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Abstract

Advanced fibre composite materials are often used for weight-efficient thin-walled designs, making a plate-based modelling
pproach suitable for their structural assessment. However, as the sub-structural geometrical features of these materials govern
uch of their behaviour, a multi-scale approach is necessary. A related challenge, however, is that the in-plane variation

f these sub-structural features may be much larger than the total thickness of the material, whereby tailored homogenisation
echniques for shell elements are needed. Existing frameworks for plate- and shell-based homogenisation are typically developed
sing second-order homogenisation in combination with the Hill–Mandel (macro-homogeneity) condition. However, it has been
eported in the literature that this approach can lead to kinematic inconsistencies in the macro- to micro-scale transition. One
nconsistency that is commonly reported, is the inability to correctly account for the macro-scale transverse shear behaviour on
he sub-scale level. In this contribution, we show how the method of Variationally Consistent Homogenisation (VCH) can be
sed to develop a homogenisation framework for Reissner-Mindlin plate elements, which guarantees kinematically consistent
rolongation and homogenisation operations. The homogenisation approach is demonstrated in four numerical examples, where
t is shown that the method accurately homogenise the effective sectional plate stiffnesses of homogeneous and heterogeneous
ub-structures.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Multi-scale modelling; Variationally consistent homogenisation; Composites; Plates

1. Introduction

The development of novel materials often lead to innovative composites with intricate structure on the meso-
r micro-scopic level. This is especially evident in, e.g. advanced fibre-reinforced polymers, where sub-scale het-
rogeneities often appear as complex geometrical formations of multiple material constituents. While the increased
omplexity of the sub-scale structure often leads to improved structural behaviour or increased functionality, the
imulation and analysis process of these materials becomes more challenging. Since the structural assessment needs
o be analysed on a scale with dimensions far superseding that of the material sub-structure, it is important to develop

ulti-scale modelling approaches where the properties of the sub-scale can be accounted for.
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Fig. 1. Illustration of plate-based computational homogenisation. The kinematic plate deformations (elongation h̄, transverse shear ḡ, curvature
¯ ) are prolonged (down-scaled) to the SVE. The resulting sectional forces (membrane N̄ , transverse shear V̄ and bending M̄) and stiffnesses
n the SVE level are then homogenised (up-scaled) and used as constitutive relations for the macro plate element.

Furthermore, novel materials are often developed with lightweight design in mind. In these cases, (thin) structural
omponents such as beams, plates or shells are common design elements. In industry, the structural behaviour of
hese components are usually analysed with appropriate structural finite elements, due to the substantially better
omputational performance compared to resolving the component with continuum (solid) elements.

With the prominent usage of structural finite elements in industry, and a clear need to include multi-scale effects
n the simulation models, there is a desire to develop general multi-scale procedures in which the largest scale is
epresented with structural finite elements. In recent years, a number of such multi-scale methods has been proposed
or beams, cf. e.g. [1,2], and plates/shells, cf. e.g. [3–9]. In the majority of the listed citations, the authors base their
ulti-scale methods on computational homogenisation (also commonly referred to as FE2) [10,11], see Fig. 1 for an

llustration. In this technique, the structural component is discretised with plate elements, for which each quadrature
oint (on the macro-scale) is associated with a unique finite element model of a Statistical Volume Element1 (SVE)
hat represents the sub-scale features. The two scales are then linked via a set of prolongation and homogenisation
onditions, whereby the macro-scopic shell kinematical quantities (elongation, curvature and (possibly) transverse
hear deformation), are down-scaled to the SVE, and where homogenised macro-scale kinematic quantities (section
orces and moments), are up-scaled to the macro-scopic shell element.

The computational effort required by FE2 approaches is (in the fully non-linear regime) substantial, as each
uadrature point in the macro-scopic model includes its own FE-problem. Although the computational demand
or FE2 simulations are much lower compared to the corresponding fully resolved problem, the use of multi-scale
pproaches based on FE2 are in most cases not feasible for industrial applications. However, the use of computational
omogenisation does have practical applications in areas such as virtual testing, or upscaling of effective material
roperties from heterogeneous materials. The latter can be adopted whenever the underlying problem is fully linear,
hich is the case studied in this paper.
In the beam and shell-based computational homogenisation methods currently found in the literature, second-

rder homogenisation is commonly used to include higher-order deformations modes, e.g. bending, on the SVE
evel [12]. Moreover, the Hill–Mandel macro-homogeneity condition is used to enforce energy equivalence between
he scales. However, as shown by authors in e.g. [1,13,14], this can often lead to kinematical inconsistencies between
he macro- and micro-scales. For example, Främby et al. [14] showed that if no special consideration is taken for
he transverse shear behaviour, the homogenisation and prolongation operations will fail to accurately capture the

1 The sub-scale models are often referred to as Representative Volume Elements (RVEs). However, a sample of the sub-structure will, in
general, not be truly representative, whereby we prefer the term Statistical Volume Element.
2
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ransverse shear stiffness. More specifically, the volume-averaged transverse shear angle on the SVE-level tends to
iverge from the macro-scopic shear angle.

As a consequence, additional constraints for the boundary value problem on the SVE level needs to be devised, in
rder to ensure kinematical consistency between the two scales. For example, regarding the inconsistent transverse
hear behaviour previously discussed, Geers et al. [4] proposed additional constraints enforcing the average angle
n the lateral faces (of the SVE). This was demonstrated to work well for SVE sizes with aspect ratios close to
ne, but larger in-plane to out-of-plane aspect ratios were not analysed.

In a related work, Hii et al. [9] developed a homogenisation framework for Reissner-Mindlin type shells. In
rder to enforce kinematical consistency between the scales, they used a set of orthogonality conditions previously
eveloped by Luscher et al. [15], out of which the most influential condition requires that the volume-averaged sub-
cale displacements contributed by the fluctuation field is orthogonal to the contributions from the macro-scopic
econd gradient of the displacements. However, when loosening these conditions to fulfil traction equivalence on
he upper and lower surface of the shell, Hii et al. still encountered issues related to transverse shear behaviour. As a
esult, an additional volumetric constraint to enforce a volume averaged transverse shear angle throughout the SVE
omain was added. This resulted in an efficient down-scaling and up-scaling procedure that correctly homogenises
he macro-scopic membrane, bending, and transverse shear stiffnesses adequately.

More recently, Müller et al. [16] developed a homogenisation approach for beams and plates, based on first
rder homogenisation with Irving–Kirkwood theory, that did not show any sign of the aforementioned erroneous
ize dependence for the transverse shear behaviour. However, the resulting stresses in the transverse direction (for
he SVE problem) were dependent on the shape of a predetermined ansatz function. Furthermore, the SVE problem
as only formulated with Dirichlet boundary conditions, and was not demonstrated to work with periodic boundary

onditions.
In conclusion, although recent developments show great promise, there is still a need for a general approach for

eveloping multi-scale methods, that guarantees consistent prolongation and homogenisation through the scales, and
hat is free both from a-priori assumptions on the macro- and sub-scale, and from a-posteriori additional constraints
o compensate for erroneous responses. To address this, in this paper we propose a computational homogenisation
pproach based on Variationally Consistent Homogenisation (VCH) [17].

VCH has the attractive property of not requiring any a-priori specification or knowledge of the macro- or
ubscale (SVE) problems. Instead, both problems are derived from a single, fully resolved problem, which gives
ise to a consistent basis for multi-scale methods. VCH was first introduced in 2010 by Larsson et al. [17],
nd has since then been successfully applied to a number of different problems, for example homogenisation of
amage and fracture [18,19], homogenisation of multi-physics systems [20], and chemo-mechanical problems [21].
urthermore, in a related work, VCH was recently used to develop a homogenisation procedure for Timoshenko
eam elements [2,22], where it was shown that the correct membrane, bending and transverse shear behaviour could
e properly captured.

In this paper, the VCH method will be applied to plate elements formulated with Reissner-Mindlin theory. Note,
owever, that this is only for demonstration purposes and any kinematic plate theory could be used. As a result,
e will show how equations for consistent down-scaling and up-scaling of plate properties naturally arise from the

ormulation. Moreover, it will be shown that when using the VCH method, a minimum set of constraints for the
ub-scale boundary value problem are automatically derived.

The reminder of this paper is organised as follows. First an outline of the VCH approach will be presented in
ection 2, including the development of the prolongation and homogenisation procedure. In Sections 3 and 4, the
oundary value problem for the macro-scale and SVE problems will be established. In Section 5, four numerical
xamples will be presented to demonstrate the capabilities of the proposed framework. Finally, the findings in the
aper will be summarised and discussed in Section 6.

. VCH of plates

VCH is adopted in order to derive a computational framework for Reissner-Mindlin plate elements. The main
teps in the VCH method are:
• Define the single scale problem where any heterogeneities are fully resolved.

3
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Fig. 2. Plate occupying the three-dimensional domain Ω . Its mid-plane occupies the two-dimensional surface A.

• Decompose the displacement field into macro-scale and sub-scale (fluctuation) components in accordance with
the variational multi-scale method [23].

• Restate the weak form by applying local domain averaging.
• Develop the prolongation and homogenisation conditions to link the macro- and sub-scales.
• Establish the boundary value problems for the macro-scale plate elements and the SVE sub-structure.

These steps will be described in detail in the following sub-sections.

2.1. The fully resolved problem

Consider the plate in Fig. 2, and let Ω denote its three-dimensional volume, while A denotes the mid-surface.
The boundary of the plate is composed of the upper and lower surfaces γ , and an edge surface, Γ . The boundary
surface Γ can be further divided into boundaries subjected to Dirichlet conditions, ΓD, and Neumann conditions,
ΓN. Furthermore, the plate is subjected to prescribed boundary tractions tp on the boundaries γ and ΓN. To simplify
the analysis (and to avoid technical difficulties that may cloud the main message of the paper), we take the plate
thickness, t , as constant. In addition, we ignore body loads.

With the above definitions in place, the standard weak format of the elasticity problem can be formulated: Find
u ∈ U such that:∫

Ω

σ (ϵ[u]) : ϵ[δu]dΩ =

∫
γ

tp · δudΓ +

∫
ΓN

tp · δudΓ ∀δu ∈ U0, (1)

where σ is the Cauchy stress tensor, and ϵ[u] = [u ⊗ ∇]sym is the strain tensor defined for small deformations.
Furthermore, the trial set U and the test space U0 are defined as follows:

U = {u ∈ H1(Ω )|u = up on ΓD}, (2)

U0
= {u ∈ H1(Ω )|u = 0 on ΓD}, (3)

here H1(Ω ) denotes the Sobolev space of functions with square integrable functions and gradients on Ω .

.2. Decomposition of functions

Next, we adopt the idea from the variational multi-scale method [23], where we assume that any field in the
omain Ω can be uniquely decomposed as a sum of contributions coming from the macro- and sub-scale (here
enoted with superscripts •

M and •
s, respectively):

v = vM
+ vs, v ∈ H1(Ω ). (4)

ntroducing this decomposition for the displacement field, i.e. u = uM + us, into the fully resolved problem
n Eq. (1), we obtain the equivalent (two-scale) problem of finding uM

∈ UM and us
∈ Us such that:∫

σ (ϵ[uM
+ us]) : ϵ[δuM]dΩ =

∫
tp · δuMdΓ +

∫
tp · δuMdΓ ∀δuM

∈ UM,0, (5)

Ω γ ΓN

4
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∫
Ω

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ =

∫
γ

tp · δusdΓ ∀δus
∈ Us. (6)

ote that we restrict ourselves to only consider volumetric homogenisation, whereby we set us
= 0 on Γ in Eq. (6).

hereby, the Dirichlet conditions in U are imposed through UM, motivating the test space UM,0 in Eq. (5).

2.3. Local domain averaging

As the next step towards replacing the fully resolved problem with a multi-scale formulation, we introduce
running averages on the mid-surface A. This amounts to first introducing the SVE-domains Ω□ inside the domain
Ω , see Fig. 3(a) where γ□ is used to denote the top and bottom boundaries of the SVE, and A□ to denotes the
mid-surface of the SVE domain. Note that the SVE-domain Ω□ covers the entire thickness of the plate. As such,
there is no separation of scale in the thickness direction.

To introduce the local domain averaging, we assume that any integrand can be restated by their running averages
as:

∫
Ω

f dΩ ≈

∫
A

1
A□

[∫
Ω□

f dΩ
]

dA =

∫
A
⟨ f ⟩□dA∫

γ

gdΓ ≈

∫
A

1
A□

[∫
γ□

gdΓ
]

dA =

∫
A
⟨g⟩

γ

□dA
(7)

where we have introduced the domain averages:

⟨•⟩□ =
1

A□

∫
Ω□

•dΩdA, ⟨•⟩
γ

□ =
1

A□

∫
γ□

•dΩdA, (8)

here Ω□ and A□ are defined for each point x̄ ∈ A such that 1
A□

∫
A□

xdA = x̄, i.e. x̄ is the centroid of each SVE.
ote that for two sufficiently close points in A, the SVE-domains will overlap, whereby Eq. (7) only represents

n approximation. In practice, however, the approximation is still accurate under the assumption of separation of
cale.

Introducing the domain averaging in Eq. (7) into Eqs. (5) and (6), we obtain the following two equations:∫
A
⟨σ (ϵ[uM

+ us]) : ϵ[δuM]⟩□dA =

∫
A
⟨tp · δuM

⟩
γ

□dA +

∫
ΓN

tp · δuMdΓ ∀δuM
∈ UM,0, (9)∫

A
⟨σ (ϵ[uM

+ us]) : ϵ[δus]⟩□dA =

∫
A
⟨tp · δus

⟩
γ

□dA ∀δus
∈ Us. (10)

Here, Eq. (9) constitutes the macro-scale problem, while Eq. (10) defines the sub-scale problem.

2.4. Prolongation and homogenisation

In this section we will define the coupling between the macro-scale fields and the resolved fields within each
SVE, via a set of prolongation and homogenisation conditions. In the following, variables with a hat, •̂, represents
quantities on the mid-surface of the plate, while variables with a bar, •̄, represents macro-scopic (and thereby also

omogenised) quantities. Furthermore, we introduce the in-plane projection operator Î = e1 ⊗ e1 + e2 ⊗ e2.
For the shell kinematics on the macro-scale, we adopt a classic Reissner-Mindlin shell theory. Here, the

isplacement at a macro-scopic coordinate x = x1e1 + x2e2 + ze3 (in the reference body) can be expressed with
ve fields defined at each mid-surface coordinate x̂ = Î · x = x1e1 + x2e2:

uRM(x̂, z) = ū1(x̂)e1 + ū2(x̂)e2 − zθ̄1(x̂)e1 − zθ̄2(x̂)e2 + w̄(x̂)e3 (11)

here ū1(x̂), ū2(x̂) and w̄(x̂) represent the displacement of the mid-surface, and θ̄1(x̂) and θ̄2(x̂) are fields describing
he rotation of through-thickness cross-sections. This can be expressed in a slightly more compact format as:

RM
ˆ ¯ ˆ ¯ ˆ ˆ
u (x, z) = u(x) − zθ (x) + w̄(x)e3, (12)

5
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Fig. 3. (a) A volume element embedded in the macro-scopic plate, and (b) illustration of the periodic mapping ϕPER
: Γ+

□ → Γ−

□ . Note
that the volume element is depicted as a cube, but could take the shape of any periodic structure.

Fig. 4. Visualisation of elongation, bending and symmetric twisting deformations from uM. The colours show the normalised magnitude of
the deformation.

where we have introduced

ū(x̂) = ū1(x̂)e1 + ū2(x̂)e2, θ̄ (x̂) = θ̄1(x̂)e1 + θ̄2(x̂)e2. (13)

Next, we introduce the prolongation operator A : {ū1, ū2, w̄, θ̄1, θ̄2} → uM, which prolongs the macro-scopic
elds to the SVE. It is obtained in the spirit of first order homogenisation, where we perform a first order Taylor
xpansion of uRM in the in-plane direction, around a point corresponding to the centroid of the SVE, x̄ = x̄1e1+x̄2e2:

uM(x̂, z) = uRM(x̄, z) + (uRM
⊗ ∇̂)

⏐⏐
x̂=x̄ ·

[
x̂ − x̄

]
= ū(x̄) + h̄(x̄) · [x̂ − x̄] − zθ̄ (x̄) − zκ̄(x̄) · [x̂ − x̄] + w̄(x̄)e3 + ḡ(x̄) · [x̂ − x̄]e3 in Ω□,

(14)

here ∇̂ = Î · ∇ = e1
∂

∂x1
+ e2

∂
∂x2

, and the following gradients have been defined:

h̄(x̄) = (ū(x̂) ⊗ ∇̂)
⏐⏐

x̂=x̄, κ̄(x̄) = (θ̄ (x̂) ⊗ ∇̂)
⏐⏐

x̂=x̄, ḡ(x̄) = ∇̂w̄(x̂)
⏐⏐

x̂=x̄ . (15)

s an illustration, the prolongations of macro-scopic elongation (ε11 = 1.0), bending (κ11 = 1.0) and symmetric
wisting (κ12 = κ21 = 1.0) for a rectangular SVE are visualised in Fig. 4.

Next, we need to define the homogenisation operators for the five macro-scopic fields and their gradients,
∗

: u → {ū1, ū2, w̄, θ̄1, θ̄2}. For consistency, the homogenisation of the sub-structural deformation, u, should
eturn the macro-scopic field variables, i.e.:

ū□(u) = ū, θ̄□(u) = θ̄ , w̄□(u) = w̄,

h̄□(u) = h̄, κ̄□(u) = κ̄, ḡ□(u) = ḡ,
(16)

here (•)□ denotes the homogenisation operators and where we have (for readability) dropped the implicit
¯
ependence of x of the macro-scopic fields. Furthermore, as discussed in [17], in order to have a unique

6
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ecomposition of uM and us (cf. Eq. (4)), the homogenisation operators should fulfil the following requirements:

ū□(uM) = ū, θ̄□(uM) = θ̄ , w̄□(uM) = w̄,

h̄□(uM) = h̄, κ̄□(uM) = κ̄, ḡ□(uM) = ḡ,
(17)

nd

ū□(us) = 0, θ̄□(us) = 0, w̄□(us) = 0,

h̄□(us) = 0, κ̄□(us) = 0, ḡ□(us) = 0
(18)

There are different ways of formulating the homogenisation operators such that the requirements in Eq. (17) are
ulfilled. For the primary fields, we here make the choice:

ū□(u) =
1

|Ω□|

∫
Ω□

Î · udΩ , (19)

θ̄□(u) = −
1
I□

∫
Ω□

z Î · udΩ , (20)

w̄□(u) =
1

|Ω□|

∫
Ω□

e3 · udΩ , (21)

here |Ω□| =
∫
Ω□

dΩ and I□ =
∫
Ω□

z2dΩ . For the homogenisation operators of the gradients of the primary fields,
t is convenient to define them as the sensitivities of Eqs. (19)–(21) w.r.t. the placement of the SVE-window. This
rocedure is explained in detail in Appendix A. For brevity, only the result is give here:

h̄□(u) =
1
Ω□

∫
Γ+

□

Î · [[u]] ⊗ ndΓ , (22)

κ̄□(u) = −
1
I□

∫
Γ+

□

z Î · [[u]] ⊗ ndΓ , (23)

ḡ□(u) =
1
Ω□

∫
Γ+

□

(e3 · [[u]])ndΓ . (24)

In Eqs. (22)–(24), we have introduced the image part of the boundary section Γ+

□ , linked to the complementary
mirror part Γ−

□ , see Fig. 3(b) for an illustration. Furthermore, we have also introduced the mapping ϕPER
: Γ+

□ →

Γ−

□ to define the jump operator [[•]]:

[[ f ]](x+) = f (x+) − f (ϕPER(x+)) on Γ+

□ . (25)

The requirements in Eq. (17) are automatically fulfilled by our choice of homogenisation operators. The
requirements in Eq. (18), however, will be satisfied by imposing them as constraints for the SVE-problem, see
Section 4 for more details. Finally, the conditions in Eq. (18) together with the prolongation and homogenisation
operators satisfying Eq. (17), guarantees kinematically consistency.

3. Macro-scale problem

In this section we will establish the weak form of the macro-scale problem. This is achieved by introducing the
prolongation uM in Eq. (14), into Eq. (9) for the test-functions δu. Considering the left-hand side, this results in:∫

A
⟨σ (ϵ[uM

+ us]) : ϵ[δuM]⟩□dA =∫
A

1
A□

∫
Ω□

σ : ϵ[δū + δh̄ · [x̂ − x̄] − zδθ̄ − zδκ̄ · [x̂ − x̄] + δw̄e3 + δ ḡ · [x̂ − x̄]e3]dΩdA. (26)

By considering each term in δε[uM], and using the fact that the macro-scopic fields are constant within each SVE,
the well-known weak form of the Reissner-Mindlin plate equations is obtained:∫

⟨σ (ϵ[uM
+ us]) : ϵ[δuM]⟩□dA =

∫
N̄ : δh̄ + V̄ · (δ ḡ − δθ̄ ) − M̄ : δκ̄dA. (27)
A A

7
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ere, the SVE problem acts as the constitutive relation for the normal forces, N̄ , shear forces, V̄ , and bending
moments M̄:

N̄ =
1

A□

∫
Ω□

Î · σ · ÎdΩ , (28)

V̄ =
1

A□

∫
Ω□

Î · σ · e3dΩ , (29)

M̄ =
1

A□

∫
Ω□

z
(

Î · σ · Î
)

+ ( Î · σ · e3) ⊗ (x̂ − x̄)dΩ . (30)

Next, we consider the first term on the right-hand side of Eq. (9), which is expressed as:∫
A
⟨tp · δuM

⟩
γ

□dA =∫
A

q̄u
· δūdΓ +

∫
A

q̄h
: δh̄dΓ +

∫
A

q̄wδw̄dΓ +

∫
A

q̄g
· δ ḡdΓ −

∫
A

q̄θ
· δθ̄dΓ −

∫
A

q̄κ
: δκ̄dΓ (31)

here the loading terms are defined as:

q̄u
=

1
A□

∫
γ□

Î · t pdΓ , q̄θ
=

1
A□

∫
γ□

z Î · t pdΓ , q̄w
=

1
A□

∫
γ□

e3 · t pdΓ (32)

q̄h
=

1
A□

∫
γ□

Î · t p ⊗ (x̂ − x̄)dΓ , q̄κ
=

1
A□

∫
γ□

z Î · t p ⊗ (x̂ − x̄)dΓ , q̄g
=

1
A□

∫
γ□

e3 · t p ⊗ (x̂ − x̄)dΓ .

(33)

Finally, considering the second term on the right-hand side of Eq. (9), i.e. the term containing boundary conditions
n Γ , we will assume Reissner-Mindlin kinematics (cf. Eq. (11)):∫

Γ

t p · δuMdΓ =

∫
Γ

Î · t p · δūdΓ +

∫
Γ

(e3 · t p)δw̄dΓ −

∫
Γ

z Î · t p · δθ̄dΓ . (34)

For Dirichlet boundary conditions on Γ , we simply restrict the test and trial spaces to

Ūu = {v ∈ [H1(A)]2
| v = up on ΓD,u}, Ū0

u = {v ∈ [H1(A)]2
| v = 0 on ΓD,u},

Ūθ = {v ∈ [H1(A)]2
| v = θ p on ΓD,θ }, Ū0

θ = {v ∈ [H1(A)]2
| v = 0 on ΓD,θ },

Ūw = {v ∈ H1(A) | v = w p on ΓD,w}, Ū0
w = {v ∈ H1(A) | v = 0 on ΓD,w}.

(35)

With the reformulation of the left- and right-hand side right of Eq. (9), the macro-scale problem can now be
tated as finding ū ∈ Ūu , w̄ ∈ Ūw, θ̄ ∈ Ūθ such that:∫

A
N̄ : δh̄dA =

∫
A

q̄u
· δūdΓ +

∫
A

q̄h
: δh̄dΓ +

∫
Γ

t p · δū ∀δū ∈ Ū0
u, (36)∫

A
V̄ · δ ḡdA =

∫
A

q̄wδw̄dΓ +

∫
A

q̄g
· δ ḡdΓ +

∫
Γ

(e3 · t p)δw̄dΓ ∀δw̄ ∈ Ū0
w, (37)∫

A
V̄ · δθ̄ + M̄ : δκ̄dA =

∫
A

q̄θ
· δθ̄dΓ +

∫
A

q̄κ
: δκ̄dΓ +

∫
Γ

z t p · δθ̄dΓ ∀δθ̄ ∈ Ū0
θ . (38)

Note that Eqs. (36)–(38) resemble the weak form of the classical Reissner-Mindlin plate equations, with the
exception that the membrane, bending and shear forces are obtained from the SVE-problem.

4. The SVE problem

In this section, the boundary value problem for sub-scale problem, defined by Eq. (10), will be established in
terms of the unknown fluctuation field us.

As a first step towards establishing the SVE-problem, we will assume that the SVE-volumes are independent of
each other, i.e. we perform a local approximation (as described in Eq. (10)) for each SVE-volume Ω□. As such,
he governing equation for the boundary value problem for the SVE becomes:

1
∫

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ =

1
∫

tp · δusdΓ ∀δus
∈ Us

□. (39)

A□ Ω□

A□ γ□

8
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emark. Note that the deformation measures on the macro-scale, i.e. h̄, κ̄ , θ̄ and ḡ, enters the SVE-problem via
he term ϵ(uM ). On closer inspection, we can identify that ϵ(uM ) can be written as:

ϵ(uM ) = ε̄ − (zÎ
sym

− I3 ⊗ (x̂ − x̄)) : κ̄ + I3 · γ̄ (40)

here

I3 =

3∑
α=1

[e3 ⊗ eα] ⊗ eα, Î
sym

=
1
2

( Î⊗ Î + Î⊗ Î) (41)

and where we have introduced the measures

ε̄ = h̄sym
, γ̄ = ḡ − θ̄ . (42)

Thus, the SVE-problem is invariant to the terms ḡ + θ̄ and h̄skw
, and the sectional forces N̄ , M̄ and V̄ are implicit

functions of ε̄, κ̄ and γ̄ . □

Next, as discussed in Section 2.4, we require that the homogenised measures vanishes for the fluctuations us in
rder to ensure a proper decomposition of u = uM

+ us. This amounts to enforcing the constraints:

ū□(us) = 0 (43)

w̄□(us) = 0 (44)

θ̄□(us) = 0 (45)

h̄□(us) = 0 (46)

ḡ□(us) = 0 (47)

κ̄□(us) = 0 (48)

Eqs. (43) and (44) simply constrain any rigid body translation of the SVE. In practice, these can be enforced by
imply locking a single node on the SVE mesh, or in the presence of a net force contribution from tp, by enforcing
he constraints weakly (via Lagrange multipliers). Eqs. (46)–(48) constrains the fluctuation fields on the lateral faces
f the SVE. As will be shown in the next section, these constraints can be automatically fulfilled by the boundary
onditions that are introduced in Sections 4.1–4.4. Finally, and most interestingly, the constraints in Eqs. (45), here
ritten out explicitly,

θ̄1,□ =

∫
Ω□

ze1 · udΩ = 0, θ̄2,□ =

∫
Ω□

ze2 · udΩ = 0, (49)

nforces the volume averaged transverse shear angles of the SVE to be equal to the macro-scopic counter-part.
hese constraints will counteract any coupled bending-shear behaviour of the SVE, when subjected to transverse
hear loads. Interestingly, these are essentially the same constraints as those proposed by Hii et al. [9], although
ere they follow naturally from the VCH approach rather than being partially postulated.

As a last step towards formulating the boundary value problem for the SVE, boundary conditions on the sub-scale
uctuations needs to be specified. In this work, we will consider boundary conditions of three different types: (i)
eriodic, (ii) Dirichlet, and (iii) Neumann. Periodic boundary conditions are typically considered the best choice in
ractical applications even when the subscale geometry is not periodic. However, Dirichlet and Neumann boundary
onditions may be useful for obtaining upper and lower bounds of the solution.

In the following subsections, different versions of the mentioned boundary conditions are discussed and the
orresponding boundary value problems are established.

.1. Periodic boundary conditions

The periodic boundary conditions for the fluctuation field can be stated as:

[[us]] = 0 on Γ+

□ . (50)

hese constraints can either be enforced weakly using Lagrange multipliers, or with the use of linear constraints if
+

□ and Γ−

□ have matching discretisations. Furthermore, it can be verified that this boundary condition automatically
ulfils Eqs. (46)–(48).
9
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S

Moreover, the two volume constraints in Eq. (45) are enforced with Lagrange multipliers λθ . The micro-periodic

VE-problem can thus be stated as that of finding us, λθ ∈ UPBC
□ × R2 such that:

1
A□

∫
Ω□

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ + λθ · θ̄□(δus) =

1
A□

∫
γ□

tp · δusdΓ ∀δus
∈ UPBC

□ ,

δλθ · θ̄□(us) = 0 ∀δλθ ∈ R2,

(51)

where

UPBC
□ = {v ∈ [H1(Ω□)]2

: [[v]] = 0 on Γ+

□ ,

∫
Ω□

vdΩ = 0}. (52)

Here, the rigid body translations in Eqs. (43)–(44) are formally included in UPBC
□ . In the case that t p does not exert

a net force on the SVE, this constraint can simply be replaced by locking one arbitrary node in the discrete (FE)
problem.

Remark. Periodic boundary conditions are typically applied to SVEs with periodic geometries. However, in the
context of the framework presented herein, periodic boundary conditions are simply utilised in order to fulfil
Eqs. (46)–(48), and can thus be used for geometrically non-periodic SVEs as well (with the assumption that there
are no voids on the boundaries). This fact is used in e.g. the numerical example in Section 5.3. □

4.2. Enriched periodic boundary conditions

An SVE-problem modelled with standard periodic boundary conditions is, within the current framework, not
able to accurately capture the torsional stiffness in the case of SVEs with large in-plane dimensions. This issue
will be demonstrated in Section 5 (numerical examples), but can also be made evident by studying the prolonged
macro-scale torsional deformation in Fig. 4(c). In particular, a shortcoming in the macro-scopic prolongation can
be noted, as it lacks an anti-periodic twisting mode in the out-of-plane direction. This shortcoming, together with
the fact that periodic boundary conditions prevents anti-periodic deformations, means that the torsional stiffness is
poorly predicted for SVEs with finite in-plane dimensions.

To avoid an inaccurate prediction of torsional stiffness for the micro-periodic SVE problem, we provide two
remedies. The first solution is to improve the prolongation uM by adding higher order deformation modes that can
represent twisting. This approach is presented in Appendix B. The second remedy, which is to be presented in the
current subsection, amounts to enriching the fluctuation field us with an additional anti-periodic twisting mode. As
such, us is split into two parts:

us
= us,P

+ us,ξ (53)

where us,P is the standard fluctuation field with periodic boundary conditions, i.e. us,P
∈ UPBC

□ , and us,ξ is an added
anti-periodic fluctuation field which accounts for twisting deformations. Here we propose the field to be defined as:

us,ξ
=

1
2

(
[x̂ − x̄] · κξ · [x̂ − x̄]

)
e3 −

1
2
⟨[x̂ − x̄] · κξ · [x̂ − x̄]⟩□e3 in Ω□, (54)

where κξ ∈ R2×2,sym is an additional unknown symmetric second order tensor. As a consequence of the enrichment
of the fluctuation field, three additional global degrees of freedom (to the SVE-problem) are added and need to
be solved for. Moreover, due to the proposed form of the enrichment field us,ξ , the homogenisation conditions in
Eqs. (46)–(48) are still fulfilled.

The SVE-problem with enriched periodic boundary conditions can be stated as that of finding us,P , κξ , λθ ∈

UPBC
□ × R2×2,sym

× R2 such that:

1
A□

∫
Ω□

σ : ϵ[δus,P]dΩ + λθ · θ̄□(δus,P) =
1

A□

∫
γ□

tp · δus,PdΓ ∀δus,P
∈ UPBC

□ ,

1
A□

∫
Ω□

σ : ϵ[δus,ξ ]dΩ =
1

A□

∫
γ□

tp · δus,ξ dΓ ∀δus,ξ
∈ Uξ

□,

¯ s,P 2

(55)
δλθ · θ□(u ) = 0 ∀δλθ ∈ R ,

10
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here the new space introduced for the enriched fluctuation field is defined as:

Uξ

□ = {v =
1
2

(
[x̂ − x̄] · κξ · [x̂ − x̄]

)
e3 −

1
2
⟨[x̂ − x̄] · κξ · [x̂ − x̄]⟩□e3, κξ ∈ R2×2,sym

}. (56)

.3. Dirichlet boundary conditions

Dirichlet boundary conditions can be expressed as:

us
= 0 on Γ□. (57)

imilarly to the case with periodic boundary conditions, it can be verified that Eqs. (57) fulfils Eqs. (46)–(48).
he rigid body constraints in Eqs. (43) and (44) can be omitted since any rigid body translations are clearly
revented by Eq. (57). The SVE-problem with Dirichlet boundary conditions can thus be stated as that of finding

us, λθ ∈ UDBC
□ × R2 such that:

1
A□

∫
Ω□

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ + λθ · θ̄□(δus) =

1
A□

∫
γ□

tp · δusdΓ ∀δus
∈ UDBC

□ ,

δλθ · θ̄□(us) = 0 ∀δλθ ∈ R2,

(58)

where

UDBC
□ = {v ∈ [H1(Ω□)]2

: v = 0 on Γ□}. (59)

.4. Relaxed Dirichlet boundary conditions

As will be shown in the section for the numerical results, the Dirichlet boundary condition in Section 4.3 will
ead to over-stiff estimations, mostly pronounced in bending. The reason for this is that the Dirichlet condition
onstrains the z-component of us on the lateral faces. As a simple remedy, it is possible to only consider Dirichlet
oundary conditions in the in-plane directions:

us
1 = 0, us

2 = 0 on Γ□, (60)

nd let the displacement in the out-of-plane direction, u3, be free. These constraints can be shown to enforce Eq. (46)
nd (48). However, as u3 is now free at the lateral boundaries, we need to introduce additional Lagrange multipliers
o satisfy Eq. (47). Furthermore, the constraint in Eq. (45) is treated with Lagrange multipliers as before.

In summary, the weak form of the SVE problem with relaxed Dirichlet conditions can be stated as follows: find
us, λθ , λg ∈ URDBC

□ × R2
× R2 such that:

1
A□

∫
Ω□

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ + λθ · θ̄□(δus) + λg · ḡ□(δus) =

1
A□

∫
γ□

tp · δusdΓ ∀δus
∈ URDBC

□ ,

δλθ · θ̄□(us) = 0 ∀δλθ ∈ R2,

δλg · ḡ□(us) = 0 ∀δλg ∈ R2,

(61)

where

URDBC
□ = {v ∈ [H1(Ω□)]2

: Î · v = 0 on Γ□,

∫
Ω□

e3 · vdΩ = 0}. (62)

We note that the constraint in Eq. (44), formally included in URDBC
□ , can be enforced by prescribing the vertical

displacement of one node in the discrete problem whenever there is no net vertical force or t p.

Remark. As with the case of enriched periodic boundary conditions, it is possible to mitigate the over-stiff behaviour
caused by the (standard) Dirichlet conditions, by supplementing the fluctuation field us with enriched deformation
modes, i.e. one mode that properly accounts for bending and twisting, and another mode that properly accounts for
the contraction or expansion in the out-of-plane direction. However, as will be shown in the numerical examples,
relaxing the Dirichlet conditions as proposed in this subsection is an alternative remedy that also fits within the

overall framework.

11
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.5. Neumann boundary conditions

The SVE problem with boundary conditions of Neumann type is obtained by enforcing the constraints in
qs. (45)–(48) with Lagrange parameters. Furthermore, as in Sub- Section 4.1, the rigid-body constraints can be
nforced by locking one node in the FE-mesh (in the absence of external net force from t p). The SVE-problem with
eumann boundary conditions can thus be stated as that of finding us, λθ , λh, λκ , λg ∈ UNBC

□ ×R2
×R2×2

×R2×2
×R2,

such that:
1

A□

∫
Ω□

σ (ϵ[uM
+ us]) : ϵ[δus]dΩ + λθ · θ̄□(δus) + λh : h̄□(δus) + λκ : κ̄□(δus) + λg · ḡ□(δus),

=
1

A□

∫
γ□

tp · δusdΓ ∀δus
∈ UNBC

□ ,

δλθ · θ̄□(us) = 0 ∀δλθ ∈ R2,

δλh : h̄□(us) = 0 ∀δλh ∈ R2×2,

δλκ : κ̄□(us) = 0 ∀δλκ ∈ R2×2,

δλg · ḡ□(us) = 0 ∀δλg ∈ R2,

(63)

where

UNBC
□ = {v ∈ [H1(Ω□)]2

:

∫
Ω□

vdΩ = 0}. (64)

. Numerical examples

In this section, four numerical examples will be presented to demonstrate the effectiveness of the proposed multi-
cale framework. The first numerical example aims to verify the framework by comparing predicted plate stiffnesses
ith analytical results from standard plate theory. The second example investigates the stresses predicted on the
VE-level in an multi-layered composite structure. The third example considers statistical sampling of heterogeneous
VEs with hard spherical inclusions, with the purpose to assess the convergence of the effective plate properties for

ncreasing SVE size in the case of in-plane subscale heterogeneity. The final example considers homogenisation of
unit cell of a 3D woven composite, with the purpose of evaluating the accuracy of the up-scaling plate properties.
In all numerical examples, the homogenised plate stiffness properties will be computed and analysed. In the case

f linear elasticity, these can be obtained via the relationship (assuming t p
= 0):

N̄ = D̄ε,ε
: ε̄ + D̄ε,γ

· γ̄ + D̄ε,κ
: κ̄,

V̄ = D̄γ,ε
: ε̄ + D̄γ,γ

· γ̄ + D̄γ,κ
: κ̄,

−M̄ = D̄κ,ε
: ε̄ + D̄κ,γ

· γ̄ + D̄κ,κ
: κ̄,

(65)

here D̄•,• are the plate stiffness properties. As an example, by running a linear SVE-problem with the macro-scale
nput ε̄11 = 1 (and ε̄12 = ε̄21 = ε̄22 = 0, κ̄ = 0, γ̄ = 0), we obtain the plate stiffness components as D̄ε,ε

αβ11 = N̄αβ ,
D̄γ,ε

α11 = V̄α and D̄κ,ε
αβ11 = −M̄αβ (with α = β = 1, 2). A similar procedure can be performed to obtain the remaining

late stiffnesses. For more information about the relation in Eq. (65), see Appendix C.

.1. Verification using homogeneous and isotropic material

In this numerical example, we consider homogenisation of a 3D SVE with homogeneous and linear elastic
aterial. The aim of the study is to verify the proposed computational framework against results from standard

late theory. Specifically, the membrane stiffness D̄ε,ε
1111, bending stiffness D̄κ,κ

1111, transverse shear stiffness D̄γ γ

11 and
ymmetrical part of the torsional stiffness D̄κ,κ

1212 have been selected to be compared with analytical results.
In this example, the Young’s modulus and Poisson’s of the material of the sub-structure are set to 210 GPa and

.3, respectively. The height of the SVE is set to 1 mm, while the equidistant in-plane length and width will vary
n order to demonstrate that the proposed framework does not show a pathological dependence on the SVE-size.
inally, periodic boundary conditions (Section 4.1) and enriched periodic boundary conditions (Section 4.2) will be

sed and compared.

12



E. Börjesson, F. Larsson, K. Runesson et al. Computer Methods in Applied Mechanics and Engineering 413 (2023) 116094

o

r
c
c

Fig. 5. Resulting sectional forces for a homogeneous SVE, for varying in-plane dimensions of the SVE. The visualised deformation are
btained with the enriched periodic boundary conditions.

The resulting sectional stiffnesses, for varying in-plane dimensions of the SVE, are shown in Fig. 5. The
esulting membrane, bending and transverse shear stiffnesses predicted with periodic and enriched periodic boundary
onditions show good agreement with the analytical counterparts (here, the analytical shear stiffness includes a
orrection with the standard shear correction factor 5/6). However, from Fig. 5(d) it is evident that the periodic

boundary conditions are unable to accurately predict the torsional stiffness (see Section 4.2 for a discussion). Note,
however, that the torsional stiffness matches the analytical solution as the in-plane SVE-size tends towards 0,
i.e. when framework coincides with Reissner-Mindlin theory. In contrast, the results with enriched periodic boundary
conditions show an accurate prediction of the torsional stiffness also for finite SVE sizes.

In summary, while the (standard) periodic boundary conditions yield good results in most cases, the SVE-problem
should in general be modelled with the enriched periodic boundary conditions in order to ensure that all major
deformation modes are accurately captured.

5.2. Stress analysis of layered structure

In this numerical example, we will study a multi-layered cantilever beam (narrow plate) with non-symmetric
cross-ply layup. The aim of the investigation is to analyse the stresses predicted by the proposed homogenisation

framework on the sub-scale level. To do so, a two-scale modelling approach is adopted. The macro-scale is

13
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Fig. 6. Resulting through-thickness normal and transverse shear stresses at the centre of a multi-layered cantilever beam.

modelled using plate elements, whereas the sub-scale SVE is discretised by standard continuum elements to properly
resolve each individual layer in the cross-ply material. The plate elements are formulated using the macro-scale
problem derived in Section 3, while the SVE-problem is driven by the micro-periodic boundary conditions (defined
in Section 4.1). The resulting stresses from the two-scale formulation are compared to that of a fully resolved
simulation modelled with standard continuum elements.

The cantilever beam problem to be analysed consists of a cross-ply laminate with 10 layers: [90◦/0◦]5 (where
◦ is aligned with length direction of the beam). The dimensions of the beam are 100 × 20 × 10 mm in the length,
idth and height direction, respectively. Moreover, the individual plies are assumed to be transversely isotropic,
ith the following values: EL = 120 × 103 MPa, ET = 10.5 × 103 MPa, GLT = 5.25 × 103 MPa, νLT = 0.3 and

T T ′ = 0.51. Finally, the beam is subjected to an edge-load of 175 N.
The fully resolved simulation consists of 50 × 5 × 40 standard continuum elements in the length, width and

eight directions, respectively (four elements per layer). The two-scale simulation on the other hand, consists of
0 × 5 plate elements in the length and width directions, while the fine-scale SVE model consists of 30 elements in
ut-of-plane direction (note that the solution is independent of the in-plane discretisation due the periodic boundary
onditions and homogeneity in the in-plane direction).

In Fig. 6, the normal stress (along the beam), denoted σxx , and the transverse shear stress, denoted σxz , have been
lotted through the thickness at the centre of the beam. The results indicate good agreement between the two-scale
pproach and the fully resolved model in predicting the normal stress distribution. However, the two-scale approach
redicts a purely parabolic distribution of the transverse shear stress through the thickness. Thereby, it does not fully
apture the finer variations seen at the interfaces in the fully resolved simulation. Notwithstanding, an analysis of
he average shear force obtained from both models indicates that they both predict a similar value of 8.7 N/mm,
uggesting that the overall shear-stiffness of the structure is accurately captured by the two-scale approach.

To conclude this example, it is found that the proposed homogenisation framework can capture the average
ransverse shear response of a layered structure well, however, does not fully capture the fine-scale variations of
he transverse shear stresses through the thickness of the SVE. This shortcoming is attributed to the volumetric
onstraint emanating from θ̄□ in Eq. (45), which results in a distributed body load that impacts the equilibrium
tate of the SVE (in terms of λθ ).

.3. Statistical sampling of 3D SVEs with spherical inclusions

In this numerical example, we will consider computational homogenisation of a heterogeneous sub-scale structure

ith hard spherical inclusions embedded in a soft matrix material. The aim of the numerical study is to demonstrate

14
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Fig. 7. A heterogeneous domain with spherical inclusions embedded within a soft matrix. The domain acts a sampling domain from which
he SVE are randomly sampled.

he convergence of the homogenised sectional stiffness properties (Eq. (65)) for a heterogeneous material. As such,
he components D̄ε,ε

1111, D̄κ,κ
1111, D̄γ,γ

11 and D̄κ,κ
1212 will be computed and evaluated, for varying size of the SVE.

To ensure that a statistical representativeness of the sub-scale is captured, multiple statistical volume elements
with identical volume fractions are generated for each SVE-size, by a randomised sampling process from a larger
“sampling” domain, shown in Fig. 7. The size of the sampling domain is 50 × 50 × 1 mm (L × W × H ). Moreover,
the in-plane length and width of the SVEs, here denoted L□, will vary between 0.1 mm and 3 mm, while the height
will be kept constant at 1 mm (i.e. the full height of the sample domain).

The spherical inclusions of the sub-structure are assumed to be linearly elastic with Young’s modulus E =

100 GPa and Poisson’s ratio 0.3, and occupy 17 percent of the total volume. Moreover, the radius of the inclusions
are set to 0.2 mm. The matrix material is chosen to be linearly elastic, with Young’s modulus E = 10 GPa and
Poisson’s ratio 0.3.

The resulting mean and standard deviation of D̄ε,ε
1111, for different SVE sizes, are shown in Figs. 8(a) and 8(b),

respectively. Moreover, the deformation is shown in Fig. 9(a). As a first observation, it can be noted that the standard
deviation is large for small SVE sizes, since a small SVE do not include the relevant statistical representation of
the sub-structure (in the in-plane directions). In contrast, large SVEs are able to capture the in-plane heterogeneity
statistics and the standard deviation is therefore smaller (tends towards zero). It can also be noted that the mean of
D̄ε,ε

1111 converges to the same value for all boundary conditions. This is to be expected, since the boundary has a
decreasing influence on the results for increasing domain sizes.

The homogenised value of the bending stiffness D̄κ,κ
1111, when the SVE is subjected to pure bending, is shown in

Fig. 8(c) and 8(d), while the deformation is shown in Fig. 9(b). A similar observation as for the homogenisation of
D̄ε,ε

1111 can be made here; a sufficiently large SVE is required to capture the heterogeneities in the in-plane dimension.
Moreover, a shortcoming for the results obtained with Dirichlet boundary conditions can be seen in Fig. 8(c). This is
caused by an over-constraining from the Dirichlet boundary condition on the lateral faces of the SVE, as previously
discussed in Section 4.4. A detailed discussion and proposed remedy to this issue can be found in Appendix B.

With regard to the symmetrical part of the torsional stiffness D̄κ,κ
1212 presented in Fig. 8(e), similar conclusions

can be drawn as for the case with homogeneous SVE; the periodic and Dirichlet boundary conditions prohibit the
SVE to deform anti-periodically, thereby causing an overestimation of the torsional stiffness for increasing size of
the SVE. The enriched periodic, Neumann and Dirichlet boundary conditions, however, possess the out-of-plane
flexibility needed to properly capture the torsional deformation mode, and the predicted torsional stiffness therefore
converges for large SVEs.
15
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Finally, in Fig. 8(g) and 8(h), it is shown that also the transverse shear stiffness D̄γ,γ

11 converges to a unique
value for increasing SVE sizes, and no pathological size dependency can be seen. Thus, it can be concluded that
the proposed method can properly account for the statistics of in-plane heterogeneities, and shows no spurious
sensitivity to an increasing SVE size, for all three idealised deformation modes.

5.4. Upscaling of beam properties of 3D woven composite

In this numerical example, we aim to verify the up-scaling capabilities of the proposed homogenisation
framework by considering the accuracy of the up-scaled plate stiffness properties from a more complex sub-scale
meso-structure. To do so, we consider a periodic unit cell that represents the interior sub-structure of a fibre
composite reinforced with a 3D-woven yarn architecture, see Fig. 10 . As such, the unit cell consists of yarns
in the warp, horizontal weft, and vertical weft directions, embedded in a polymeric matrix material. Furthermore,
the unit cell is slender, whereby a consistent a homogenisation framework, such as the one presented herein, is
crucial for accurately estimating its transverse shear behaviour.

The geometry and finite element mesh of the unit cell has been developed in Stig et al. [24], with methodology
described in [25], and has been further analysed in the works by Oddy et al. [26]. The unit cell contains local and
spatially varying information about the fibre orientations and the volume fractions. Moreover, the unit cell has a
length of L x = 11.74 mm, and a height and width of L y = L z = 2.18 mm. For detailed information about the

ominal fibre volume fraction in the yarns, the material parameters for the fibres and the matrix, as well as the
icromechanical model used to predict spatially varying yarn properties, please see [24].
To assess the accuracy of the up-scaled plate stiffness properties, the case of a cantilever beam is analysed.

ere, a Timoshenko beam solution with stiffness properties up-scaled from the unit cell will be compared against
he results from a direct numerical simulation (in which the beam heterogeneity is explicitly modelled). The reason
or choosing to analyse a beam, as opposed to a plate, is to make a comparison with a direct numerical simulation
easible, without excessive computational cost.

The beam problem to be analysed is a cantilever beam with an edge load set to 10 N. The total length of the
eam is two times the length of the unit cell, while the width and height is equal to that of the unit cell. The top
nd bottom surfaces of the beam are assumed to free.

The effective membrane stiffness E A, bending stiffness E I and shear stiffness K G A used in the Timoshenko
eam model are evaluated as

E A = L y D̄ε,ε
1111 = 315959 N, (66)

E I = L y D̄κ,κ
1111 = 105442 Nmm2, (67)

K G A = L y D̄γ,γ

111 = 16047 N, (68)

where D̄ε,ε
1111, D̄κ,κ

1111 and D̄γ,γ

111 are obtained as homogenised quantities resulting from the SVE boundary value
roblem with periodic boundary conditions. Note that, since the current homogenisation framework is developed for
lates, the homogenised beam quantities are obtained under the assumption that the homogenised in-plane transverse
train is constrained (ε̄22 = 0). This is a stiffer assumption then what is typically used for beams where the lateral
urfaces are free (σ̄22 = 0), however, this does not create a noticeable effect the current results.

In Fig. 11, the vertical displacement along the centre line of the beam is presented for both the fully resolved
nd the Timoshenko beam simulations. Both solutions show excellent agreement with each other, indicating that
he homogenisation framework accurately predicts the stiffness properties of the unit cell, thereby verifying the
ccuracy of the two-scale method.

. Conclusions

In this work, we have proposed a consistent homogenisation framework for plate elements, and demonstrated its
articular application to a Reissner–Mindlin kinematic model. The proposed framework, based on the Variationally
onsistent Homogenisation method, which guarantees kinematic consistency between the macro- and sub-scale.

urthermore, the proposed homogenisation framework is general, free from any a-priori assumptions on each of the

16
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Fig. 8. Resulting homogenised sectional forces as a function of SVE size.
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Fig. 9. Resulting deformations for a SVE (with periodic boundary conditions).

Fig. 10. A unit cell of an 3D woven composite.

Fig. 11. The resulting displacement field along the centre line of the cantilever beam.

considered scales, and can be efficiently applied to any sub-scale structure and material behaviour, prior to macro-
scopic localisation, to establish constitutive relations for membrane, bending, and transverse shear deformation
modes.

Following the method of VCH, the macro-scale and sub-scale problems are both derived from a single, fully
resolved problem. As a direct consequence, the macro-scale problem can be identified as the classical weak form
of the classical Reissner-Mindlin plate theory, although with the constitutive relations for the membrane, bending
and transverse shear behaviour being determined from the sub-scale (SVE) problem. Moreover, the SVE problem
constitutes a standard continuum formulation, with a set of constraints enforcing the kinematical equivalence to the
macro-scale. Most notably, it has been demonstrated that, an internal volume constraint appears from the derivations.
This constraint is necessary to enforce an effective (volume-averaged) shear angle throughout the SVE volume. This
constraint counteract the spurious transverse shear modes that otherwise would appear in plate-based computational

homogenisation.

18
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In the section that presents the numerical examples, we validate and demonstrate the accuracy of the framework.
irst, we investigate the accuracy of the proposed method for a homogeneous and linear elastic SVE, where the
esults can be compared with classical Reissner-Mindlin plate theory. Here, it can be concluded that SVE-problem
odelled with periodic boundary conditions accurately predicts membrane, bending and transverse shear stiffnesses,

owever, shows erroneous predictions for the torsional stiffness. This issue is overcome with the enriched periodic
oundary conditions, which are proposed in Section 4.2. It can be concluded the standard periodic boundary
onditions yield good results in the majority of deformation modes, however enriched periodic boundary conditions
hould in general be favoured.

In the second numerical example, a multi-scale simulation of a layered cantilever beam (modelled as a narrow
late) is performed, and compared with a reference solution obtained from a fully resolved simulation. By studying
he predicted transverse shear stresses through the thickness of the beam, it is demonstrated that the sub-scale SVE
olution captures the general parabolic shape of the transverse shear stress, but lacks some capability to fully resolve
he finer details seen in the reference simulation.

In the third numerical example, we show that the method can properly account for the statistics of in-plane
eterogeneities, and shows no spurious sensitivity to an increasing SVE size. We also analyse the performance of
ifferent types of sub-scale boundary conditions, and show that results from both Neumann and relaxed Dirichlet
onditions converge to the same values as results obtained with periodic boundary conditions as the SVE size
ncrease. In the last example, we demonstrate the up-scaling capabilities of the method in the practical case of

polymer reinforced with a 3D-woven yarn architecture. In particular, we show that the results obtained from a
imple Timoshenko beam model, with beam properties up-scaled from SVE computations, is practically identical
o the results obtained through a direct numerical simulation of a model where the meso-structure is fully resolved.

In summary, the numerical results show how the proposed two-scale modelling approach can be used to enhance
he predictive capabilities of plate models when sub-structural features have a significant influence on the macro-
cale behaviour. An important feature is that the proposed approach consistently handles SVEs of increasing in-plane
ize, which stems from the enforcement of constraints on the volume averaged transverse shear angles of the SVE
o be equal to the macro-scopic counter-parts. Although, the enforcement of these volume constraints introduces
n additional distributed body load that impacts the equilibrium state of the SVE, and thereby possibly also the
etailed distribution of sub-scale stresses (see example 2), the benefit of allowing a consistent treatment of larger
n-plane sizes of SVEs is considered to be of superior importance. Thereby, we believe that, combined with the
ncorporation of proper nonlinear material behaviour on the sub-scale, the proposed framework can be used to
xplain the sequence of inelastic and damage modes leading up to final failure of complex, thin walled components
ith intricate material sub-structures.
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ppendix A. Derivations of gradients of homogenisation operators

In order to ensure that the homogenisation operator h̄□(u) is kinematically coupled to ū□(u) (i.e h̄ = h̄□ should
epresent the gradient of ū = ū□ for a given field u(x)), it is possible to choose h̄□ as the sensitivity of ū□ with

espect to the placement of the SVE-window, as illustrated in Fig. A.1.

19



E. Börjesson, F. Larsson, K. Runesson et al. Computer Methods in Applied Mechanics and Engineering 413 (2023) 116094

A

o
s
o
p
t

w
e
e
m
c
e

Fig. A.1. Illustration of the operation performed in Eq. (22). The sensitivity is taken w.r.t the position of the SVE-window Ω□( ŷ).

Let ŷ denote the placement of the SVE-volume, Ω□( ŷ). The sensitivity of ū□( ŷ; u) =
1

Ω□

∫
Ω□( ŷ)( Î · u(x))dΩ

w.r.t. to ŷ is then evaluated as follows:

h̄□(x̄; u) = ū□( ŷ; u) ⊗ ∇̂ ŷ
⏐⏐

ŷ=x̄ =
1
Ω□

∫
Ω□( ŷ)

( Î · u(x))dΩ ⊗ ∇̂ ŷ evaluated at ŷ = x̄. (A.1)

Using Reynolds transport theorem on the last expression in the equation above, and evaluating ŷ = x̄, we get

h̄□(x̄; u) =
1
Ω□

∫
∂Ω(x̄)

( Î · u) ⊗ ( Î · n)dΓ

=
1
Ω□

∫
Γ□(x̄)

Î · u ⊗ ndΓ
(A.2)

where we used the fact that Î · n = 0 on γ□ and Î · n = n on Γ□. Furthermore, by making use of the periodic
mapping ϕPER

: Γ+

□ → Γ−

□ and jump-operator [[•]], and the fact that the n on Γ+

□ and Γ−

□ are opposite, we obtain
the final expression presented in Eq. (22):

h̄□(x̄; u) =
1
Ω□

∫
Γ□(x̄)

Î · u ⊗ ndΓ =
1
Ω□

∫
Γ+

□ (x̄)
Î · [[u]] ⊗ ndΓ (A.3)

A similar procedure can be performed for κ̄□(u) and ḡ□(u).

ppendix B. Extended prolongation

In the section with numerical examples we highlight two issues; (i) the inability to capture the torsional stiffness
f the SVE when modelled with periodic boundary conditions, and (iii) the overestimation of the SVE bending
tiffness when modelled with Dirichlet boundary conditions. Both these shortcomings can be attributed to the lack
f higher order deformation terms in the prolongation uM. As such, we here propose a remedy by extending the
rolongation uM in Eq. (14), by adding higher order terms that include bending and torsional modes. In particular,
he proposed extended prolongation is:

uM(x̂, z) = ū(x̄) + h̄(x̄) · [x̂ − x̄] − zθ̄ (x̄) − zκ̄(x̄) · [x̂ − x̄] + w̄(x̄)e3 + ḡ(x̄) · [x̂ − x̄]e3

+
1
2

(
[x̂ − x̄] · κ̄ · [x̂ − x̄]

)
e3 −

1
2
⟨[x̂ + x̄] · κ̄ · [x̂ − x̄]⟩□e3 in Ω□,

(B.1)

here the first row is identical to the initial prolongation proposed in Section 2.4, and the second row contains
xtension with the higher order terms. Here, the first term contains a quadratic part of the placement x̂, which
ncodes a bending and torsional deformation mode in the out-of-plane direction. These macro-scopic deformation
odes are visualised in Fig. B.1, c.f. Fig. 4. Moreover, the last term is added to remove the translation in z-directions

reated by the second term. It is important to note that the requirements in Eq. (17) are still satisfied by the new

xtended prolongation(see Fig. B.2).
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Fig. B.1. Visualisation with the prolongation of bending and symmetric twisting modes for the extended uM in Eq. (B.1) (c.f. Fig. 4).

Fig. B.2. Comparison between the standard prolongation (Equation) and extended prolongation (Equation). The left figure shows the bending
stiffness when (unmodified) Dirichlet boundary conditions are used, and the right figure shown the torsional stiffness for (unmodified) periodic
boundary conditions.

Remark. The addition of the higher order term in Eq. (B.1) creates a slight down-stream effect on the macro-scale
boundary value problem. The bending moment M̄ is updated as (c.f. Eq. (30)):

M̄ =
1

A□

∫
Ω□

z
(

Î · σ · Î
)

+

(
( Î · σ · ez) ⊗ (x̂ − x̄)

)skw
dΩ . (B.2)

esults with the extended prolongation

We revisit the first study in Section 5.1 (homogeneous and linear elastic SVE) to demonstrate the effectiveness
ith the proposed extended prolongation. The quantities of interest are; the bending stiffness D̄κκ

1111 (when modelled
ith Dirichlet boundary conditions), and the symmetric part of the torsional stiffness D̄κκ

1212 (when modelled with
tandard periodic boundary conditions).

The bending stiffness D̄κκ
1111 of the SVE, when modelled with Dirichlet boundary conditions, are shown in

ig. B.2(a). It can be seen that the bending stiffness is captured as the SVE-size increases and the boundary effects

f the Dirichlet conditions decreases.
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a

The torsional stiffness D̄κκ
1212 of the SVE, when modelled with periodic boundary conditions, are shown in

Fig. B.2(b). It can be concluded that since the twisting mode is included in the extended prolongation uM, the
torsional stiffness is captured for all sizes of the SVE.

Appendix C. On the computation of plate stiffnesses in the linear case

In this appendix, we will derive the expression for the homogenised plate stiffness properties presented
in Eq. (65), under the assumption of linear elasticity and no external boundary load (t p = 0 on γ□). In such a
case, the Cauchy stress can be expressed as σ = E : ε, with E denoting the fourth order linear elastic stiffness
tensor. Upon introducing this linear relation into Eq. (39), the linear SVE-problem can be stated as that of solving
for us

∈ Us
□ such that:

1
A□

∫
Ω□

ϵ[δus] : E : ϵ[us]dΩ =
1

A□

∫
γ□

tp · δusdΓ −
1

A□

∫
Ω□

ϵ[δus] : E : ϵ[uM]dΩ ∀δus
∈ Us

□. (C.1)

fter which the section forces can be computed as follows(cf. Eqs. (28)–(30)):

N̄αβ =
1

A□

∫
Ω□

Eαβ : E : ϵ[us
+ uM]dΩ

V̄α =
1

A□

∫
Ω□

E3α : E : ϵ[us
+ uM]dΩ

M̄αβ =
1

A□

∫
Ω□

(z Eαβ + (x̂β − x̄β)E3α) : E : ϵ[us
+ uM]dΩ

(C.2)

where

Eαβ = [eα ⊗ eβ]sym, E3α = [e3 ⊗ eα]sym. (C.3)

Due to the assumption of linear elasticity, the solution to fluctuation field us in Eq. (C.1) can be expressed as a
superposition of different deformation modes:

us
=

2∑
α,β=0

us,ε
αβ ϵ̄αβ +

2∑
α,β=0

us,γ
α γ̄α +

2∑
α=0

us,κ
αβ κ̄αβ (C.4)

where we formulate for sensitivity problems as
(i) Find us,ε

αβ ∈ Us
□ such that for α, β = 1, 2

1
A□

∫
Ω□

ϵ[δus] : E : ϵ[us,ε
αβ ]dΩ = −

1
A□

∫
Ω□

ϵ[δus] : E : EαβdΩ ∀δus
∈ Us

□ (C.5)

(ii) Find us,γ
α ∈ Us

□ such that for α = 1

1
A□

∫
Ω□

ϵ[δus] : E : ϵ[us,γ
α ]dΩ = −

1
A□

∫
Ω□

ϵ[δus] : E : E3αdΩ ∀δus
∈ Us

□ (C.6)

(iii) Find us,κ
αβ ∈ Us

□ such that for α, β = 1, 2

1
A□

∫
Ω□

ϵ[δus] : E : ϵ[us,κ
αβ ]dΩ = −

1
A□

∫
Ω□

ϵ[δus] : E :
(
−z Eαβ − (x̂β − x̄β)E3α

)
dΩ ∀δus

∈ Us
□. (C.7)

It can be verified that Eqs. (C.4) together with Eqs. (C.5)–(C.7) solves the SVE-problem in Eqs. (C.1). Moreover,
in the Eqs. (C.5)–(C.7), we have used that ϵ[uM] can be expressed as:

ϵ[uM] =

2∑
α,β=1

Eαβ ϵ̄αβ +

∑
α=1

E2
3α γ̄α +

2∑
α,β=1

(
−z Eαβ − (x̂β − x̄β)E3α

)
κ̄αβ . (C.8)

By inserting the superposition of us in Eq. (C.4), into the expressions for the sectional forces in Eq. (C.2), we
obtain an expression for the linear plate stiffness properties:

N̄αβ =

2∑
D̄ε,ε

αβγ δ ϵ̄γ δ +

2∑
D̄ε,γ

αβγ γ̄γ +

2∑
D̄ε,κ

αβγ δ κ̄γ δ (C.9)

γ,δ=1 γ=1 γ,δ=1

22



E. Börjesson, F. Larsson, K. Runesson et al. Computer Methods in Applied Mechanics and Engineering 413 (2023) 116094

R

V̄α =

2∑
γ,δ=1

D̄γ,ε

αβγ ϵ̄βγ +

2∑
β=1

D̄γ,γ

αβ γ̄β +

2∑
β,γ=1

D̄γ,κ

αβγ κ̄βγ (C.10)

−M̄αβ =

2∑
γ,δ=1

D̄κ,ε
αβγ δ ϵ̄γ δ +

2∑
γ=1

D̄κ,γ

αβγ γ̄γ +

2∑
γ,δ=1

D̄κ,κ
αβγ δ κ̄γ δ (C.11)

where the plate stiffness properties D̄•,•
αβγ δ are computed as:

Dε,ε
αβγ δ =

1
A□

∫
Ω□

Eαβ : E :

[
Eγ δ + ϵ[us,ε

γ δ ]
]

dΩ (C.12)

Dε,γ

αβγ =
1

A□

∫
Ω□

Eαβ : E :
[
E3γ + ϵ[us,γ

γ ]
]

dΩ (C.13)

Dε,κ
αβγ δ =

1
A□

∫
Ω□

Eαβ : E :

[
−z Eγ δ − (x̂δ − x̄δ)E3γ + ϵ[us,κ

γ δ ]
]

dΩ (C.14)

Dγ,ε

αβγ =
1

A□

∫
Ω□

E3α : E :

[
Eβγ + ϵ[us,ε

βγ ]
]

dΩ (C.15)

Dγ,γ

αβ =
1

A□

∫
Ω□

E3α : E :
[
E3β + ϵ[us,γ

β ]
]

dΩ (C.16)

Dγ,κ

αβγ =
1

A□

∫
Ω□

E3α : E :

[
−z Eβγ − (x̂γ − x̄γ )E3β + ϵ[us,κ

βγ ]
]

dΩ (C.17)

Dκ,ε
αβγ δ =

1
A□

∫
Ω□

[
−z Eαβ − (x̂β − x̄β)E3α

]
: E :

[
Eγ δ + ϵ[us,ε

γ δ ]
]

dΩ (C.18)

Dκ,γ

αβγ =
1

A□

∫
Ω□

[
−z Eαβ − (x̂β − x̄β)E3α

]
: E :

[
E3γ + ϵ[us,γ

γ ]
]

dΩ (C.19)

Dκ,κ
αβγ δ =

1
A□

∫
Ω□

[
−z Eαβ − (x̂β − x̄β)E3α

]
: E :

[
−z Eγ δ − (x̂δ − x̄δ)E3γ + ϵ[us,κ

γ δ ]
]

dΩ (C.20)

In summary, in order to obtain (for example) the membrane stiffness for D̄ε,ε
αβ11, one should evaluate the expression

in Eq. (C.12), with the solution us,ε
11 obtained from Eq. (C.5) (with α, β = 1). Note, however, that this is equivalent

to evaluating the membrane forces N̄αβ = D̄ε,ε
αβ11 (cf. Eq. (28)), with a us obtained with by solving the (linear)

SVE-problem with the macro-scale input ε̄11 = 1 (and ε̄12 = ε̄21 = ε̄22 = 0, κ̄ = 0, γ̄ = 0).
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