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Microscopic Theory of Charge Complexes in Atomically-Thin Materials

Raul Perea-Causin

Department of Physics

Chalmers University of Technology

Abstract

Atomically-thin materials have emerged as the most promising two-dimen-
sional platform for future optoelectronic applications and for the study of
quantum many-body physics. In particular, transition metal dichalcogenides
(TMDs) exhibit strong Coulomb interaction, resulting in the formation of
tightly-bound electron-hole complexes that dominate optics, dynamics, and
transport. In the neutral regime, excitons—bound electron-hole pairs—
constitute the dominating many-particle species from low to moderate pho-
toexcitation densities. In the presence of doping, however, excitons can bind
to additional charges and form trions. In order to achieve an efficient and
controllable implementation of TMDs in novel devices, understanding the
fundamental properties of excitons and trions in these materials is crucial.

The aim of this thesis is to provide a microscopic understanding of the un-
derlying many-particle mechanisms in TMD optoelectronic devices. Based
on the density-matrix formalism, we describe the dynamics in a system of
interacting electrons, holes, phonons, and photons. We model the excitonic
features of optical absorption spectra and reveal how they are influenced by
the excitation density. We unveil the formation dynamics of dark excitons
after photoexcitation and resolve the main pathways of phonon-assisted dis-
sociation. Furthermore, we tackle exciton diffusion, tracing the emergence of
photoluminescence halos back to the large heating and thermal drift of exci-
tons at strong excitation. Finally, we consider doped TMDs and investigate
the trion dynamics, including diffusion and photoluminescence. In partic-
ular, we predict so far unobserved luminescence signatures that could shed
light on the internal structure of trions.

Overall, this work provides microscopic insights into many-particle processes
governing the optics, dynamics, and transport in atomically thin semicon-
ductors.

Keywords: excitons, trions, phonons, 2D materials, many-body physics, propa-

gation, dynamics, dissociation, photoluminescence.



iv



v

List of publications

This thesis consists of an introductory text and the following papers:

I. Exciton propagation and halo formation in two-dimensional
materials
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Tanimura, Y. Gerasimenko, R. Huber, E. Malic, R. Wallauer, and U.
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CHAPTER 1

Introduction

The isolation and characterization of graphene—a single layer of graphite—in
2004 [1] marked the beginning of one of the most exciting journeys in mod-
ern physics. This work, which was recognised with the Nobel prize in 2010,
constituted the first experimental realization of a stable atomically-thin ma-
terial and opened the way for the study of a large variety of two-dimensional
materials that exhibit a plethora of exotic properties [2–8]. Among them,
semiconducting transition-metal dichalcogenides (TMDs) stand out as very
promising candidates for applications in optoelectronic devices owing to their
strong optical absorption/emission and large tunability [5, 9–13]. These ma-
terials have the composition MX2 and consist of a layer of transition metal
atoms (M=Mo, W) sandwiched between two layers of chalcogen atoms (X=S,
Se), overall forming a honeycomb lattice (c.f. Fig. 1.1).

A particular feature of TMDs, and atomically-thin semiconductors in general,
is the prominent role of excitons [11–16]. When a photon with sufficiently
large energy hits the semiconductor, an electron from the valence band is

1
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a

b c
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Figure 1.1: a: Three-dimensional representation of the atomic structure of a TMD
monolayer (MX2, with M=Mo, W and X=S, Se). b: Top and c: side perspectives.

promoted to the conduction band, leaving behind a positively-charged hole.
The photoexcited electron-hole pair becomes tightly bound by the attractive
Coulomb interaction, forming a quasi-particle—the exciton—which has an
energy lower than that of a free electron-hole pair. In bulk semiconductors,
excitons play a minor role due to the strong screening of the Coulomb in-
teraction by the charges present in the material. In contrast, the interaction
strength in atomically-thin materials can be greatly enhanced by the lower
dielectric screening of the surroundings, as illustrated in Fig. 1.2a. As a con-
sequence, excitons acquire binding energies of hundreds of meV [14, 15] and
are therefore thermally stable even at room temperature. Tightly bound
excitons are responsible for the exceptionally large optical absorption and
emission of TMD monolayers [3, 17] (cf. exciton peak in Fig. 1.2b), making
these materials particularly interesting for applications in atomically-thin
photodetectors, solar cells, and light-emitting devices [11, 12, 18].

An effective utilization of TMDs relies on the accurate control of any condi-
tions that may modify the optical and transport properties of the material.
In particular, the density of photoexcited electron-hole pairs and doping de-
termines the relevance of different interaction mechanisms and the presence
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Figure 1.2: a: Dielectric screening of the Coulomb interaction in bulk and mono-
layers [14]. In the monolayer case, the electric field lines extend to the surrounding
materials with low dielectric constant (ε2 < ε1), resulting in weaker dielectric
screening. b: Schematic illustration of the optical absorption spectrum in TMDs
with exciton and trion resonances, as well as the above-bandgap continuum of free
electron-hole pairs.

of charge complexes beyond excitons. For example, a large photoexcitation
density leads to the emergence of exciton–exciton interactions [19–22], the for-
mation of biexcitons (bound two-exciton compounds) [23–25], and eventually
to the Mott transition into an electron-hole plasma [26]. On the other hand,
doping the material with additional electrons or holes enables the formation
of trions—three-particle compounds formed by a photoexcited electron-hole
pair bound to a doping charge. These different effects have distinct signatures
in absorption and photoluminenscence spectra, such as spectral broadening
and shifts of excitonic resonances, and the emergence of new resonances orig-
inating from the creation or recombination of higher-order charge complexes
(see trion peak in Fig. 1.2b) [27, 28]. Furthermore, the density of electrons
and holes can significantly impact the transport properties of the material.
For example, electric transport in undoped TMDs is very inefficient as exci-
tons have a neutral charge. Transport of excitons therefore relies on alterna-
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tive approaches such as strain or dielectric engineering [29–31]. In contrast,
trions possess a finite charge and can hence be easily directed by an external
electric field [32, 33], making them suitable for electric transport. A thorough
understanding of the influence of different charge complexes on the material
properties is crucial for the technological application of atomically-thin semi-
conductors.

In this thesis, we provide microscopic insights on the impact of charge com-
plexes such as excitons and trions on the optics, thermalization dynamics,
and transport in TMDs. The theoretical framework used here is based on the
density-matrix formalism and the Heisenberg equation of motion combined
with the cluster expansion method, allowing us to describe the dynamics of
relevant quantities (e.g. exciton occupation, phonon and photon number).
Importantly, we make use of the Fock space truncation scheme to set up ef-
fective Hamiltonians describing excitons and trions. The microscopic theory
introduced in Chapter 2 enables the study of charge complexes in TMDs.
First, we investigate how excitation density affects the excitonic features
of optical absorption (Chapter 3). After that, we model the exciton forma-
tion, dissociation, and propagation dynamics that occur after photoexcitation
(Chapter 4). Finally, we extend our model to doped samples and study trion
dynamics, focusing on transport and recombination processes (Chapter 5).
The main results of this thesis are listed and summarized below:

Paper I. Together with experimental support, we trace the emergence of
photoluminescence halos back to the formation of a substantial
temperature gradient in the exciton gas after intense photoexci-
tation.
The concepts and methods used to describe spatiotemporal dy-
namics in this work have been extended to describe various other
phenomena such as electron diffusion in graphene, exciton dif-
fusion including non-equilibrium effects and strain engineering
(Papers IX, X, XIII, XVI, XVII, XVIII), anomalous diffusion
of interlayer excitons (Papers XXI, XXIV, and XXIV), and the
ultra-fast propagation of a degenerate hole gas (Paper XXVIII).

Paper II. We predict the optical signatures in pump-probe spectroscopy
caused by large photoexcitation densities, tracking the evolution
of the system from an exciton gas to an electron-hole plasma
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through the Mott transition.
The insights gained in this work also led to a better understand-
ing of the Mott transition (Papers XX and XXV) and band renor-
malization (Paper XXIII) resolved in experiments.

Paper III. In this joint theory–experiment study, we resolve the exciton
thermalization dynamics immediately after an optical excitation
and track the ultra-fast formation of optically inactive (dark) ex-
citons. Our theoretical support provides insights into the role of
exciton–phonon scattering and the impact of off-resonant excita-
tion.
A continuation of this work reveals the underlying mechanisms
in the spin relaxation dynamics (Paper XXX). We have also re-
solved exciton thermalization and the role of dark excitons in
photoluminescence spectra (Paper XI).

Paper IV. We disentangle the underlying mechanisms in phonon-assisted
exciton dissociation and predict the fundamental limitations of
the photoresponse in TMD-based devices.

Paper V. We investigate the trion-phonon interaction as well as its impact
on trion transport, and predict the enhancement of trion diffusion
due to the build-up of Fermi pressure in the degenerate trion gas.

Paper VI. We model the trion photoluminescence originating from direct
and phonon-assisted recombination, shedding light on the optical
signatures of bright and dark trions, and predicting the important
role of trions with an electron at the Λ point of the Brillouin zone.
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CHAPTER 2

Theoretical framework

In this Chapter, we introduce the theoretical framework that allows us to
study a many-particle quantum system. First, we present the second quan-
tization formalism and introduce the Hamiltonian of the system. After that,
we describe how to obtain solvable equations of motion for relevant micro-
scopic quantities such as microscopic polarization and particle occupation.
At the end, we outline how one can derive an effective few-particle Hamil-
tonian to describe the dynamics of charge complexes by truncating the Fock
space to the relevant subspaces.

2.1 Second quantization formalism

An intuitive and convenient treatment of a many-particle quantum system
can be obtained by means of the second quantization formalism [34–38],
where states are represented in the occupation number basis. In this for-
malism, any many-particle state can be described as a set of creation (a†i )

7
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and annihilation (ai ) operators acting on the ground state of the system, with
each of these operators acting on the single-particle state |i⟩. The fermionic
or bosonic character of the particle described by these operators is encoded
in the commutation relations

[
ai , aj

]
±
=
[
a†i , a

†
j

]
±
= 0, (2.1)

[
ai , a

†
j

]
±
= δij, (2.2)

where − (+) indicates (anti-)commutation of bosons (fermions). In this
framework, any single-particle and two-particle operators can be respectively
expressed as

Ô(1) =
∑

ij

〈
i
∣∣ô(1)

∣∣j
〉
a†iaj, (2.3)

Ô(2) =
1

2

∑

ijlm

〈
i, j
∣∣ô(2)

∣∣l,m
〉
a†ia

†
jalam, (2.4)

where ô(1) and ô(2) are the “first-quantized” operators. This approach will
prove particularly useful for setting up the Hamiltonian of the system and
defining microscopic quantities in a very intuitive way. For further details on
the second quantization formalism we refer the reader to Refs. [34–38].

2.2 Many-particle Hamiltonian

The Hamiltonian is of crucial importance for describing the eigenstates and
time evolution of a system. Throughout this work, we consider the scenario
of electrons in a solid that is photoexcited by a laser, i.e. a many-particle
problem of interacting electrons, phonons, and photons. Here, we introduce
the different parts of the Hamiltonian,

H = He,0 +Hphon,0 +Hphot,0 +He-e +He-phon +He-light +He-phot, (2.5)

describing quasi-free electrons in a crystal lattice (He,0), phonons (Hphon,0),
photons (Hphot,0), and the electron-electron (He-e), electron–phonon (He-phon),
semiclassical electron–light (He-light), and quantum-mechanical electron–photon
(He-phot) interactions.
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Quasi-free electrons in a lattice

The common approach to treating electrons in a crystal is to consider the
influence of the potential generated by a static lattice of ions and reduce the
many-electron system into a single-electron problem [39]. Electrons in this
system are characterized by a set of single-particle energies Eλk that form
the band structure of the material, where λ is the band index (containing
also the electron spin) and k is the wave number or momentum, which is
here restricted to the 2D plane of the monolayer material. The Hamiltonian
describing this simple scenario is

He,0 =
∑

λk

Eλka
†
λkaλk, (2.6)

where a
(†)
λk is the fermionic annihilation (creation) operator for an electron in

the state |λ,k⟩.

The typical band structure of semiconducting TMDs is usually computed
via density functional theory, resulting in the conduction and valence bands
sketched in Fig. 2.1a. In general, we are interested in the regions near minima
and maxima of the conduction and valence bands, respectively, where pho-
toexcitation and thermalization processes take place. Minima and maxima
of the bands occur at the symmetry points of the Brillouin zone denoted by
Γ, Λ(’) and K(’). The band structure around these points can be well approx-
imated with a parabolic dispersion, Eλk = Eλ0 + ℏ2k2/(2m), meaning that
the electron behaves as a free particle with an effective mass m that reflects
the curvature of the band. The parabolic band around a symmetry point is
commonly denoted as valley. Throughout this work, we consider the band
structure of TMDs via the effective mass approach as illustrated in Fig 2.1b,
where the spin ordering in K and K’ (as well as Λ and Λ’) is flipped due to
time reversal symmetry. This approach allows us to take into account the
multi-valley band structure, including spin-splitting of the bands, in a sim-
ple way. We extract the effective masses and relative energies from density
functional theory calculations in Ref. [40]. Furthermore, we approximate the
dispersion around the Λ(’) as isotropic by averaging the effective mass over
the x and y directions.
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Figure 2.1: a: Sketch of the conduction and valence bands of semiconducting TMD
monolayers [40] along the path denoted by the red line in the Brillouin zone. b:
Illustration of the multi-valley effective mass approach to the band structure.

Phonons

Phonons are energy quanta of harmonic lattice vibrations. Throughout this
work, we will see that phonons play an essential role in the relaxation dynam-
ics, assisting quasiparticles in reaching a thermal distribution, and can even
assist the recombination of otherwise dark charge complexes. Non-interacting
phonons are described by the free-particle Hamiltonian [38]

Hphon,0 =
∑

jq

ℏΩjq

(
b†jqbjq +

1

2

)
, (2.7)

where we have introduced the phonon energy ℏΩjq and the bosonic annihi-

lation (creation) operator b
(†)
jq acting on a phonon of mode j with momen-
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tum q. The phonon energy ℏΩjq is usually obtained by diagonalizing the
so-called dynamical matrix, which contains the interatomic force constants
resulting from the Coulomb interaction between ions [41, 42]. While in gen-
eral the phonon dispersion can look rather complex, we limit ourselves to
momenta around the Γ, K(’), Λ(’), and M high-symmetry points. Phonons in
these regions will assist the main intra- and intervalley electronic transitions.
Moreover, the dispersion around these points can be conveniently described
as linear in the case of long wavelength (Γ-point) acoustic phonons with ve-
locity v, that is Ωjq ≈ v|q|, or constant otherwise, Ωjq ≈ Ωj0, in analogy to
the Debye and Einstein models. The energies and sound velocities needed
to parametrize the dispersion in this manner are extracted from ab initio
calculations in Ref. [43]. While there are 9 phonon modes present in a TMD,
Ref. [43] shows that the only modes relevant for electron-phonon scattering
are the longitudinal and transversal acoustic and optical modes (LA, TA,
LO, TO), and the out-of-plane A1 mode.

Photons

Photons are energy quanta of the electromagnetic field. Exploiting the fact
that the electromagnetic field can be described as a set of independent har-
monic oscillators, the photon Hamiltonian can be written as [38, 44]

Hphot,0 =
∑

σκ

ℏωσκ

(
c†σκcσκ +

1

2

)
, (2.8)

where we have introduced the annihilation (creation) operator c
(†)
σκ for a pho-

ton with mode or polarization σ and momentum κ. The photon energy is
given by the light-cone dispersion ωσκ = c|κ|, with c being the speed of light
in the medium surrounding the TMD layer.

Electron-electron interaction

The electron-electron interaction is responsible for the formation of bound
charge complexes, and can also lead to significant energy renormalization and
scattering rates. The two-particle Hamiltonian describing this interaction
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reads

He-e =
1

2

∑

ijlm

V ij
lma

†
ia

†
jalam. (2.9)

Here we introduced the Coulomb matrix element V ij
lm =

〈
i, j
∣∣V (r− r′)

∣∣l,m
〉
,

with V (r) being the Coulomb potential and i, j, l,m being compound indices
containing both band index λ and momentum k. In the following we outline
how this expression can be simplified to model a realistic system. By exploit-
ing the Fourier transform of the Coulomb potential, V (r) =

∑
q e

iq·rVq, the
Coulomb matrix element can be written as

V ij
lm =

∑

q

Vq ⟨i|eiq·r|m⟩ ⟨j|e−iq·r|l⟩ .

One can further show that ⟨i|eiq·r|m⟩ = ∑G δkm+q−ki,G

∫
u.c.

d2r u∗i (r)um(r),
where G is the reciprocal lattice vector and the integral over Bloch factors
ui(r) is carried out in the unit cell. Since k is restricted to the first Brillouin
zone and Vq decays quickly with q, only the term G = 0 is relevant. More-
over, considering only intra-band processes1 (λi = λm, λj = λl) with small
momentum transfer q, the Hamiltonian can be written as

He-e =
1

2

∑

λλ′kk′q

Vqa
†
λ,k+qa

†
λ′,k′−qaλ′,k′aλ,k. (2.10)

The Coulomb matrix element in this case is simply the Fourier transform of
the Coulomb potential without any additional form factors. Moreover, this
Hamiltonian describes momentum (and spin) conserving transitions, k →
k+q and k′ → k′−q. For an accurate description of the Coulomb interaction
in a TMD monolayer, we consider the finite thickness of the material together
with the dielectric properties of the surroundings and solve the corresponding
Poisson equation to obtain the potential generated by a charge in the TMD,
obtaining

Vq =
e20

2|q|ϵ(q) . (2.11)

This potential has the form of a 2D Coulomb potential with non-local (i.e. q-
dependent) dielectric screening [47] and is sometimes called after Rytova [48]
and Keldysh [49] in literature. The exact form of ϵ(q) can be found in
Refs. [48–50].

1Note that inter-band processes are necessary for describing Auger scattering and
electron-hole exchange (see PaperXIX and Refs. [45, 46]).



2.2. MANY-PARTICLE HAMILTONIAN 13

Electron–phonon interaction

The interaction between electrons and phonons appears in the theoretical
model when we consider the interaction of electrons with the lattice beyond
the static approximation. In particular, one takes into account the ion vi-
brations via the first-order Taylor expansion of the electron–ion interaction
potential around the equilibrium ion positions [38]. The Hamiltonian for the
electron–phonon interaction,

He-phon =
∑

ijl

(
gijl a

†
iajbl + gij∗l a†jaib

†
l

)
, (2.12)

intuitively illustrates the possible electronic transitions assisted by the emis-
sion (b†l ) or absorption (bl ) of a phonon. The electron–phonon coupling ele-
ment reads

gijl =

√
ℏ

2ρAΩl

〈
i
∣∣∆Vl

∣∣j
〉
, (2.13)

where A is the area of the system, ρ is the mass density of the material, and
∆Vl is the scattering potential which contains the electron–ion interaction
and the polarization vector of the phonon mode. Within the deformation
potential approach [43, 51], we approximate the scattering potential to first
order in momentum for long-wavelength acoustic phonons and to zeroth or-
der for the remaining modes. Throughout this work, we use deformation
potential parameters from ab initio calculations in Ref. [43] based on density
functional perturbation theory.

Electron–photon interaction

The last important interaction that we introduce here is that between elec-
trons and photons. This interaction can be conveniently described in either
a semiclassical or a quantum mechanical approach, depending on the nature
of the studied phenomenon.
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Semiclassical approach

In order to describe the optical absorption of the material, it is sufficient
to treat light as a classical electromagnetic field. Within this approach, the
electron–light interaction can be expressed in the so-called minimal-coupling
Hamiltonian [44],

He-light =
e0
m0

∑

ij

Mij ·A(t)a†iaj, (2.14)

where we have introduced the optical matrix element Mij =
〈
i
∣∣p
∣∣j
〉
with

the momentum operator p, the electromagnetic vector potential A(t), the
elementary charge e0, the free electron mass m0, and the reduced Planck
constant ℏ. In order to arrive to this expression, we have considered the
Coulomb gauge and assumed sufficiently weak excitations so that A2 terms
are negligible. Moreover, we have applied the dipole approximation, in which
the vector potential is assumed to vary weakly on the length scale of varia-
tions of the electronic wave functions.

In general, this Hamiltonian describes intra- or inter-band electronic transi-
tions caused by the absorption of light. Here, we will overall focus on inter-
band transitions, i.e. electrons being promoted from the valence band to the
conduction band. The optical matrix element for inter-band transitions can
be approximately written in terms of band structure parameters [52, 53] such
as the band gap Eg and the electron-hole reduced mass µ−1 = m−1

e +m−1
h ,

reading |Mij| = m0

√
Eg/2µ. Importantly, TMD monolayers exhibit circular

dichroism [54], where K and K’ valleys couple to light with opposite circular
polarization. This property, combined with the large spin-splitting of the
valence bands, implies that electrons in a specific valley and with a specific
spin can be selectively photoexcited by choosing the excitation energy and
chirality of the circular polarization [55]. Although this is a very interesting
aspect of TMDs, throughout this work we usually consider linearly polarized
light, so that electrons in K and K’ valleys are equally excited.

Quantum mechanical approach

Photoluminescence (PL), i.e. photon emission due to radiative recombination
of electron-hole pairs, is experimentally used as a tool to access the thermal-
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ization and recombination dynamics of electron-hole pairs [13]. Particularly
interesting is the time evolution after the initial photoexcitation, when exter-
nal fields are absent and the interband coherence or polarization has already
decayed. In this regime, electron-hole pairs recombine by spontaneous emis-
sion of photons—a process that cannot be described classically. Therefore,
PL must be described on a fully quantum mechanical approach, where the
electromagnetic field is quantized and described in terms of photon creation
and annihilation operators. The Hamiltonian describing the electron–photon
interaction reads [44, 56]

He-phot =
∑

ijl

(
Mij

l a
†
iajcl +Mij∗

l a†jaic
†
l

)
, (2.15)

with the electron–photon matrix element Mij
l = e0

m0

√
ℏ

2ϵV ωl
el ·Mij contain-

ing the permittivity of the medium ϵ, the volume of the system V , and the
Jones vector el. In both semiclassical and quantum-mechanical approaches,
we usually consider only terms that fulfill energy conservation, i.e. electron-
hole annihilation with photon creation and electron-hole creation with pho-
ton annihilation, since other terms become negligible under a rotating wave
approximation [44].

2.3 Equation of motion

The Hamilton operator provides access to the temporal dynamics of the
system. In particular, one can exploit Heisenberg’s equation of motion to
find the time evolution of an observable O, that is iℏdO

dt
= [O,H], where

we have assumed that O does not depend explicitly on time. Typically,
we are interested in the expectation value

〈
O
〉
, which can be evaluated as〈

O
〉
= Tr(ρ̂O) with the density operator ρ̂. The equation of motion for

〈
O
〉

is then simply

iℏ
d
〈
O
〉

dt
= ⟨[O,H]⟩ . (2.16)

In practice, we will be interested in the temporal evolution of observables
such as electron occupation ρλ,k =

〈
a†λ,kaλ,k

〉
, microscopic polarization pk =〈

a†c,kav,k
〉
, and phonon number nj,q =

〈
b†j,qbj,q

〉
. A detailed description of
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the calculation of equations of motion within the density matrix formalism
can be found in Ref. [57].

Cluster expansion

A usual difficulty that appears when treating many-particle systems is the
so-called hierarchy problem. If we want to find the temporal evolution of a
one-particle quantity, e.g. the electron occupation ρλ,k, we will see that ρλ,k
couples to two-particle expectation values of the form

〈
a†1a

†
2a3a4

〉
. In order to

solve the equation of motion for ρλ,k, we thus need to find the corresponding

equation for
〈
a†1a

†
2a3a4

〉
, which couples to three-particle quantities, and so

on. This gives rise to an infinite number of coupled equations, rendering the
problem unsolvable. The solution to this problem is the cluster-expansion
and truncation method [58], which we summarize below.

First, we express N -particle quantities in terms of independent single-particle
quantities (singlets) and higher-order corrections that account for n-particle
correlations, where n = 2, 3, 4, ..., N . After this, we truncate the system
to account for a relevant number of correlated particles that allows us to
solve the equation of motion. A typical example of the cluster expansion
and truncation is the Hartree-Fock approximation, where the two-electron
expectation value

〈
a†1a

†
2a3a4

〉
is expanded in terms of singlets,

〈
a†1a

†
2a3a4

〉
=
〈
a†2a3

〉〈
a†1a4

〉
−
〈
a†1a3

〉〈
a†2a4

〉
+
〈
a†1a

†
2a3a4

〉c
, (2.17)

and the two-particle correlation
〈
a†1a

†
2a3a4

〉c
is neglected. This particular

example simplifies the system into a single-electron problem, where the in-
teraction with other electrons is approximated as a mean field. For this
reason, this specific example is also called mean-field approximation.

Markov approximation

A way of including higher-order correlations in a solvable way is to use the
Markov approximation [34, 37]. Let us take the problem of electron–phonon
scattering as an example. When considering the electron–phonon interaction
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in the equation of motion for the electron occupation ρλ,k, we will see that ρλ,k
couples to a two-particle correlation of the type S =

〈
a†1a2b3

〉c
, describing an

electronic transition from state 2 to 1 assisted by the absorption of a phonon.
The equation of motion for S will have the form

Ṡ(t) = (iω − γ)S(t) +Q(t), (2.18)

where Q(t) is the source of electron–phonon correlation2. The analytical
solution of this equation is

S(t) =

∫ ∞

0

dτe(iω−γ)τQ(t− τ). (2.19)

The Markov approximation consists in neglecting the past values of Q, i.e.
assuming Q(t−τ) ≈ Q(t)e−iωQτ . Although we neglect the memory of Q, note
that we take into account its temporal oscillation with frequency ωQ, which
is essential for properly capturing the energy conservation of the scattering
process3. Then, this complicated integral can be easily solved and we obtain

S(t) = −i Q(t)

(ω − ωQ)− iγ
. (2.20)

In the limit where the decay rate γ goes to zero, the Sokhotski–Plemelj
theorem can be applied to obtain

S(t) = πQ(t)δ(ω − ωQ)− iP
(

Q(t)

ω − ωQ

)
. (2.21)

Here P denotes the Cauchy principal value. When S(t) is plugged back in
the equation of motion for the corresponding single-particle quantity (e.g.
electron occupation or phonon number), the first term will give rise to a
scattering rate with exact energy conservation, while the second one will
result in the renormalization of the single-particle energy. In general, we
will neglect the energy renormalization term, assuming that it is already
accounted for in the single-particle energies.

2See Eq. (4.5) as an example for the case of exciton–phonon scattering.
3For example, if Q is a coherent quantity such as interband polarization, Q ∼ ⟨a†ckavk⟩,

then ℏωQ = Eck − Evk. On the other hand, for incoherent quantities such as electron

occupation, we have Q ∼ ⟨a†ckack⟩ and ℏωQ = 0.
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2.4 Effective few-body Hamiltonian

The physics of charge complexes such as excitons and trions can be de-
scribed by directly exploiting Heisenberg’s equation of motion together with
the electron Hamiltonian (2.5) [58–61]. However, the equations of motion
quickly become tedious as exciton and trion occupations are described by
expectation values of four and six operators, respectively. A more effective
approach consists in deriving an effective Hamiltonian limited to the relevant
charge complexes. For example, in the undoped regime at low photoexcita-
tion densities, all electron-hole pairs can be considered to be bound into
excitons. Therefore, an effective Hamiltonian describing excitons should be
appropriate to investigate this system. In this Section, we outline how such
a Hamiltonian can be formally derived.

We start with the Hamiltonian for a system of interacting electrons and holes,

Hx =
∑

k

(
Ee

ke
†
kek + Eh

kh
†
khk

)
−
∑

kk′q

Vqe
†
k+qh

†
k′−qhk′ek. (2.22)

Here, we have defined the electron and hole operators, e†k = a†ck and h†k =

av,−k, respectively, and disregarded the electron–electron and hole–hole in-
teractions which are not relevant at low densities in the undoped regime. We
can already identify exciton or pair operators Pkk′ = hk′ek in the interaction
term. The next step is to write the first term also in terms of pair opera-
tors or states. To do so, we expand the electron and hole operators in Fock
space [62–64],

e†kek = |ek⟩ ⟨ek|+
1

2

∑

k′

|ekek′⟩ ⟨ekek′ |+
∑

k′

|ekhk′⟩ ⟨ekhk′ |+ ...

≈
∑

k′

|ekhk′⟩ ⟨ekhk′ | (2.23)

h†khk = |hk⟩ ⟨hk|+
1

2

∑

k′

|hkhk′⟩ ⟨hkhk′|+
∑

k′

|hkek′⟩ ⟨hkek′|+ ...

≈
∑

k′

|ek′hk⟩ ⟨ek′hk| (2.24)
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where we have used the completeness of Fock space,

1 = |0⟩ ⟨0|+
∑

k

(|ek⟩ ⟨ek|+ |hk⟩ ⟨hk|) +
∑

k′

|ekhk′⟩ ⟨ekhk′|

+
1

2

∑

kk′

(|ekek′⟩ ⟨ekek′|+ |hkhk′⟩ ⟨hkhk′|) + ... (2.25)

and truncated the expansion to the subspace of single electron-hole pair states
|ekhk′⟩.4 Applying this scheme to both terms in the Hamiltonian yields

Hx =
∑

kekh

[
(
Ee

ke
+ Eh

kh

)
|Pkekh

⟩ −
∑

q

Vq |Pke+q,kh−q⟩
]
⟨Pkekh

| , (2.26)

with the electron-hole pair state |Pkekh
⟩ = |ekehkh

⟩. We now transform this
state into the basis of exciton states |XνQ⟩, that is

|Pkekh
⟩ =

∑

v

Φν
Qk |XνQ⟩ , (2.27)

where we have introduced the center-of-mass and relative momentum coor-
dinates, Q = ke + kh and k = αhke − αekh, with the mass ratio αe(h) =
me(h)/(me + mh). The exciton wave functions Φν

Qk are solutions of the
electron-hole Schrödinger equation,

(
Ee

αeQ+k + Eh
αhQ−k

)
Φν

Qk −
∑

q

Vqϕ
ν
Q,k+q = Ex

νQΦ
ν
Qk, (2.28)

with the exciton energy Ex
νQ. The Hamiltonian in exciton basis then reads

Hx =
∑

νQ

Ex
νQ |XνQ⟩ ⟨XνQ| . (2.29)

The many-body problem of interacting electrons and holes has thus been re-
duced to a single-particle problem of free excitons. Finally, the single-exciton

4This truncation is valid as long as the system is undoped, i.e. there is an equal
number of electrons and holes, and the exciton density is sufficiently low. The criterion
for what constitutes a low exciton density is dictated by the inequality nxa

2
B ≪ 1, that is,

the exciton density nx must be small compared to the inverse square of the exciton Bohr
radius aB. In other words, the single-exciton description works well as long as the distance
between neighbouring excitons is much larger than the “size” of the exciton.
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projector can be mapped into a pair of exciton creation and annihilation op-
erators [64], i.e. |XνQ⟩ ⟨XνQ| → X†

νQXνQ, noting that these should only act
on single-exciton states according to the level of truncation applied. The
exciton operators can be shown to satisfy purely bosonic commutation re-
lations, i.e. [Xi , X

†
j ] = δij, with corrections that only become relevant at

larger densities [62–64]. The mapping into bosonic operators facilitates the
derivation of equations of motion via conventional commutation of creation
and annihilation operators.

While here we have introduced the exemplary case of free single excitons, we
will apply this method to describe the interactions between single excitons or
trions with phonons and photons. This facilitates the study of thermalization,
diffusion, and radiative recombination of these quasiparticles. This scheme
has also been used to describe exciton–exciton interactions by considering
the subspace of two-exciton states [64] and, in principle, can be extended to
consider different coexisting charge complexes.



CHAPTER 3

Optical response — Excitons and Mott transition

The response of a material to an optical excitation is dictated by the quasi-
particles that can be excited in the system. In this Chapter, we discuss the
optical absorption spectra of atomically thin semiconductors across a wide
range of photoexcitation densities. In particular, we first introduce the char-
acteristic optical spectra of excitonic states in the low density regime. In the
second part of this Chapter, we present Paper II, where we investigate the
impact of charge-carrier densities up to the Mott transition on the optical
response of the system.

3.1 Excitonic optical spectra

The optical absorption at low photoexcitation densities is dominated by ex-
citonic states. In this Section, we outline the derivation of the well known
Elliot formula, which describes the excitonic optical absorption spectra.

21
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Optical susceptibility in linear response

The electric field E of the incident laser pulse induces a polarization P in the
material. We consider a sufficiently weak excitation, so that the material’s
response is linear, i.e. P(ω) = ϵ0χ(ω)E(ω), where χ is the electric suscep-
tibility tensor which we have assumed to be isotropic. Using the relation
between the electric field and the vector potential in the Coulomb gauge,
E = −Ȧ, and between the polarization and the current density, j = Ṗ, the
susceptibility can be written as

χ(ω) =
P (ω)

ϵ0E(ω)
=

j(ω)

ϵ0ω2A(ω)
(3.1)

The imaginary part of the susceptibility describes the optical absorption
of the material via the relation α(ω) = (ω/nc)Im[χ(ω)],1 where n is the
refractive index of the medium and c the speed of light in vacuum. The
current density in second quantization reads

j(t) =
e0

2Am0

∑

ij

⟨i|p|j⟩ ⟨a†iaj⟩ (t) =
e0
Am0

∑

k

Re [Mkpk(t)] , (3.2)

where Mk = ⟨c,k|p|v,k⟩ and pk(t) = ⟨e†kh†k⟩ (t) are the optical matrix ele-
ment and the time-dependent microscopic polarization, respectively. Here,
we have omitted the intraband current that becomes important only at THz
frequencies and considered interband terms containing conduction and va-
lence bands. Thus, it becomes clear that interband absorption is governed
by the microscopic polarization or interband coherence generated by the in-
cident light.

Microscopic polarization

An optical excitation in a semiconductor generates a microscopic polariza-
tion pk or coherence between the valence and conduction bands. The abso-
lute squared value of this quantity can be regarded as the probability for a

1This relation holds as long as non-radiative dephasing processes dominate over radia-
tive ones [58]. This is usually the case, as dephasing at room temperature is dominated
by scattering with phonons [65, 66].
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valence-band electron to be promoted to the conduction band. The equation
of motion for a general pkekh

= ⟨e†ke
h†kh

⟩, including the electron–hole and
electron–light interactions, reads

iℏṗkekh
(t) = −

(
Ee

ke
+ Eh

kh

)
pkekh

(t) +
∑

q

Vqpke+q,kh−q(t)− ℏΩke(t)δkekh
,

(3.3)
where we have applied the Hartree-Fock approximation and assumed a full
valence band and an empty conduction band, i.e. we consider a weak field
that generates a small density of electrons and holes. This equation is the
low-density limit of the semiconductor Bloch equations [57]. The first term
describes the oscillation of pkekh

with a frequency corresponding to the energy
of a free electron–hole pair. The second term is a self-coupling of the polar-
ization that results from the Coulomb attraction between conduction-band
electrons and valence-band holes. Finally, the last term accounts for the opti-
cal generation of polarization via the Rabi frequency ℏΩk(t) =

e0
m0

M∗
k ·A(t),

only allowing momentum-conserving transitions due to the negligible mo-
mentum of the incident photons.

Exciton basis

The self-coupling of pkekh
with different momenta suggests that a basis trans-

formation similar to that introduced in Section 2.4 would enable an analytical
solution of Eq. (3.3). First, though, we consider the effective mass approx-
imation, so that the energy of a free electron–hole pair can be decomposed
in two terms describing the motion of the center-of-mass and relative coor-
dinates Q and k, that is

Ee
ke

+ Eh
kh

= Eg +
ℏ2Q2

2M
+

ℏ2k2

2µ
. (3.4)

Here, M = me + mh and µ = memh/M are the total and reduced exciton
masses, respectively. We can now expand the microscopic polarization into
the exciton basis via

pkekh
(t) =

∑

ν

ϕν
kPνQ(t). (3.5)

In contrast to the basis transformation introduced in Section 2.4, here the
exciton wave functions ϕν

k are solutions of the Schrödinger equation describing
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Figure 3.1: Excitons in WS2. a: Exciton wavefunction of 1s and 2s states in the
KK valley. b: Exciton energy landscape including bright (KK) and momentum-
dark (KΛ, KK’) states.

the relative motion of an electron–hole pair,

ℏ2k2

2µ
ϕν
k −

∑

q

Vqϕ
ν
k+q = ενϕν

k. (3.6)

with the exciton binding energy εν . This equation is commonly referred to as
Wannier equation. In analogy to the hydrogen atom, the attractive interac-
tion between electrons and holes results in a series of bound electron–hole (ex-
citon) states with binding energies εν , up to the scattering continuum where
electrons and holes are not bound (see Fig. 3.1(b)). The exciton wavefunc-
tions (Fig. 3.1(a)) resemble those of the hydrogen atom, although we remark
here that the whole series of exciton states in a TMD cannot be described
by the hydrogen model because of the non-local (momentum-dependent) di-
electric function that arises from the finite thickness of the material.

The coordinate and basis transformation introduced here disregards the fi-
nite valley momentum of the electron and hole for simplicity, but can be
generalized to consider the multi-valley band structure of TMDs. The re-
sulting Wannier equation retains the form of Eq. (3.6) with a valley-specific
reduced mass, giving rise to valley-dependent exciton binding energies. Due
to the different binding energies in separate valleys, the exciton landscape
can significantly differ from its free-electron counterpart. In particular, while
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Figure 3.2: Optical absorption calculated for WS2 encapsulated in hexagonal boron
nitride (hBN). The 1s and 2s exciton peaks, as well as the scattering continuum
are labeled. The grey line marks the single-particle band gap.

the free electron–hole energy in the KΛ valley (i.e. K hole and Λ electron)
is above that of KK, this situation is reversed in the exciton landscape of
tungsten-based TMDs (cf. Fig. 3.1b). In this Chapter we focus on KK ex-
citons, which are optically accessible due to their zero center-of-mass mo-
mentum. In Chapter 4, we will see that the multi-valley band structure of
excitons in tungsten-based TMDs crucially impacts the exciton dynamics.

Excitonic resonances in optical spectra

After applying the exciton basis transformation to Eq. (3.3) we can easily
find the excitonic polarization in the frequency domain,

P ν
Q(ω) =

Ων(ω)δQ,0

ℏω − Eg − ℏ2Q2

2M
− εν + iγ

, (3.7)

where we have introduced the excitonic Rabi frequency, Ων(ω) =
∑

k ϕ
ν∗
k Ωk(ω).

We also added a phenomenological damping γ to account for decoherence
processes due to, e.g., phonon scattering. Now we can subsequently obtain
the current density (3.2), the susceptibility (3.1), and the optical absorption

α(ω) =
e20

ncϵ0ωm2
0

∑

ν

|Mν |2γ
(ℏω − Eν

0 )
2 + γ2

. (3.8)
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Here we have defined the excitonic optical matrix element Mν =
∑

k ϕ
ν∗
k Mk

and the exciton resonance energy Eν
0 = Eg + εν . This formula is usually

known as Elliot formula2. It illustrates that, due to the electron–hole attrac-
tion, optical absorption can occur only at particular energies Eν

0 correspond-
ing to excitonic states ν that can be well below the band gap (see Fig. 3.2).
Moreover, assuming a constant optical matrix element, M cv

k ≈M0, the oscil-
lator strength (area of the absorption peak) is given by |M0|2|ϕν(0)|2, where
ϕν(r) =

∑
k e

ik·rϕν
k is the probability to find an electron at a distance r from

a hole. The oscillator strength is thus given by the probability of an electron
and a hole being at the same position. Therefore, the optical absorption
at the exciton resonance is stronger for tightly-bound excitons, where the
electron and the hole are more likely to be on top of each other.

3.2 Density-dependent spectra and the Mott

transition

In the previous Section we have introduced the theoretical framework neces-
sary to compute optical absorption, and applied it to the low-density regime
to demonstrate the characteristic optical absorption of an excitonic semicon-
ductor. Now, we allow for finite charge-carrier densities and investigate their
impact on absorption spectra. In particular, we will see how the excitonic
signatures become weak and eventually disappear at the Mott transition.
Moreover, we study the possibility of achieving population inversion and the
consequent optical gain that is a must for the realization of a laser. Here we
present the main theoretical background and results. Further details can be
found in Paper II and Refs. [35, 37, 58].

2We note that the Elliot formula is only approximately correct. When the light–matter
coupling is strong, radiative dephasing becomes important and leads to an additional
spectral broadening γ → γ + γν

rad in the denominator of Eq (3.8), with the radiative
dephasing γν

rad = e20/(2ncϵ0E
ν
0m

2
0). This can be shown via a self-consistent treatment of

the polarization and the electromagnetic wave [58].
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Semiconductor Bloch equations

Strong photoexcitation generates a non-negligible population of conduction-
band electrons and valence-band holes. In this regime, the microscopic po-
larization pk = ⟨e†kh†k⟩ is described by the semiconductor Bloch equations,

ṗk =

(
i

ℏ
Ẽeh

k − γk

)
pk + i

(
1− f e

k − fh
k

)
(
Ωk −

1

ℏ
∑

q

Wqpk+q

)
,

ḟλ
k =2 Im

[
pkΩ̃

∗
k

]
+ ḟλ

k

∣∣∣
sc
− γdf

λ
k , (3.9)

where we have introduced the electron and hole occupations f e
k = ⟨e†kek⟩

and fh
k = ⟨h†khk⟩, respectively, and Ω̃k is the Rabi frequency renormalized

by the Coulomb interaction. These equations describe the generation of
interband polarization pk due to the optical excitation and the transfer of
coherent polarization into the incoherent population of electrons and holes.
Importantly, finite carrier densities result in phase-space filling, dielectric
screening, and renormalization of the free electron–hole pair energy. In the
following, we describe these effects in detail:

• The phase-space filling factor (1−f e
k−fh

k) inhibits the generation of
polarization by the incident light and the Coulomb binding that results
in the formation of exciton states. In particular, when the electronic
occupation in the conduction band is equal to that in the valence band
(f e

k = 1 − fh
k), excitation and recombination processes induced by the

external field cancel out, resulting in a complete suppression of optical
absorption and excitonic effects. Moreover, population inversion (f e

k >
1− fh

k) reverses the sign, resulting in an effectively repulsive electron–
hole interaction and the stimulated emission of light.

• The additional3 dielectric screening is caused by the excited charge-
carriers (electrons and holes), and results in the weakening of the
Coulomb interaction, Wq = ϵ−1

q Vq. The dielectric function ϵq is ob-
tained using the Lindhard formula in the static limit [67, 68]. While

3While the Coulomb interaction is already screened by the dielectric properties of the
system in equilibrium, we are discussing here the additional screening coming from the
excited charges.
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this approach is sufficient to qualitatively describe the main effects of a
large carrier density, a better quantitative description can, in principle,
be obtained using more sophisticated approaches that consider dynamic
effects [69] and screening arising from excitonic population [70, 71] (see
also PaperXXI).

• The energy renormalization in Ẽeh
k = Ee

k + Eh
k + Σk consists of

two contributions, Σk = ΣCH + ΣSX
k , commonly called Coulomb-hole

(CH) and screened-exchange (SX) self-energies. The first term, ΣCH =
−∑q (Vq −Wq), describes a reduction of the band-gap due to the
weakened electron–electron repulsion in the presence of many-particle
dielectric screening. This is sometimes imagined as a Coulomb hole that
surrounds the electron. The second term, ΣSX

k = −∑qWq

(
f e
k+q + fh

k+q

)
,

describes a reduction of the electron and hole energies due to exchange
interaction. Since the fermionic exchange interaction describes par-
ticles avoiding each other (Pauli-blocking), the decrease in energy is
commonly described as a consequence of the exchange hole that sur-
rounds each electron [35].4

We have also considered carrier–phonon scattering in the semiconductor
Bloch equations which manifests in the dephasing γk and the scattering
rate ḟλ

k |sc. These terms can be derived by exploiting the cluster expansion

approach, considering carrier–phonon correlations of the form ⟨e†kek+qb
†
q⟩

c
,

truncating the remaining terms to single–particle expectation values, and fi-
nally applying the Markov approximation [34]. Moreover, we have added the
phenomenological population decay γd to account for incoherent recombina-
tion processes.

4Both CH and SX terms can be obtained by considering the screened potential Wq at
the level of the Hamiltonian and applying a Hartree-Fock approximation in the equation
of motion. However, this formally leads to only the valence band being renormalized.
The correct description—i.e. both conduction and valence bands become renormalized—
is obtained by a consistent derivation of screening and renormalization considering the
impact of correlations [62, 72].
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Generalized Wannier equation and Elliot formula

The optical absorption can now be obtained using the procedure introduced
in Section 3.1, i.e. expanding in exciton basis (3.5) and then calculating the
current density. The exciton wave functions now satisfy a generalized Wan-
nier equation,

Ẽeh
k ϕ

ν(R)
k −

(
1− f e

k − fh
k

)∑

q

Wqϕ
ν(R)
k+q = ενϕ

ν(R)
k , (3.10)

which takes into account the phase-space filling, dielectric screening, and
energy renormalization effects. In particular, phase-space filling and dielec-
tric screening weaken the formation of excitonic states, resulting in reduced
or even vanishing exciton binding energies. Note that this eigenvalue prob-
lem is not Hermitian anymore and therefore demands distinct left and right
eigenvectors [37, 58], ϕ

ν(R)
k and ϕ

ν(L)
k .

The optical absorption now follows the generalized Elliot formula5,

α(ω) =
e20

ncϵ0ωm2
0

γ
∑

ν

∑
kk′
(
1− f e

k − fh
k

)
ϕ
ν(L)
k M∗

kϕ
ν(R)
k′ Mk′

(ℏω − Eν
0 )

2 + γ2
. (3.11)

Below population inversion, the complicated numerator can simply be ex-
pressed as |M0|2|ϕν(R)(0)|2 if Mk ≈M0 is assumed and the relation (1− f e

k−
fh
k)ϕ

ν(L)
k = ϕ

ν(R)
k is used [37, 58].

Visualizing the Mott transition in pump-probe spec-
troscopy

In Paper II, we consider an intense ultrashort optical excitation and investi-
gate the evolution of the system. In experiments, the initial optical excita-
tion is achieved by a strong pump pulse, whereas the time-resolved optical
response of the system is measured via a delayed (weak) probe pulse. In

5The Elliot formula works well for undoped samples. In the presence of doping, trion
signatures emerge in the optical absorption spectra. The evolution of exciton and trion
absorption peaks as a function of doping can be well described in the Fermi-polaron picture,
where the exciton is dressed by its interaction with the Fermi sea [73–76].
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Figure 3.3: Influence of carrier density in the optical spectra of TMDs after an
ultra-short optical excitation centered at t = 0. a: Time-dependent energy renor-
malization for the single-particle band gap and excitonic resonances. b: Absorp-
tion spectra at different times after the optical excitation. Adapted from Ref. [77]
(Paper II).

our work, we obtain the time-dependent microscopic polarization and car-
rier occupations by solving the semiconductor Bloch equations (3.9), the ex-
citonic binding energies and wave functions from the generalized Wannier
equation (3.10), and the optical absorption from the generalized Elliot for-
mula (3.11). The most illustrative results are shown in Fig. 3.3.

At moderate densities, the band gap renormalization (red-shift) is counter-
acted by the reduction of the exciton binding energy (blue-shift), resulting
in a negligible shift of the 1s exciton resonance [37]. Here, however, we con-
sider a very intense laser pulse that quickly generates a large carrier density,
leading to the complete suppression of the exciton binding energies and to
a large red-shift of the band gap (see Fig. 3.3a). The suppression of exciton
binding energies marks the Mott transition from bound excitons to a plasma
of unbound electrons and holes. After the optical excitation, the electrons
and holes recombine and the excitonic states are slowly recovered.

In the optical absorption spectra, the 1s exciton peak is bleached due to
phase-space filling and additionally weakened by the decrease of the oscillator
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strength ∝ |ϕν(R)(0)|2 as the exciton state becomes less bound (see Fig. 3.3b).
Furthermore, in the extreme case of population inversion (which is achieved
at t = 0.2 ps), the optical absorption reverses its sign, manifesting the effect
of optical gain. Optical gain describes the situation in which the incident
light, rather than being absorbed, stimulates the emission of more light.
This effect is the basis for laser operation, and was experimentally observed
in Ref. [26]. Besides bleaching and optical gain, we also capture the initial
red-shift of the main absorption peak, followed by a blue-shift during the
optical excitation, which has been experimentally observed [78]. While the
red-shift directly follows from the band gap renormalization, the subsequent
blue-shift is caused by the bleaching of the lowest possible transitions due to
Pauli-blocking.

We have presented the main qualitative impact of finite carrier densities on
optical absorption. In particular, we have shown how the Mott transition and
even population inversion can be visualized in pump-probe spectroscopy. In
Paper II, we also investigate the time evolution of carrier occupation and
exciton wave functions. Moreover, we address the characteristic signatures
of large carrier densities in differential absorption, which enables the visual-
ization of weak changes in the spectra. Our work provides a framework to
understand the features of high carrier densities and population inversion in
the optical response of atomically thin semiconductors.

The methods and insights gained here have been later applied to other works.
In particular, the calculations of density-dependent energy renormalization
and suppression of exciton binding energy were employed to support the
experimental observation of a continuous Mott transition in PaperXX. Fur-
thermore, in PaperXXIII we have traced the large energy renormalization of
the PL resonances in p-type InSe back to the large effective mass of holes,
which leads to significant screening and Coulomb-hole renormalization.
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CHAPTER 4

Exciton dynamics — Thermalization, dissociation, and

propagation

After an optical excitation, the photogenerated excitons scatter with phonons
and eventually reach thermal equilibrium with the lattice. This same scatter-
ing mechanism can induce the dissociation of excitons into unbound electron-
hole pairs if the thermodynamic equilibrium between the two is broken
(e.g. by a weak electric field dragging charge-carriers away). Furthermore,
exciton–phonon scattering governs the diffusive propagation of excitons. A
comprehensive understanding of the exciton thermalization, dissociation, and
propagation dynamics would provide important insights into the potential
and limitations of excitonic devices.

In this Chapter, we discuss these different aspects of exciton dynamics.
First, we introduce the theoretical description of exciton–phonon scattering
with an effective exciton Hamiltonian. After that, we examine the ultra-
fast relaxation of excitons into energetically-favourable states that are opti-
cally inactive, which was observed in a joint theory–experiment collaboration
(Paper III). We then tackle the problem of exciton dissociation assisted by

33
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phonons (Paper IV). Finally, we present the theoretical description of exci-
ton propagation and, in particular, unveil the origin of the ring-like exciton
profile that arises at strong photoexcitation (Paper I).

4.1 Exciton–phonon scattering

At low photoexcitation densities, the dynamics of the system are governed
by exciton–phonon scattering1. One can follow the approach outlined in
Section 2.4 to obtain the Hamiltonian describing a system of excitons and
phonons,

H =
∑

νQ

EνQX
†
νQXνQ +

∑

jq

ℏΩjqb
†
jqbjq

+
∑

jνν′Qq

Gνν′
jq X

†
ν′,Q+qXνQ

(
bjq + b†j,−q

)
, (4.1)

where the exciton–phonon matrix element reads

Gνν′
jq = ⟨ν|

(
δνh,ν′hg

e
jqe

iαhq·r + δνe,ν′eg
h
jqe

−iαeq·r) |ν ′⟩
=
∑

k

ϕν∗
k

(
δνh,ν′hg

e
jqϕ

ν′
k+αhq

+ δνe,ν′eg
h
jqϕ

ν′
k−αeq

)
. (4.2)

Here we have introduced the index ν containing both the exciton state (1s,
2s, 2p, ...) and valley configuration {νh, νe} (KK, KK’, KΛ, ...). The exciton–
phonon coupling can be regarded as the sum of electron and hole components
weighted by the wave function overlap of each transition. Importantly, elec-
tron (hole) scattering implies that the hole (electron) must remain in the
same valley. Note that the hole-phonon coupling strength is related to that
of valence-band electrons via ghjq = −gvjq. As mentioned in Section 2.2, the
coupling to phonons is treated in a deformation potential approach. In order
to account for the polar (non-polar) character of the interaction with optical
(acoustic) phonons [51], we consider the electron and hole deformation poten-
tials to have opposite (equal) sign. Finally, we note that the Q-independent

1In contrast, strong photoexcitation generates a large exciton density, giving rise to
efficient exciton–exciton interactions. We have investigated the impact of exciton–exciton
interaction on the recombination and propagation dynamics in PapersXIX, XXI, XXIV,
and XXIX.
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expression for the exciton–phonon coupling Gνν′
jq holds for intra- as well as

inter-valley transitions as long as the initial and final states have a similar
exciton mass [79].

Our aim is to describe the time evolution of the exciton population due to
scattering with phonons. First of all, we note that the exciton population
can be separated,

⟨X†
νQXνQ⟩ =

∣∣∣⟨X†
νQ⟩
∣∣∣
2

+ ⟨X†
νQXνQ⟩

c
, (4.3)

that is, into an coherent part P ν
Q = ⟨X†

νQ⟩ describing excitonic interband

polarization, and an incoherent part Nν
Q = ⟨X†

νQXνQ⟩
c
describing the occu-

pation of exciton states. The equation of motion for the exciton occupation
N ν

Q due to exciton–phonon scattering reads

dN ν
Q

dt

∣∣∣∣
x-phon

=
2

ℏ
∑

ν′q±
Im
[
Gν′ν

jq S
νν′j±
Qq

]
, (4.4)

where Sνν′j±
Qq = ⟨X†

νQXν′,Q−qb
(†)
j,±q⟩

c
(with bq for the + sign) is the exciton–

phonon correlation describing a phonon-assisted exciton transition. The
equation of motion for S can be simplified by applying the cluster expan-
sion and truncating to single-particle occupation numbers for excitons and
phonons, yielding

iℏ
dSνν′j±

Qq

dt
=(Eν′,Q−q − EνQ ± ℏΩjq)S

νν′j±
Qq

+Gνν′
j,−q

(
N ν

Qη
±
jq −N ν′

Q−qη
∓
jq

)
, (4.5)

where η±jq = ⟨b†jqbjq⟩
c
+ (1± 1)/2 is the effective phonon number for absorp-

tion (−) and emission (+) processes. Here, we have further assumed that
coherent phonons (which describe a net displacement of the whole lattice)
are not present in the system, and disregarded nonlinear terms in the exci-
ton occupation which should be relevant mostly at large densities and low
temperature. The equation for S can be now analytically solved with the
Markov approximation introduced in Section 2.3. The resulting equation for
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the exciton occupation reads

dNν
Q

dt

∣∣∣∣
x-phon

=
2π

ℏ
∑

ν′q±

∣∣∣Gν′ν
jq

∣∣∣
2 (
Nν′,Q−qη

∓
jq −N ν

Qη
±
jq

)

× δ(Eν′,Q−q − EνQ ± ℏΩjq) , (4.6)

i.e. within the approximations applied, we obtain the exciton–phonon scat-
tering rate in the form of Fermi’s golden rule. Here, we can identify the
in-scattering rate from |ν ′,Q− q⟩ into |ν,Q⟩ and the opposite out-scattering
rate. Solving this equation gives access to the time-, momentum- and energy-
resolved exciton dynamics.

The optical excitation can be included in the model by taking into ac-
count the generation of excitonic polarization P ν

Q by the incident light. The
polarization-to-population transfer appears naturally in the model when con-
sidering the exciton–phonon interaction in the equation of motion for P ν

Q.
The resulting equations of motion for coherent and incoherent exciton pop-
ulations can be found in the supplementary material of Paper III.

4.2 Exciton thermalization

In this Section, we apply our model to investigate exciton thermalization me-
diated by exciton–phonon scattering. In particular, we discuss the ultrafast
relaxation of bright excitons into dark states, which was investigated in a
joint experiment–theory work in Paper III. First, we introduce the exciton
energetic landscape to illustrate the relevance of momentum-dark excitons.
After that, we provide an overview of Paper III.

Exciton landscape

In Section 2.2, we introduced the band structure of TMDs (Fig. 2.1), which
exhibits conduction-band minima at the K(’) and Λ(’) points of the Brillouin
zone and valence-band maxima at K(’) and Γ. Excitonic states exist in all
possible combinations of electron and hole valleys, e.g. KK, KΛ, KK’, ΓK,
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etc. However, due to the small momentum carried by photons, only KK and
K’K’ excitons with zero center-of-mass momentum can be optically active.
For this reason, these are called bright states, while states with a momentum
too large to be accessed by light are called momentum-dark states. 2

Due to the dependence of the exciton binding energy on the valley-specific
reduced mass, exciton states might lie in a different ordering than the cor-
responding free electron-hole states. In particular, in tungsten-based TMDs,
exciton states at the KΛ and KK’ valleys are the ones with lowest energy
(as was introduced already in Fig. 3.1). Therefore, these materials exhibit
an indirect band gap. This fact has major implications for the exciton dy-
namics [12]. In particular, optically generated excitons at KK will relax into
the energetically lower dark states (see Fig. 4.1(a)), which will then dominate
the recombination and propagation dynamics. Since excitons in such states
cannot directly recombine and emit light [83], the radiative recombination
time in these materials is rather slow [84, 85]. This property is very relevant
for optoelectronic devices such as photodetectors and solar cells, where the
recombination is desired to be slow in order not to lose the charge carriers
that generate electric current.

Visualizing dark exciton formation in ARPES

The experimental detection of dark exciton states has been until recently only
indirect, via optical features such as absorption linewidth [66] and phonon-
assisted photoluminescence [83]. For example, in PaperXI we showed that
the formation of dark excitons can be indirectly visualized in time-resolved
PL spectra via the emergence of phonon sidebands. A tool that allows to
directly map the whole energy and momentum landscape is angle-resolved
photoemission spectroscopy (ARPES), where the electron energy and mo-
mentum is accurately determined. Time-resolved (tr)ARPES has recently

2Bright excitons in TMDs are composed of an electron and a hole with opposite spin
(in other words, conduction- and valence-band states with equal spin)—therefore they are
sometimes called singlet excitons. Excitons formed by electrons and holes with equal spin
are dark (or couple weakly to light polarized in the direction perpendicular to the layer)
and are commonly referred to as triplet excitons [80]. Throughout this work we disregard
the effect of spin-dark states in the dynamics since their formation time is expected to be
slow compared to states where electron and hole have the same spin [81, 82].
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Figure 4.1: Dark-exciton formation resolved by trARPES. a: Illustration of the
process. An optical excitation generates an electron-hole pair that thermalizes
throughout the Brillouin zone. The solid (dashed) lines represent single-particle
bands (exciton binding). b: ARPES signal (circles) and theoretical simulations
of the electron occupation (dashed and solid lines) around each symmetry point.
Gray dots and line are measurements and a Gaussian fit of the ARPES signal at
the Γ point, which is a replica of the valence band that appears during the pulse
excitation. Figure adapted from Ref. [86] (Paper III).

been exploited to visualize the formation of momentum-dark KΛ excitons
in monolayer WSe2 after photoexcitation [87]. In Paper III, Robert Wal-
lauer and colleagues (Marburg, Germany) directly observed the formation of
momentum-dark excitons in WS2 at room temperature with an impressive
temporal resolution on the order of 10s of femtoseconds. In the trARPES
experiment, a coherent exciton population at the KK and K’K’ valleys is
generated by a linearly-polarized laser pulse. Coherent excitons with zero
center-of-mass momentum quickly scatter with phonons and are transferred
into incoherent population with finite momenta at the energetically lower
KK’, KΛ states3 (see Fig. 4.1(a)) and their opposite-spin counterparts in the
K’K and K’Λ’ valleys. The experiment, however, probes electrons and not
whole excitons. Following the expansion scheme introduced in Section 2.4,
the electron occupation at the valley v and with momentum k can be ex-

3Note that in Paper III Σ is used for the symmetry point that we call Λ. In literature,
this symmetry point is called Σ, Λ, or Q.
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pressed in terms of the exciton occupation,

f v
k =

∑

νvQ

|ϕνv
k−αeQ

|2(|P νv
0 |2δQ0 +N νv

Q ), (4.7)

where νv refers to any exciton state with an electron in the valley v. Thus,
the electron occupation probed by the trARPES experiment reflects both
coherent and incoherent exciton populations modeled by our microscopic
theory.

The measured and predicted electron occupations at K and Λ are shown in
Fig. 4.1(b), where the ultra-fast relaxation in a timescale of tens of femtosec-
onds is clearly observed. Concretely, one can see that the electron popula-
tion at the K valley rises during the optical excitation. Shortly after, the K
population decreases slightly, while the Λ population increases as electrons
scatter from K into Λ. This can be understood in the exciton picture as KK
excitons being optically generated and then scattering into the energetically
favourable KΛ and KK’ states. Due to the linear polarization of the pump
pulse, K’K’ excitons are also optically generated and scatter into the K’Λ’
and K’K states. Therefore, the ARPES signal in the K(’) valley remains
large, reflecting the dominating population of KK’ and K’K excitons, while
the lower but significant signal in the Λ valley reflects the important popu-
lation of KΛ and K’Λ’ excitons. The time-resolved visualization of exciton
thermalization across the Brillouin zone thus provides a direct measure of
the characteristic exciton–phonon scattering rates for intervalley transitions
in TMDs. In Paper III, we discuss the formation of dark excitons in detail
and, in addition, provide insights on the impact of off-resonant excitations.

4.3 Phonon-assisted exciton dissociation

Electrons and holes in TMDs are tightly-bound, forming excitons. Due to
their charge neutrality, excitons cannot generate an electric current—only
unbound electrons and holes can. Therefore, in order to generate an electric
current, excitons must first dissociate into free electrons and holes. Since
the dissociation process can be slow compared to transport, it poses a fun-
damental limit for the photoresponse in TMD-based photodetectors.
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Previous works have studied the dissociation of excitons assisted by an exter-
nal (in-plane) electric field [88–90]. This mechanism consists in bound exci-
tons tunneling into the continuum of unbound electron-hole states—a process
that is facilitated by the bending of the potential landscape caused by the
applied field. However, extremely large electric fields are needed to dissociate
tightly bound excitons with binding energies of hundreds of meV. For smaller
electric fields—more suitable for technological applications—dissociation will
still occur but by other means. The mechanism that dominates at small
electric fields and low exciton densities is phonon-assisted dissociation. In
Paper IV, we tackle the problem of exciton dissociation via scattering with
phonons and disentangle the most important underlying mechanisms. Here,
we outline the theoretical description of this process and summarize the main
results of our work.

Plane wave approximation for unbound states

While up to now we have focused on the lowest exciton states (i.e., 1s), here
we need to consider the whole Rydberg-like series of states, from the 1s state
to the continuum of unbound states (cf. Fig. 3.1). As sketched in Fig. 4.2,
excitons scatter with phonons to reach higher energetic states, and eventually
dissociate into unbound electrons and holes by scattering into the continuum.
The wave functions of both bound and continuum exciton states enter our
model through the exciton–phonon matrix elements (4.2). All these states are
obtained by numerically solving the Wannier equation. However, the wave
functions of continuum states are badly resolved in momentum space because
they resemble a Dirac delta and their implementation in the exciton–phonon
matrix elements is numerically demanding. To overtake this problem, one
can describe the continuum states as plane waves—that is, the exciton in-
dex can be mapped into a continuous momentum (wavevector), i.e. ν → p,
and we specify the wave function of continuum states as ψp

k ∼ δpk. This
corresponds to treating electrons and holes as being completely free and un-
correlated. Although this description does not capture characteristic features
of Coulomb-correlated electron-hole pairs such as the Sommerfeld enhance-
ment of optical absorption [91, 92], it reduces the numerical complexity of
the problem significantly. The exciton wave function for continuum states is
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Figure 4.2: Schematic representation of exciton thermalization and dissociation
in tungsten-based TMDs. Excitons are generated by an optical excitation in the
KK valley. Then they scatter with phonons to reach a thermal equilibrium dis-
tribution, even dissociating into unbound electrons and holes. A weak external
electric field drags the free carriers away, breaking the thermodynamic equilibrium
and forcing a continuous dissociation. Excitons can recombine radiatively at KK
or non-radiatively all around the Brillouin zone. Figure taken from Ref. [94] (Pa-
per IV).

thus described by orthogonalized plane waves (OPWs),

ϕν
k → ψp

k = δkp −
Nb∑

ν

ϕν∗
p ϕ

ν
k, (4.8)

where ϕν
k is the wave function of the bound state ν and Nb is the number of

bound states considered. The first term corresponds to the momentum rep-
resentation of a plane wave, whereas the second term ensures that continuum
states are orthogonal with respect to the bound states. This orthogonaliza-
tion is necessary to obtain a complete set of wave functions and thus avoid
unphysical overlaps [93]. More details on the OPW approach can be found
in the supplementary material of Paper IV.
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Exciton dissociation

In Paper IV, we consider a continuous optical excitation and study the micro-
scopic mechanisms that govern exciton dissociation in the stationary state4.
We compute the dissociation current and disentangle it into the main con-
tributions (see Fig. 4.3(a)). In this way, we are able to identify the main
dissociation channels. In particular, for WSe2 we find that most dissociation
originates from excitons in the KΛ valley that scatter into the unbound con-
tinuum of KK’. This is a consequence of the strong coupling with phonons of
this inter-valley scattering channel. Furthermore, we are able to discern that
it is mostly excitons in the 2s state that dissociate because of a trade-off be-
tween larger dissociation rates and lower occupation at higher energies closer
to the continuum. The similarity between the dissociation-limited response
time obtained of 50-100 ps and the one reported in Ref. [88] at small electric
fields supports the validity of our model.

4In equilibrium conditions, at non-zero temperatures below the Mott transition, there
is always a finite population of unbound electron-hole pairs due to entropy ionization [71,
95–97]. We assume that the thermodynamic equilibrium between bound and unbound
populations is broken by a weak external electric field. With this assumption we can
consider the continuum states to be completely empty, as dissociated charge-carriers are
immediately dragged away by the electric field.
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These findings are important to understand and predict the limitations and
tunability of TMD-based photodetectors. For instance, the relative position
of the Λ valley is strongly influenced by strain [98]. Thus, strain is a powerful
knob that can be exploited to tune the photoresponse of TMDs. In Paper IV,
we study the influence of excitation energy, non-radiative recombination, di-
electric screening, temperature, and strain on the photoresponse. Here, we
show the impact of the dielectric constant of the environment, εs. We eval-
uate the external (EQE) and internal quantum efficiency (IQE), which are
the ratio of excitons that dissociate with respect to the number of incident
and absorbed photons, respectively. Raising the dielectric constant εs, we
find that both EQE and IQE increase (see Fig. 4.3(b)), reflecting the more
efficient dissociation of less bound excitons that lie energetically closer to
the continuum. For even stronger screening, however, we find that the EQE
decreases due to the weakening of the optical absorption (weakly bound ex-
citons exhibit lower oscillator strength). The trade-off between dissociation
and optical absorption results in the prediction that, for photodetectors, hBN
encapsulation is a more optimal environment than a SiO2 substrate.

In Paper IV, we thoroughly describe the microscopic mechanisms behind ex-
citon dissociation. Besides disentangling the main dissociation channels and
understanding why they dominate, we also resolve the exciton pathway by
identifying the transitions with strongest scattering rate. Moreover, we pro-
vide a comprehensive study on the tunability of key quantities (EQE, IQE,
response time) with external knobs and compare the performance of the four
most relevant semiconducting TMDs.

4.4 Exciton propagation

So far, we have considered that the system is homogeneously excited, i.e.
the exciton density is the same in all positions. However, it is interesting to
consider inhomogeneous excitations as they open the door to the study of
propagation phenomena. In experiments, the system is optically excited with
a laser spot that is significantly smaller than the sample. Excitons generated
in the excitation spot diffuse away into the unpopulated (unexcited) regions.
As excitons recombine radiatively and emit light, their propagation can be di-
rectly tracked in spatially- and temporally-resolved photoluminescence (PL)
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measurements. In this Chapter, we introduce the Wigner function frame-
work, which allows us to describe spatiotemporal dynamics, and present our
work on exciton diffusion (Paper I).

Wigner function

The single-particle density or probability distribution n(r) is defined as

n(r) = ⟨Ψ†(r)Ψ(r)⟩ . (4.9)

Transforming the field operator into momentum space, Ψ(r) =
∑

k e
ik·rak,

we obtain an expression for n(r) depending only on the momentum-space
creation and annihilation operators,

n(r) =
∑

kk′

ei(k
′−k)·r ⟨a†kak′⟩ . (4.10)

It is very important to note here that a homogeneous distribution, n(r) =
n(0), implies that only diagonal components of the expectation value—
i.e. occupation numbers—are non-zero. Therefore, off-diagonal components
⟨a†kak′⟩ contain information about spatial inhomogeneities. In this context,
we introduce the Wigner function,

fk(r) =
∑

q

eiq·r ⟨a†
k− 1

2
q
a
k+ 1

2
q
⟩ , (4.11)

which provides a much more intuitive framework to describe the spatial
dependence. The Wigner function is a quasiprobablity distribution in the
phase-space of position r and momentum k. The density now simply reads

n(r) =
∑

k

fk(r). (4.12)

While the equations of motion for ⟨a†kak′⟩ can be obtained directly from
Heisenberg’s equation of motion, their numerical solution is highly demand-
ing. On the other hand, the respective equations for fk(r) are numerically
solvable but their derivation requires some efforts. One approach is to use
Moyal brackets [99]. The approach we use was first introduced by Hess and
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Kuhn [100] and consists in first finding the equation of motion for ⟨a†kak′⟩ and
then Fourier-transforming to obtain the Wigner function fk(r). By Taylor-
expanding the appearing terms, one can find the lowest-order contributions5,
which we will directly write below.

Conventional diffusion

The equation of motion for the exciton Wigner function NQ(r) can be ob-
tained following Ref. [100] and reads

ṄQ(r, t) = −vQ · ∇rNQ(r, t) + ṄQ(r, t)
∣∣∣
x-phon

. (4.13)

The first term describes propagation of excitons with velocity vQ = ℏQM−1
X ,

where MX is the total exciton mass. The second term contains contributions
accounting for exciton–phonon scattering, which we assume to be local and
are thus the same as in Eq. (4.6). Here we assumed low exciton densities
so that exciton–exciton interactions can be ruled out.6 Moreover, while in
general one should consider multiple exciton valleys to describe the dynamics,
in Paper IX we found that exciton diffusion in WS2 is dominated by KΛ
excitons, which constitute the majority of the population.

We now consider that the initial exciton Wigner function follows a spatial
Gaussian profile determined by the laser pulse. Moreover, the system is at
room temperature where exciton–phonon scattering is very efficient. There-
fore, the exciton distribution can be assumed to be in thermal equilibrium
already at the beginning of the simulation. Spatial profiles of the exciton
density obtained by numerically solving (4.13) with these initial conditions
are shown in Fig. 4.4a. One can clearly see that the exciton density retains
the initial Gaussian shape and broadens as excitons diffuse away from the

5Higher-order terms in the Taylor expansion usually become relevant for spatially-
narrow distributions or potentials and describe phenomena such as non-local scattering
and tunneling [101].

6Exciton–exciton interactions become relevant at large exciton densities (∼ 1012 cm−2).
They are particularly important for interlayer excitons in van der Waals heterostructures,
where the repulsive exciton–exciton interaction enhances the exciton diffusion (see Pa-
persXXI, XXIV, and XXIX).
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excitation spot (cf. red arrow). Note that the distribution is normalized at
each time frame to illustrate the broadening.

While we solve Eq. (4.13) as it is, the problem can be significantly simplified
by taking some realistic assumptions. In particular, it can be assumed that
the exciton distribution becomes thermalized immediately in the time scale
of propagation [100]. Then, one finds that the time evolution of the exciton
density, N(r, t) =

∑
QNQ(r, t), obeys Fick’s law,

Ṅ(r, t) = D∇2N(r, t). (4.14)

The exciton diffusion coefficient D can be related to the band structure and
exciton–phonon scattering rates. Assuming a momentum-independent scat-
tering rate τ−1, one recovers the well known relation D = τkBTM

−1
X . Con-

sidering that the initial exciton spatial distribution follows a Gaussian profile
with a variance σ0, exciton diffusion leads to a broadening of the Gaussian
profile with the variance evolving linearly in time, σ2(t) = σ2

0 + 4Dt. In
summary, exciton propagation is in general diffusive (as in Fig. 4.4(a)) at low
densities and room temperature, where exciton–phonon scattering is efficient,
and can be simply described by the conventional Fick’s law. Several exper-
iments have studied the propagation of excitons by performing time- and
space-resolved photoluminescence (PL) measurements [95, 102–105]. These
works reported the diffusive propagation of excitons at low densities with dif-
fusion coefficients on the order of 1−10 cm2/s, in agreement with our theoret-
ical predictions in Papers I, IX, X, XVII, and XIII. In Papers IX andXVIII,
we investigate the impact of non-equilibrium distributions and slow thermal-
ization times on exciton propagation, finding interesting phenomena such as
negative diffusion (i.e. shrinking of the exciton spatial profile).

Non-linear propagation and halo formation

Conventional diffusion has been experimentally verified for low exciton den-
sities. However, Kulig et al. observed that increasing the excitation density
results in a faster diffusion and, eventually, the formation of ring-shaped PL
profiles or halos in WS2 [102]. This first study already pointed to exciton–
exciton annihilation (EEA) as the possible origin of this phenomenon. How-
ever, EEA by itself could only explain the flattening of the Gaussian-like
profile, but not the formation of halos.
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Figure 4.4: Time snaps of the spatial exciton distribution at a: low and b: high
densities. The red arrows in a illustrate the diffusion process. The blue-shaded
curve in b corresponds to exciton temperature (right axis). Figure adapted from
Ref. [106] (Paper I).

EEA is an Auger-like recombination process where two excitons scatter and
one of them is annihilated whereas the other gains the corresponding energy.
The exciton density thus decays following Ṅ(r, t) = −rAN2(r, t). Since the
Auger coefficient rA can be extracted from time-dependent photolumines-
cence measurements [104], we can set up a semi-phenomenological model to
describe the Auger recombination of an exciton with momentum Q, that is

ṄQ(r, t)
∣∣∣
A
= −rANQ(r, t)N(r, t). This equation describes the annihilation

of an exciton at Q with an exciton in any state. We do not directly re-
solve the resulting high-energy exciton, but model its effect in the following
way. The high-energy exciton resulting from Auger recombination will relax
toward the ground state by emitting a cascade of phonons. Until now, we
have treated phonons as a thermal bath. However, this sort of process where
many excitons dissipate a large amount of energy by scattering with phonons
will result in significantly increased non-equilibrium phonon populations that
overheat the excitons. We take this into account by considering the equation
of motion for the phonon number, including phonon emission cascade in a
phenomenological manner by assuming that the exciton energy is completely
transferred to the phonons. The final equations of motion describing the
system can be found in Paper I.
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Solving the coupled equations of motion for excitons and phonons indeed
gives rise to the formation of exciton halos at elevated densities (see Fig. 4.4b).
Remarkably, the formation and evolution of the exciton halo as a function
of excitation density predicted by our model is in very good agreement with
experimental measurements provided by the group of Alexey Chernikov (see
Fig. 4 in Paper I). Moreover, we compute an effective exciton temperature,
allowing us to identify that Auger recombination and the subsequent phonon
emission cascade results in the heating of the exciton distribution. Impor-
tantly, the heating is more pronounced at the center of the excitation area,
where the exciton density is largest, resulting in a temperature gradient (see
blue shaded area in Fig. 4.4b). In order to obtain an intuitive understand-
ing of the connection between the temperature gradient and the evolution of
the exciton profile into a halo, we derive a macroscopic transport equation
similar to Eq. (4.14). While the conventional diffusion equation only consid-
ers a density gradient, we now need to consider the temperature gradient
as well. Taking into account that the exciton equilibrium distribution has a
space-dependent temperature T (r), the current density reads

j(r, t) = −D∇rN(r, t)− s∇rT (r, t), (4.15)

where we have introduced the exciton Seebeck coefficient s ≈ τkBNM
−1
X .

The term s∇T describes thermal drift and accounts for excitons moving from
hotter to colder regions. This simple equation provides a good understanding
of the non-linear propagation and halo formation. Initially, a strong thermal
drift will result in a flat (super-Gaussian) density distribution, as excitons
in the hot central region will propagate out faster than excitons in colder
outer regions. This phenomenon already results in non-linear propagation,
i.e. σ2(t) does not evolve linearly with time. Moreover, if thermal drift is
strong enough, the central region will continue to be depleted at a faster pace
than excitons diffusing back. A significant temperature gradient can thus
lead to the formation of a ring-like shape in the spatial exciton distribution
(see Fig. 4.5). Our microscopic model was able to prove that the Auger-
recombination and the subsequent hot-phonon emission can heat the exciton
population, leading to the observed non-trivial exciton propagation at large
excitation densities.

In a later work, we have showed that the heating effects are not so strong in
hBN-encapsulated TMDs due to the suppressed Auger scattering in this di-
electric environment (PaperX). Furthermore, in PaperXIX we have unveiled
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Figure 4.5: Schematic illustration of exciton propagation and halo formation.
First, an optical excitation generates excitons that diffuse in order to homogenize
the spatial distribution (t0). Auger scattering and relaxation via phonon emission
creates a long-lived spatial gradient in the exciton temperature (color gradient).
The temperature gradient results in a strong thermal drift that drags excitons out
of the central region, giving rise to the formation of a ring-shaped exciton distri-
bution (t1). Figure taken from Ref. [106] (Paper I).

the mechanisms behind Auger recombination, and showed that the reduced
Auger recombination in hBN compared to SiO2 substrate is a result of the
weaker Coulomb interaction and less optimal energetic landscape.
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CHAPTER 5

Trion dynamics — Trion–phonon scattering, transport,

and photoluminescence

In the presence of doping, photogenerated excitons bind to additional charges
and form trions. In this Chapter, we discuss different aspects of trion dy-
namics that have a significant impact on a material’s properties.

First, we introduce PaperV. Here, we reveal the substructure of ground and
excited trion states. Focusing on the ground state, we investigate the trion–
phonon interaction and its impact on transport. Moreover, we address the
influence of the fermionic nature of trions on diffusion.

Finally, we present PaperVI, where we develop a model to describe the ra-
diative recombination of bright and dark trions via direct recombination or
assisted by phonons. In this work, we predict so far unseen signatures of tri-
ons in PL spectra. Moreover, we study how the stability and PL resonance
of trions are influenced by the mass imbalance between the two electrons
within the trion.

51
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5.1 Trion–phonon scattering and transport

In this Section, we discuss PaperV. The aim of this work is to provide a
framework to describe trion dynamics. For that purpose, we derive a trion
Hamiltonian following the Fock space truncation scheme described in Sec-
tion 2.4.

We start by considering the Hamiltonian of the system of interacting elec-
trons and holes, where the two electrons forming the trion are located in
two distinct valleys1. We adopt the notation ek and e′k to refer to electron
operators acting on states in the two distinct valleys. The Hamiltonian for
this system reads

Ht =
∑

k

(
Ee

ke
†
kek + Ee’

k e
′†
ke

′
k + Eh

kh
†
khk

)

+
∑

kk′q

Vq

(
e†k+qe

′†
k′−qe

′
k′ek − e†k+qh

†
k′−qhk′ek − e′†k+qh

†
k′−qhk′e

′
k

)
, (5.1)

where the first line describes free electrons and holes, and the second line
accounts for electron–electron and electron-hole interactions. Hole–hole in-
teractions are disregarded as we consider a low density of negatively-charged
trions. We now truncate the Fock space to the subspace of single trion states
|hkh

ekee
′
k′
e
⟩, providing an accurate description of the system in the case where

all charges are bound into trions and the trion density is small. In order to
gain microscopic access into the internal substructure of trion states and
facilitate the numerics, we transform electron–electron–hole states into the
exciton–electron picture (see Fig. 5.1a-b), that is

|hkh
ekee

′
k′
e
⟩ =

∑

ν

ϕν
kx

|XνQxe
′
k′
e
⟩ , (5.2)

where kx and Qx are the relative and center-of-mass momentum coordinates
of the exciton formed by the electron e and the hole. By applying this
transformation, we get rid of a part of the problem—that is, the interaction
between the electron e and the hole, which is now encoded in the exciton
state ν. The expansion of exciton–electron states into the trion basis with

1Trions with the two electrons in the same valley are usually unstable or exhibit a small
binding energy [107].
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Figure 5.1: Trion configuration in the a: electron-hole and b: exciton–electron
picture in monolayer MoSe2. c: Trion states consisting of the ground (blue) and
excited (red) bound states as well as the scattering continuum. A trion can scatter
within its center-of-mass dispersion by absorbing or emitting a phonon (cf. orange
arrow). Figure adapted from Ref. [108] (PapeV).

trion states |TλQ⟩ reads

|Xν,Qxe
′
ke
⟩ =

∑

λ

ψλ
ν,βeQx−βxke

|Tλ,Qx+ke⟩ , (5.3)

with βe = me/Mt, βx =Mx/Mt, Mt =Mx +me is the trion’s total mass, and
me is the mass of the electron e′. The trion wave functions ψλ

ν,kt
and eigenen-

ergies ελt in this picture fulfill the exciton–electron Schrödinger equation,

(
ενx +

ℏ2k2
t

2mx-e

)
ψλ
ν,kt

+
∑

µq

Ṽ νµ
q ψλ

µ,kt+q = ελtψ
λ
ν,kt

, (5.4)

where mx-e =Mxme/Mt is the exciton–electron reduced mass. The exciton–
electron interaction potential,

Ṽ νµ
q = Vq ⟨ν|

(
eiαhq·r − e−iαeq·r) |µ⟩

= Vq
∑

kx

ϕν∗
kx

(
ϕµ
kx+αhq

− ϕµ
kx−αeq

)
, (5.5)

is the sum of the electron–electron (e-e′) and electron-hole (e′-h) interaction
terms weighted by the overlap between exciton wave functions ϕν

kx
. Impor-

tantly, this interaction leads to the mixing of different exciton states ν. In
particular, the interaction is maximized for the coupling between s- and p-
like exciton states and can be shown to resemble a classical dipole–charge
interaction [109, 110]. The advantage of considering the full series of exci-
ton states with finite angular momentum is that it provides a microscopic
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description of the exciton–electron interaction [61, 109]. Other works have
significantly simplified the problem by considering a short-range or contact
interaction between 1s excitons and free electrons [73–75].

After mapping single-trion projectors into trion operators (|T ⟩ ⟨T | → T †T )
the obtained Hamiltonian describing the system of trions and phonons reads

H =
∑

λQ

Eλ
QT

†
λQTλQ+

∑

q

ℏΩqb
†
qbq+

∑

Qqλλ′

Gλλ′
t,q T

†
λ,Q+qTλ′Q

(
bq + b†−q

)
. (5.6)

Here, the first term describes free trions with energy Eλ
Q = ελt + ℏ2Q2

2Mt
(cf.

Fig. 5.1c) and corresponds to Eq. (5.1) after the Fock space truncation and

transformation into trion basis. The trion operators T
(†)
λQ fulfill fermionic

anti-commutation relations at low trion densities. The second and third
terms describe free phonons and the trion–phonon interaction, respectively.
The trion–phonon matrix element Gλλ′

t,q contains electron–phonon coupling
strengths weighted by wave function overlaps between the initial and final
trion states, λ and λ′. With this effective trion Hamiltonian, one can derive
equations of motion for the trion occupation through the standard methods
involving the cluster expansion and Markov approximation, gaining access
to the trion dynamics. Details on the derivation of the Hamiltonian and the
exact form of Gλλ′

t,q can be found in the appendices of PaperV.

Trion states in the exciton-electron picture

We consider hBN-encapsulated monolayer MoSe2 as exemplary material for
our study. In this material, the trion state with lowest energy is formed by
electrons and holes at the K and K’ valleys (cf. Fig. 5.1a) and is optically
bright. Before studying the trion–phonon interaction, we want to understand
the quantum structure of trions. For that purpose, we solve Eq. (5.4) and ob-
tain the series of trion eigenstates (Fig. 5.2a). We obtain a bound trion state
17 meV below the 1s exciton energy, in agreement with previous theoretical
works [61, 111]. In PaperV, we find that the electron-hole pair forming this
state has mostly 1s exciton character but also a significant contribution from
the 2p state. The mixing between 1s and 2p exciton states describes the
polarization of the exciton due to the potential generated by the additional
electron.
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Figure 5.2: a: Trion eigenstates in hBN-encapsulated MoSe2. The ground (higher)
bound state is marked by a purple (red) dot, and the exciton–electron scattering
states are denoted in orange. The 1s, 2p, and 2s exciton binding energies are shown
as a reference. b: Temperature-dependent phonon-induced spectral broadening of
the ground trion and exciton states. c: Temperature dependence of the trion
diffusion coefficient in the low-density limit (purple) and for trion densities of
1×1011 cm−2 (orange) and 4×1011 cm−2 (red). The low-density exciton diffusion
coefficient is shown in light-blue. Figure adapted from Ref. [108].

The 1s exciton energy corresponds to the onset of the trion continuum.
In general, the trion continuum is composed of exciton–electron scattering
states, where the exciton and the electron are not bound. However, we
identify a bound state (through its wave function shape and excitonic com-
position) within the continuum, 16 meV below the 2s exciton state. This
excited trion state has been observed in optical spectra [112–115] and has
previously been theoretically predicted [61, 110]. Resolving the whole series
of trion states shows promise for modeling the trion dynamics across a wide
range of energies and states.

Trion-phonon scattering

While we have computed the whole series of trion states, and our model
principally allows us to evaluate the trion dynamics considering all states, we
restrict our study to the ground trion state. At low temperatures, almost all
the trion population resides in this state and transitions into excited states via
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phonon absorption are negligible. Considering the trion Hamiltonian (5.6)
and using the standard Heisenberg equation and cluster expansion method,
we find the equation of motion for the trion occupation, In the resulting
equation, one can identify the out-scattering rate, which considering low
occupation reads

ΓQ =
2π

ℏ
∑

q±
|Gt,q|2 η±q δ(EQ−q − EνQ ± ℏΩq) . (5.7)

In PaperV, we calculate the trion–phonon coupling Gt,q and the momentum-
dependent scattering rate ΓQ. Here, we focus on the scattering rate at the
bottom of the trion dispersion, Γ0, which results in the spectral broadening
of this state (Fig. 5.2b). In particular, we find that trion–phonon scattering
is 3-4 times stronger than exciton–phonon scattering. This is mainly a result
of the larger mass of trions compared to excitons, resulting in a larger density
of states. In addition, the phonon coupling element is stronger for trions due
to the additional electron.

Furthermore, we benchmark our model by computing the trion cooling time
following Ref. [116]. In short, the cooling time τc is determined by the rate at
which the excess trion heat dissipates into the lattice, that is Q = τ−1

c nt(T −
TL), where Q = A−1

∑
q ℏΩqṅq is the cooling power or heat dissipation rate,

nt is the trion density, T (TL) the trion (lattice) temperature, and nq is the
phonon number. The good agreement between our theoretical prediction (4-
10 ps for temperatures up to 50 K) and experimental measurements (5-15
ps) supports the predictive character of our microscopic theory.

Trion transport and Fermi pressure effect

The computed trion–phonon scattering rates are a key ingredient to calcu-
late the diffusion coefficient and mobility of trions. These quantities can be
evaluated following the work of Hess and Kuhn [100] and are determined by
the scattering rates, trion mass, and trion occupation. In general, we predict
trion transport to be slow compared to that of excitons and free electrons (cf.
Fig. 5.2c). This is a direct consequence of the large mass (i.e. low velocity) of
trions and the efficient trion–phonon scattering hindering propagation. We
also observe a subtle increase of the diffusion coefficient as temperature is
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raised, resulting from the less efficient scattering at higher kinetic energies
(see PaperV for details). In particular, we predict a low-temperature diffu-
sion coefficient of 1 cm2/s for trions compared to 4.5 cm2/s for excitons. The
calculated value for excitons is within the error bars of experimentally de-
termined diffusion coefficients [117]. The trion diffusion coefficient reported
in experiments at similar conditions [118] is, however, 4-5 times larger than
our prediction. This discrepancy could be related to non-equilibrium effects
present in the experiment or, as we show in the following, due to the fermionic
enhancement of diffusion.

The fermionic nature of trions has a significant impact on trion diffusion.
At low temperatures the trion gas becomes degenerate, i.e. states with low
kinetic energy are full, forcing the occupation of higher states. Since the
velocity of these higher states is larger, the overall diffusion of the trion gas
is enhanced (cf. Fig. 5.2c). This effect can also be understood as a build-up of
a large pressure by the degenerate trion gas2. In particular, at temperatures
approaching the absolute zero (T → 0 K) the degenerate gas exerts a finite
pressure P = ntEF/2, as opposed to a classical gas with P = ntkBT → 0.
Here we introduced the trion density nt and the Fermi level EF. The current
j = −(τ/M)∇P (with τ being the thermalization time) is then driven by
the large pressure gradient in the degenerate gas. One can further show
that the diffusion is characterized by the diffusion coefficient D = (τ/M)EF,
clearly increasing with the Fermi level as opposed to the classical expression
D = (τ/M)kBT . In PaperV, we thus predict the fermionic enhancement of
trion diffusion, which still remains to be experimentally verified. 3

5.2 Trion photoluminescence

The electron-hole pair within a trion can recombine, emitting a photon and
leaving behind the additional electron which then becomes free. The energy

2An interesting analogy can be found in neutron stars, where the degenerate fermion
gas exerts a large outwards pressure, stabilizing the star against gravitational collapse.

3The fermionic enhancement of diffusion has otherwise been observed for holes in
strongly excited MoSe2/WSe2 van der Waals heterostructures in PaperXXVIII, where we
supported the experimental observations with microscopic simulations of spatiotemporal
dynamics including Pauli blocking and hole–hole repulsion.
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Figure 5.3: Illustration of direct and phonon-assisted trion recombination mecha-
nisms. A bright trion (left, X−

0 ) can directly recombine by emitting a photon and
leaving a recoil electron behind. A dark trion (right, X−

D) can recombine by scat-
tering with a phonon into a virtual bright state and then emit a photon, leaving a
recoil electron behind. The PL spectrum resulting from the recombination of ex-
citons (X0, XD) and trions is sketched on the left. Figure adapted from PaperVI.

conservation of this process dictates that the sum of the photon and electron
energies is equal to the trion energy, i.e. ℏω+Ee = Et. Considering the trion
as a bound exciton–electron complex with energy Et = Ex + Ee − ∆, the
energy conservation of the process reads ℏω = Ex −∆, where ∆ is the trion
binding energy or, in other words, the energy needed to remove the additional
(non-recombining) electron from the trion. The trion PL peak therefore
appears below the exciton peak separated by the trion binding energy ∆ (cf.
Fig. 5.3) [27, 28].4 The additional electron can acquire the whole momentum
of the trion, implying that trions with any momentum can recombine (as
opposed to excitons which need zero center-of-mass momentum), cf. Fig. 5.3.
This effect is known as electron recoil and gives rise to a characteristic low-
energy tail in the PL peak that reflects the temperature of the trion gas [119,
120].

The direct recombination of a trion is generally only allowed when the re-
combining electron and hole are located in the same valley and occupy bands
with the same spin.5. Otherwise, trions can still recombine by first scattering

4This holds at low doping and photoexcitation densities. The separation between
exciton and trion peaks in PL increases with doping due to polaronic effects [73–76].

5Spin-conserving optical transitions couple to light propagating in the out-of-plane
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into a virtual bright state with a phonon providing the necessary momentum
or spin (cf. Fig. 5.3), in analogy to the phonon-assisted recombination of
dark excitons [83]. The energetic position of the resulting phonon sidebands
in PL spectra, ℏω = Ex − ∆ + ℏΩ, can be traced back to the energy ℏΩ
of the different phonon modes involved [121]. Moreover, the shift of the PL
resonances under magnetic field is related to the spin and valley of the recom-
bining electron and hole and can therefore be used to identify the spin-valley
configuration of the trion [122]. Despite the relatively good understanding
of the trion PL signatures, a microscopic model consistently describing the
peak positions, lineshape, and intensity of bright and dark trions in n- and
p-doped samples has been missing so far.

In PaperVI, we bridge this gap by developing a microscopic theory of trion
recombination. We apply our model to WSe2 and compute the trion energy
landscape in this material. Furthermore, we provide insights into the impact
of mass imbalance between equal charges within the trion on the stability
and PL resonance of trions. Finally, we compute the PL spectra and predict
intriguing signatures of trions with an electron located at the Λ point.

Trion landscape in WSe2 and impact of mass imbalance

The multi-valley band structure of WSe2 hosts dark trions (X−
D) as the most

energetically favourable species [123–125] (cf. Fig. 5.4a). While X−
D contains

two electrons with equal effective mass at the K↓ and K’↑ bands, bright trions
X−

K(Λ) contain two electrons with different mass at the K↑ and K↓ (Λ↑) bands.
In the following, we describe how the eigenenergies of trion states with such
mass imbalance can be computed.

We obtain the trion eigenenergies εν and wave functions Ψν(r1, r2) for each
spin-valley configuration ν = {νh, νe1, νe2} from a variational solution of the
Schrödinger equation, HνΨν(r1, r2) = ενΨν(r1, r2). Here,

Hν = −ℏ2∇2
r1

2µ1

− ℏ2∇2
r2

2µ2

− ℏ2∇r1 · ∇r2

mh

+ V (r1 − r2)− V (r1)− V (r2) (5.8)

direction. Spin-flip transitions are not completely forbidden but exhibit weak oscillator
strengths and couple to light traveling in the direction of the material’s plane [80].
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K(Λ) (mass imbalance) and X−

D (mass balance). Figure adapted from PaperVI.

is the Hamiltonian for an electron-electron-hole complex [126], with the rel-
ative electron-hole mass µ−1

1(2) = m−1
h + m−1

e1(2). The energy εν is minimized
considering the ansatz

Ψν(r1, r2) = N
(
e−|r1|/a1e−|r2|/a2 + Ce−|r1|/b1e−|r2|/b2) , (5.9)

with r1(2) being the relative electron-hole coordinate for the electron in the
spin–valley state νe1(2). We also introduced the variational parameters a1,
a2, b1, b2, C and the normalization factor N . Note that Ψν(r1, r2) is formally
an envelope function and therefore does not need to fulfill fermionic anti-
symmetry [110]. The ansatz for Ψν(r1, r2) introduced here is similar to the
symmetrized product of hydrogenic wave functions [126, 127] but allows for a
mass imbalance between the two equal charges within a trion by introducing
the weight factor C and by removing the restriction b1 = a2, b2 = a1.

In Fig. 5.4b we show the most relevant trion states in n-type WSe2, together
with the respective exciton energies. Our model correctly predicts that dark
trions (X−

D) are the energetically favourable species, with a binding energy
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of 12 meV in good agreement with experiments [124, 125]. The higher-lying
bright trions (X−

K, X
−
Λ
) exhibit a suppressed binding energy (Eb

0 ). This phe-
nomenon can be understood as follows. The mass imbalance between elec-
trons results in the preferential binding of the hole with the heavy electron
due to its low kinetic energy. As the heavy electron becomes more tightly
bound with the hole, the lighter electron is pushed away due to the repul-
sive electron–electron interaction (cf. Fig. 5.4c). The lighter electron then
sees the heavy-electron-hole pair as a neutral cloud with which it interacts
and binds weakly. Therefore, trions become less stable when there is a mass
imbalance between the two equal charges. This intuitive explanation is sup-
ported by the calculations of Bohr radii and average interaction energies in
PaperVI.

Besides reducing the trion stability, the mass imbalance between equal charges
can have an intriguing consequence in PL spectra. As we explained above,
the trion PL peak appears below the exciton resonance separated by the
trion binding energy. In the case of mass imbalance, however, one must be
more specific. The exciton–trion separation in PL is determined by the en-
ergy needed to remove the non-recombining or recoil electron from the trion
(∆ in Fig. 5.4b). In the case of bright trions in WSe2, the non-recombining
electron is heavier than the recombining one, and therefore it is more tightly
bound with the hole. The energy needed to extract the heavy electron is
hence larger than the actual trion binding energy (compare ∆K

0 and Eb
0 in

Fig. 5.4b) and significantly increases when the mass imbalance is accentuated
(observe that ∆Λ0 > ∆K

0 ). We thus predict that the exciton–trion separation
in PL is larger for bright trions than for dark ones due to the mass imbalance.
Furthermore, despite having a higher three-body energy, X−

Λ
will appear in

PL spectra below X−
K.

Photoluminescence spectra of trions in WSe2

The trion energy landscape in WSe2 suggests the presence of interesting
features in PL, such as the difference in exciton–trion energy separation for
the bright and dark states due to mass imbalance. In order to provide a
description of these PL signatures, we develop a microscopic model for the
radiative recombination of trions, including phonon-assisted recombination
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of dark trions. Here, we outline the main steps, while the detailed derivation
can be found in the supplementary information of PaperVI.

We make use of the Fock space truncation scheme, considering the subspaces
of single-trion and single-electron states. These states describe the initial and
final states of the recombination process where an electron-hole pair within
the trion recombines, leaving behind an electron. Making use of the Fock
space truncation scheme, we obtain the following Hamiltonian describing the
system of trions, electrons, photons, and phonons, H = H0+Ht-phot+Ht-phon,
with

H0 =
∑

νQ

Et
νQT

†
νQTνQ +

∑

νeke

Ee
νeke

e†νeke
eνeke

+
∑

κ

ℏωκc
†
κcκ +

∑

q

ℏΩqb
†
qbq, (5.10)

Ht-phot =
∑

ννekκ

M̃ννe
kκ e

†
νek
Tνk+κ∥

c†κ +H.c., (5.11)

Ht-phon =
∑

νν′Qq

Gνν′
t,qT

†
ν′Q+qTνQ

(
bq + b†−q

)
. (5.12)

Here, H0 accounts for free trions, electrons, phonons, and photons. The sec-
ond term, Ht-phot, describes the recombination of a trion with the emission
of a photon and the creation of a free electron, as well as the Hermitian
conjugate of this process. The trion–photon matrix element M̃ννe

kκ is deter-
mined by the wave function overlap between the non-recombining electron
within the trion and a plane wave describing the free electron. The trion–
photon matrix element also contains the optical selection rules δνh,νe1δνe,νe2 or
δνh,νe2δνe,νe1 enforcing that the recombining electron and hole are located in
the same valley and identifying the remaining charge as the recoil electron.
The last term, Ht-phon, describes the trion–phonon interaction with the ma-
trix element Gνν′

t,q . The exact form of the matrix elements can be found in the
supplementary information of PaperVI. Note that the interaction between
free electrons and phonons has been disregarded as it only has a negligible
impact on the spectral broadening.

The PL intensity is determined by the photon emission rate via the relation
IPL(ω) =

∑
κ δ(ω−ωκ)ṅκ, where nκ = ⟨c†κcκ⟩ is the photon number. There-

fore, we need to find the equation of motion for nκ. Similar to the case of
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excitons [83], we apply the cluster expansion scheme and truncate to account
for processes involving a single phonon and a single photon, while considering
higher-order correlations via the renormalization and spectral broadening of
trion energies. The intermediate steps can be found in PaperVI, while here
we directly provide the resulting PL formula,

IPL(ω) =
2

ℏ
∑

ννek

∣∣∣M̃ννe
k

∣∣∣
2

(Et
νk − Ee

νek
− ℏω)2 + (γtνk)

2

×
[
Nνkγ

t-phot
νk +

∑

ν′jq±

Nν′k+q

∣∣Gν′ν
t,q

∣∣2 η±jqγtν′k+q(
Et

ν′k+q − Ee
νek

− ℏω ∓ ℏΩjq

)2
+
(
γtν′k+q

)2

]
. (5.13)

The first term in this equation describes the direct recombination of a trion
with energy Et

νk via the emission of a photon with energy ℏω and the recoil
of an electron into the free-electron state with energy Ee

νek
. The spectral

resonance is broadened by the dephasing γtνk = γt-photνk + γt-phonνk arising from
trion–photon and trion–phonon interactions, respectively. The second term
in the brackets describes the recombination of a trion in the state ν ′ via
the scattering with a phonon with mode j, momentum q, and energy ℏΩjq

into the virtual bright state ν (cf. Fig. 5.3). The trion in the virtual bright
state recombines by emitting a photon, leaving a recoil electron behind. The
resulting PL peak appears offset from the dark trion resonance by the energy
of the phonon involved. The PL intensity is governed by the product of
trion occupation Nνk = ⟨T †

νQTνQ⟩ and transition matrix elements. In order
to simplify the calculations while describing a realistic scenario, we consider
that the trion gas is in thermal equilibrium with the lattice and is therefore
well described by a Boltzmann distribution in the considered low-density
regime. Moreover, we only consider recombination of bound trions since the
oscillator strength of the exciton–electron continuum becomes suppressed
with doping [73, 75].

In Fig. 5.5 we show the computed trion PL spectra for n- and p-type WSe2
as a function of temperature. At low temperatures, most of the trion popu-
lation resides in the dark state, leading to PL spectra dominated by phonon
sidebands appearing below the dark trion resonance (X±

D ). Both p- and n-
type dark trions have a similar spin–valley composition and binding energy,
resulting in similar PL spectra. As the temperature is raised, higher-lying
dark states are occupied, giving rise to signatures that are distinct for p- and
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n-type doping (more details in PaperVI). Further increasing the temperature
leads to the occupation of bright trions that then dominate the PL. Here, the
impact of mass imbalance is crucial. On the one hand, p-type bright trions
(X+

0 ) exhibit mass balance and a binding energy of 12 meV, corresponding
to the energetic offset with respect to the bright exciton in PL (cf. ∆0 in
Fig. 5.5a). On the other hand, n-type bright trions exhibit a significant large
imbalance, resulting in the large energetic offset for X−

K and X−
Λ
. Impor-

tantly, the higher three-body energy of X−
Λ
compared to X−

K implies that it
becomes populated and produces a visible PL signal at higher temperatures.
Interestingly, however, the large mass of the Λ electron results in a larger
offset (compare ∆Λ0 with ∆K

0 in Fig. 5.5b), impliying that the PL signal of
X−
Λ
appears below that of X−

K.

Our results agree well with experimental observations. In particular, we
quantitatively reproduce the binding energy of dark trions, and qualitatively
describe the larger exciton–trion PL offset for bright n-type trions compared
to p-type ones6. However, the predicted signatures from X−

Λ
and other trion

states with Λ electrons have not been observed in experiments so far. The
presence of non-equilibrium distributions or the uncertainty in the energetic
offset between K and Λ valleys could explain this discrepancy. Neverthe-
less, we expect that Λ-point trions play an important role in the thermaliza-
tion dynamics, similar to Λ excitons [87] (as we have seen in Paper III), and
could therefore be observed in time-resolved PL experiments (as excitons in
PaperXI). Furthermore, strain engineering of the K-Λ energetic offset [128]
should shed light on the role of the Λ valley on the trion landscape and dy-
namics. We expect that the gained microscopic insights will trigger further
experimental and theoretical studies addressing the impact of the Λ valley
on the physics of charge complexes in atomically thin semiconductors.

6A better quantitative agreement is expected when considering the exchange interaction
that leads to the splitting of degenerate trion states [45].
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Figure 5.5: Temperature-dependent PL spectra in a: p- and b: n-type WSe2,
exhibiting bright (X±
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Eph determines the position of the phonon sidebands associated with dark trions.
Figure adapted from PaperVI.
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CHAPTER 6

Conclusion and outlook

In this thesis, we have provided a microscopic understanding of fundamental
many-particle phenomena that govern the optics, dynamics, and transport in
atomically-thin materials, with particular focus on TMDs. The theoretical
approach presented here describes a system of interacting electrons, holes,
phonons, and photons, where electrons and holes can be bound into charge
complexes such as excitons and trions. In particular, our work provides
relevant insights on the formation, thermalization, propagation, and recom-
bination of excitons and trions in TMDs. We have unravelled the formation
dynamics of dark excitons after photoexcitation and resolved the main path-
ways of phonon-assisted exciton dissociation. Furthermore, we have traced
the emergence of photoluminescence halos back to the significant heating
and thermal drift of excitons at strong excitation. Finally, we have inves-
tigated the trion dynamics in doped materials, focusing on trion diffusion
and photoluminescence. Importantly, we have predicted so-far unobserved
luminescence signatures that could shed light on the internal structure of tri-
ons. The microscopic description of these processes represents a step forward
in the understanding of the physics of charge complexes and contributes to

67
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determining the optimal operation conditions, limitations and tunability of
TMD-based devices.

The recent progress in the study of charge complexes in atomically-thin ma-
terials has opened up new questions and challenges. In particular, the coex-
istence of different charge complexes at arbitrary photoexcitation densities
and doping could have important implications that have started to be ad-
dressed only recently, such as interaction-driven energy shifts, activation of
additional scattering channels [120, 129], and modification of the overall dif-
fusion properties of electron-hole pairs [130] 1. In principle, the theoretical
framework presented here can be applied to describe coexisting complexes
by extending the Fock space truncation scheme.

Moreover, while in this thesis we have focused on monolayers, a lot of the
current research efforts are directed towards van der Waals heterostructures.
These structures host charge complexes consisting of a superposition of intra-
and interlayer states (i.e. spatially separated charges residing in different lay-
ers) that can be tuned by an electric field [131–136]. Additionally, the moiré
potential emerging in these materials offers a periodic potential landscape
that can trap [137] and even separate charges [138]. The periodic localization
of interacting quasiparticles constitutes an experimental realization of a Hub-
bard model of fermions (electrons) and/or bosons (excitons), and could give
rise to exotic phases of matter [18, 134, 139–143]. The microscopic descrip-
tion of single excitons and trions provided in this work serves as a starting
point to describe layer-hybridized charge complexes in a moiré lattice. The
extension towards interacting charge complexes should contribute to the un-
derstanding of Hubbard physics in Fermi–Bose mixtures.

1See also PaperX, where the presence of free electrons and holes due to entropy ion-
ization enhances the diffusion at low densities.
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