
The probabilistic vs the quantization approach to Kähler–Einstein
geometry

Downloaded from: https://research.chalmers.se, 2024-04-09 03:59 UTC

Citation for the original published paper (version of record):
Berman, R. (2024). The probabilistic vs the quantization approach to Kähler–Einstein geometry.
Mathematische Annalen, 388(4): 4383-4404. http://dx.doi.org/10.1007/s00208-023-02627-5

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Mathematische Annalen
https://doi.org/10.1007/s00208-023-02627-5 Mathematische Annalen

The probabilistic vs the quantization approach to
Kähler–Einstein geometry

Robert J. Berman1

Received: 17 February 2022 / Revised: 27 March 2023 / Accepted: 12 April 2023
© The Author(s) 2023

Abstract
In the probabilistic construction of Kähler–Einstein metrics on a complex projective
algebraic manifold X—involving random point processes on X—a key role is played
by the partition function. In thiswork a newquantitative bound on the partition function
is obtained. It yields, in particular, a new direct analytic proof that X admits a Kähler–
Einstein metrics if it is uniformly Gibbs stable. The proof makes contact with the
quantization approach to Kähler–Einstein geometry.

1 Introduction

A complex projective algebraic manifold X admits a Kähler–Einstein metric with
positive Ricci curvature if and only if X is a Fano manifold satisfying an algebro-
geometric condition called K-stability; this is the content of the solution of the Yau–
Tian–Donaldson (YTD) conjecture for Fanomanifolds [21]. The proof in [21] is based
on a variant of Aubin’s method of continuity [1], extended to Aubin’s original method
in [23]. It involves the following equations for a Kähler metric ωt , parameterized by
“time” t :

Ricωt = tωt + (1 − t)Ric dV , (1.1)

where dV is a fixed a volume form on X , which may be taken to have positive Ricci
curvature Ric dV (since X is Fano). The supremum over all t ∈ [0, 1] for which a
solution ωt exists defines an invariant of X , which is strictly positive, that we shall
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denote by R(X), following [38].1 As t is increased towards R(X) either ωt blows-up
or it converges towards a Kähler–Einstein metric (in which case R(X) = 1). The first
alternative is precisely what it is shown to be excluded by the condition of K-stability
[23].While it is usually assumed that t ∈ [0, 1] it will in the present work be important
to allow t to be any real number.

A probabilistic construction of Kähler–Einstein metrics with negative Ricci curva-
ture was introduced in [4], where the Kähler–Einstein metric emerges from a random
point process on X with N points as N tends to infinity (see also [29] for a different
probabilistic framework involving random N × N Hermitian matrices, also inspired
by the YTD conjecture). A conjectural extension to Kähler–Einstein metrics with pos-
itive Ricci curvature was proposed in [5] and conditional convergence results were
given in [6, 8]. In this probabilistic approach the role of K-stability is played by a new
type of stability, dubbed Gibbs stability, which amounts to the finiteness of the cor-
responding partition functions. In the survey [7] connections to the variational proof
of the uniform YTD conjecture [13] (involving uniform K-stability) are explained,
including non-Archimedean aspects. In the present paper a new quantitative lower
bound on the partition functions is obtained, which yields a new direct analytic proof
that uniform Gibbs stability implies the existence of a unique Kähler–Einstein metric
on X . The proof makes contact with the quantization approach to Kähler geometry
and, in particular, with Zhang’s new remarkably direct proof of the (uniform) YTD
conjecture [45].

1.1 Background on the probabilistic approach

Let X be a Fano manifold. Given a positive integer k we denote by N the dimension
of the space of all holomorphic sections of the kth tensor power of the anti-canonical
line bundle −KX (i.e. the top exterior power of the tangent bundle of X):

N := dim H0(X ,−kKX )

(using additive notation for tensor products of line bundles). TheFano assumption on X
ensures, in particular, that N → ∞, as k → ∞ (more precisely, N ∼ kdim X ). Given a
basis s(k)

1 , ..., s(k)
N in H0(X ,−kKX ) denote by det S(k) the corresponding holomorphic

section of the line bundle −(kKXN ) → XN defined as the Slater determinant

(det S(k))(x1, x2, ..., xN ) := det
(
s(k)
i (x j )

)
. (1.2)

Given a volume form dV on X and a parameter β > 0, the N -fold product XN is
endowed with the following probability measure, introduced in [4]:

μ
(N )
β :=

∥∥det S(k)
∥∥2β/k

dV⊗N

ZN (β)
, ZN (β) :=

∫

XNk

∥∥∥det S(k)
∥∥∥
2β/k

dV⊗N (1.3)

1 the invariant was called β in [41], but here the letter β will be reserved for the parameter appearing in
Definition 1.3.

123



The probabilistic vs the quantization...

where ‖·‖ denotes the metric on −KX (and its tensor powers) induced by dV . In
statistical mechanical terms this probability measure represents the equilibrium dis-
tribution of N interacting particles on X at inverse temperature β and ZNk (β) is the

corresponding partition function. The probabilitymeasureμ
(N )
β is, in fact, independent

of the choice of bases. It will be convenient to fix a reference volume form dV0 on X
with positive Ricci curvature and a basis (s(k)

i ) in H0(X ,−kKX )which is orthonormal
with respect to Hermitian product on H0(X ,−kKX ) induced by dV0.

The probability measure μ
(N )
β is symmetric (since the determinant is anti-

symmetric) and thus defines a random point process on X with N points x1, ..., xN .

By [4, Thm 5.7] the corresponding empirical measure δN , i.e. the discrete measure
on X defined by

δN := 1

N

N∑
i=1

δxi , (1.4)

converges in probability, as N → ∞, towards a normalized volume form dVβ on X
with the property that

ωβ := 1

β

i

2π
∂∂̄ log dVβ (1.5)

is the unique Kähler form solving Aubin’s continuity Eq. 1.1 with t := −β. The
convergence of δN towards dVβ also implies that the following convergence holds in
the weak topology of currents on X :

ωk,β := 1

β

i

2π
∂∂̄

(
log

∫

XN−1

∥∥∥det S(k)
∥∥∥
2β/k

dV⊗N−1
)

→ ωβ, k → ∞,

where ωk,β is a Kähler form, for k sufficiently large (to ensure that −kKX is very
ample).

In fact, the convergence of δN towards dVβ was shown to hold at an exponential
speed in the sense of Large deviation theory [24]. More precisely, a Large Deviation
Principle (LDP) was established, which may be symbolically expressed as

(δN )∗
(∥∥∥det S(k)

∥∥∥
2β/k

dV⊗N
)

∼ e−NFβ(μ), N → ∞, (1.6)

where the left hand side defines a measure on the space of all probability measures
P(X) on X and Fβ(μ) is a free energy type functional on P(X) (see formula 2.3).
Expressing μ as the normalized volume form of a Kähler metric ω in the space H of
all Kähler metrics representing the first Chern class of X , the free energy functional
Fβ(μ) gets identified with the twisted Mabuchi functional onH (which is minimized
precisely by theuniqueKählermetricsωβ solvingAubin’s equation1.1with t = −β) :

Fβ

(
ωn

V

)
= Mβ(ω)
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(cf. formula 2.2). The LDP 1.6 thus implies that

lim
N→∞ − 1

N
logZN (β) = inf

H
Mβ (1.7)

1.1.1 The caseˇ < 0

In the case when β is negative the probability measure μ
(N )
β is well-defined for β

sufficiently close to 0. The main case of interest is when β = −1. In this case the
measure μ

(N )
β is canonically attached to X , i.e. it is independent of the choice of vol-

ume form dV (since the contributions from the metric ‖·‖ on −KX and the volume
form dV on X cancel). Hence, if μ

(N )
−1 is well-defined when N is sufficiently large,

i.e. if ZN (−1) < ∞—in which case X is called Gibbs stable—one obtains canonical
random point processes on X with N points. It was conjectured in [5] that the corre-
sponding empirical measures δN converge towards a unique Kähler–Einstein metric
on X [5], as N → ∞. A conjectural extension of the LDP for positive β in formula
1.6 to any negative β was also put forth in [5]. In a weaker form this conjecture may
be formulated as follows:

Conjecture 1.1 Let X be a Fano manifold endowed with a volume form dV . Given a
negative number β0 the following is equivalent:

(1) For any given β > β0 the partition functionZN (β) is finite, when N is sufficiently
large.

(2) For any given β > β0 the twisted Mabuchi functional Mβ admits a minimizer in
H.

Moreover, if β0 satisfies the first condition, then for any given β > β0 the empirical

measure δN of the ensemble
(
XN , μ

(N )
β

)
converges in probability as N → ∞—after

perhaps passing to a subsequence—towards a volume form dVβ such that ωβ, defined
by formula 1.5, is a Kähler metric minimizing Mβ on H.

In fact, it is enough to show that the limit dVβ is a probability minimizing the
functional Fβ; it then follows from the regularity results in [11] that ωβ is a Kähler
metric and thus minimizesMβ onH. The reason that one has to pass to a subsequence
is that a minimizer ofMβ need not be uniquely determined, unless dV is assumed to
have positive Ricci curvature and β > −1. The integrability condition ZNk (β) < ∞
is, however, independent of choice of volume form dV . Accordingly, one obtains
invariants of the Fano manifold X by setting

γk(X) = sup
γ>0

{
γ : ZNk (−γ ) < ∞}

γ (X) := lim inf
k→∞ γk(X). (1.8)

and X is called uniformly Gibbs stable if γ > 1. This is, a priori, a stronger condition
thanGibbs stability (which amounts to the condition thatγk(X) > 1 for any sufficiently
large k).

The validity of the equivalence “1 ⇐⇒ 2” in the previous conjecture would,
in particular, imply that a Fano manifold X is uniformly Gibbs stable iff X admits
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The probabilistic vs the quantization...

a unique Kähler–Einstein metric (in analogy to the uniform version of YTD [13],
which, in fact, is equivalent to the ordinary formulation of the YTD [33]). The general
equivalence “1 ⇐⇒ 2” may be reformulated as the following identity:

γ (X) = sup
γ>0

{
γ : inf

H
M−γ > −∞

}
, (1.9)

as follows from [2, Thm 1.2] (when restricted to β ≥ −1 the supremum in the
right hand side above coincides with the maximal existence time R(X) for Aubin’s
equations 1.1). Moreover, as shown in [6, Section 7] and [8, Thm 2.3], in order to
prove the conjectured convergence towards a minimizer ofMβ it is enough to extend
the asymptotics 1.7 to β < 0.

1.2 Main results

For β < 0 the limsup upper bound in formula 1.7 was established in [5, Thm 6.7] (by
combining Gibbs variational principle in statistical mechanics with the asymptotics
for transfinite diameters in [9, Thm 6.7]). The main new result in the present work
is the following quantitative upper bound that holds for any fixed k, shown using a
completely different argument. Henceforth, we set γ := −β.

Theorem 1.2 There exists a constant C > 0 (depending only on the reference volume
for dV0) such that for any γ > 0 and positive integer k

− 1

N
logZN (−γ ) ≤ k + γ

k + 1
inf
H

M−γ ck + k−1γ

(
C + (|1 − γ | + C) log

∥∥∥∥
dV

dV0

∥∥∥∥
L∞(X)

)
,

where ck := (1 − Ck−1)(k + 1)/(k + γ ).

For γ ≤ 1 the first term in the right hand side of the previous inequality may be
replaced by the infimum of M−γ (1−Ck−1) (see Sect. 2.4).

The previous theorem immediately implies one direction of the conjectured equality
1.9:

Corollary 1.3 The following inequality holds

γ (X) ≤ sup
γ>0

{
γ : inf

H
M−γ > −∞

}

In other words “1 ⇒ 2” in Conjecture 1.1. In particular, if X is uniformly Gibbs
stable, then X admits a unique Kähler–Einstein metric.

As next explained this corollary also follows from combining the algebro-geometric
results in [31, Thm 6.7] with the solution of the (uniform) YTD-conjecture in [21,
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Thm 6.7] (or [13, Thm 6.7]) and its very recent generalization in [45, Thm 6.7] (which
applies to general β).More precisely, exploiting that γk(X)may be realized as the log
canonical threshold (lct) of an anti-canonical divisor on XNk it is shown in [31, Thm
2.5] that γk(X) is bounded from above by the invariant δk(X) introduced in [31]:

γk(X) ≤ δk(X) := inf
�k

lct (�k), (1.10)

where the infimum is taken over all anti-canonicalQ-divisors�k on X of k-basis type,
i.e. �k is the normalized sum of the N zero-divisors on X defined by the members of
a given basis in H0(X ,−kKX ). In particular,

γ (X) ≤ δ(X) := lim sup
k→∞

δk(X),

where the invariant δ(X) characterizes uniform K-stability; δ(X) > 1 iff X is uni-
formly K-stable [32] (by [17] the limsup above is, in fact, a limit). Recently, it was
shown in [35] that δk(X) coincides with the coercivity threshold of the quantized Ding
functional on the symmetric space GL(N ,C)/U (N ). Combining this result with the
quantized maximum principle in [16], it was then shown in [45] that δ(X) coincides
with the coercivity threshold of the Ding functional (as further discussed in Sect. 1.3).
Finally, Corollary 1.3 follows from [2, Thm 3.4], which implies that the coercivity
thresholds of the Ding and the Mabuchi functionals coincide.

1.2.1 Outline of the proof of Theorem 1.2

The proof of Theorem 1.2 is surprisingly simple. The key new observation is an
inequality which, in its simplest form, β = −1 (i.e. γ = 1), may be formulated as
follows:

− logZN ≤
(
1 + k−1

)
inf
H

Dk + 1

kN
log N (1.11)

where the infimum runs over the spaceH of allmetrics on−KX with positive curvature
and Dk is a certain functional onH, approximating the twisted Ding functional D (in
the sense that Dk converges towards D as k → ∞); see formula 2.5. Next, by an
inequality established in [12] (leveraging the positivity of direct image bundles in
[15]) there exists a constant C such that

Dk ≤ D − Ck−1E on H0,

where H0 denotes the subspace of all sup-normalized metrics on H and E denotes
the standard functional onH defined as the primitive of the Monge–Ampère operator
(which is non-positive on H0). Finally, using the well-known fact that D is bounded
from above by the Mabuchi functional M this proves Theorem 1.2 when γ = 1 (by
absorbing the error term−Ck−1E in the subscript γ of the twistedMabuchi functional
Mγ ).A slight twist of this argument yields the inequality in Theorem 1.2 for a general
γ, using the thermodynamical formalism in [2].
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1.3 Comparison with the quantization approach

In the quantization approach to Kähler geometry, which goes back to [26, 27, 40,
44], the space H(L) of all Hermitian metrics on a holomorphic line bundle L over
a complex manifold X is approximated by the finite dimensional space Hk(L) of
all Hermitian metrics on the N -dimensional complex vector space H0(X , kL)2 The
spaceHk(L) may be identified with the symmetric space GL(N ,C)/U (N ). When X
is Fano and L = −KX a quantization of the Ding functional D on H was introduced
in [10], building on [28], which defines a functional onHk that we shall denote by Dk

(formula 3.2). Here it is observed (Proposition 3.1) that

inf
Hk

Dk =
(
1 + k−1

)
inf
H

Dk, (1.12)

where Dk is the approximation onH of the Ding functional D which appeared in the
inequality 1.11. As a consequence,

− logZN ≤ inf
Hk

Dk + 1

kN
log N . (1.13)

A similar inequality holds for a general γ (see Theorem 3.3) which yields a new proof
of the inequality 1.10.

This line of reasoning is inspired byK.Zhang’s very recent new proof of the uniform
YTD conjecture for Fano manifolds [45]. In fact, the author discovered the equality
1.12while trying to find a conceptual replacement for an inequality used in the proof of
[45, Thm 5.1] (involving Tian’s α-invariant [39]). One virtue of the present approach
is that it directly yields a quantitative estimate on the infimum of Dk over Hk . More
generally, denoting by Dk,β the twisted generalization of Dk (coinciding with Dk for
β = −1),

inf
Hk

Dk,−γ ≤ k + γ

k + 1
inf
H

M−γ ck + k−1γ

(
C + (|1 − γ | + C) log

∥∥∥∥
dV

dV0

∥∥∥∥
L∞(X)

)
,

(1.14)
as follows from combining formula 1.12 (extended to general γ ) with the inequality
1.11 (extended to general γ ). As in [45, Thm 5.1] this shows that uniform K-stability
of X implies that X admits a unique Kähler–Einstein metric. Indeed, as shown in
[35], building on [31, 32], uniform K-stability is equivalent to the existence of some
ε > 0 such that the infimum of Dk,−1−ε on Hk is finite for k sufficiently large. By
the inequality 1.14 this implies that M−1−ε is bounded from below (or equivalently,
thatM−1 is coercive) which, in turn, implies that X admits a unique Kähler–Einstein
metric (as first shown in [43] using Aubin’s method of continuity and then using a
direct variational approach in [2, 11], which applies to any γ ).

2 In physical terms Hk (L) can be viewed as the quantization of H with k−1 playing the role of Planck’s
constant in quantum mechanics [26].
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1.4 Outlook on converse bounds and exceptional Fano orbifolds

The converse of the inequality 1.14 also holds, as follows from [10, Lemma 7.7]. As
a consequence,

δ(X) = sup
γ>0

{
γ : inf

H
M−γ > −∞

}
. (1.15)

This identity is equivalent to the result [45, Thm 5.1] (which is formulated in terms
of the infimum of Dβ , but, by [2, Thm 1.1], this infimum coincides with the infimum
of Mβ). It remains, however, to establish a similar lower bound on − logZN ,−γ or,
at least, the missing lower bound on γ (X) in the conjectured formula 1.9. By formula
1.15, this amounts to upgrading the inequality between γ (X) and δ(X) in Cor 1.3 to
an equality. In contrast, it should be stressed that the inequality 1.10 between γk(X)

and δk(X) is not an equality, in general. For example, when X is the Riemann sphere,
i.e. the complex projective line P1,

γk(X) = 1 − 1

2k + 1
, δk(X) = 1.

[30, 35]. This discrepancy becomes even more pronounced in the more general of set-
ting of Fano orbifolds X ,where the role of KX is played by the orbifold canonical line
bundle KXorb . All the results in the present paper readily extend to the orbifold setting
(using, in particular, the uniform asymptotics for Bergman measures on orbifolds in
[22, Thm 1.4] as a replacement for the inequality 2.10). The partition function of the
Fano orbifold X then coincide with the partition function of the quasi-regular Calabi-
Yau cone over X introduced in [14], in the context of the AdS/CFT correspondence
(see the proof of [14, Thm B]).

For example, any Fano orbifold curve is of the form

X = P1/G

where G is the finite group acting on P1 induced by the action on C2 of a finite
subgroup of SU (2). By the “ADE-trichotomy” such groups fall into the three classes,
corresponding to the classification of simply laced Dynkin diagrams; two infinite
series Anand Dn and three exceptional cases E6, E7 and E8.As it turns out, the ADE-
trichotomy is detected by the corresponding partition functions at the canonical value
γ = 1 (as follows from [8, Thm 3.5]):

• (A) ZN (−1) = ∞ for all N (i.e. γk(X) < 1 for all k)
• (D) ZN (−1) < ∞ for N � 1, but not all N (i.e. γk(X) > 1 for k sufficiently
large)

• (E) ZN (−1) < ∞ for all N (i.e. γk(X) > 1 for all).

Moreover, γk(X) is strictly increasing wrt k. On the hand it can be shown that

δk(X) = δ(X)

and thus δ(X) = γ (X), while, γk(X) < δk(X).
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The notion of exceptionality has been extended to general Fano orbifolds [18],
motivated by the Minimal Model Program in birational algebraic geometry [36]. A
Fano orbifold X is said to be exceptional if α(X) > 1, where α(X) denotes Tian’s
alpha-invariant [39] (which, in algebro-geometric terms, coincides with the global
log canonical threshold of X [25]). For example, in [18, Cor 1.1] a finite list of
exceptional Fano orbifold surfaces X is given, realized as hypersurfaces in weighted
three-dimensional complex projective space. In general, it follows readily from the
definitions that

α(X) ≤ γk(X)

(cf. [6, Lemma 7.1]). As a consequence, if X is exceptional, then ZN is finite for any
N . Does the converse also hold? For Fano orbifold curves this is, indeed, the case,
according to the ADE-list above.

2 Proof of Theorem 1.2

2.1 Setup

Wewill use additive notation for line bundles andmetrics. Accordingly, the k the tensor
power of a holomorphic line bundle L over an n-dimensional complex manifold X
will be denoted by kL and if φ is a metric on L then kφ denotes the induced metric on
kL.Accordingly, if s is a holomorphic section of L, i.e. s ∈ H0(X , L), the point-wise
norm of s with respect to a metric φ on L is denoted by |s|φ Given a local trivializing
section of L we may identify s with a local holomorphic function on X and φ with a
local smooth function so that

|s|2φ := |s|2e−φ

and the normalized curvature of the metric φ may be expressed as

ddcφ := i

2π
∂∂̄φ.

A smooth metric φ on L is said to have positive curvature if ddcφ > 0 and semi-
positive curvature of ddcφ ≥ 0 (when identified with an n × n Hermitian matrix).
Equivalently, this means that, locally, φ is plurisubharmonic (psh) and strictly psh,
respectively. Given a metric φ with semi-positive curvature we denote by MA(φ) the
corresponding Monge–Ampère measure, normalized to have unit total mass:

MA(φ) := 1

V
(ddcφ)n .
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2.1.1 The anti-canonical setup

Henceforth, the line bundle L will be taken to be the anti-canonical line bundle −KX

of X , i.e. top exterior power of the tangent bundle of X . Then any smooth metric φ on
−KX induces a volume form on X that we shall, abusing notation slightly, denote by
e−φ. This notation is intended to reflect the fact that if z1, ..., zn are local holomorphic
coordinates on X and φ is locally represented by a function with respect to the local
trivialization ∂/∂z1∧· · · ∂/∂zn of−KX , then the volume form in question has density
e−φ with respect to the local Euclidean volume form corresponding to z1, ..., zn .

Given ametricφ on−KX and a volume formμ on X we shall denote by H (k) (φ, μ)

the corresponding Hermitian metric on the N -dimensional complex vector space
H0(X ,−kKX ), defined by

H (k) (φ, μ) (s, s) :=
∫

X
|s|2kφμ.

The space of all metrics on φ on −KX with positive curvature will be denoted by
H. We will fix once and for all a reference metric ψ0 in H and denote by dV0 the
corresponding volume form on X :

dV0 := e−ψ0 .

Moreover, we fix a basis s(k)
1 , ..., s(k)

N in H0(X ,−kKX ) which is orthonormal with
respect to the corresponding Hermitian norm H (k) (ψ0, dV0) .Accordingly, we can
identify a Hermitian metric H on H0(X ,−kKX ) with the corresponding N × N
positive definite Hermitian matrix H(s(k)

i , s(k)
j ).

2.1.2 Energies

Following (essentially) the notation in [9] we denote by E the functional onH uniquely
determined by the following conditions:

dE|φ = MA(φ), E(ψ0) = 0

Alternatively, E(φ) may be explicitly defined by

E(φ) := 1

V (n + 1)

∫

X

n∑
j=0

(φ − ψ0)(dd
cφ)n− j ∧ (ddcψ0)

j

Dually, following [10], the pluricomplex energy of a probability measure μ on X (wrt
the reference metric ψ0) is defined by

E(μ) = sup
φ∈H

(
E(φ) −

∫

X
(φ − ψ0)μ

)
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(however in [10] the functional E(φ) is denoted by E(φ) and the pluricomplex energy
is denoted by E∗). We will use the following basic

Lemma 2.1 There exists a positive constant cX only depending on X such that

− E(φ) + sup
X

(φ − ψ0) ≤ nE (MA(φ)) + cX . (2.1)

Proof This is essentially well-known but for completeness a short proof is provided.
First observe that there exists a constant cX such that supX (φ − ψ0) − cX is bounded
from above by the integral of (φ − ψ0) against MA(ψ0). Indeed, this follows directly
follows from the submean property of plurisubharmonic functions and the compact-
ness of X . Hence, the proof is concluded by invoking the following basic inequality
(see [2, Lemma 2.13]):

J (φ) := −E(φ) +
∫

X
(φ − ψ0)MA(ψ0) ≤ nE (MA(φ))

2.1.3 The twisted Ding andMabuchi functional associated to (�0,�)

Fix γ > 0. Given a volume form dV on X we will denote by φ0 the corresponding
metric on −KX (i.e. dV = e−φ0). To the pair (φ0, γ ) we attach the twisted Ding
functional onH defined by

D−γ (φ) := −E(φ) − 1

γ
log

∫

X
e−(γ φ+(1−γ )φ0).

(coinciding with the ordinary Ding functional when γ = −1). The definition is made
so that D−γ is scale invariant, i.e. invariant under φ �→ φ + c for any c ∈ R. The
corresponding (twisted) Mabuchi functional is usually defined, modulo an additive
constant, by demanding that its first variation is proportional to the (twisted) scalar
curvature [34, 37], but here it will be convenient to use the thermodynamical formalism
introduced in [2, Prop 4.1]:

M−γ (φ) := F−γ (μ), μ = MA(φ), (2.2)

where Fγ (μ) is the free energy of a probability measure μ on X defined by

F−γ (μ) := −γ

(
E(μ) +

∫

X
(φ0 − ψ0)μ

)
+ Ent

(
μ|e−(γψ0+(1−γ )φ0)

)
, (2.3)

where Ent (μ|ν) denotes the entropy of a measure μ on X relative to the measure ν on
X (using the sign convention that renders Ent (μ|ν) non-negative when μ and ν are
both probability measures). By [2, Prop 3.5]

D−γ (φ) ≤ γ −1M−γ (φ) (2.4)

123



R. J. Berman

(moreover, the two functionals D−γ and M−γ have the same infimum over H, but
his fact will not be needed here).

Remark 2.2 In the notation of [2], D−γ = −G−γ and the definition of the free energy
F−γ used here is −γ times the definition employed in [2]. When γ = 1 formula 2.2
is equivalent to the Tian–Chen formula for the Mabuchi functional [20, 42] and the
case γ �= 1 is closely related to the generalized Mabuchi functional introduced in [37,
Def 6.1].

2.2 Two inequalities

The key new observation in the proof of Theorem 1.2 is the following proposition
which yields a bound, from below, on the partition function

ZN ,−γ =
∫

XN

∥∥∥det S(k)
∥∥∥

−2γ /k

kφ0
(e−φ0)⊗N ,

in terms of the infimum over the space of all metrics φ on −KX of the functional
Dk,−γ defined by

Dk,−γ (φ) := −Ek(φ) − 1

γ
log

∫

X
e−(γ φ+(1−γ )φ0), (2.5)

with

Ek(φ) := − 1

N (k + γ )
log det H (k)

(
φ, e−(γ φ+(1−γ )φ0)

)
,

where the Hermitian metric H (k)
(
φ, e−(γ φ+(1−γ )φ0)

)
has been identified with a

Hermitian matrix, as in Sect. 2.1.1. The normalization have been chosen to ensure
that

Ek(φ + c) = Ek(φ) + c ,∀c ∈ R.

As a consequence, since Ek(φ) is increasing wrt φ, its differential dEk|φ may be
represented by a probability measure on X . For future reference we note that the
probability measure in question coincides with the Bergman measure associated to
the Hermitian metric H (k)

(
φ, e−(γ φ+(1−γ )φ0)

) :

dLk|φ = Bkφ := ρkφe
−(γ φ+(1−γ )φ0), ρkφ := 1

N

Nk∑
i=1

|Si |2kφ (2.6)

where Si denotes any bases in H0(X ,−kKX ) which is orthonormal wrt
H (k)

(
φ, e−(γ φ+(1−γ )φ0)

)
(as follows from [9, Lemma 2.1]).
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Proposition 2.3 Given (φ0, γ ) the following inequality holds for any k:

− 1

γ Nk
logZNk (−γ ) ≤

(
1 + γ k−1

)
inf
φ

Dk,−γ (φ) + 1

kNk
log Nk

where the infimum runs over all smooth metrics φ on −KX (with no restrictions on
the curvature).

Proof Let φ be a metric on −KX . Then we can rewrite

ZN ,−γ :=
∫

XN

∥∥∥det S(k)
∥∥∥

−2γ /k

kφ0
(e−φ0)⊗N

=
∫

XN

∥∥∥det S(k)
∥∥∥

−2γ /k

kφ

(
e−(γ φ+(1−γ )φ0)

) ⊗N .

Indeed, locally on each factor of XN this simply amounts to rewriting

(
e−kφ0

)−γ /k
e−φ0 =

(
e−kφ

)−γ /k
e−φ0e−(γ φ+(1−γ )φ0)

Nowassume thatφ has the property that e−(γ φ+(1−γ )φ0) is a probabilitymeasure. Then,
applying Hölder’s inequality with negative exponent −γ /k (or Jensen’s inequality
applied to the convex function t �→ t−γ /k on ] − ∞,∞[) yields

ZN ,−γ ≥
(∫

XN

∥∥∥det S(k)
∥∥∥
2

kφ

(
e−(γ φ+(1−γ )φ0)

) ⊗N
)−γ /k

.

Taking logarithms this means that

− 1

γ N
logZN ,−γ ≤ 1

kN
log

∫

XN

∥∥∥det S(k)
∥∥∥
2

kφ

(
e−(γ φ+(1−γ )φ0)

) ⊗N .

Now, for any metric φ on −KX we may apply the previous inequality to φ +
log

∫
X e−(γ φ+(1−γ )φ0) and deduce that − 1

γ N logZN ,−γ is bounded from above by

(1 + γ k−1)(
1

(k + γ )N
log

∫

XN

∥∥∥det S(k)
∥∥∥2
kφ

(
e−(γ φ+(1−γ )φ0)

) ⊗N − 1

γ
log

∫

X
e−(γ φ+(1−γ )φ0)

)
.

The proof is thus concluded by invoking the following formula [9, Lemma 5.3], which
holds for any volume form μ on X :

∫

XN

∥∥∥det S(k)
∥∥∥
2

kφ
μ⊗N = N ! det

(
H (k) (φ, μ)

)
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We will also make use of the following slight generalization of the inequality in [12,
formula 3.4] (to the case γ �= 1),employing the notation

φ(ε) := φ(1 − ε) + εψ0, (2.7)

for a given positive number ε.

Lemma 2.4 There exists a constant C0 depending only on ψ0 such that the following
inequality holds for with ε := γ−1

k+γ
:

− 1

(1 − ε)
Ek

(
φ(ε)

)

≤ −E(φ) + C0k
−1

(
−E(φ) + sup

X
(φ − ψ0)

)
+ |γ − 1|

k + 1
‖φ0 − ψ0‖L∞(X) .

Proof This is shown in essentially the same way as in the proof of [12, formula 3.4],
but to pinpoint the exact dependence on the constant we recall the argument. Let ψt

be a weak geodesic connecting φ (at t = 1) with ψ0 (at t = 0) [19]. In particular,
this means that t �→ ψt is a psh path (aka a subgeodesic) in the following sense:
extending ψt to X × ([0, 1] × iR) , so that ψt is independent of the imaginary part of
t, the corresponding local function (z, t) �→ ψt (z) is psh locally on X × (]0, 1[×iR) .

Moreover, it will be convenient to use the following regularity properties [19]: ddcψt ∈
L∞
loc for any fixed t and t �→ ψt is C1-differentiable up to the boundary of [0, 1] (but,

as explained in [12], for the proof it is enough to use that ψt is in L∞
loc for any fixed

t). Now,

(i) t �→ E(ψt ) is affine, (ii) t �→ Ek
(
ψ

(ε)
t

)
is concave (2.8)

if ε is sufficiently small. In fact, the first statement characterizes the geodesic φt among
all psh pathsφt as above [13, Thm1.7] and the secondone follows from [15], only using
thatψ(ε)

t is a psh path. To see this rewrite−kKX = (k+1)L+KX for L = −KX .Then,
locally, rewriting e−kφe−(γ φ+(1−γ )φ0) = e−(kφ+γφ+(1−γ )φ0) the Hermitian metric
H (k)

(
φ, e−(γ φ+(1−γ )φ0)

)
coincides with the L2-metric on H0(X , (k + 1)L + KX )

induced by the metric kφ+γφ+ (1−γ )φ0 on (k+1)+ LX .Accordingly, Ek (φ)may
be identifiedwith the L2-metric on the determinant line of H0(X , (k+1)L+KX ).Now
replace φ with ψ

(ε)
t (defined as in formula 2.7 with φ replaced by ψt ) and decompose

the corresponding metric on (k + 1)L + KX as

kψ(ε)
t +γψ

(ε)
t +(1−γ )φ0 = (k+γ )(1−ε)ψt +((k + γ )εψ0 + (1 − γ )φ0) . (2.9)

We will first consider the special case that φ0 = ψ0. Then the second term above has
non-negative curvature on X as soon as ε ≥ γ−1

k+γ
.Henceforth it will assumed that ε =

γ−1
k+γ

(then (1−ε) = (k+1)(/k+γ ) > 0). Sinceψt is locally psh on X×([0, 1] × iR)

the whole expression in formula 2.9 is thus locally psh. Hence, the convexity of

t �→ Ek
(
ψ

(ε)
t

)
follows from the positivity of direct image bundles in [15], applied

the to trivial fibration X × (]0, 1[×iR) →]0, 1[×iR. This concludes the proof of the
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properties in formula 2.8. As a consequence, the function t �→ − 1
(1−ε)

Ek
(
ψ

(ε)
t

)
+

E(ψt ) is concave, giving,

− 1

(1 − ε)
Ek

(
φ(ε)

)
+ E(φ) ≤ −Ek

(
ψ

(ε)
0

)

+E(ψ0) +
∫

X

(
−dψt

dt
|t=0

)(
1

(1 − ε)
dEk

(
φ(ε)

)
− dE

)

|ψ0

Now assume first that φ is sup-normalized, i.e. that supX (φ−ψ0) = 0. Then it follows
from the convexity of t �→ φt that

dψt
dt |t=0 ≤ 0. Next, since we are considering the

special case φ0 = ψ0 and ψ
(ε)
0 = ψ0 the term Ek

(
ψ

(ε)
0

)
vanishes and so does E(ψ0)

(by definition). Moreover, since the differential of the functional

φ �→ 1

(1 − ε)
Ek

(
φ(ε)

)

is givenby theBergmanmeasure Bk associated to theHermitianmetricH (k)(ψ0, e−ψ0)

(by formula 2.6) it follows from Bergman kernel asymptotics [42] that there exists a
constant C0 (depending only on ψ0) such that

(
1

(1 − ε)
dEk

(
φ(ε)

)
− dE

)

|ψ0

≤ −C0k
−1dE(ψ0). (2.10)

(in fact only an upper bound on Bk is needed for which there is an elementary proof
[12, Prop 2.4]). Hence,

− 1

(1 − ε)
Ek

(
φ(ε)

)
+ E(φ) ≤ C0k

−1
∫ (

−dψt

dt
|t=0

)
(dE)|ψ0

= −C0k
−1E(φ),

using, in the last equality (i) in formula 2.8. Replacing a general φ ∈ H with its
sup-normalized version φ − supX (φ − ψ0) we deduce that

− 1

(1 − ε)
Ek

(
φ(ε)

)
+ E(φ) ≤ C0k

−1
(

−E(φ) + sup
X

(φ − ψ0)

)
.

This concludes the proof when φ0 = ψ0. Finally, to handle the case of a general case
note that replacing φ0 with ψ0 in the definition of Ek

(
φ(ε)

)
just gives rise to an extra

term which, after multiplication by 1
(1−ε)

, may estimated from above by

1

(1 − ε)

1

k + γ
log e(γ−1) supX (φ0−ψ0)

≤ sup
X

|φ0 − ψ0| 1

(1 − ε)(k + γ )
|γ − 1| = sup

X
|φ0 − ψ0| 1

k + 1
|γ − 1| .
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2.3 Conclusion of the proof of Theorem 1.2

By Proposition 2.3 the following inequality holds for any metric φ on −KX and
number satisfying (1 − ε) ≥ 0 :

− 1

γ N
logZN (−γ ) ≤

(
1 + γ k−1

)
(1 − ε)

(
1

N (k + γ )(1 − ε)
Ek (φ)

− 1

γ (1 − ε)
log

∫

X
e−(γ φ+(1−γ )φ0)

)

Taking ε = γ−1
k+γ

and replacing φ with φ(ε) (defined as in the previous lemma) and

setting γ (ε) := (1 − ε)γ thus yields (using that
(
1 + γ k−1

)
(1 − ε) = 1 + k−1))

− 1

γ N
logZN (−γ ) ≤ (1 + k−1)

(
1

N (k + γ )(1 − ε)
log det H (k)(φ(ε), γ )

− 1

γ (ε)
log

∫

X
e−(

γ (ε)φ+(1−γ (ε))φ0
))

Next, in order to fix ideas, we first consider the special case when φ0 = ψ0. Then, by
the previous lemma, the right hand side above is bounded from above by

(1 + k−1)

(
D−γ (ε) (φ) + C0k

−1
(

−E(φ) + sup
X

(φ − ψ0)

))
. (2.11)

Since (trivially) D−γ (ε) (φ) ≤ −E(φ) + supX (φ − ψ0) it follows that

− 1

γ N
logZN (−γ ) ≤ D−γ (ε) (φ) + (C0 + 1)k−1

(
−E(φ) + sup

X
(φ − ψ0)

)

Invoking the inequality 2.1 thus reveals that there exists a constant C only depending
on ψ0 such that

− 1

N
logZN (−γ ) ≤ γD−γ (ε) (φ) + Cγ k−1E (MA(φ)) + Cγ k−1 (2.12)

Next, we rewrite the first two terms in the right hand side above as

γD−γ (ε) (φ) + Cγ k−1E (MA(φ))

= (1 − ε)−1
(
γ (ε)D−γ (ε) (φ) + Cγ (ε)k−1E (MA(φ))

)
,

where the second factor above is is bounded from above byM−γ (ε)(1−Ck−1), as follows
from the inequality 2.4 and the free energy formula 2.2. Hence,

− 1

N
logZN (−γ ) ≤ (1 − ε)−1M−γ (ε)(1−Ck−1) + Cγ k−1,
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proving the theorem in the casewhenφ0 = ψ0.The general case is shown in essentially
the sameway, by first including the error term involvingφ0 fromLemma2.4 in formula
2.11 and then, in formula 2.12, estimating

E (MA(φ)) ≤
(
E (MA(φ)) +

∫
(φ0 − ψ0)MA(φ)

)
+ ‖φ0 − ψ0‖L∞(X) ,

so that the first term in the right hand side above can be absorbed into the twisted
Mabuchi functional, as before.

2.4 The case � ≤ 1

For γ ≤ 1 the estimate in Theorem 1.2 implies that (after perhaps increasing the
constant C) :

− 1

N
logZN (−γ )

≤ inf
H

M−γ (1−Ck−1) + Ck−1 + k−1γ (|1 − γ | + C) log

∥∥∥∥
dV

dV0

∥∥∥∥
L∞(X)

.

Indeed, by a simple scaling argument (applied to Lemma 2.4) it it enough to consider
the case when e−(γψ0+(1−γ )φ0) is a probability measure. This implies that the entropy
term in the free energy Fγ is non-negative. It then follows readily from the definition
that the function

T �→ inf T FT−1

is increasing in T (where the infimum is taken over a given subset of P(X)). In
particular, applied to the present setup at T0 = (k + γ )/(k + 1) and T1 = 1 this
monotonicity yields (since T0 ≤ T1 when γ ≤ 1)

k + γ

k + 1
inf
H

M−γ (1−Ck−1)(k+1)/(k+γ ) ≤ inf
H

M−γ (1−Ck−1),

as desired.

3 Comparison with the quantization approach

Given a holomorphic line bundle L over a compact complex manifold X and a positive
integer k denote by Hk(L) the space of all Hermitian metrics on the N -dimensional
complex vector space H0(X , kL), assuming that N > 0. The “Fubini-Study map”
FS maps Hk(L) into the space H(L) of all metrics on L with positive curvature:

FS : Hk(L) → H(L), FS(H) := k−1 log

(
1

N

N∑
i=1

∣∣∣sHi
∣∣∣
2
)

(3.1)
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where (sHi ) is any basis in H0(X , kL)which is orthonormal wrt H .The normalization
by N used here is non-standard, but it will simplify some of the formulas below. Note
also that since we are not assuming that kL is globally generated FS(H) can, in
general, be singular.

Henceforth, we shall specialize to the anti-canonical setting in Sect. 2.1.1. Thus
X is a Fano manifold and L = −KX . We will abbreviate Hk(−kKX ) = Hk and
H(−KX ) = H. Consider now the functional Dk,−γ on Hk defined by

Dk,−γ (Hk) := 1

kNk
log det Hk − 1

γ
log

∫

X
e−(γ FS(Hk )+(1−γ )φ0), (3.2)

which is invariant under scaling by positive numbers:

Dk,−γ (ecHk) = Dk,−γ (Hk) ∀c ∈ R.

As is well-known the functional Dk,−γ onHk can be viewed as a quantization of the
functionalD−γ onH [10, 35]. The following proposition relates the functional Dk,−γ

onHk to the functional Dk,−γ on H defined in formula 2.5.

Proposition 3.1 For any metric φ on −KX

Dk,−γ

(
H (k)

(
φ, e−(γ φ+(1−γ )φ0)

))
≤

(
1 + γ k−1

)
Dk,−γ (φ)

and for any H ∈ Hk

(
1 + γ k−1

)
Dk,−γ (FS(H)) ≤ Dk,−γ (H)

In particular,

inf
Hk

Dk,−γ =
(
1 + γ k−1

)
inf
H

Dk,−γ

Proof To prove the first inequality let φ be a given metric on −KX and set ψk :=
FS

(
H (k)

(
φ, e−(γ φ+(1−γ )φ0)

))
. Then

∫

X
e−(γψk+(1−γ )φ0) ≥

(∫

X
e−(γ φ+(1−γ )φ0)

)(1+γ /k)

. (3.3)

Indeed, rewriting e−(γψk+(1−γ )φ0) = e−γ (ψk−φ)e−(γ φ+(1−γ )φ0) and using that

e(ψk−φ) = ρkφ

(as follows directly from the definition of ρkφ in formula 2.6) gives

∫

X
e−(γψk+(1−γ )φ0) =

∫

X
(ρkφ)−γ /ke−(γ φ+(1−γ )φ0)
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≥
(∫

X
(ρkφ)e−(γ φ+(1−γ )φ0)

)−γ /k (∫

X
e−(γ φ+(1−γ )φ0)

)(1+γ /k)

usingHölder’s inequalitywith negative exponent−γ /k (or Jensen’s inequality applied
to the convex function t �→ t−γ /k on ] − ∞,∞[). The integral appearing in the first
factor in the right hand side above is precisely the integral of the Bergman measure
Bkφ (defined in formula 2.6) and thus equal to one, which proves the inequality 3.3.
Hence, using (1 + γ k−1)/(k + γ ) = 1/k,

(1 + γ /k)Dk,−γ

(
H (k)

(
φ, e−(γ φ+(1−γ )φ0)

))

≤ 1

kN
log det H (k)

(
φ, e−(γ φ+(1−γ )φ0)

)
− γ −1 log

(∫

X
e−(γ φ+(1−γ )φ0)

)
,

which proves the first inequality stated in the proposition. To prove the second one
first observe that for any H and and volume form μ on X

det
(
H (k) (FS(H), μ)

)
≤ det H ·

(∫

X
μ

)N

(3.4)

Indeed, for any given φ in H and H ∈ Hk, taking a basis (sHi ) in H0(X ,−kKX )

which is orthonormal wrt H , we can factorize

det
(
H (k) (φ, μ)

)
= det H · det

(
H (k) (φ, μ) (sHi , sHj )

)
, (3.5)

where the second factor arises as the determinant of the change of bases matrix
between the reference basis (s(k)

i ) in H0(X ,−kKX ) and (sHi ). Next, by the
arithmetic/geometric means inequality

(
det

(
H (k) (φ, μ) (sHi , sHj )

))1/N ≤ N−1
N∑
i=1

H (k) (φ, μ) (sHi , sHi ).

Now assume that φ = FS(H). Then

H (k) (φ, μ) (sHi , sHi ) :=
∫

X

|sHi |2
N−1

∑N
j=1 |sHi |2μ.

Hence, the second factor in the right hand side in formula 3.5 is bounded from above
by the N th power of the integral of μ, proving the inequality 3.4. Thus, if H is a
given element in Hk which is normalized so that

∫
e−(γ FS(H)+(1−γ )φ0) = 1, then

applying the inequality 3.4 to μ = e−(γ FS(H)+(1−γ )φ0) proves the second inequality
for any normalized H inHk . Finally, since both sides of the inequality in question are
invariant under scaling, H → ecH , this concludes the proof for a general H inHk .
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Remark 3.2 The previous proposition refines a monotonicity result [3, Lemma 2.6],
concerning Donaldson’s iteration in the anti-canonical setting of [28]. Indeed, apply-
ing the first inequality to φ = FS(H) and then the second inequality reveals that
Dk,−γ (H) is decreasing under Donaldson’s map on Hk, defined as the composition
of the maps F �→ FS(H) and φ �→ H (k)

(
φ, e−(γ φ+(1−γ )φ0)

)
. As in [3] one gets

equality in the first equality in the proposition when φ = FS(H) iff H is a balanced
metric inHk in the anti-canonical sense of [10, 28, 35].

Combining Proposition 2.3 and the equality for the infima in Proposition 3.1 (only
the upper bound is needed) we thus arrive at the following result:

Theorem 3.3 Let X be a compact complex manifold and assume that k is a posi-
tive integer such that Nk := dim H0(X ,−kKX ) > 0. Given (φ0, γ ) the following
inequality holds:

− 1

γ N
logZNk (−γ ) ≤ inf

Hk

Dk,−γ + 1

kN
log Nk .

As a consequence, ifZNk (−γ ) is finite, then the infimumof Dk,−γ overHk is finite.
In other words, the invariant γk(X) defined by formula 1.8 is smaller than or equal
to the coercivity threshold of the functional Dk onHk which, by [35], coincides with
the invariant δk(X) introduced in [31] (appearing in formula 1.10). We thus arrive at a
new proof of the following inequality first shown in [32] (see 1.10 for a reformulation
of the proof in terms of non-Archimedean pluripotential theory).

Corollary 3.4 [31, Thm 2.5]. For a Fano manifold X the following inequality holds:

γk(X) ≤ δk(X)

Combining the equality for the infima in Prop 3.1 with the argument employed in
Sect. 2.3 also yields the following analog of Theorem 1.2:

Theorem 3.5 There exists a constant C > 0 (depending only on the reference volume
for dV0) such that for any γ > 0 and positive integer k

inf
Hk

Dk,−γ ≤ − 1

N
logZN (−γ )

≤ k + γ

k + 1
inf
H

M−γ ck + k−1γ

(
C + (|1 − γ | + C) log

∥∥∥∥
dV

dV0

∥∥∥∥
L∞(X)

)
,

where ck := (1 − Ck−1)(k + 1)/(k + γ ).

As explained in Sect. 1.3 this inequality is closely related to results in [45].
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