
Wideband mmWave Massive MIMO Channel Estimation and Localization

Downloaded from: https://research.chalmers.se, 2024-03-20 09:43 UTC

Citation for the original published paper (version of record):
Weng, S., Jiang, F., Wymeersch, H. (2023). Wideband mmWave Massive MIMO Channel
Estimation and Localization. IEEE Wireless Communications Letters, 12(8): 1314-1318.
http://dx.doi.org/10.1109/LWC.2023.3270160

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

Wideband mmWave Massive MIMO Channel
Estimation and Localization

Shudi Weng, Student Member, IEEE, Fan Jiang, Member, IEEE, and Henk Wymeersch Senior Member, IEEE

Abstract—Spatial wideband effects are known to affect channel
estimation and localization performance in millimeter wave
(mmWave) massive multiple-input multiple-output (MIMO) sys-
tems. Based on perturbation analysis, we show that the spatial
wideband effect is in fact more pronounced than previously
thought and could significantly degrade performance if not
properly considered in the algorithm design, even at moderate
bandwidths. We propose a novel channel estimation method
based on multidimensional ESPRIT algorithms per subcarrier,
combined with unsupervised learning for pairing across subcar-
riers, which shows significant performance gain over existing
schemes under wideband conditions.

Index Terms—Wideband effect, ESPRIT, wideband localiza-
tion, mmWave MIMO.

I. INTRODUCTION

Integrated communication and localization has attracted
increasing attention in 5G and beyond [1]–[3]. For one thing,
massive multiple-input multiple-output (MIMO) and millime-
ter wave (mmWave) techniques have been demonstrated to
significantly improve communication performance in terms
of reliability, throughput, and scalability. For another, the
deployment of large antenna arrays and the availability of large
bandwidth at mmWave improve the angle and delay resolution,
thus leading to high accuracy localization [4], [5].

The bridge between communication and localization is the
propagation channel [3], [5], [6], since the communication
quality is a function of the user equipment (UE) location via
the channel’s geometric parameters (including the angle-of-
arrival (AOA), angle-of-departure (AOD), and time-of-arrival
(TOA)), which are used both for communication and localiza-
tion purposes [5]–[7]. Therefore, one of the main challenges
in integrated localization and communication is to estimate
the channel parameters, from which one can localize the
UE and/or optimize the communication rate [5]–[9]. Channel
estimation in massive MIMO mmWave communication sys-
tems can be divided into two categories. On-grid methods
rely on a pre-defined dictionary to estimate the multipath
components [10], [11], and thus are inherently limited by
the dictionary size. In contrast, off-grid methods transform
the channel estimation problem into an optimization problem
[12]–[15] or provide direct solutions based on the problem
structure [8], [16]–[18]. Among this last class of methods,
an algorithm based on improved multidimensional folding
(IMDF) and estimation of signal parameters via rotational
invariant techniques (ESPRIT) has been applied in mmWave
massive MIMO channel estimation [5]–[8], [13].

Most existing studies on ESPRIT for mmWave massive
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Fig. 1: Considered localization scenario with multipath. The objective of the
UE is to estimate its location and clock bias based on the estimated AOA,
AOD, and TOA of each path.

MIMO channel estimation assume a narrowband1 channel
model, which indicates that the bandwidth is relatively small
and the array size is small [5]–[8]. As pointed out in [14],
[15], when the array size and the system bandwidth become
large, the spatial wideband effects (also known as the beam-
squint) are non-negligible. In particular, spatial wideband
introduces an undesired coupling of the angular frequencies
in the frequency domain (corresponding to the delays) and the
spatial domain (corresponding to the angles). To the best of
our knowledge, channel parameter estimation under the spatial
wideband effect was considered in a limited number of studies,
e.g., [14], [15], [19]. The authors in [14], [15] explore the
optimization methods to find the angle and delay iteratively,
which requires good initial estimates and high complexity
due to the iterative search. In [19], IMDF per subcarrier was
proposed in order to reconstruct the channel, requiring multiple
snapshot measurements over several coherence intervals to
have the channel experience independent fading, which causes
delays and leads to an ambiguous estimate of the channel
parameters if the UE is moving. Besides, the pairing of
parameters among subcarriers and performance evaluation in
terms of spatial frequencies was not considered.

In this paper, we investigate a low-complexity ESPRIT2

method for dealing with the wideband effect for wideband
mmWave massive MIMO system with explicit pairing across
subcarriers. The proposed method can operate with a single
snapshot measurement and is evaluated in terms of both chan-
nel parameter estimation and positioning. Our contributions
are summarized as follows: (i) we propose a novel combina-

1The term ‘narrowband’ refers to the array steering vectors being
frequency-flat, while the overall channel response may be frequency-selective.

2The MD-ESPRIT-based approach from [18] is used, as (i) it has been
shown to outperform the IMDF-based approach used in [19] in terms of
angular frequency estimations, and (ii) it has lower computational complexity
than tensor-based ESPRIT [20].
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tion of ESPRIT-based channel estimation and clustering, for
dealing with the wideband effect for mmWave massive MIMO
channel estimation under spatial wideband propagations based
on one snapshot observation; (ii) as part of this method,
we introduce a novel pairing strategy to deal with the auto-
pairing problem of path parameters, which will occur when
the algorithm applies the singular value decomposition (SVD)
on each subcarrier independently; (iii) we provide a tighter
narrowband condition for localization, and have verified the
proposed condition in simulations; (iv) we assess the perfor-
mance of the proposed method against standard approaches
and show that the proposed method has better performance,
both in spatial frequency estimation and localization, even with
relatively moderate spatial wideband effects.

Notations: The operations ⊗ and ⊙ denote the Kronecker
and Khatri-Rao (column-wise) products, respectively. The
outer product is denoted by ◦, and the Hadamard product
(element-wise) is denoted by •. vecr denotes vectorization by
row. ℑ(·) and ℜ(·) denotes the imaginary and the real part,
respectively.

II. SYSTEM MODEL

Consider a massive MIMO orthogonal frequency division
multiplexing (OFDM) system, which consists of a base station
(BS) at location p1 = (px,1, py,1) equipped with a uniform
linear array (ULA) of M1-antenna elements and a UE at
location p2 = (px,2, py,2) equipped with M2-antenna ULA.
There exist L resolvable propagation paths between the BS and
UE. The system bandwidth is B, and the number of subcarriers
is K, i.e., the subcarrier spacing is ∆f = B/K. The frequency
domain channel H ∈ CM1×M2×K , accounting for the spatial
wideband effect [14], [15], collects all the channel elements
hm1,m2,k from the m1-th BS antenna to the m2-th UE antenna
over the k-th subcarrier as

hm1,m2,k =

L∑
l=1

ᾰle
−j2πm1ϕl,k,1e−j2πm2ϕl,k,2e−j2πk∆fτl ,

(1)

where mi ∈ {0, . . . ,Mi − 1} for i ∈ {1, 2} and k ∈
{0, . . . ,K − 1}, and

ϕl,k,i = ϕl,i
(
1 +

k∆f

fc

)
. (2)

Here, ᾰl = αlexp(−j2πfcτl), where αl denotes the complex
gain of the l-th path, including phase offsets, τl is the delay
(TOA) of the l-th path. The normalized AOD and AOA are
given by ϕl,i = di sin θl,i/λc, i = 1, 2, respectively, in which
θl,i denotes the corresponding physical AOD and AOA of l-th
path and di denotes the antenna spacing at BS and UE. Finally,
fc denotes the carrier frequency, and λc is the corresponding
wavelength. For the line-of-sight (LOS) path (l = 1), τ1 =
∥p1−p2∥/c+∆τ , θ1,1 = arctan((py,2−py,1)/(px,2−px,1)),
θ1,2 = arctan((py,1 − py,2)/(px,2 − px,1)), where ∆τ is the
unknown clock bias. For the non-line-of-sight (NLOS) paths
(l ̸= 1), suppose that the incidence point of the l-th path is
located at p′

l = (p′x,l, p
′
y,l), then we have τl = (∥p1 − p′

l∥ +
∥p2−p′

l∥)/c+∆τ , θl,1 = arctan[(p′y,l− py,1)/(p′x,l− px,1)],
θl,2 = arctan[(py,1 − p′y,l)/(px,2 − p′x,l)].

The channel estimation is performed on pilot symbols
(training sequences). Similar to [21], we perform the maxi-
mum likelihood channel estimation, and the resultant channel
estimate over the k-th subcarrier is given by

Ĥk = Hk +Ek, (3)

where Hk is the k-th slice of tensor H, and Ek denotes
the channel estimation error, in which each entry is modeled
as independent and identically distributed zero-mean Gaussian
random variable. Finally, L is assumed to be known.3

III. PARALLEL ESPRIT-BASED ALGORITHM FOR
CHANNEL PARAMETER ESTIMATION AND LOCALIZATION

From (1), we note that the channel parameters, i.e., AOAs,
AODs, and delays, are related to angular frequencies. Hence,
the estimation of the channel parameters from noisy Ĥk

can be transformed into a multi-dimensional (MD) harmonic
retrieval (MHR) problem. In this section, we formulate the
channel tensor of both wideband and narrowband models,
analyze the narrowband condition, develop a parallel ESPRIT-
based algorithm for channel parameter estimation and a pairing
method across subcarriers. Based on the paired parameters,
fusion across subcarriers is performed, and finally, the UE is
localized.

A. Tensor Formulation of the Wideband Channel

The channel model from (1) can be formulated with a tensor
H ∈ CM1×M2×K , given by

H =

L∑
l=1

ᾰl a
(M1)
l,1 ◦ a(M2)

l,2 ◦ a(k)
l,3 •Dl, (4)

where a
(M1)
l,1 , a

(M2)
l,2 , and a

(K)
l,3 are steering vectors

formed by exp(−j2πm1ϕl,1), exp(−j2πm2ϕl,2), and
exp(−j2πk∆fτl). The phase rotation tensor Dl ∈
CM1×M2×K is produced by the wideband effect, with entries
dl,m1,m2,k = exp(−j2πk∆f(m1ϕl,1/fc +m2ϕl,2/fc)).

Remark 1 (Narrowband model). The narrowband model relies
on the approximation ϕl,k,i = ϕl,i, ∀k, or, equivalently, Dl ≡
1 ∈ CM1 ×M2 ×K. The narrowband channel model is of the
standard form for MD-ESPRIT [18] and other tensor-based
methods, therefore, such methods can be directly applied.

Proposition 1 (Revised narrowband condition). The narrow-
band model holds when dl,m1,m2,k ≈ 1, which is fulfilled when
2π(M1 +M2)K∆fdi/(fcλc) ≪ 1.

Proof. In order to investigate the condition when the wideband
channel converges to the narrowband channel, we employ the
perturbation analysis as a tool [22]. Consider any path l, the
entries in Dl are given by dl,m1,m2,k = exp(ψl,m1,m2,k),
for some ψl,m1,m2,k ∈ C. The wideband effect causes a
perturbation ∆ψl,m1,m2,k from 0. From the perspective of
channel, it eventually causes ∆dl,m1,m2,k in the tensor Dl,
which differs from the narrowband channel. The value of
∆dl,m1,m2,k as a result of perturbation ∆ψl,m1,m2,k is given

3If L is unknown, the model order estimation algorithm based on (4) can
be performed, as indicated in [9].
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by Taylor expansion at ψl,m1,m2,k = 0, which yields (dropping
all indices)

∆d = eψ − e0 ≈ deψ

dψ

∣∣∣∣
ψ=0

(ψ − 0) = ψ. (5)

Hence, the perturbation caused by input ∆ψl,m1,m2,k leads
to an identical output perturbation, i.e., ∆dl,m1,m2,k =
∆ψl,m1,m2,k. For the narrowband condition to hold, we require

max
l,m1,m2,k

|∆dl,m1,m2,k| ≪ e0. (6)

The maximal possible values are jointly given by m1 =M1−
1, m2 = M2 − 1, k = K − 1, and ϕl,i = di/λc, which,
combined with the expression of dl,m1,m2,k in Section III-A,
leads to the specified condition.

The revised narrowband condition will be confirmed nu-
merically in Section IV. For di = λc/2, the condition can be
further simplified to π(M1 +M2)B ≪ fc.

Remark 2 (On auto-pairing). When Dl = 1, ∀l, a unique
tensor decomposition with simultaneous diagonalization oper-
ation ensures auto-pairing. However, when Dl ̸= 1, the non-
singular matrix used for diagonalization is not the same over
different subcarriers, hence auto-pairing across subcarriers is
no longer guaranteed.

B. Proposed Method

The proposed channel estimation method comprises three
phases: 1) per subcarrier processing, 2) across subcarrier
pairing, and 3) delay and complex gain estimation. While a
detailed complexity analysis is beyond the scope of the paper,
we note that the complexity of the proposed method has the
same scaling as [19].

1) Phase 1: Parallel MD-ESPRIT: Extracting the channel
response over the k-th subcarrier, we form the channel matrix
Ĥk, which can be written as

Ĥk =

L∑
l=1

γ̂l,kâ
(M1)
l,k,1 â

(M2)⊤
l,k,2 , (7)

where γ̂l,k = α̂lexp(−j2π(fc + k∆f)τ̂l), and â
(Mi)
l,k,i is steer-

ing vector formed by i-th mode of l-th path, i.e., âl,k,i =
exp(−j2π(1 + k∆f/fc)ϕ̂l,i). By applying the MD-ESPRIT
algorithm from [18] to (7) for each k, the outputs are the paired
modes (âl,k,1, âl,k,2). The paired angles (ϕ̂

[k]
l,1, ϕ̂

[k]
l,2) associated

with each subcarrier are then calculated as

ϕ̂
[k]
l,i = − fc

2π(fc + k∆f)
ℑ(ln(âl,k,i)). (8)

Although the AOA and AOD are auto-paired on each sub-
carrier, the ordering is not maintained across subcarriers, i.e.,
(ϕ̂

[k]
l,1, ϕ̂

[k]
l,2) and (ϕ̂

[k′]
l,1 , ϕ̂

[k]
l,2) do not necessarily pertain to the

same path l, for k ̸= k′. This is because the singular values
output of SVD within MD-ESPRIT are in descending order,
i.e., ordered based on the received signal strength of the paths.
Due to the noise and frequency selective fading effects, the
order of signal strength of paths varies across subcarriers. For
this reason, all methods involving SVD techniques in a parallel
architecture, such as [19] or tensor-based method including

per subcarrier processing, will encounter the pairing problem
across subcarriers.

2) Phase 2: Pairing Across Subcarriers: Increasing SNR
can alleviate the pairing problem. However, there are often
limitations on transmission energy and hardware. The tradi-
tional pairing method that utilizes the same eigenstructure can
not be applied here since the eigenstructure per subcarrier
differs. Our approach based on a modified K-means algorithm
[23, Ch. 9] avoids the need for high SNR. We introduce
KL vectors y(l−1)k+k = [ϕ̂

[k]
l,1, ϕ̂

[k]
l,2]

⊤. We now index these
measurements as yn, n = 1, . . . , N , where N = KL. The
initialization of K-means is random, with µj ∈ [−π/2, π/2]×
[−π/2, π/2], j = 1, . . . , L. The assignments rn,j ∈ {0, 1} and
the means µj are updated iteratively as

rn,j =

{
1 j = argminj′D(yn,µj′)

0 otherwise,
(9)

and

µj =

∑N
n=1 rn,jyn∑N
n=1 rn,k

, (10)

where D(·, ·) is a suitable distance metric that accounts for any
angle wrapping. In our case, we have set D(yn,µj′) = ∥yn−
µj′∥, as we operate in an SNR regime where angle wrapping
is rare. We repeat (9)–(10) until there is no further change in
the assignments, i.e., rn,j remains unchanged. Since the K-
means algorithm is ignorant of the constraint that y(l−1)k+k

and y(l′−1)k+k are not allowed to be in the same cluster for
l′ ̸= l, we check for each cluster if more than one measurement
with the same subcarrier index is present. If so, we only retain
the one closest to the cluster means and discard the others.
Then the cluster means are recomputed. Finally, ϕ̂l,1 and ϕ̂l,2
are obtained from the means [ϕ̂l,1, ϕ̂l,2]

⊤ = µl. Once ϕ̂l,i is
obtained, physical AOD and AOA are calculated by θ̂l,i =
arcsin(ϕ̂l,iλc/di).

3) Phase 3: Delay and Complex Gain Estimation: It can
be verified that the channel matrix over the k-th subcarrier
admitted the following form of matrix product

Ĥk = Â
(M1)

k,1 diag(γ̂k)Â
(M2)⊤
k,2 , (11)

where γ̂k is a vector formed by γ̂l,k and Â
(Mi)

k,i =

[â
(Mi)
1,k,i · · · â

(Mi)
l,k,i · · · â

(Mi)
L,k,i]. The mode of â(Mi)

1,k,i can be recon-
structed from the estimates of ϕ̂l,i after pairing as described
in Sec.III-B1. Then γ̂k can be calculated as

γ̂k = (Â
(M1)

k,1 ⊙ Â
(M2)

k,2 )†vecr(Ĥk), (12)

so that γ̂l,k can be obtained for all subcarriers. Take the
complex logarithm of γ̂l,k = α̂le

−j2π(fc+k∆f)τ̂l and stacking
the values into vector γ̂l, we find that

ln(γ̂l) = ln(α̂l)1+ τ̂ls, (13)

where sk = −j2π(fc+k∆f). Introducing S = [s1], then the
least squares (LS) estimate of delay and channel gain are[

τ̂l
ln(α̂l)

]
= S† ln(γ̂l). (14)

For the noisy channel, we can take ℜ{τ̂l} as the estimated
delay (containing clock bias).



4

C. Localization

For the LOS path, the UE location is expressed as:

p2 = p1 + c(τ̂1 −∆τ)f̂1,2, (15)

where both p2 and ∆τ are unknown. For the NLOS paths, the
UE position can be expressed in θ̂l,1, θ̂l,2 and τ̂l of each path
according to geometry as (16) [24].

p2 = p1 + f̂ l,1dl + (c(τ̂l −∆τ)− dl)f̂ l,2, (16)

where p2 and p1 denote the UE’s position and BS’s po-
sition, respectively, f̂ l,1 and f̂ l,2 represent directional vec-
tors corresponding to the departure and arrival of the sig-
nal, respectively, given by f̂ l,2 = [cos(θ̂l,2),−sin(θ̂l,2)]

⊤,
f̂ l,1 = [cos(θ̂l,1), sin(θ̂l,1)]

⊤, and dl = ∥p1 − p′
l∥ represents

the unknown travel distance of electromagnetic waves before
reflection. Let f̂ l = −(f̂ l,2 + f̂ l,1), joint equations given by
(15) and (16) can be written as Bv = z, where

B =



I2×2 cf̂1,2 02×1 02×1 · · · 02×1

I2×2 cf̂2,2 f̂2 02×1 · · · 02×1

I2×2 cf̂3,2 02×1
. . . . . .

...
...

...
...

. . . . . . 02×1

I2×2 cf̂L,2 02×1 · · · 02×1 f̂L


(17)

and v = [p⊤
2 ,∆τ, d2, · · · , dL]⊤, z = [p⊤

1 +cτ̂lf̂
⊤
1,2, · · · ,p⊤

1 +

cτ̂Lf̂
⊤
L,2]

⊤. The least square method gives that v = B†z, the
estimates p2 and ∆τ are obtained by extracting the first three
entries in v. Measurements from total L paths can establish
2L equations containing L + 2 unknowns. The equations are
over-determined and can be solved when L ≥ 2.

IV. SIMULATION

A. System Setup

The MIMO-OFDM localization scenario is set up as fol-
lows: The BS is equipped with M1 = 32 ULA antennas
at (0, 40)m, whereas the UE is equipped with M2 = 32
ULA antennas at (40, 0)m. The antenna spacing at both sides
equals to half wavelength. The BS sends symbols with total
transmitted power Pt = 15 dBm and synchronization error
is assumed to be ∆τ = 0.5ms. The system bandwidth is
B = K∆f with subcarrier spacing ∆f = 120 kHz, and
the carrier frequency is fc = 28GHz. For these parameter
settings,4 the narrowband thresholds are 87.5 MHz [15] and
13.9 MHz (from Proposition 1), where in both cases ’≪’ is
interpreted as ’10 times smaller’. The number of pilots for
obtaining the estimate (3) is np = 64. The (AOD, AOA) of
paths are set as (−45◦, 45◦), (−54◦,−62◦), (65◦, 40◦). The
noise power spectral density (PSD) is N0 = −174 dBm and
the noise figure (NF) nf = 8dB. The energy loss of reflection
is set to 3 dB.

We evaluate three methods in terms of the root-mean-
square error (RMSE) of the channel parameter and the position
estimation: (i) the proposed method. (ii) the method from [19]

4The RMSE results as a function of the carrier frequency fc with fixed B
show that the performance of the different methods converges as fc increases.
Results are omitted for space reasons.
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Fig. 2: Channel parameter RMSE as a function of the bandwidth, for AOA
estimation (top) and delay estimation (bottom), along with the narrowband
(NB) conditions from [15] and Proposition 1.

without pairing, but replacing IMDF with MD-ESPRIT.5 For
angle estimation, we implement the proposed method without
the pairing step. For delay estimation described in Section
III-B3, we use ϕ̂l,k,i to reconstruct Â

(Mi)

k,i ; (iii) standard 3D
ESPRIT, which ignores the wideband effect [18] and directly
compute angles and delays; For all methods, the localization
is performed as Section III-C.

B. Results and Discussion

1) Channel Parameter Estimation: In Fig. 2, we show the
AOA6 and delay estimation as a function of the bandwidth.
We observe that AOA estimation RMSE from 3D ESPRIT
first increased with larger bandwidth, due to the increasing
samples and tolerable wideband effect. With larger bandwidth,
however, the wideband effect becomes dominant compared
to noise, and the AOA RMSE quickly increases. The angle
RMSE of the proposed method always decreases with a larger
bandwidth. ´ In terms of delay RMSE, the 3D ESPRIT method
exhibits near-constant performance. This is because 3D ES-
PRIT does average in each dimension, and the dimension
containing delay information is not affected by the wideband
effect. For the proposed method, the delay RMSE keeps
decreasing due to improving accuracy of Â

(Mi)

k,i reconstruction
in (11) as a result of improved angle estimation. The delay

5We recall that MD-ESPRIT has been shown to outperform IMDF in [19]
and the MD-ESPRIT does not require multiple snapshot observations. Hence,
by removing the weaknesses of IMDF, a more fair comparison is conducted,
with focus on the pairing issue.

6AOD performance is not shown as it is similar to AOA performance.
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Fig. 3: Localization RMSE as a function of the bandwidth for the proposed
method (with and without pairing), compared to the standard 3D ESPRIT
with auto-pairing, along with the narrowband (NB) conditions from [15] and
Proposition 1.

estimation without pairing first improves due to increasing
SNR, then remains stable, as it is limited by reconstruction
accuracy of Â

(Mi)

k,i , since the angle estimation per subcarrier
are of the same accuracy and there is no way to harness SNR
gain by fusing across the subcarriers.

2) Localization: From Fig. 3, the localization RMSE of the
proposed method monotonically improves when larger band-
width is applied as a consequence of continuously improving
the accuracy of angle and delay estimation. The localization
RMSE of wideband 3D ESPRIT initially goes down due to
improvement of delay estimation, however, it starts to diverge
after about 15MHz due to poor angle RMSE. The localization
without proper pairing causes large errors, due to the poor
AOA and AOD estimates. From Figs. 2–3, we see that the
wideband effect has taken place prior to the threshold in [15].
The importance of correct pairing across subcarriers is evident,
as improper pairing causes a significant error as shown in
Figs. 2–3.

V. CONCLUSIONS

In this paper, we proposed a new method to deal with
the spatial wideband effect with one snapshot observation.
As part of this method, we investigate the pairing problem
that will universally appear in methods that involve SVD or
HOSVD and per-subcarrier processing, and propose a strategy
to address this problem. Furthermore, we provided a tighter
narrowband condition. Finally, we demonstrate that the wide-
band effect significantly degrades localization performance, if
not properly addressed.
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