CHALMERS

UNIVERSITY OF TECHNOLOGY

Masked Autoencoder for Self-Supervised Pre-Training on Lidar Point
Clouds

Downloaded from: https://research.chalmers.se, 2024-03-20 09:03 UTC

Citation for the original published paper (version of record):

Hess, G., Jaxing, J., Svensson, E. et al (2023). Masked Autoencoder for Self-Supervised Pre-Training
on Lidar Point Clouds. Proceedings - 2023 IEEE/CVF Winter Conference on Applications of
Computer Vision Workshops, WACVW 2023: 350-359.
http://dx.doi.org/10.1109/WACVW58289.2023.00039

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

arXiv:2207.00531v3 [cs.CV] 9 Mar 2023

Masked Autoencoder for Self-Supervised Pre-training on Lidar Point Clouds

Georg Hess'? Johan Jaxing®

Elias Svensson?
Christoffer Petersson’?
!Chalmers University of Technology

David Hagerman'
Lennart Svensson!
2Zenseact

georghel@chalmers. se

Abstract

Masked autoencoding has become a successful pretrain-
ing paradigm for Transformer models for text, images, and,
recently, point clouds. Raw automotive datasets are suitable
candidates for self-supervised pre-training as they gener-
ally are cheap to collect compared to annotations for tasks
like 3D object detection (OD). However, the development
of masked autoencoders for point clouds has focused solely
on synthetic and indoor data. Consequently, existing meth-
ods have tailored their representations and models toward
small and dense point clouds with homogeneous point den-
sities. In this work, we study masked autoencoding for
point clouds in an automotive setting, which are sparse and
for which the point density can vary drastically among ob-
jects in the same scene. To this end, we propose Voxel-
MAE, a simple masked autoencoding pre-training scheme
designed for voxel representations. We pre-train the back-
bone of a Transformer-based 3D object detector to recon-
struct masked voxels and to distinguish between empty and
non-empty voxels. Our method improves the 3D OD perfor-
mance by 1.75 mAP points and 1.05 NDS on the challeng-
ing nuScenes dataset. Further, we show that by pre-training
with Voxel-MAE, we require only 40% of the annotated data
to outperform a randomly initialized equivalent.

1. Introduction

Self-supervised learning enables the extraction of rich
features from data without the need for human annota-
tions. This has opened up new avenues where models can
be trained on ever-larger datasets. Fueled by robust rep-
resentations, self-supervised models have seen great suc-
cess in fields such as Natural Language Processing (NLP)
[3, 112, 132]] and computer vision (CV) [l 18, [19]. Specifi-
cally, masked language modeling [12] and masked image
modeling [2, |19} 145]] have proven themselves as simple, yet
effective, pre-training strategies. Both of these approaches
train models to reconstruct sentences, or images, from par-
tially masked inputs. Subsequently, models can be fine-

FPS + kNN

Figure 1: MAE [19] (left) divides images into non-
overlapping patches of fixed size. Existing methods (mid-
dle) for masked point modeling create point cloud patches
with a fixed number of points by using furthest point sam-
pling and k-nearest neighbors. Our method (right) uses non-
overlapping voxels with a dynamic number of points. Air-
plane point cloud from [31].

tuned toward downstream tasks, often outperforming their
fully supervised equivalents.

Autonomous driving is an application well-suited for
self-supervised pre-training strategies, including masked
autoencoding. In the automotive domain, the collection of
raw data is relatively cheap, while annotations for common
tasks such as object detection (OD), tracking, and semantic
segmentation are expensive and time-consuming to acquire.
Especially for data in 3D, the sparsity of lidar and radar sen-
sors can make labeling labor-intensive and even ambiguous.
Self-supervised pre-training is thus an appealing alternative
to create robust and general feature representations, and ul-
timately reduce the need for human-annotated data.

Recently, multiple works have applied masked point
modeling techniques to pre-train point cloud encoders [17,
24, 1311 141} 144]]. These have achieved favorable results on
downstream tasks like shape classification, shape segmenta-

tion, few-shot classification, and indoor 3D OD, indicating
the effectiveness of masked autoencoders in the point cloud
domain. However, evaluation has been focused on synthetic
data such as ShapeNet [6] and ModelNet40 [39], and indoor
datasets like ScanObjectNN [37]], ScanNet [10], and SUN
RGB-D [34]. Compared to automotive point clouds, these
datasets contain many points for all objects and the point
density is generally constant within a scan, making the de-
tection and classification of objects less challenging.

Further, existing methods have tailored design choices
like point cloud representation and model selection to
dataset characteristics. For instance, fewer points per scene
lessen requirements on computational efficiency and en-
able the use of vanilla Transformers [24, 131} 41]. More-
over, previous works rely exclusively on furthest point sam-
pling (FPS) and k-nearest neighbors (kNN) for dividing
point clouds into subsets of equally many points, see Fig. [I]
This works well when point clouds are evenly distributed
and simplifies the reconstruction during pre-training, as the
model predicts a fixed number of points for each subset.
However, this representation is sub-optimal for efficiently
solving downstream tasks in the automotive domain. First,
there is a risk of discarding points, as shown at the wing
tips in Fig. [T} This potential loss of information makes it
ill-suited for safety-critical applications. Second, the rep-
resentation is redundant as subsets may overlap, creating
unnecessary computational load.

In this work, we propose to use masked point modeling
in an automotive setting. To this end, we present Voxel-
MAE, a masked autoencoder pre-training strategy for vox-
elized point clouds, and deploy it on the large-scale auto-
motive dataset nuScenes [4] to study its effects on 3D OD.
The voxel representation is widely used in 3D OD due to its
ability to efficiently describe large point clouds but has not
been used previously for masked autoencoder pre-training.
To capture the unique nature of voxels during reconstruc-
tion, we propose a unique set of loss functions to capture
shapes, point density, and the absence of points simultane-
ously. In comparison to previous approaches, such as Point-
BERT [41] and POS-BERT [17], our method is simpler in
the sense that it does not rely on training a separate tok-
enizer for embedding and reconstructing the point cloud.

Following the success of self-supervised Transformers in
NLP and CV, Voxel-MAE utilizes a Transformer backbone
for extracting point cloud features. The Transformer archi-
tecture is chosen as its pre-training scales favorably when
deploying extensive masking, as only unmasked data are
embedded in the encoder. Moreover, the model efficiently
handles sparse point clouds by only processing non-empty
voxels. Interestingly, only a handful of Transformer back-
bones exist for automotive point clouds [[1529}130}43]], and
their self-supervised pre-training has not been explored pre-
viously [28]]. In this work, we use the Single-stride Sparse

Transformer (SST) [15] as our point cloud encoder, which
applies a shifted-window transformer directly to the vox-
elized point cloud, similar to the Swin Transformer for im-
ages [26]]. SST has achieved competitive results for 3D
object detection, capturing fine details while being compu-
tationally efficient, making it a strong baseline to improve
upon. For the pre-training, we follow the paradigm of MAE
[19] and equip the model with a lightweight decoder that is
structurally similar to the encoder.
In summary, we present the following contributions:

* We propose Voxel-MAE, a method for deploying
MAE-style self-supervised pre-training on voxelized
point clouds, and evaluate it on nuScenes, a large-scale
automotive point cloud dataset. Our method is the first
self-supervised pre-training scheme that uses a Trans-
former backbone for automotive point clouds.

* We tailor our method toward the voxel representation
and use a unique set of reconstruction tasks to capture
the characteristics of voxelized point clouds.

* We demonstrate that our method is data-efficient and
reduces the need for annotated data. By pre-training,
we outperform a fully-supervised equivalent when us-
ing only 40% of the annotated data.

* Further, we show that Voxel-MAE boosts the per-
formance of a Transformer-based detector by 1.75%-
points in mAP and 1.05%-points in NDS, showcasing
up to 2x the performance increase compared to exist-
ing self-supervised methods.

2. Related Work

Masked autoencoders for language and images. Masked
language modeling (MLM) and its derivatives such as
BERT [12] and GPT [3l 32, 33] have been very success-
ful within NLP. These methods learn data representations
by masking part of an input sentence and train models to
predict the missing parts. The methods scale well, enabling
training on datasets of unprecedented size and their rep-
resentations generalize to various downstream tasks. In-
spired by their success, multiple methods have applied sim-
ilar techniques to the image domain [2 (7, |13} [19} 40]. Re-
cently, the authors of [19] proposed MAE, a simple ap-
proach where random image patches are masked and their
pixel values are used as reconstruction targets. Further, they
deploy an asymmetric encoder-decoder architecture, where
only visible patches are embedded by the encoder, and a
lightweight decoder is used for reconstruction. MAE is
shown to improve performance on a range of downstream
tasks compared to a fully supervised baseline. Voxel-MAE
follows this design philosophy and makes the non-trivial
translation to sparse point cloud data.

GT - L

Embedded voxel
E58 Masked voxel

(Encoded voxel ;

&5 Empty masked voxel

(| Empty voxel t ot

Voxel embedding

Pred , /»J
4 [1 f
(Prediction head W
1 1 [N
| Decoder }
B e
[/ Encoder |
) £ L

Figure 2: Our Voxel-MAE approach. First, the point cloud is voxelized with a fixed voxel size. The voxel size in the figure has
been exaggerated for visualization purposes. During pre-training, a large subset (70%) of the non-empty voxels are masked
out at random. The encoder is then applied only to the visible voxels, which are embedded using a dynamic voxel feature
embedding [46]. Masked non-empty voxels and randomly selected empty voxels are embedded using the same learnable
mask token. The sequence of mask tokens and encoded visible voxels are then processed by the decoder to reconstruct the
masked point cloud and to discriminate between empty and non-empty voxels. After pre-training, the decoder is discarded

and the encoder is applied to unmasked point clouds.

Masked autoencoders for point clouds. Inspired by the
success of MLM in NLP and MAE in computer vision,
multiple adaptations to the point cloud domain have been
suggested. Point-BERT [41] first introduced BERT-style
pre-training for point clouds, masking and reconstructing
parts of the input. While achieving competitive results, their
approach relies on training a separate discrete Variational
AutoEncoder (dVEA) for tokenizing point cloud patches,
adding complexity and dependency on tokenizer perfor-
mance. Point-MAE [31]] removes the tokenizer and instead
reconstructs the point patches directly, using the Chamfer
distance for measuring the similarity between predicted and
true point clouds. This speeds up training compared to
Point-BERT and also improves downstream performance.
MaskPoint [24]] further speeds up pre-training by remov-
ing the point cloud reconstruction. Instead, the decoder is
trained to discriminate between masked point patches and
fake, empty ones, sampled at random.

Self-supervised learning for 3D object detection. While
outdoor 3D detection has much to gain from self-supervised
learning, the field is generally under-explored. STRL [20]
follows the BYOL [18]] approach and trains two point cloud
encoders to create consistent latent representations when
presented with two temporally correlated point clouds.
Training two encoders can however limit model size due to
increased memory requirements during pre-training. GCC-
3D [23] applies contrastive learning by training models to
produce voxel-wise similar features when presented with
two augmented views of the same point cloud. In [14], the

pre-training is done using two subsequent point clouds and
the models are trained to estimate the scene flow between
frames. This can be seen as a special case of masked au-
toencoder, where the masking is done temporally. How-
ever, their method relies on a special alternating training
scheme, switching between self-supervised and supervised
training. In contrast, our method enables a simpler, sequen-
tial training strategy where the models are first pre-trained
and then fine-tuned as needed. Thus, we avoid issues where
large unannotated datasets have to be processed each time
the model is trained toward the downstream task.

3. Methodology

This work aims to extend the MAE-style pre-training
[L9] to voxelized point clouds. The core idea remains to
use an encoder to create rich latent representation from par-
tial observations of the input, followed by a decoder to re-
construct the original input, as visualized in Fig. [2| After
pre-training, the encoder is used as a backbone for a 3D ob-
ject detector. But, due to fundamental differences between
images and point clouds, several modifications are needed
for the effective training of Voxel-MAE, as outlined below.

3.1. Masking and voxel embedding

Similar to the division of images into non-overlapping
patches, the point cloud is first divided into voxels. Voxels
bring structure to the otherwise irregular point cloud, en-
abling efficient processing while retaining sufficient details

for dense prediction tasks such as 3D OD. However, voxels
also bring unique challenges compared to image patches.

First, a large fraction of the voxels in the field of view are
generally empty due to occlusion and the inherent sparsity
of lidar data. Rather than using all voxels, we discard empty
voxels to avoid unnecessary computational strain. During
pre-training, we mask a large fraction (70%) of non-empty
voxels and process only visible voxels with the encoder,
further enhancing computational efficiency. The varying
amount of visible voxels between scenes is handled ele-
gantly by the many-to-many mapping of Transformers.

Second, due to the varying point density, the number of
points assigned to individual voxels can vary from one to a
few hundred. For embedding all points in each visible voxel
to a single feature vector we use a dynamic voxel feature
encoder [46]]. Masked voxels are instead embedded with a
shared, learnable mask token.

3.2. Encoder

For encoding the visible voxels we use the encoder of
the Single-stride Sparse Transformer (SST) [15]. SST is a
Transformer-based 3D object detector operating on voxels,
making it easy to transfer pre-trained backbone weights to
the downstream task of 3D OD. The SST encoder is con-
structed by stacking multiple Transformer encoder layers,
where non-empty voxels are treated as separate tokens and
point clouds are considered to be sequences of such tokens.
Further, each token is accompanied by a positional embed-
ding based on the position of the voxel in the field of view.

Since Transformers scale poorly with sequence length
due to quadratic complexity in the self-attention mecha-
nism, SST introduces regional grouping and regional shift.
Inspired by the shifted windows in Swin Transformer [26],
the field of view is divided into non-overlapping 3D regions.
Self-attention is only calculated among voxels within the
same region, drastically reducing the computational load
compared to global self-attention. To enable interaction be-
tween voxels from different regions, the regions are shifted
every other encoder layer and voxels are grouped according
to the new regions. The combination of regional grouping
and only processing non-empty voxels limits the computa-
tional footprint of pre-training SST with Voxel-MAE, espe-
cially with extensive masking.

3.3. Decoder

After encoding the visible voxels, the decoder is used
to leverage the rich latent representation for reconstructing
the original point cloud. Note that the decoder is only used
during pre-training and is discarded when fine-tuning the
model toward downstream tasks. As can be seen in Fig.
the sequence of embedded voxels is extended with the
masked voxels. These are embedded as a shared, learned
mask token along with their respective positional embed-

ding, such that the decoder can distinguish between them.

Besides the encoded and masked voxels, we also add a
set of empty masked voxels, similar to what is done in [24].
We do this by sampling randomly among the empty voxels
in the field of view and embedding them in the same fash-
ion as the non-empty, masked voxels. The empty masked
voxels are added to make the reconstruction task harder and
effectually promote the encoder’s learning. By only pro-
cessing voxels which contain points, the model would have
close to perfect knowledge about occupancy, thus not hav-
ing to learn about this property of point clouds. Instead, we
force the decoder to learn to distinguish between non-empty
and empty masked voxels and ignore empty voxels for re-
construction. Empirically, we found sampling 10% of the
empty voxels gave good performance, without introducing
unnecessary computational overhead.

The decoder has a similar structure as the encoder, con-
sisting of SST encoder layers, but using fewer layers. This
can partially be motivated by the reduced time needed for
pre-training, but we also find the encoder to achieve higher
downstream task performance when trained in conjunction
with a smaller decoder, similar to the results in [[19]].

3.4. Reconstruction target

The decoder is supervised with three different recon-
struction tasks, each supervising a certain characteristic in-
herent to point clouds. For each task, we apply a separate
linear layer to the decoder output to project the embedding
to suitable dimensions. The three tasks and their corre-
sponding loss functions are described below.

As mentioned previously, each voxel contains a varying
number of points. For exact reconstruction, this would re-
quire the prediction heads to predict a different number of
points for each voxel. This can be achieved using a Re-
current Neural Network for instance but at the cost of sim-
plicity. Instead, we propose to predict a fixed number of
points n, enabling the use of a simple linear layer for pre-
dicting said points. This reconstruction is supervised with
the Chamfer distance, which measures the distance between
two sets of points and allows the sets to have different car-
dinality. Let P9* = {P?*}N | be the masked point cloud
partitioned into N voxels where each voxel P?" = {x; A
contains n; points, where n; can vary between voxels. Simi-
larly, the predicted point cloud PP™ = { PP"“}¥ | contains
N voxels P/ = {x;}7_, with n fixed for all i. We calcu-
late the Chamfer distance for each masked voxel and define
our Chamfer loss as

1 . 112
L.= Z & Z ré111)r;t\|x—x||2+

prregppre 171 g ppre XS0
1
1 . . (1)
E — g min ||x — X||5.
gt gt ‘Plg | gt)A(epipre
Ptep x€P,

When the number of predicted points n exceeds the true
number of points n; in a voxel, the model can still minimize
the Chamfer loss by placing duplicate points in the same
location. For the other scenario, n < n;, it has been shown
[38] that the Chamfer loss encourages model predictions to
capture details in the true point cloud even under cardinality
mismatch.

For the model to further learn the uneven point cloud
distribution explicitly we also predict the number of points
n; for each non-empty masked voxel. As the target n; can
range from one to a few hundred, we supervise the predic-
tion using the smooth L1 loss to avoid exploding gradients

S \2
E’ILp - {(’nl_nlj if ‘nl _, ﬁz| < 17 (2)
|n; —n;] — 0.5 otherwise.

Lastly, for each masked voxel, we predict whether it is
empty or non-empty. This task is supervised with a simple
binary cross entropy loss L,... The total loss for the pre-
training is

L=al.+ O‘np‘cnp + aoccLoce; 3)

where o, tipp, e are scalar weights for scaling each loss
term.

4. Experiments

For our experiments, we use the popular self-driving
dataset nuScenes [4] which contains 1,000 sequences from
Boston and Singapore, each sequence being 20 s long with
raw data collected at 10 Hz, and annotations available at 2
Hz. Out of the 1,000 sequences, 850 are used for training
and validation where we use established splits. All mod-
els are pre-trained on the raw training data. Following pre-
training, models are fine-tuned toward the downstream task
of 3D object detection.

SST [15] was developed in the MMDetection3D frame-
work [9] and originally evaluated in the Waymo Open
Dataset [35]. Due to inherent differences between the
Waymo and nuScenes datasets, e.g., Waymo lidar having
64 lidar beams instead of 32, we extend the original SST
implementation and tune hyperparameters for optimized
nuScenes performance. For instance, we found that using
a slightly larger voxel size and more encoder layers yields
better performance than the original hyperparameters. Fur-
ther, following standard practice, SST was trained using ag-
gregated point cloud sweeps. For studying sensitivity to
point cloud density, we evaluate our models with 2 and 10
sweeps, where results for 2 sweeps can be found in Section
C in the supplementary material along with results from ad-
ditional ablations. For complete training details see Section
A in the supplementary material.

Pre-training. Models are trained with the AdamW opti-
mizer [27] with 1 = 0.95, B2 = 0.99, and weight decay

of 0.01. The initial learning rate is set to 5e-5 and gradu-
ally increased over the first 1000 iterations to Se-4 and then
decayed down to le-7 following a cosine annealing sched-
ule. Pre-training is run on NVIDIA A100 for 200 epochs
with a batch size of four. Loss weights are set as a,, = 1,
anp = 0.1, and oy = 1. The masking ratio is set to
0.7 and non-empty voxels are sampled uniformly at ran-
dom. Further, the point prediction head is set to predict 10
points. When calculating the Chamfer loss, we further limit
the number of true points to fewer than 100 for computa-
tional efficiency, where points are selected at random. For
remaining model details, see supplementary material Sec-
tion B.

Downstream task training. When training toward the
downstream task, weights for the voxel encoder and
SST encoder layers are initialized either from pre-trained
weights or randomly, depending on using Voxel-MAE or
not. The remaining model parts are always initialized ran-
domly. We use the AdamW optimizer with 3; = 0.9,
B2 = 0.999, and weight decay of 0.05. The learning rate
is increased from le-5 to 1e-3 during the first iterations and
decreased with a cosine annealing schedule down to le-8.
Models are trained for 288 epochs with a batch size of 4.

4.1. Data efficiency

Varying amount of labeled data. One of the major bene-
fits of using self-supervised learning is a reduced need for
annotated data. To study the effects of various dataset sizes
we train SST with and without Voxel-MAE with varying
fractions of the annotated dataset held out. Specifically,
we use {0.2,0.4,0.6,0.8,1.0} of the annotated dataset for
training the 3D OD models, where one model is initialized
randomly and one has been pre-trained on the Voxel-MAE
tasks. Pre-training was done on the entire nuScenes training
dataset. To determine which scenes to use in each fraction,
the training dataset was sorted based on scene timestamps.
Then, scenes were chosen based on their index modulus 5,
e.g., for extracting 20% of the dataset, all scenes with in-
dex 7 were chosen if ¢ mod 5 = 0, while for 40% we used
i mod 5 € {0,2} as our selection criteria. This way, the
temporal dependency between frames is minimized and the
reduced datasets have similar diversity as the entire dataset.
We report mAP and NDS scores for the nuScenes validation
set in Table[Il

From Table (1| we can see that by training SST from
scratch with randomly initialized weights, the model
achieves 49.08 mAP and 60.75 NDS when using 10 aggre-
gated point cloud sweeps. In comparison, the pre-trained
model, using only 40% of the annotated data, achieves
50.02 mAP and 61.01 NDS, hence outperforming the ver-
sion without pre-training. The substantial gap of 1 mAP
point indicates that even less than 40% of the annotated data
would suffice.

Dataset fraction , Pre-trained |, mAP NDS | ped. car truck bus barrier T.C. trailer moto.
02 X 4243 5560 | 73.5 78.6 425 495 551 389 189 41.6
' v 4735 59.06 | 784 808 47.7 589 605 46.1 222 451

o ;);f 7777777 X 4779 5911779 812 471 562 590 462 216 478
' v 50.02 61.01 | 81.3 803 496 61.1 62.6 494 241 477

o 6% 7777777 X | 4777 5957780 812 463 591 580 465 242 494
’ v 51.00 61.76 | 814 819 506 608 63.1 529 251 531

o E)é 7777777 X 4826 6026|786 81.5 467 588 576 490 230 520
' 4 51.67 62.38 | 81.0 823 498 626 64.0 523 258 531

o 15 7777777 X 14908 6075 | 785 819 478 60.1 597 487 231 516
) 4 5195 62.16 | 814 823 512 639 632 528 275 515

Table 1: mAP, NDS, and AP per class on the nuScenes val data for pre-trained and randomly initialized models when varying
the amount of /abeled data. Pre-training and fine-tuning are done with ten aggregated point cloud sweeps without intensity
information. ped.=pedestrian. T.C.=traffic cone. moto.=motorcycle.

Labeled data , Unlabeled data , mAP NDS | ped. car truck bus barrier T.C. trailer moto.
0.0 803 1937 | 154 451 46 1.0 11.3 2.8 0.0 0.0
0.2 20.05 3578 | 555 61.5 141 142 3277 146 1.0 6.6
0.01 04 20.75 3475 | 587 624 145 138 356 152 038 6.4
0.6 21.07 3559 | 605 624 144 134 347 160 1.3 7.1
0.8 21.23 36.74 | 603 639 154 13.1 362 147 1.0 7.4
1.0 22.18 3630 | 626 638 165 144 383 176 09 6.9
I 0.0 [2499 4277 [566 685 224 182 366 220 55 166
0.2 3393 4958 | 71.2 741 334 346 481 341 119 21.7
0.05 0.4 3488 49.87 | 72.1 747 335 371 492 346 132 23.9
0.6 3474 4995 | 727 745 341 365 477 367 11.1 22.4
0.8 3507 4998 | 724 746 350 347 492 357 106 @ 25.1
1.0 36.01 5091 | 73.8 749 341 382 508 376 112 239

Table 2: mAP, NDS, and AP per class on the nuScenes val data for pre-trained and randomly initialized models when varying
the amount of unlabeled data. 0.0 refers to the model trained from scratch. Pre-training and fine-tuning are done with ten
aggregated point cloud sweeps without intensity information. ped.=pedestrian. T.C.=traffic cone. moto.=motorcycle.

The largest performance increase for Voxel-MAE in
comparison to the baseline can be seen when fine-tuning on
the smallest fraction of annotated data. In those instances,
mAP is increased by close to 5 mAP points and NDS by
~ 3.5 points. The low-data regime benefits the most from
expressive pre-trained voxel features. Nonetheless, pre-
training with Voxel-MAE consistently outperforms the ran-
domly initialized equivalent, even as the entire annotated
dataset is used. Naturally, the performance gap shrinks as
more annotated data is used, but the gap remains large re-
gardless of the fraction of annotated data. For instance,
using all of the annotated data, Voxel-MAE results in a
2.87 mAP point and a 1.41 NDS point increase. This in-
dicates that our pre-training is useful for learning general
point cloud representations which improve both data effi-
ciency and final performance for existing methods.

Varying amount of unlabeled data. We also study the ef-

fect of varying the amount of unlabeled data when keeping
the amount of labeled data fixed. This simulates the sce-
nario where the amount of unlabeled data is much greater
than the amount of labeled data, which is generally the
case for real-world applications. For this, we pre-train five
models on varying fractions of the entire dataset, namely
{0.2,0.4,0.6,0.8,1.0}, where 1.0 is equivalent to using all
available data. Next, models are fine-tuned on 1% and 5%
of the annotated data. Their results, compared to a model
without pre-training, are shown in Table 2]

All models pre-trained with Voxel-MAE outperform
their corresponding baseline. Note that already using 20%
of the data for pre-training brings large increases in mAP
and NDS, e.g., a 12 mAP point and 16.4 NDS point in-
crement when using 1% of the labeled data for fine-tuning.
Further, performance increases as the amount of unlabeled
data grow, showing that our proposed method makes effec-

tive use of large unannotated datasets. We also note that
the increment in performance between some levels of unla-
beled data might seem minor, compared to the step from no-
pretraining to using 20% of the data. We believe this to be
an effect of the nuScenes dataset and our selection method
when holding out part of the data. For the 0.2 dataset, we
select frames uniformly in time, minimizing their tempo-
ral correlation. For the larger fractions, we only add frames
that are already close in time to the ones contained in the 0.2
dataset, as nuScenes consists of sequence data. This limits
diversity and the amount of new information being added
when increasing the size of the pre-training dataset.

4.2. Comparison to SOTA self-supervised learning
methods

While self-supervised pre-training recently has enjoyed
much attention for point clouds in general, only a handful of
methods have been proposed for improving automotive 3D
OD performance. For nuScenes, two self-supervised tech-
niques have been evaluated prior to this work. In [23], a
voxel-based CNN backbone is trained to create consistent
latent features for two different views of the same scene us-
ing contrastive learning. In [14]], the model is instead super-
vised to estimate the scene flow, i.e., the location of points
in the consecutive frame. Further, [14] deploys a custom
training scheme, where the training objective is altered be-
tween the self-supervised task and the object detection task.

We compare Voxel-MAE to existing methods in Table
Note that the models use different types of backbones,
which can affect the comparison. We report mAP and NDS
both for models trained from scratch and the ones pre-
trained with the various self-supervised techniques. For
SST, we use 10 aggregated sweeps. Further, we trained
a separate version that includes intensity information for
each point in both pre-training and fine-tuning, something
that was omitted in the original implementation [15]. We
found this to help final detection performance compared to
the intensity-free version, while Voxel-MAE still shows a
substantial increase compared to the baseline.

In Table 3] we see the largest increase in mAP when
pre-training SST with Voxel-MAE. Performance in terms of
NDS is increased the most for the PointPillars model trained
by [14]. This is, however, also the worst-performing detec-
tor, i.e., the baseline from which it is the easiest to improve
upon. By instead comparing SST to the similar perform-
ing CenterPoint models trained by [23]] and [14]], we see the
effectiveness of our proposed Voxel-MAE approach. For
the SST model with intensity information, our absolute per-
formance gains (measured in NDS) are almost twice those
for the best-performing existing methods. This highlights
the potential for self-supervised Transformers in the point
cloud domain, results that are in line with what has been
observed in fields such as NLP and computer vision.

Method mAP NDS
PointPillars [[14] 40.02 53.29
[S] PointPillars [14] 42.0672:04 55,02+173
~ CenterPoint + PP [14] 49.13 59.73
[S] CenterPoint + PP [14] 49.89+0-76 60.01+0-28
 CenterPoint + PP [23] 49.61 6020
[S] CenterPoint + PP [23] 50.84%1:23 60.76+0-56
" CenterPoint + V[23] 56.19 = 6448
[S] CenterPoint + V [23] 57.267107 65.0170-53
o sstT 4908 6075
[S] SST + Voxel- MAE ~ 51.9572:87 62.16+1-41
S SsT* 5339 6295

[S] SST* + Voxel- MAE ~ 55.14+1:75 64001105

Table 3: Detection performance on the nuScenes val data
for SOTA self-supervised methods. [S] indicates models
have been pre-trained with a self-supervised task, while
other models have been randomly initialized. PP = Point-
Pillars. V = VoxelNet. SST* uses intensity information.

4.3. Comparison to SOTA object detectors

Transformers are widely used for NLP and computer
vision tasks, and for automotive data, it has also been
used for camera-lidar fusion [1} 42]] or for camera-only 3D
OD [22] 25]. Nonetheless, Transformers remain relatively
under-explored as a backbone for lidar data. Pointformer
[30] is the only Transformer-based lidar object detector that
has been used on the nuScenes dataset and we compare its
performance to SST in Table[d] We can see that pre-training
with Voxel-MAE, SST can outperform Pointformer by a
substantial margin. However, Transformer backbones are
still lagging behind CNN-based feature extractors. We hope
that our work can encourage further research toward the use
of Transformer backbones for automotive point clouds, to
make use of vast amounts of raw data.

Backbone Method mAP
CenterPoint [23]] 56.19
CNN UVTR-L [21]] 60.90

VISTA [[11]] 62.83

TransFusion-L [1] 65.19
7777777777 Pointformer [30] 53.60

Transformer SST* 53.39

SST* + Voxel-MAE 55.14

Table 4: Detection performance on the nuScenes val
dataset, comparing SST to SOTA 3D OD methods. SST*
uses intensity information.

4.4. Loss ablation

One of the key differences between Voxel-MAE and
MAE for images [[19], is the reconstruction task and its ac-
companying losses. These differences stem from the inher-
ent sparsity of point cloud data, which is not present in reg-
ular images. We study the effects of our proposed losses
in Table 5} From the table, we see that a naive extension
of MAE, i.e., only predicting points and supervising with
the Chamfer loss, actually hurts mAP performance com-
pared to no pre-training. Further, the table suggests the best
loss combination is using Chamfer and empty voxels, or
the number of points and empty voxels, depending on if
mAP or NDS is selected as the criterion. From these re-
sults, we believe that by tuning a., cyp, and . in @) one
can likely achieve the highest performance in both mAP and
NDS when using all three losses. Tuning for maximum per-
formance was however considered out of scope in this work.

Chamfer #Points Empty mAP NDS
43.60 55.19

v 4346 5529

v 44.27 55.83

v v 45.03 56.10

v v 44.82 56.25

v v 45.25 56.11

v 4 v 44.62 56.00

Table 5: mAP and NDS on the nuScenes val data for pre-
trained models for different combinations of reconstruction
tasks. Pre-training and fine-tuning are done with two aggre-
gated point cloud sweeps without intensity information.

4.5. Qualitative evaluation

Figure [3] shows examples of a reconstructed point cloud
from the nuScenes validation set. The model displays an
understanding of general shapes, predicts reasonable height
for most points, and captures the characteristic lidar lines
along the ground plane. Note that the model does this for a
single sweep point cloud, which it has not been trained on.

5. Conclusions

We propose Voxel-MAE, a simple masked point model-
ing pre-training paradigm tailored toward voxelized point
clouds. Experiments on a large-scale automotive dataset
show that Voxel-MAE learns useful point cloud representa-
tions from raw lidar point clouds. Our method yields a no-
table performance increase for a competitive Transformer-
based 3D object detector. Further, our pre-training reduces
the need for annotated data, enabling us to achieve compet-
itive detection performance when using a fraction of avail-

Figure 3: Masked (top), reconstructed (middle) and true
point cloud (bottom). Left shows the entire field of view
(50 x 50 meters). Right shows a zoomed-in version (z €
[0,15],y € [—7.5,7.5]) of the same scene, where the grid
represents the voxels. The masking ratio is 70% of non-
empty voxels. Color represents points’ height, purple being
ground level and yellow being maximum height. We in-
clude reconstructed unmasked voxels for visualization pur-
poses, although the model has not been supervised for this.

able annotations. We hope our work can encourage further
research on Transformers for automotive data.

Future directions include studies of temporal masking,
similar to methods in the video domain [16, 36], to learn
both spatial and temporal representations useful for multi-
object tracking and motion prediction.

Broader impact. Self-supervised learning in general,
and our method in particular, enable the utilization of other-
wise unused data, opening up for energy-consuming train-
ing of ever-larger models and potentially requiring the stor-
age of huge datasets. Associated resources can have a neg-
ative environmental impact and also limit the development
and deployment of these models to well-funded actors.

Acknowledgements

This work was partially supported by the Wallenberg
Al, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. The
experiments were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at
Chalmers Centre for Computational Science and Engineer-
ing (C3SE) and National Supercomputer Centre (NSC) at
Linkdping University, partially funded by the Swedish Re-
search Council through grant agreement no. 2018-05973.

References

(1]

(2]

(3]

(4]

[5

—

[6

—_

(7]

[8

—

(9]

Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1090-1099,
2022.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit:
BERT pre-training of image transformers. In International
Conference on Learning Representations, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877-1901, 2020.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621-11631, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 9650-9660, 2021.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning, pages 1691-1703. PMLR, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597-1607. PMLR, 2020.
MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D ob-
ject detection. https://github.com/open-mmlab/
mmdetection3d, 2020.

(10]

(1]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieBner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5828-5839, 2017.

Shengheng Deng, Zhihao Liang, Lin Sun, and Kui Jia. Vista:
Boosting 3d object detection via dual cross-view spatial at-
tention. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021.

Emec¢ Ergelik, Ekim Yurtsever, Mingyu Liu, Zhijie
Yang, Hanzhen Zhang, Pmar Top¢am, Maximilian Listl,
Yilmaz Kaan Cayli, and Alois Knoll. 3d object detection
with a self-supervised lidar scene flow backbone. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2022.

Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang
Zhao, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Embracing single stride 3d object detector with sparse trans-
former. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8458-8468, June 2022.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaim-
ing He. Masked autoencoders as spatiotemporal learners.
arXiv preprint arXiv:2205.09113, 2022.

Kexue Fu, Peng Gao, ShaoLei Liu, Renrui Zhang, Yu Qiao,
and Manning Wang. Pos-bert: Point cloud one-stage bert
pre-training. arXiv preprint arXiv:2204.00989, 2022.
Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information
Processing Systems, 33:21271-21284, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollér, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
16000-16009, June 2022.

Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu.
Spatio-temporal self-supervised representation learning for
3d point clouds. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6535-6545,
2021.

https://github.com/open-mmlab/mmdetection3d
https://github.com/open-mmlab/mmdetection3d

[21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun,
and Jiaya Jia. Unifying voxel-based representation with
transformer for 3d object detection. In Advances in Neural
Information Processing Systems, 2022.

Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao
Sima, Tong Lu, Qiao Yu, and Jifeng Dai. Bevformer: Learn-
ing bird’s-eye-view representation from multi-camera im-
ages via spatiotemporal transformers. In Proceedings of the
European Conference on Computer Vision (ECCV), 2022.
Hanxue Liang, Chenhan Jiang, Dapeng Feng, Xin Chen,
Hang Xu, Xiaodan Liang, Wei Zhang, Zhenguo Li, and Luc
Van Gool. Exploring geometry-aware contrast and cluster-
ing harmonization for self-supervised 3d object detection. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3293-3302, 2021.

Haotian Liu, Mu Cai, and Yong Jae Lee. Masked discrimi-
nation for self-supervised learning on point clouds. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2022.

Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Qi Gao, Tian-
cai Wang, Xiangyu Zhang, and Jian Sun. Petrv2: A uni-
fied framework for 3d perception from multi-camera images.
arXiv preprint arXiv:2206.01256, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012-10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019.

Dening Lu, Qian Xie, Mingqgiang Wei, Linlin Xu, and
Jonathan Li. Transformers in 3d point clouds: A survey.
arXiv preprint arXiv:2205.07417, 2022.

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi
Feng, Xiaodan Liang, Hang Xu, and Chunjing Xu. Voxel
transformer for 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3164-3173, 2021.

Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7463-7472, 2021.

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for point
cloud self-supervised learning. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAl blog, 1(8):9, 2019.
Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567-576, 2015.

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

(44]

(45]

(46]

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 24462454, 2020.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang.
VideoMAE: Masked autoencoders are data-efficient learners
for self-supervised video pre-training. In Advances in Neural
Information Processing Systems, 2022.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1588—
1597, 2019.

Tong Wu, Liang Pan, Junzhe Zhang, Tai WANG, Ziwei Liu,
and Dahua Lin. Balanced chamfer distance as a comprehen-
sive metric for point cloud completion. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, 2021.
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912-1920, 2015.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653-9663, 2022.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19313-19322, June 2022.
Yihan Zeng, Da Zhang, Chunwei Wang, Zhenwei Miao, Ting
Liu, Xin Zhan, Dayang Hao, and Chao Ma. Lift: Learning
4d lidar image fusion transformer for 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 17172-17181, 2022.
Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu.
Pvt: Point-voxel transformer for point cloud learning. Inter-
national Journal of Intelligent Systems, pages 1-24, 2022.
Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-
m2ae: Multi-scale masked autoencoders for hierarchical
point cloud pre-training. In Advances in Neural Information
Processing Systems, 2022.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang
Xie, Alan Yuille, and Tao Kong. Image BERT pre-training
with online tokenizer. In International Conference on Learn-
ing Representations, 2022.

Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang
Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-
sudevan. End-to-end multi-view fusion for 3d object detec-
tion in lidar point clouds. In Conference on Robot Learning,
pages 923-932. PMLR, 2020.

Supplementary material

A. Baseline hyperparameters

In this section, we present hyperparameters for the 3D
OD model. For training the detector, we use the same loss
functions as in the original SST implementation [[15]], but
modify hyperparameters for the nuScenes dataset. Unless
stated otherwise, the same set of parameters are used for
pre-training, e.g., the voxelization parameters in Table [6]
the voxel encoder in Table[7} and the SST encoder in Table
[l Table [specifies parameters used for downstream task
training only.

Parameter Value
Voxel size (m) 0.5x0.5x8
Max #point o0
Max #points/voxel o%

Max #voxels o0
Point cloud range - x [-50 m, 50 m]
Point cloud range - y [-50 m, 50 m]
Point cloud range - 2 [-3 m, 5 m]

Voxel grid shape (X,y,z) (200,200,1)

Table 6: Parameters used for voxelization.

Parameter Value

First linear layer
Second linear layer

64 output channels
128 output channels

Table 7: Parameters used for voxel encoder.

B. Pre-training hyperparameters

In this section we present hyperparameters used for the
decoder and reconstruction head using during pre-training,
see Tables [[0land [IT]

C. Results with two sweeps
C.1. Data efficiency

Table shows the data efficiency results when pre-
training and fine-tuning were done with two aggregated
sweeps. Similar to the results for 10 sweeps in Table 1, we
see that our Voxel-MAE brings a substantial performance
increase compared to the fully supervised baseline. The
baseline reaches 43.6 mAP and 55.19 NDS when using the
entire training dataset. The model pre-trained with Voxel-
MAE outperforms this baseline when using only 60% of the
annotated data with 43.77 mAP and 55.29 NDS.

Parameter Value
Window size 16 x 16
Padding levels (train) [30, 60, 100, 200, 250]
Padding levels (test) [30, 60, 100, 200, 256]
#Layers 8
Input dimension 128
FFN hidden dimension 256
#Heads 8
#Attached conv. layers 3
Conv. kernel size 3x3
Conv. stride 1
Conv. padding (per layer) (1,1,2)
Conv. in/out channels 128
Linear projection dim 384

Table 8: Parameters used for SST encoder. Note that the
convolution layers are not used during pre-training. The
padding levels refer to the grouping of windows when pass-
ing them through an encoder block, which allows for more
efficient computations.

Parameter Value
Class loss FocalLoss(y = 2.0,a = 0.25)
Bounding box loss SmoothL1Loss(5 = 1/9)
Direction loss CrossEntropyLoss
Bounding box
target weight 1,1,1,1,1,1,1,0.1,0.1
z,Y, 2, w, 1l h,0,v,, v,y
10U class 0.6
assignment threshold
IOU background 0.3
assignment threshold
max NMS evaluations 1,000
NMS IOU threshold 0.2
score threshold 0.05
min bbox size 0
max NMS predictions 500
(ﬁlocaﬁclmﬁdir) (1,1,0.2)

Table 9: Parameters used for the detection head. NMS
stands for non-maximum suppression and is used during
evaluation to filter predictions.

Same as for the experiments with 10 sweeps the pre-
trained models consistently improve upon their baseline in
terms of mAP and NDS regardless of dataset fraction. Fur-
ther, the largest improvements can be found for models fine-
tuned on 20% of the annotations, indicating the effective-
ness of our method when the amount of unlabeled data is
large compared to the annotated one. However, also when
using all available annotations, pre-training can increase de-

Parameter Value

Window size 16 x 16
Padding levels (train) [30, 60, 100, 200, 250]
Padding levels (test) [30, 60, 100, 200, 256]

#Blocks 8
Input dimension 128
FFN hidden dimension 256
#Heads 8
#Empty voxels 0.1-#voxels

Table 10: Parameters for the decoder used during pre-
training. The padding levels refer to the grouping of win-
dows when passing them through a decoder block, which
allows for more efficient computations.

Parameter Value
Empty voxel loss BinaryCrossEntropy
Number of points loss SmoothL1(5 = 1)

#Predicted points (Chamfer) 10

#Max GT points (Chamfer) 100
Qe 1
Qnp 1
aOCC l

Table 11: Parameters for the reconstruction head used dur-
ing pre-training.

Voxel size (m) Encoder depth mAP NDS

0.25 6 3143 50.76
0.30 6 3593 52.60
0.50 6 4279 55.54
0.50 8 43.60 55.19
0.70 6 41.73 54.69
0.70 8 31.31 54.21

Table 12: Performance on the nuScenes validation dataset
for a model using 2 sweeps and without any pre-training.

tection performance.

C.2. Encoder depth and voxel size

In Table 12| we study how baseline performance varies
with different number of encoder layers and voxel size. For
reference, the original SST model was tuned toward the
Waymo Open dataset and used 6 encoder layers and a voxel
size of 0.32 x 0.32 x 6 m. However, for nuScenes, we found
better performance with 8 encoder layers and a voxel size
of 0.5 x 0.5 x 8m.

Dataset fraction | Pre-trained |, mAP NDS ped. car truck bus Dbarrier T.C. trailer moto.

02 X 3554 4779 | 625 736 358 417 494 312 148 295

' v 39.95 51.60 | 69.1 757 404 481 546 393 182 336
o4 | X 3899 5141[667 768 398 482 519 349 179 334

' v 4315 5446 | 714 775 430 542 575 410 207 384
e | X 4129 5328 [69.0 774 413 508 549 374 200 387

' v 4377 5529 | 721 778 440 545 574 438 218 407
s | X | 4226 5424|692 778 408 536 554 402 194 396

' v 4396 5557 | 722 778 430 550 579 426 221 417
w0 | X 4360 5519 (699 789 431 557 567 395 214 415

' v 44.62 56.00 | 72.1 783 43.0 545 573 432 212 449

Table 13: mAP, NDS, and AP per class on the nuScenes validation data for pre-trained and randomly initialized models when
varying the amount of labeled data. Pre-training and fine-tuning is done with rwo aggregated point cloud sweeps without
intensity information. ped.=pedestrian. T.C.=traffic cone. moto.=motorcycle.

