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Abstract. The renovation planning process is filled with uncertainties and subjective decisions. These
make the decisions upon what and when to renovate a complex and ambiguous problem. Selection of
renovation measures related to building envelope are often far from optimal as decisions are usually
made based on visual inspections. These are manned and thus prone to subjective assessment and the
knowhow of individual inspectors. Furthermore, objective criteria which could indicate non-structural
failures are often missing. The objective based planning process allowing the estimation of the current
damage status of the building envelope by only using non-destructive measurements is still in its
infancy. The first step requires establishing reliable and objective based data collection. These could be
efficiently collected by Unmanned Aerial Vehicles (UAV) with subsequent image recognition algorithms
allowing the identification of imperfections and store the position and extent of such deviations into the
building’s digital assessment database. Such tools do not exist. The aim of this study is to investigate
the current objectivization possibilities in the domain of building inspections. The first part provides
a literature review describing how an autonomous UAV survey of a building envelope may be planned
and what computer vision techniques may be used for automatic damage recognition and classification.
Subsequently, an objective detection model based on the YOLO-tiny (You Only Look Once) computer
vision framework is employed in a case study investigating a building envelope of historical Tjolöholm
castle in Sweden. This study contributes to developing a methodology for an objective based visual
inspection process.

Keywords: UAV, computer vision, object detection, YOLO, case study, building, renovation, brick,
masonry.

1. Introduction
In terms of environmental aspects, renovation of
a building or its adaptive reuse has proven to out-
perform constructing a new building [1]. The envi-
ronmental effectiveness of renovations may be further
improved by transforming the maintenance paradigm
from reactive (emergency renovation after a compo-
nent breaks down) to proactive (planned renovation
before a component breaks down). However, this
paradigm shift requires a full digitalization of the
maintenance planning allowing to perform data driven
prediction of failures (predictive maintenance). Inspi-
ration could be taken from the world of wind turbines,
or jet fighters where data can already predict whether
any component will fail within a given period allowing
not only to reduce down-times but also optimize the
usage of resources and thus the environment. Ideal
maintenance system in buildings should be capable
of doing the same type of assessment to recommend
measures which can prevent a failure. However, reach-
ing this level of predictive maintenance requires sys-
tematic changes in data collection processes. The
performance of machine learning algorithms allowing
a computer to find patterns in the data and thus auto-

matically learn and decide over complex systems, are
highly dependent on the type and the total amount
of the data.

Building inspection provide invaluable information
for future failure prediction as it shows how much dam-
aged building is at the time of inspection. However,
common manned inspections are insufficient in terms
of large data collection. Moreover, data are often not
stored in a format suitable for applying machine learn-
ing algorithms. Note that insufficient in this context
means that building inspectors, however experienced,
cannot fully quantify every aspect of how a build-
ing envelope is damaged (e.g., count the number of
all cracks, measure, and sum up all damaged areas).
Contrastingly, Unmanned Aerial Vehicles (UAVs or
drones) have such possibilities as drones can gather
large sets of data by scanning whole building envelope
with various sensors (i.e., RGB or infrared cameras,
lidar, radar). Given the premise from above, one need
to objectively obtain the current status of the building
envelope. The most readily available sensor technique
is represented by RGB (red, green and blue) cameras.

The overarching research questions this study an-
swers are:
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(1.) Which data can objectively be used to assess
what the current and future performance level of
a building envelope are?

(2.) How can a damage on a building envelope be
quantified based on images from UAVs?

(3.) How can the whole process become as automa-
tized as possible?
This paper is divided into a literature review and

the case study. The literature review is further divided
into two distinct parts. Based on the conclusions from
the literature review, the case study is used to optimize
the methodology into the practice. This is done by
applying the in-house Build Sense model, developed
based on the YOLO-tiny (You Only Look Once, tiny
version) object detection framework [2], on a wall
of Tjolöholms castle in the west of Sweden. Finally,
the study concludes with the discussion about how
damaged areas may be quantified giving the outlook
for future data-driven UAV based building inspections.

2. Literature review
The first part of the literature review investigates how
a flight pattern of UAVs may be automatically gener-
ated for building envelope inspection. The second part
presents automatic damage recognition from images to
investigate how damages on a building envelope may
be automatically recognized by the use of computer
vision algorithms.

2.1. Planning of UAV based inspections
of building envelope

Usage of Unmanned Aerial Vehicles (UAVs or drones)
in a building inspection process yields many advan-
tages compare to the classical manned inspections.
The two of the most distinct advantages are the time
efficiency and the reachability over the whole building
envelope. The subsequent analysis of the images cap-
tured by drones may provide a comprehensive look on
the status of the building envelope.

The building inspection process based on a UAV
survey may be either conducted manually i.e., the
drone is controlled remotely by an operator on the
ground, or it can be conducted semi-automatically.
In both cases local laws and restrictions regarding
operations of the UAVs need to be followed. Duque [3]
identified 4 necessary steps which need to be taken
prior to the inspection of any construction:
(1.) UAV fly operation training,
(2.) documentation review of inspected structure,
(3.) observation of surroundings and
(4.) UAV pre-flight check (e.g., battery levels).
In the latter semi-automatic case, drone is often pre-
programed to follow specific GPS coordination way-
points and flight path making the flight itself fully
automatic. Such an approach was adopted e.g. in
a study by Rakha [4] who used images captured by

infrared camera to develop heat-leakage segmenta-
tion framework based on computer vision algorithms.
However, the loss of the GPS signal may lead to navi-
gational hazards. To cope with this problem, a SLAM
(Simultaneous Localization And Mapping) technique,
was developed, allowing drones to detect objects in
the surroundings by employing lidar or similar sensor
and thus to avoid collisions.

Current development in the semi-autonomous flight
systems adopts 3D models (or BIM models) of an
inspected building as a source of prior information for
UAV inspection planning. Freimuth [5] utilizes BIM
models to automatically generate safe flight paths for
UAVs. Similar framework developed for automatized
inspections of bridges, allowing to generate safe flight
paths can be found in the work by Morgenthal [6].
This framework was practically utilized for inspect-
ing building envelopes by Benz [7] who performed
a case study to automatically generate flight paths
for obtaining infrared images and subsequent thermal
conductance value determination of the building en-
velope. Note that flight path in this case needed to
be manually adjusted to avoid collision with nearby
obstacles (e.g. trees).

Regardless the type of flight control, UAVs need to
employ specific routing strategies to comply with the
needs of different sensors and the intentions of the
quest. For this purpose, a different flight pattern is
needed for drone scanning to produce high resolution
images suitable for subsequent defects analysis com-
pared to a drone taking infrared images suitable for
thermography analysis.

2.2. Automatize damage recognition and
classification from images

Recent development of computational power made
the machine learning and computer vision algorithms
accessible to the point where increasing numbers of
research papers dealing with their application on build-
ing inspections are being published every year. The
foundation for the majority of algorithm for image
interpretations is a Convolutional Neural Network
(CNN) as it mainly specializes on extracting basic fea-
tures from images like straight lines, round shapes etc.
Extracted features are then subsequently fed to a clas-
sification algorithm providing the predictions. The
aforementioned method was successfully used for crack
detection where Support Vector Machine (SVM) algo-
rithm achieved 85.94 % of the validation accuracy [8].
Note that substantial number of labelled images i.e.,
images where the labels are specified manually, are
needed for reaching high levels of accuracy. The afore-
mentioned study used 6 002 images of “cracks” and
“non-cracks”. More examples of similar detection strat-
egy using different classification algorithms can be
found in a literature review conducted by Sony [9].

An interesting option allowing to overcome the
need of the high number of images is represented
by the concept of transferred learning which is the
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domain of computer vision frameworks e.g., R-CNN
(Region-based CNN), Faster R-CNN, AlexNet, Oxfor-
Net, YOLO (You Only Look Once), ResNet50, VGG-
16. Such frameworks are usually based on layer(s) of
CNNs subsequently connected to feed-forward neural
networks or similar for classification purposes and in
case of object detection problems also to a regres-
sion algorithm, which also allows to accurately draw
a bounding box around the objects area. Note that
frameworks are obtainable as pre-trained i.e., the user
doesn’t need to train the whole network from scratch
but rather tune it for a specific problem. In some spe-
cific cases, this may lead to the reduction of the total
number of images needed for achieving accurate pre-
dictions. Özgenel [10] compared the performance of
7 different computer vision frameworks and concluded
that transfer learning applied to crack detection prob-
lems is feasible. In terms of transfer learning, the
study also advised to use limited number of training
images especially when the variance among the im-
ages is low as the high number of images increases
computational time as well as the risk that the model
learn some specific crack patterns too well and fails
to comprehend general appearance of cracks (overfit-
ting).

The majority of research papers investigating the
usage of presented computer vision techniques comes
mainly from three research areas: bridge health moni-
toring, pavement monitoring and the large-scale mon-
itoring of buildings after earthquakes. The first two
areas use the techniques described above for dam-
age detection. The latter mainly uses 3D cloud of
points (set of points in virtual 3D space usually form-
ing a base for 3D models) to quickly find collapsed
buildings and subsequently applies computer vision
techniques to detect damages of smaller scale [11].
Practical example for concrete bridges is provided by
Yang [12] who performed a field test with a drone
and by the means of VGG-16 framework successfully
detecting over 70 % of cracks and spalling areas on
a ground level of a bridge. The means of transferred
learning was used to detect cracks on pavements in
the work of Gopalakrishna [13] who used 1 056 im-
ages in total for training purposes. More computer
vision based examples of bridge health and pavement
monitoring alongside with examples of different appli-
cations (building health monitoring or inspection of
underground structures) may be found in the work of
Sony [9].

Practical applicability of pre-trained frameworks in
detecting defects on building envelopes may be well
illustrated on the work done by Wang [14] who feed
500 annotated images to Faster R-CNN framework
to identify and draw bounding boxes around bricks
subjected to spalling and efflorescence with resulting
accuracy 95 %. Another good example is provided by
the research of Cha [15] where modified Faster R-CNN
is used to differentiate concrete cracks, steel corrosion,
bolt corrosion and steel delamination. In total 2 366

annotated training images were fed to the framework
achieving mean average precision 89.7 % while testing
on previously unseen images.

Image segmentation is another computer vision tech-
nique allowing to precisely highlight the area of inter-
est i.e., to color out pixels which are associated with
a crack or other type of damage. Hoskere [16] used
a CNN on a level of individual pixels rather than on
whole images eventually adding a label to each pixel
and thus highlighting six different types of damage.
Already mentioned work by Gallareta [11] combined
multiresolution segmentation allowing to differenti-
ate building objects (i.e., façades, windows etc.) and
spectral difference segmentation allowing to highlight
damaged areas (i.e., cracks, holes etc.). Outputting
highlighted areas from image segmentation may be
used for measuring distances within an image eventu-
ally allowing to measure the scope of a damage. Such
approach was illustrated in the work of Lins [17] who
used images to measure width and length of cracks.

3. Case study
In the following case study, an in-house computer
vision algorithm (Build-Sense model) based on the
YOLO-tiny framework [2] capable of detecting dam-
aged areas is applied to images of historical Tjolöholm
castle in the west of Sweden. The main goal is to
detect missing joints in a stone masonry wall.

3.1. Object detection model
The Build-Sense model was originally built for detect-
ing damage on brick walls specializing on drawing
bounding boxes around cracks and bricks subjected to
spalling and efflorescence. The model is utilizing the
concepts of transfer learning and was trained based
on 225 images of damaged brick walls (approximately
75 images for each damage type) manually annotated
with more than 2 000 bounding boxes providing the
model with the interpretation of how a damage looks
like. Figure 1 shows bounding boxes around efflores-
cence as they were predicted by Build-Sense model.

The current predictive power of the Build-Sense
model may be characterized as good enough for ini-
tial stage of inspections as it in theory may notify
the inspector about possible building envelope failure.
However, given its rough estimation of the damaged
area it is not yet suitable for accurate damage quan-
tification i.e., measuring the area of damage, width of
damage etc.

3.2. Tjolöholms castle and data
collection

The construction of Tjolöholms castle was finished
in the beginning of 20th century. Thenceforth, it
has been subjected to many refurbishments given its
continuous moisture related problems which occurs in
the form of mold growth and ongoing disintegration of
joints in the stone masonry walls forming the building
envelope of the castle. Problems are more obvious on
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Figure 1. Example of output from the Build-Sense model – model draw bounding boxes around damaged area
alongside with its level of confidence [18].

the façade facing the south-east with the open view
towards the coast of North Sea.

As foundation for the status assessment a basic
ground level visual inspection of the building enve-
lope was performed and complemented by inspecting
building insides, including the roof. Following the
many years of subsequent repair work in the castle,
there is a substantial amount of data. This is stored
in the castle management’s own databases contain-
ing technical drawings, data from hygrothermal wall
sensors, 3D model of the building (based on cloud of
points), panoramic images of each room from interior
and panoramic images taken on 78 different locations
around the main building. Note that performing an
UAV survey for acquisition of close-up images of build-
ing envelope was not possible at the time of the visit.
Therefore, obtained outdoor panoramic images are
used in subsequent computer vision analysis.

3.3. Scope and the methodology of the
case study

Given the fact that joints are continuously disinte-
grated, mainly on the east side of the south-west
façade, the study is limited to the assessment of the
Build-Sense model only to one panoramic image which
closely depicts the area of interest. The positions of
the panoramic image as well as the overall view over
the wall of interest is on the Figure 2.

Given the limitations of the position i.e., testing im-
ages will not be in direct opposition to the wall surface
but rather tilted, and given the complexity of light
exposure conditions (uneven surface is under direct
sunlight casting a lot of shadows), one area of interest
on a building envelope will be analyzed from different
angles. The confidence threshold for the model was
set to be 50 % i.e., the model draws bounding boxes
around objects only where the probability of accurate
detection is higher than 50 %.

3.4. Retraining the Build-Sense model

Direct application of the current Build-Sense model
is not feasible in this problem as it was not able to
detect any missing joints in the castle’s stone masonry
wall. This is expected as it was originally tuned for
detecting cracks, efflorescence and spalling on brick
walls i.e., each construction has different structure
and different damage patterns which are different
from missing joints in stone masonry walls. Therefore,
the model needed to be retrained specifically for the
purpose of detecting missing joints in stone masonry
walls.

Images for re-training purposes were collected in the
streets of Gothenburg city (in the west of Sweden) by
the in-built high-resolution camera in iPhone SE 2019.
Initial 115 images of stone masonry walls were anno-
tated highlighting damaged joints. The total number
of images was multiplied in the image augmentation
process by performing 90°, 180° and 270° rotation.
The images were then split to train/test samples by
the ratio of 80/20. Training itself was performed in the
Google Collaboration environment allowing to borrow
Graphics Processing Units (GPU) for the purpose of
calculation. The whole training session took 6.3 hours
to complete on a cloud based dedicated GPU Nvidia
Tesla K80 controlled by a local computer with 2,.3
GHz Quad-Core Intel Core i5 processor. Note that
the time of the calculation could been decreased by
limiting the pixel size of images used for the training
purposes.

The model iterated over the images for 6 000 times
internally using mean average precision (mAP) as
a metric for network’s weights evaluation. Final out-
put of the training is a set of weights which are the
best in predicting missing joints given the training
images and the number of iterations. The best weights
are then used for subsequent analysis of images from
Tjolöholms castle.
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(a). (b).

Figure 2. (A) Schematic plan on the building’s ground floor to the left shows the location where the panoramic
photograph was taken (red dot). Gray background indicates multi-storey parts while cyan colour indicates single
storey part of the building. (B) Photograph was taken on the stairs leading to the roof of single storey part [19].

Figure 3. Default view from the panoramic image directly facing the area of interest [19].

3.5. Results and discussion
All images altogether presented in this subchapter
were analyzed using retrained Build-Sense model. Fig-
ure 3 shows the default (un-zoomed) view from the
panoramic image directly facing the building envelope.
Note that there are missing joints on the left side
of the window. The model there fails to detect any
objects of interest.

However, this was not a case for zoomed images.
Figure 4a shows missing joints in the vertical direc-
tion but the algorithm failed to comprehend damages
in the horizontal direction. Observe that the confi-
dence of the model in predicting missing veneer is
relatively high i.e., always above 70 %. Complete op-
posite picture gives the Figure 4b where the missing
joints were detected mainly in horizontal direction
while the model’s confidence is in general lower.

The model failed to comprehend a majority of miss-

ing joints in Figure 4c. However, vertical joints are
in this point of view badly visible and difficult to cor-
rectly interpret even for human eyes. Furthermore,
the model again fails to comprehend joints in horizon-
tal direction which makes the confidence of the model
over individual bounding boxes rather low. Observe
that the model prefers detecting missing joints of rela-
tively thin size but fails to detect thicker joints. This
is probably caused by the limited number of training
images and by the low variance of images i.e., training
set does not include missing joints of this size.

The presumption that the low confidence in the
previous case is caused by the low number of relevant
training images is further strengthened by Figure 5
where most missing joints were correctly detected with
high level of confidence. The model only fails to grasp
missing veneers in the opposite wall in the distance
and few parts of the joints on the sides.
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(a). Detailed view 1. (b). Detailed view 2.

(c). Detailed view 3.

Figure 4. Detailed views. Credit: Anders Jansson, all rights reserved.

Figure 5. Image facing stairs [19].
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4. Conclusion
This study investigated how the inspection process of
a building envelope may be automated by the means
of UAVs and subsequent computer vision based analy-
sis of images. The first part of the paper is a literature
review summarizing how drones may be automatically
navigated to capture data from a building envelope.
The second part of the literature review shows how
computer vision algorithms are used in image analysis.
The latter part of the review was exemplified using
computer vision based model (Build-Sense model) for
detection of missing joints on a wall of Tjolöholms
castle, a historical building in Sweden. The model
failed to comprehend majority missing joints in verti-
cal direction and joints of larger thicknesses. It was
concluded that the model may be improved by adding
a variance to the training set (more different examples)
and by expanding the total number of the training
set. Nevertheless, current predictive power of the
model may be typified as good enough for notifying
inspectors, who should be responsible for final damage
evaluation, about potential building envelope failure.

Despite the performance limits of the presented
model, the conjunction of fast and overreaching UAVs
with the computer vision promises to bring revolution
to the building inspection process. When properly
set, UAVs may scan whole building envelope in terms
of minutes. Subsequent analysis may be used for
accurate damage quantification of building envelope
i.e., detecting the number of cracks per square meter,
measuring the scope of a damage etc. By separating
the envelope into smaller parts, one could differenti-
ate the performance of the envelope over those parts
and subsequently use this information for accurate
data-based failure predictions, opening the gate of
predictive maintenance.
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