Greek
mathematics are the important commentaries by Pappus (c. 290–c. 350) and Proclus
(412–485). Pappus wrote, among others, the mathematical Collection which is an
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exposition of the classical and Alexandrian mathematics from Euclid to Ptolemy.
Unfortunately, this manuscript is not preserved in complete form. Proclus was a
Greek Neoplatonist philosopher, and most knowledge we have today on the classic
Greek mathematics originates from him. The principal source about the early history
of Greek geometry is his commentary which deals historically and critically with
Book I of Euclid’s Elements.

There are still gaps in our knowledge on the history of Greek mathematics as
well as in our knowledge of the history of mathematics of other ancient civilizations.
With the aim to reconstruct the history of Greek mathematics, scholars proceed to
study preserved manuscripts and their relation to each other in order to interpret
how the original texts may have been structured. When doing this, historians of
mathematics can, depending on purpose, adopt different perspectives from which
the manuscripts can be interpreted in different ways. Of course, this is not only
valid when manuscripts from ancient Greek are considered; also, when historical
mathematical texts from other time periods are studied, a variety of perspectives
when interpreting the texts can be adopted. In the following sections, this will
problematized.

History of Mathematics or Heritage of Mathematics?

During the last few decades, the legitimacy of historical research in mathematics
has been debated. One crucial question concerns how historical texts in mathematics
should be interpreted in a proper and historically correct way. An influential model is
composed by Ivor Grattan-Guinness (1941–2014) who has considered this issue on
the basis of the following two approaches: history and heritage (Grattan-Guinness
2004). The distinction between history and heritage, both theoretically and by means
of concrete examples, will be described in this section.

History focuses on what happened in the past and pays no intention to the modern
situation. In order to study a specific mathematical theory, definition, theorem,
concept, etc., history concentrates on the details of its development, its prehistory,
the chronology of progress, and its impact in the years immediately following. As
Grattan-Guinness points out, history addresses the question “what happened in the
past?” but also the question “what did not happen in the past?” In order to answer
the corresponding questions “why?”, history gives descriptions and also attempts
explanations. History may also consider differences between the historical notion
and more modern notions that are seemingly similar.

An example of interpreting historical texts by means of history is the following:
if Leonhard Euler’s (1707–1783) function concept is studied, the focus would be
to analyze his function concept on the basis of the mathematical context at that
particular time period, without being influenced by the modern function concept.
The historical interpretation must be based on the fact that Euler neither had access
to the modern function concept nor did he struggle to formulate it. Instead, he
formulated a definition of a function within his conceptual framework which was
suitable for dealing with problems in mathematics of interest at that particular time.
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Thus, for the historical interpreter, it is essential to be aware of the mathematical
context that Euler had at hand. The fact that the function concept during the
eighteenth century was quite different compared to today would not be a main point.

Let us discuss this example a bit further. In 1748 Euler defined a function in the
following way:

A function of a variable quantity is an analytic expression composed in any way whatsoever
of the variable quantity and numbers or constant quantities. (Euler 1748, p. 18)

Apparently, to understand Euler’s function concept, it is also necessary to study
variables from the mid-eighteenth century which differs significantly from how
variables are defined today. Most mathematicians during the eighteenth century
regarded variables as being quantities that vary – that change in magnitude. For
instance, the mathematician Guillaume de l’Hospital (1661–1704) defined variables
in the following way:

We call variable quantities those that increase or decrease continuously; and to the contrary
we call constant quantities those that remain the same while the others change. (l’Hospital
1696, p. 1)

Certainly, l’Hospital’s definition differs significantly from the modern variable
concept in the sense that today a variable is viewed as a symbol representing an
arbitrary element of a specific set. Hence, analyzing Euler’s view of the function
concept includes an investigation of the whole context at that particular time.

Now, let us turn to the heritage approach. Heritage refers to the impact of a certain
mathematical notion, for example, a mathematical theory, definition, theorem, and
concept, upon later work. Often the main focus is the modern form of the notion
studied, with attention paid to the course of its development. Sometimes, when
appropriate, the modern notions are inserted into the notion studied. As Grattan-
Guinness formulates it: “Heritage addresses the question ‘how did we get here?’
and often the answer reads like ‘the royal road to me’” (Grattan-Guinness 2004,
p. 165). A typical example of the utilization of heritage is review articles where
motivation, cultural background, and historical complications are usually left out,
but names, dates, and references are given frequently.

In order to better understand the difference between history and heritage,
let us again consider Euler’s function concept. Euler, as well as several other
mathematicians during this time period, expanded functions as power series (Kline
1983). In this way, Euler could easily determine a function’s derivative and integral
by simply differentiating and integrating the series term by term. However, Euler
and his contemporaries were manipulating infinite power series in the same way
as usual polynomials without any consideration to problems that may arise when
infinity is involved. Sometimes this led to ambiguous results which the following
example from Euler illustrates. Consider the power series expansion:

1

1 + x
= 1 − x + x2 − x3 + x4 − · · · (1)

Differentiation of this series term by term, and after changing the sign, gives
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1

(1 + x)2 = 1 − 2x + 3x2 − 4x3 + 5x4 · · ·

For Euler there never was a problem to divide a number with 0, since the result
became infinity, where infinity was considered as a number. Therefore, when Euler
substituted x = − 1 in the series above, he received the following result:

∞ = 1 + 2 + 3 + 4 + 5 + · · · (2)

In the same way, Euler substituted x = − 2 in the original series (1) above and
obtained

−1 = 1 + 2 + 4 + 8 + 16 + · · · (3)

The terms in the series (3) are clearly larger than the corresponding terms in the
series (2), and therefore Euler concluded that ∞ < − 1, and since 1 < ∞, Euler
concluded that 1 < ∞ < − 1. Within a heritage perspective, this result is incorrect
since we obviously arrive at a contradiction. The reason why Euler arrived at this
kind of result was his usage of power series expansions of functions outside their
convergence domains. However, utilizing a history perspective, conclusions through
the application of modern knowledge cannot be drawn. Instead, Euler’s result has
to be interpreted using the tools that Euler had at hand. Euler argued that infinity
separates positive and negative numbers, just as 0 does. Perhaps he considered the
number line as an infinitely large circle where the both halves, i.e., the positive and
negative number lines, were tied up at zero and at the infinity?

During the nineteenth century, there was an increasing concern to make the
theory of series rigorous, not the least through the French mathematician Augustin
Louis Cauchy’s (1789–1857) pioneering contributions. Cauchy rejected the meth-
ods used by Euler and his contemporaries who, as we have seen above, applied
rules for finite expansions when manipulating infinite expansions. However, during
Cauchy’s attempts to rigorize the theory of series, his mathematical sophistication
sometimes blinded him to counterexamples that were lurking. One example is the
famous Cauchy’s sum theorem first formulated in 1821, where Cauchy claimed
that the sum function of a convergent series of real-valued continuous functions
is continuous:

When the different terms of the series (u 0 + u 1 + u 2 + · · · + un + · · · ) are functions of
the same variable x, continuous with respect to that variable in the vicinity of a particular
value for which the series is convergent, the sum s of the series is also a continuous function
of x in the vicinity of this particular value. (Cauchy 1821, pp. 131–132)

The proof was relatively imprecise which led to that contemporary mathemati-
cians criticized the theorem and came up with counterexamples. For instance,
the Norwegian mathematician Niels Henrik Abel (1802–1829) showed that the
trigonometric series
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Fig. 3 A graphical representation of the sum of the series sin x − 1
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is an exception to Cauchy’s theorem (Abel 1826). Although the series is convergent
and consists of continuous functions, the sum of the series is discontinuous at
x = (2k + 1)π , for each integer k (see Fig. 3). Abel also added that there exist
several other counterexamples similar to this (see Sørensen 2005).

Apparently, the mathematical theory had reached a point where the convergence
condition was not precise enough to exclude counterexamples such as Abel’s. In
1853 Cauchy modified his theorem by adding the stronger convergence condition
“always convergent” to his 1821 version.

Let us discuss this example in terms of the distinction between history and
heritage. It is tempting to think that Cauchy’s convergence conditions from 1821
and 1853 are the same as the modern notions of pointwise and uniform conver-
gence. Certainly, such a conclusion would be hasty, since pointwise and uniform
convergence depend on the modern function concept which Cauchy and his
contemporaries did not have at hand. As Grattan-Guinness (2000) points out,
during the nineteenth century, there was a problem to distinguish between the
expressions “for all x there is a y such that . . . ” and “there is a y such that for all
x . . . ” which is needed to express the modern convergence conditions. However,
considering Cauchy’s distinction as an attempt to reach the modern convergence
concepts or investigating which impact Cauchy’s conditions had upon later work
on convergence would be typical examples of utilizing a heritage perspective (e.g.,
Spalt 2002).

There are several examples of research where Cauchy’s sum theorem has
been analyzed from a history perspective. For instance, Sørensen has studied the
development of Cauchy’s sum theorem by analyzing which role Abel’s coun-
terexamples played in the transition between a formula-centered analysis and a
concept-centered analysis (Sørensen 2005). Another example is the investigation
of the Swedish nineteenth-century mathematician Emanuel Gabriel Björling’s
(1808–1872) contribution to the development of Cauchy’s stronger convergence
condition “always convergent” from 1853 (Bråting 2007; Grattan-Guinness 1986).
By analyzing Björling’s (1853) own distinction between “convergence for every
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value of x” and “convergence for every x,” where the latter is a stronger condition
than the former, we can get a better understanding of what problems mathematicians
during the nineteenth century were facing.

It is important to point out that the utilization of heritage often results in a
modernization of old results in order to show their current place in mathematics, but
the historical context is not always taken into consideration. Grattan-Guinness states
that this is perfectly legitimate, as long as heritage is not confused with history;
one should be aware of that mathematicians of the past based on their definitions
within the conceptual framework available at that particular time and not assume
that they strived for the modern definitions of today. An example of confusing
history with heritage is to claim that Euclid was a “geometric algebraist,” in the
sense that he was handling geometrical notions but that he actually was practicing
common algebra. However, to insert modern notions of algebra into Euclid’s work
is certainly acceptable and would be a typical example of using heritage. It becomes
problematic if one argues that algebra is discovered in Euclid’s work. Let us now
consider this example in more detail.

During the 1970s there was a debate within the historiography of mathematics
concerning whether it is correct to claim that Euclid was a geometric algebraist,
in the sense that he was handling geometrical notions but was actually practicing
common algebra (Corry 2013). Within the research field of history of mathematics,
this debate is sometimes referred to as the Unguru debate: did the Greeks have
an algebra? Sabetai Unguru, historian of science and mathematics, argued that the
received opinion, which was based on research by among others Paul Tannery
(1843–1904) and Hieronymus George Zeuthen (1839–1920), was incorrect and
based on an anachronistic reading of ancient Greek texts as they were translated
into a modern algebraic notation. According to Unguru, algebra was imposed on the
Greek texts rather than discovered in them. Regarding the use of modern algebraic
notions in Euclid’s Elements, Unguru stated the following:

History? Perhaps, but certainly not sound, acceptable history. It is rather ‘logical history’,
i.e., in more cases than not, non-history. It is history as it should be rather than an honest
attempt to establish it as it was; it is, in other words, a logical rather than a historical
reconstruction. (Unguru 1975, p. 92)

The leading mathematician André Weil (1906–1998) dismissed Unguru’s critique
by accusing Unguru of not knowing enough mathematics and claimed, without
much justification, that Euclid just used a somewhat cumbersome notation in his
algebra (Weil 1978). Today Weil’s claim is sometimes regarded as a scandal in the
field of history of mathematics.

Grattan-Guinness discusses the interpretation that Euclid’s Elements contains
algebra. He considers, among other things, Book II, Proposition 4 of Euclid’s
Elements: “If a straight line be cut at random, the square on the whole is equal
to the squares on the segments and twice the rectangle contained by the segments”
(Heath 1956, p. 380). This proposition is today often referred to as completing the
square and in algebraic notation is described as (a + b)2 = a 2 + 2ab + b 2. A
modern illustration is given in Fig. 4.
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Fig. 4 A modern illustration
of Book II, Proposition 4 of
Euclid’s Elements

Grattan-Guinness suggests some problems resulting from interpreting Euclid
as a “geometric algebraist” based on the proposition above. First, the expression
above is a piece of algebra which Euclid did not use; in fact, his picture did not
contain the letters a and b. One should be aware of that Euclid’s theorem concerned
geometry, about the large square being composed of four parts, with two smaller
squares and two rectangles. Furthermore, a and b are associated with numbers and
lengths, but Euclid worked with lines and regions, i.e., Euclid did not have at hand
any arithmetized analogues such as lengths or areas. Grattan-Guinness even claims
that this is already a historical distortion since Euclid never multiplied geometrical
magnitudes of any kind.

As a matter of fact, algebra was not inserted into Euclid’s Elements until the
seventeenth century. The English mathematician William Oughtred (1574–1660)
was one of the first to exemplify theorems of classic geometry using algebra (Stedall
2002). In Clavis mathematicæ from 1631, he demonstrated the 14 propositions
of Book II of Euclid’s Elements with his analytical method, which means that
he used François Viète’s (1540–1603) algebraic notation, as presented in Viète’s
symbolic algebra. During the end of the sixteenth century, Viète was inspired by
Diophanto’s work and used capital letters instead of abbreviations as symbols
for the unknown and known entities. Also, the Swedish mathematician Anders
Gabriel Duhre (c. 1680–1739) formulated and proved some of the propositions
in Book II of Euclid’s Elements using algebra (Pejlare 2017). He did this using
both René Descarte’s (1596–1650) notation and Oughtred’s notation. In this way
Duhre’s proofs can be seen as proofs of algebraic identities where operations are
performed on algebraic expressions. Duhre considered the algebraic notation to be
both “clear and convenient for the sense”; with algebra he could obtain convenience
in calculations, since complicated expressions can be transformed into simpler ones.
Geometrical results can, with algebra, also be generalized to different kinds of
quantities, since unknowns do not necessarily have to be, for example, lines.

The conclusion here – which should be seen as an interpretation of the Unguru
debate on the basis of history and heritage – is that Euclid did not have an algebra, in
the sense that he did not use any symbolic treatment such as the algebraic expression
above. Therefore, interpreting Euclid as a geometric algebraist is a typical example
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of confusing history with heritage. In the next section, further perspectives of
interpreting historical texts will be considered.

Further Views of the Past and Its Relation to the Present

The distinction between history and heritage is a useful tool to analyze how
mathematics of the past is treated. However, it does not explain in an explicit
way how these different approaches to the mathematics of the past are truly
different views of the past itself. In order to understand the nature of the history of
mathematics, we first have to understand what it means for history of mathematics
to be history and what relation it has to the present. The historian’s materials, such
as books, manuscripts, and other artifacts, are things that have made their way into
the present, and therefore, in order to study the history, it is necessary to refer to
the present to a certain extent. However, it is not only the past and present that are
essential but also how these are treated.

The philosopher and historian Michael Oakeshott (1901–1990) theorized about
how the past can be experienced in various ways (Oakeshott 1933). In particular,
he distinguishes between historical past and practical past. He argues that both
the historical past and the practical past are experiences in the present, since both
approaches deals with artifacts from the past preserved to the present. Furthermore,
practical past considers the past in terms of present values, need, and ideas, i.e., the
practical past depends on the present. Historical past, on the other hand, is a past
that is understood as its distinctness from the present, i.e., the subject of historical
past is the past in its own particularity. Thus, to experience the past in the present as
historical past, the past must be considered unconditionally.

Oakeshott was clearly influenced by the British historian Herbert Butterfield
(1900–1979), who coined the concept of the Whig interpretation of history (But-
terfield 1931). Whig history refers to a history that studies the past with reference
to the present; it presents the past as an inevitable progression toward the present,
in particular toward enlightenment, liberal democracy, and the British constitutional
settlement. Whig historians seek in the past what is useful for the present, empha-
sizing the seemingly inevitable success of the victors. Thus, adopting Oakeshott’s
term, Whig historians treat the past similar to a practical past. Also, heritage, as
described by Grattan-Guinness, resembles a Whig interpretation of the mathematics
of the past. However, when Oakeshott and Grattan-Guinness accepts practical past
and heritage as legitimate, Butterfield rejects the Whig interpretation as illegitimate:
a Whig interpretation distorts the past by reading modern conceptions and intentions
into the writings of, for example, mathematicians of the past. Thus, a Whig historian
would interpret Euclid’s Elements with the help of algebra. Furthermore, Whig
history also forces the past “through a sieve” to only let through ideas that can be
related to modern mathematics and keep out those that are foreign to us today.

Another example of a Whig interpretation of history involves Nicholas Oresme
(c. 1320–1382) in our search for the function concept (Fried 2001). Oresme was
interested in the nature of motion and change and questioned the Aristotelian
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definitions of time and space. Today it is easy to interpret Oresme’s graphical
representation of motion as a representation of a function, since we know what we
are looking for, and how important the concept is in modern mathematics. But when
this interpretation is made, the Aristotelian context and Oresme’s interest in motion
and change are lost. When we insist on our own understanding in a historical text
that originally had a different purpose, the result is that we let Oresme think our own
thoughts.

Fried (2018) discusses the nature of the history of mathematics and the different
relationships or postures toward the mathematics of the past. He points out that both
historical and nonhistorical relations to the past may be beneficial, depending on
the intention of the person exploring it. For example, a mathematician may enter
the world of past mathematics through a “mathematical door” without any intention
of doing history, but rather to use the past as a resource for gaining insight into
her present mathematical research. A mathematician may consider mathematicians
of the past as her contemporaries or colleagues; she may consider herself working
on the same problems within the same frameworks as the mathematicians from the
past. A historian of mathematics may instead enter the world of past mathematics
through a “historical door.” For the historian of mathematics, there is a discontinuity
between mathematical thought of the past and mathematical thought of the present.
For example, the historian of mathematics does not try to coordinate a historical
text with the mathematics of the present, since she does not intend to transform
the past into present experience. Instead, she intends to make the pastness of past
mathematical thought stand out, showing to which extent past ideas were unlike
modern ideas, with the intention to understand the past in its own right.

Let us consider the different postures toward the mathematics of the past in
relation to the Italian mathematician Evangelista Torricelli’s (1608–1647) surprising
result that an infinitely stretched out hyperboloid has a finite volume and an
infinite surface area (Mancosu 1996). If a branch of the Apollonian hyperbola (in
modern terminology: xy = a2) is revolved around one of the asymptotes, a solid
of infinite length in the direction of the axis of revolution is obtained. If the solid
is cut by a plane perpendicular to the axis of revolution, a solid of infinite length
and surface area and finite volume is obtained (see Fig. 5). Torricelli improved
Bonaventura Cavalieri’s (1598–1647) theory of indivisibles to prove that this infinite
long solid has the same volume as a finite cylinder by establishing a one-to-
one correspondence between surface areas of cylinders inscribed in the infinite
hyperboloid and the circles “making up” the finite cylinder. In modern terminology
the volume would be calculated as a generalized integral:
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Fig. 5 Torricelli’s infinitely
long solid

In particular, if a = 1, the volume will be π cubic units.
Torricelli’s infinitely long solid is one of the first examples which challenged

the ancient dictum that there could be no ratio between the finite and the infinite.
As described by Mancosu (1996), the result was widely debated in the 1640s and
beyond. For example, Isaac Barrow (1630–1677) was worried about whether the
universe could contain such an object of infinite length, since he considered the
reality of geometrical entities to be grounded in their material existence. Another
typical reaction at that time was by Thomas Hobbes (1588–1679) who insisted
that all knowledge should involve a set of self-evident truths known by the “natural
light.” According to Hobbes, we can only have ideas of what we sense or of what
we can construct out of ideas so sensed. Thus, since we only can experience finite
things and repeated composition of such ideas of finite things cannot produce the
idea of an infinite thing, he rejected infinite objects such as Torricelli’s infinitely
long solid.

Today examples like Torricelli’s infinitely long solid are looked upon in a less
naturalistic and more conventional way. For example, in modern mathematics there
are no difficulties with the infinitely long solid. Unlike Barrow, we do not try to
fit the infinitely long solid into our universe, and, unlike Hobbes, we do not reject
the infinite because we cannot sense it. The modern mathematician, entering the
world of Torricelli’s mathematics through the mathematical door, may consider the
debate on Torricelli’s result as obsolete but may instead interpret the new techniques
developed by Torricelli in terms of modern integral calculus. The historian of
mathematics, entering the same world through the historical door, may not transfer
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Torricelli’s result into present experience by interpreting it in terms of modern
integral calculus. Instead she may be concerned with the historical debate by Barrow
and Hobbes in order to make the pastness of Torricelli’s result palpable and bring
out its own identity.

This section will be closed by mentioning the synchronic and diachronic
perspectives borrowed from the Swiss linguist Ferdinand de Saussure (1857–1913),
who studied semiotic systems. Saussure suggests that the synchronic and diachronic
viewpoints are two different, but also complementary, ways of analyzing languages.
The diachronic approach refers to the development of a language along a time axis,
meanwhile, the synchronic approach considers a language at a specific moment in
time, often the present, without taking its history into account. Saussure viewed
human languages as systems of meaning which can be understood both as products
of history and as a-historical systems with invariant structures. Here Saussure used
the analogy of chess; the synchronic perspective focuses on how the pieces interact
at a given time, while the diachronic perspective focuses on the evolution of the
game, how the value of the pieces changes during the game. Saussure points out that
a person who has watched the entire game has no advantage over a newly arrived
person in understanding the existing position at that particular moment.

The synchronic and diachronic perspectives cannot only be applied on languages
but also on mathematics. As Fried (2007) points out, in the same way as languages,
mathematics can also be understood as a system of meaning. In order to concretize
how the synchronic and diachronic perspectives can be used in a mathematical
context, an example will now be discussed. So far, this text has considered
interpretations of the history of mathematics by means of the development of
specific mathematical concepts, findings from old civilizations, and the work of
famous mathematicians throughout history. However, in this example focus will not
be on mathematics at the front edge during a specific time period but instead on
the formation and development of school mathematics. Such studies, leaving the
traditional historiography of mathematics, provide important knowledge of what
kind of mathematics that has been relevant for the community at large.

The aim of the study in this example is to identify how the content in Swedish
school algebra has been formed and developed during the last 50 years (see
Bråting and Pejlare 2019). Within the study, curriculum documents and textbooks
from elementary school up until upper secondary school are used as empirical
material. During the time period, there have been five curriculum reforms in
Sweden: in 1962, 1969, 1980, 1994, and 2011. In the study, content patterns in
the curriculum documents as well as the textbooks are identified by means of
mathematical content, degree of difficulty, and contextualization. The study applies
both a diachronic as well as a synchronic perspective. The former perspective refers
to the development of school algebra along the time axis, i.e., from 1962 until
today. Meanwhile, the latter perspective refers to what actually exists at each school
level at particular moments in time. For instance, the curriculum documents from
1980 are investigated separately for each school level without taking its history
or future into account (the synchronic perspective). In addition, the curriculum
documents from the five reforms are also compared with each other in order to
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find content patterns, as well as teaching traditions, within Swedish school algebra
(the diachronic perspective).

In a diachronic perspective, the results revealed that over the years, the algebraic
content had become more integrated with other school subjects, the level of
complexity of algebraic expressions in textbooks had decreased, and algebra had
more often been considered as a tool for solving practical and everyday problems.
Moreover, the results also showed that algebra was introduced earlier during the
years (diachronic perspective). For instance, in the 1980 curriculum document,
algebraic expressions and proportionality first appear at the secondary school level,
while in the 2011 document, it already appears in primary school (synchronic
perspectives). It can also be noted that the emphasis on everyday mathematics
increases with the implementation of the 1980 curriculum which probably was a
reaction to the great focus on abstract mathematics in connection with “New math”
from the 1969 curriculum.

In this way, the usage of a diachronic perspective enhances the investigation of
the algebraic content in a synchronic perspective. The contrasting effect occurring
between different time periods clarifies the algebraic content today as well as how
the algebraic content has changed during the years.

Can History Be Recapitulated or Does Culture Matter?

In the research field of mathematics education, there have, for different reasons,
been efforts in combining the history of mathematics and the mathematics edu-
cation. One of the many ways of utilizing the history of mathematics in the
research field of mathematics education is the investigation of historical conceptual
development to deepen our understanding of mathematical thinking and students’
learning of mathematics. Since the end of the twentieth century, the belief of
a parallel between the historical development of mathematical concepts and the
development of students’ understanding of the concept has become a topic largely
shared within mathematics education. However, this belief of a parallel development
has also been criticized (Bråting and Pejlare 2015). For example, in the history of
mathematics, examples where cultural aspects were crucial for the development
of certain concepts or areas can be found. One such example is the Babylonian
number system, referred to earlier in this chapter (see section “History of Ancient
Mathematics: The First Written Sources”): possibly the art of writing on clay tablets
with reed stalks prompted the development of a positional number system.

The belief of a parallel between the historical development of certain concepts
and individual’s conceptual development has its origin, in particular, in the German
biologist Ernst Haeckel’s (1834–1919) law of biological development, also known
as recapitulation. Haeckel is well-known for his claim that “Ontogeny recapitulates
phylogeny,” believing that the study of embryonic development (or, ontogeny)
retold the history of evolution (or, phylogeny). He wrote:
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The series of forms through which the individual organism passes during its development
from the ovum to the complete bodily structure is a brief, condensed repetition of the long
series of forms which the animal ancestors of the said organism, or the ancestral forms of
the species, have passed through from the earliest period of organic life down to the present
day. (Haeckel 1912, pp. 2–3)

Although Haeckel’s theory of recapitulation is now discredited among biologists, it
had a strong influence on social theories, and educational practices developed during
the end of the nineteenth century. According to the psychological version of the
theory of recapitulation, it is assumed that the present intellectual developments are
to some extent a condensed version of those of the past (Radford 1997). This would
imply that while developing the understanding of, for example, a mathematical
concept, the student recapitulates the historical development of the concept. In
general, the theory promises that the origins of the mental, social, and ethical
development of humanity can be revealed by studying the learning of mathematics
among young children. However, natural selection is presented as a function of
the environment against which individuals act, and therefore, for recapitulation
to be possible, the environment must remain essentially the same. But in fact,
environments do change, and thus it may become difficult to maintain that the
intellectual development of a child today will undergo the same process as the one
a child would have experienced in the past.

In the late nineteenth century, the law of recapitulation was however adopted
among mathematicians and mathematics educators. For example, the French math-
ematician Henri Poincaré (1854–1912) suggested that the individual’s conceptual
development should recapitulate the historical development of the concept. He
wrote:

Zoologists claim that the embryonal development of animals summarizes in a very short
time all the history of its ancestors of geologic epochs. It seems that the same happens to
the mind’s development. The educators’ task is to make children follow the path that was
followed by their fathers, passing quickly through certain stages without eliminating any of
them. In this way, the history of science has to be our guide. (Poincaré 1899, p. 159)

Also, the German mathematician Felix Klein (1849–1925) had an interest in
educational questions, which he believed were closely connected to the history
of mathematics. He was convinced that the road to discovery, and not the formal
arguments, was of most importance, since:

Anyone who wants to enter into mathematics must, step by step, through his own labor
mentally recapitulate the entire development; it is by all means impossible to understand
even a single mathematical concept without having mastered all the antecedent concepts
and their connections that led to its creation. (Klein 1926, p. 1)

Both Poincaré and Klein were strong advocates of intuitive arguments, in contrast
to rigor and formal logic, in mathematics. At the end of the nineteenth century, the
term arithmetization had been introduced in order to describe various programs for
providing non-geometric foundations of analysis and other areas of mathematics.
Poincaré and Klein reacted against this and emphasized the importance of the
interaction between intuition and logical arguments in mathematics. According
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to them intuition is indispensable in the learning of mathematics, since without
intuition, students cannot begin to understand mathematics. However, they also
pointed out that pure intuition is not enough in mathematics, arguing that only logic
can give us certainty. In particular, both were convinced that logical thinking was
preceded by an intuitive stage in the historical development of mathematics as well
as in the learning of mathematics.

A more reflected conception on the relations between history of mathematics and
mathematics education was established by the German mathematician Otto Toeplitz
(1881–1940). In a paper on the genetic approach in the teaching of calculus (Toeplitz
1927), he suggested that proper attention to the history of mathematics in teaching
would benefit the students’ learning. To use history as a didactical means in the
teaching of mathematics is what Toeplitz called the genetic method. He argued that
the development of mathematical ideas should be taken as a guide for teaching; this
would reveal not only the drama of the historical development but also the logic
and interconnection of mathematical ideas to the students. He argued that there are
two ways in which the genetic method can be used: the “direct” and the “indirect”
approach.

• The direct approach, on the one hand, is a direct way of using the history in
teaching, where, instead of bridging between rigorous and intuitive approaches
when introducing a new topic, students should arrive at mathematical ideas by
following the same path by which these ideas followed historically. In this way,
rigorous ideas would unfold for the students in the same way as they unfolded
historically.

• The indirect approach, on the other hand, is rather a way of analyzing teaching
and understanding the teacher as actively reflecting on the history of mathematics
and the real meaning or the “true essence” of each concept. In this way, the
historical analysis serves to turn the teacher’s attention into the right direction in
the teaching, but the history itself is not necessarily brought into the classroom.

In the twentieth century, there was an interest among psychologists in the
relationship between ontogenesis and phylogenesis. In particular, the views of
Piaget and Vygotsky have been influential on the use of history in mathematics
education. The concept of genetic development was elaborated by Jean Piaget
(1896–1980) and Rolando Garcia (1919–2012) as a reaction against the simplistic
psychological version of the recapitulation theory (Piaget and Garcia 1989). They
disputed Haeckel’s recapitulation theory but believed in a parallel between historical
and psychological developments, suggesting that this parallel must be seen not in
terms of content but in terms of mechanisms allowing the acquisition of knowledge.
According to Piaget and Garcia, these mechanisms are invariable in time and space
and do not change, regardless of the period in history and the geographical place
of the individuals. In particular, this implies that they cannot be modified by, for
example, culture.

Lev Vygotsky (1896–1934) also dealt with the problem of recapitulation, but
unlike Piaget he emphasized the epistemological role of culture. He pointed out
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that the activity of mental functions is modified by the use of tools and artifacts,
for example, clay tablets, abacuses, computers, words, and language. Thus, since
the tools available differ in different cultures, and sociohistorical conditions vary
among different historical periods, recapitulation must be impossible. Furthermore,
Vygotsky believed that thinking developed as the result of two different processes:
a biological (or, natural) process and a historical (or, cultural) process. Thus,
according to Vygotsky, ontogenesis could be considered as proponed both by the
sociohistorical conditions where it takes place and by biological phylogenesis. In
the history of mathematics, several examples can be found where the role of culture
had a significant influence on the development of mathematical concepts. Let us
consider one of these examples in greater detail: the development of the concept
of negative numbers in ancient China and in Western Europe; due to different
cultural and sociohistorical conditions, the development of negative numbers was
very different in ancient China compared to Western Europe.

References to negative numbers were first made in ancient China in the practical
handbook on mathematics called Jiuzhang Suanshu (The Nine Chapters on the
Mathematical Art); for more details on Jiuzhang Suanshu, see Lam (1994). This
handbook contains mathematical concepts and methods, and it played a fundamental
role in the development of Chinese mathematics. The original is lost, but Liu Hui
wrote a commentary on Nine Chapters in 263 AD. Among others, a method is
given for solving systems of linear equations. The coefficients of the equations are
placed in a rectangular array of rod numerals using a decimal place notation, and
calculations are performed on the counting rods following an algorithm. Counting
rods with different colors were used in ancient China to symbolize subtraction: a
black number to be subtracted from a red one. As the red counting rods represented
positive numbers, it was not hard to give the black counting rods a meaning as
negative numbers. Thus, negatives arose naturally in solving concrete problems,
and in Liu’s commentary rules for adding and subtracting, positive and negative
numbers were carefully explained. The development of an understanding of the
negatives was in this way induced by the different colors of the rods that the Chinese
had at hand.

In Western Europe, however, the concept of negative numbers was resisted
for a long time. The abacus was used for performing arithmetical calculations,
but different colors were not used to represent addition and subtraction. A first
knowledge of negative numbers and algebraic techniques had reached Western
Europe in the thirteenth century. For example, Leonardo of Pisa (1170–1250)
handled negatives when they arose in calculations, but he was only able to give
negative quantities a meaning in problems concerning money. However, he only
gives a few examples with “giving and taking,” and he never formulates explicit
rules for extending the number system to include also negative numbers.

In the sixteenth century, Girolamo Cardano (1501–1576) gave methods of
solution of the cubic and quartic equation. He rejected negative numbers, and
therefore he had to describe how to solve 13 distinct cases of cubic equations
with only positive coefficients. He did recognize that some of his equations had
negative solutions, but he systematically ignored them. Since there was a problem
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with imaginary numbers when the negatives appeared under square roots, it may
have seemed more suitable not to consider the negatives at all.

Negative numbers started being used, not only through the theory of equations
but also through the problem of dealing with the correspondence between the terms
of arithmetical and geometrical progressions (Thomaidis and Tzanakis 2007). In
his book Arithmetica Integra (1544), Michael Stifel (1487–1567) examined the
correspondence between the two progressions 0, 1, 2, 3, 4, 5, . . . and 1, 2, 4, 8,
16, 32, . . . . He explained how to reduce multiplication and division between the
terms of the geometrical progression to addition and subtraction of the arithmetical
progression. In order to extend the correlation between the two progressions “to the
left,” he had to introduce “fictitious” numbers into the arithmetical progression:

. . . − 4 − 3 − 2 − 1 0 1 2 3 4 . . .

. . .
1

16

1

8

1

4

1

2
1 2 4 8 16 . . .

Stifel clearly stated that the negative numbers are less than zero, but he did not
acknowledge equal status for positive and negative numbers. Instead, he declared
positive numbers to be real numbers, and negative numbers were ascribed only an
imagined existence.

A first clear view of negative numbers in Western Europe should be attributed to
John Wallis (1616–1703) and Isaac Newton (1642–1727) in the seventeenth century.
For example, Wallis gave a simple and clear definition of positive and negative
numbers as contrary signification:

If + signify Upward, Forward, Gain, Increase, Above, Before, Addition, & c. then – is to
be interpreted of Downward, Backward, Loss, Decrease, Below, Behind, Subduction, & c.
And if + be understood of these, then – is to be interpreted of the contrary. (Wallis 1685, p.
16)

The historical development of the notion of negative numbers in different cultures
illustrates clearly that there are local and cultural ideas about mathematics, and its
objects and methods, which influence this development. In China the number rod
system had been developed, and its availability made it natural to simply use a
different color to represent, for example, debts or loss. However, in Europe addition
and subtraction on the abacus were not represented with different colors. Also, the
European resistance to negative numbers can be explained with Euclid’s Elements
that for generations had come to define what is and what is not mathematics;
in the Elements magnitudes and ratios are dealt with, and these concepts do not
provide numbers that can be negative or even zero. Thus, for a long time, the
full understanding and acceptance of the negatives was kept back. Because of the
different roles played by the cultural conditions in ancient China and in Western
Europe in the development of negative numbers, it becomes difficult, or even
impossible, to assume that students in the society of today would recapitulate the
mathematical development of the past.



24 J. Pejlare and K. Bråting

Concluding Remarks

In this chapter, interpretations of the mathematics of the past, as well as our posture
toward mathematics of the past and its relation to mathematics of today, have
been problematized. While the aim of this chapter has not been to discuss the
integration of history of mathematics in mathematics education, per se, nevertheless,
the history of mathematics can play an important role in the learning of mathematics.
A permanent issue of debate among historians of mathematics and mathematics
educators with an interest to integrate the historical and pedagogical perspectives
is which history is suitable and relevant for educational purposes. It is undeniable
that history follows a complicated zigzag path, or rather several ditto, sometimes
leading to dead ends; throughout the history of mathematics, notations and methods
no longer used in mathematics of today can be found. In this context Grattan-
Guinness’ distinction between history and heritage may be of great relevance to
mathematics education: education may benefit from both approaches as long as they
are not confused. History may be utilized when the past is considered in its proper
context, but also heritage may be utilized, as, for instance, when modern algebra is
inserted into Euclid’s Elements.

The history of mathematics may be profitably utilized in the teaching and
learning of mathematics. Besides helping students to sustain interest and excitement
in mathematics, history of mathematics can be used to support the actual learning of
mathematics, for example, by providing different points of view on certain concepts.
A historical approach in the teaching of mathematics may also give mathematics a
more human face and help students understand that mathematics is a human activity.
Mathematics has evolved in time and space in different ways, and many different
cultures have influenced the mathematical epistemology. Knowledge about history
of mathematics may not only lead to a better understanding of specific parts of
mathematics but may also give us a deeper awareness of what mathematics as a
discipline can be.
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