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We present a Huygens’ surface for the finite element method applied to Maxwell’s 
equations, where the equivalent electric and magnetic surface currents are incorporated 
in the weak form by means of Nitsche’s method. The proposed method preserves the 
reciprocity of Maxwell’s equations and it allows for the computation of the total field 
inside the Huygens’ surface, whereas on its outside only the scattered field is computed. 
The equivalent magnetic surface current at the Huygens’ surface requires a double 
representation of the discontinuous tangential component of the electric field and we 
demonstrate that it can be efficiently combined with a previously presented higher-
order brick-tetrahedron hybridization. Also, it is demonstrated that the near-to-far-field 
transformation can be evaluated in an accurate manner if collocated with the Huygens’ 
surface, which allows for a compact computational domain and a reduction in the required 
computational resources. The proposed Huygens’ surface is tested on two scattering 
problems with perfect electric conductor scatterers: (i) a sphere that demonstrates second-
order convergence towards the analytical result for a piecewise linear approximation of 
the electric field; and (ii) a double ogive with two sharp tips which gives a computed 
monostatic radar cross section that compares well with measurements and computations 
in the open literature for both polarizations.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Electromagnetic scattering has a history of more than 100 years, where the pioneering work by Mie [1] is very well-
known and has had an enormous impact in many scientific disciplines. Today, the modern and increasingly powerful 
computational resources allow for the numerical solution of ever more difficult scattering problems, where the develop-
ment of new numerical algorithms has made it possible to address entirely new challenges in terms of scatterers with 
complicated geometry and media. Kahnert [2] provides a rather recent review of numerical methods for electromagnetic 
scattering problems, where both differential and integral equation are considered.

The finite element method (FEM) [3] is well-suited for problems with complicated geometry and media, where non-linear 
media can be treated in the time domain. In the context of scattering (and radiation) problems in free space, the computa-
tional mesh must be truncated and efficient techniques are available [3], where the perfectly matched layer (PML) [4,5] is 
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very popular since it preserves the sparsity of the system of linear equations and can be formulated in the time domain [6]. 
However, the PML is not suitable for the implementation of an incident field and, thus, it must be complemented by other 
techniques when applied to scattering problems.

The so-called scattered field formulation for the FEM is a rather direct approach as it solves for the scattered field in 
the entire computational domain, where the incident field enters the formulation as an inhomogeneous Dirichlet boundary 
condition on metal surfaces and as volume sources in dielectric media. However, this approach is not well-suited for very 
complicated surfaces or penetrable inhomogeneous media, where the sources are computationally expensive to evaluate. 
In the case of media with non-linearities, time-domain computations are necessary and it may be impossible to compute 
the time-dependent volumetric sources since the scattered field formulation relies on the linearity of the Maxwell’s equa-
tions. For problems such as well-shielded cavities or efficiently shadowing structures, the scattered field almost cancels the 
incident field and, thus, the post-process construction of the total field may suffer from severe numerical inaccuracies.

An elegant solution to these problems is to use a so-called Huygens’ surface, which encloses the scatterer and is en-
tirely located in the free-space region that embeds the scatterer. This technique has been very popular to use for the 
finite-difference time-domain (FDTD) scheme [7,8], where efficient time-domain implementations are possible. The Huy-
gens’ surface is equipped with equivalent electric and magnetic surface currents that are computed from the incident field 
such that they yield the total field inside and the scattered field outside the Huygens’ surface. This type of approach can 
also be used for the FEM, which has been described by Marchand et al. [9] and references therein. Marchand et al. use the 
finite-element tearing-and-interconnect (FETI) approach to implement the magnetic surface currents that are necessary to 
establish an electric field with a discontinuous tangential component on the Huygens’ surface. Their approach also involves 
an extra unknown field on the Huygens’ surface and this field can be interpreted as the Lagrangian multiplier featured in 
the conventional FETI [10] expressed as constrained variational principle. Marchand et al. [9] only test their method for two-
dimensional problems with transverse electric (TE) fields, although they point out that the formulation may be generalized 
to three-dimensional cases too.

In this article, we present and test a new technique to implement a Huygens’ surface for the FEM applied to Maxwell’s 
equations in three dimensions. We use Nitsche’s method [11,12] to impose equivalent electric and magnetic surface cur-
rents on the Huygens’ surface. These equivalent surface currents are related to a tangential discontinuity in the magnetic 
and electric fields, respectively, according to the equivalence principle. As a consequence, we compute the total electric 
field inside the Huygens’ surface and the scattered electric field outside the Huygens’ surface. For the FEM, we use curl-
conforming elements [13] for the total-field region and the scattered-field region separately, where we have two sets of 
degrees of freedom for the tangential electric field at the Huygens’ surface to allow for the discontinuity associated with 
the equivalent magnetic surface current. This construction in combination with Galerkin’s method preserves the reciprocity 
of the continuous system.

In particular, the Huygens’ surface proposed in this article can be collocated with the hybrid interface between an 
unstructured mesh of tetrahedrons and a structured grid of brick-shaped elements, where this hybrid interface is featured by 
our previously presented higher-order hybrid method [14] that combines body-conforming tetrahedrons with brick-shaped 
elements [6] that allow for mass lumping. In addition, we demonstrate that it is possible to also apply the near-to-far-field 
transformation [8] at the surface that is also used for both the hybrid interface and the Huygens’ surface, which reduces the 
size of the computational domain. In this computational setting, our proposed Huygens’ surface is tested on the (bistatic) 
scattering from a perfect electric conducting sphere and the computed results are compared with the Mie solution [1,15]. 
In addition, we compute the monostatic radar cross section for the double ogive at 1.57 GHz and 9 GHz, which is one of 
the EMCC radar benchmark cases [16].

2. Method

As illustrated in Fig. 1, the computational domain � is partitioned into two sub-regions: (i) the total field region �tot; 
and (ii) the scattered-field region �sca. Here, the interface between �tot and �sca is denoted by �H, which is referred to as 
a Huygens’ surface. We formulate the problem in the frequency domain and the corresponding time-domain version of the 
method can be directly derived by means of the Fourier transform. In the total field region �tot, we wish to compute the 
total electric field E tot = E inc + Esca, where E inc is the incident field and Esca is the scattered field. In contrast, we wish to 
compute only the scattered field Esca in the scattered-field region �sca.

Here, the sources that cause the incident field E inc are assumed to be located at infinity and, thus, E inc has no sources 
inside the computational domain �. Given only these sources, the incident field E inc is the solution to Maxwell’s equations 
in free space and, in particular, the incident field E inc is then known throughout the computational domain �. For the 
(trivial) problem without scatterers, we then have E tot = E inc in �tot and Esca = 0 in �sca. Next, the scatterers of interest 
are placed in the total field region �tot and these scatterers cause a (non-zero) scattered field Esca, where the scattered 
field Esca has its (fictitious) sources located inside �H. It should be emphasized that outside �H, the total electric field can 
easily be computed once the scattered field E sca is known and, as a consequence, it is sufficient to compute the scattered 
field Esca in �sca. Finally, we wish to work with the total field E tot in �tot since it is typically easier to model complicated 
materials or impose boundary conditions in terms of the total field. For further information on scattering problems and their 
solution, the reader is recommended the excellent book by Kristensson [17]. The construction based on the total field and 
the scattered field presented above is very common to use for scattering problems formulated in terms of partial differential 
2
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�H

�∞

�tot

�sca

Fig. 1. Computational domain partitioned into a total-field region �tot and a scattered-field region �sca .

equations, where the reader is recommended the book by Taflove and Hagness [8] for formulations suitable for the FDTD 
scheme.

In addition, we use the notation

E =
{

E tot in �tot

Esca in �sca (1)

for the field solution throughout the entire computational domain �, which features a discontinuity in the tangential com-
ponent of the electric field at the Huygens’ surface �H.

The total electric field E tot must satisfy the vector Helmholtz’ equation in �tot , which is derived from Maxwell’s equa-
tions based on the constitutive relations and the fact that Faraday’s law then can be used to eliminate the magnetic field in 
Ampère’s law. Similarly, Esca must satisfy the vector Helmholtz’ equation in �sca, which is a consequence of the fact that 
the incident field E inc already satisfies the vector Helmholtz’ equation with its sources outside �. In summary, we have two 
(disjoint) partial differential equations

∇ × (μ−1∇ × E tot) − ω2εE tot = 0 in �tot (2)

∇ × (μ−1
0 ∇ × Esca) − ω2ε0 Esca = 0 in �sca (3)

Next, the two field solutions E tot and Esca are related to each other by two interface conditions on �H. Given Eq. (1), we 
introduce the notation �E� = Esca − E tot = −E inc for the so-called jump of E at �H. By definition, we then get the interface 
condition n̂ × �E� = −n̂ × E inc on �H for the electric field itself, where n̂ = n̂sca = −n̂tot is the unit normal vector associated 
with �H and it points away from �sca. Similarly, we get the interface condition n̂ × �∇ × E� = −n̂ × ∇ × E inc on �H for the 
curl of the electric field. In summary, we have two interface conditions

n̂ × �E� = P H on �H (4)

n̂ × �∇ × E� = Q H on �H (5)

where P H = −n̂ × E inc and Q H = −n̂ × ∇ × E inc are computed from the given incident field E inc. Alternatively, the equiv-
alent magnetic surface current M s = P H and the electric surface currents J s = Q H/( jωμ0) could be used to represent the 
sources outside the Huygens’ surface that cause the incident field.

The boundary value problem (2)-(5) without any scatterers obviously gives the solution E inc in �tot and the zero solution 
in �sca, since the scattered field is zero for such a situation. An actual scattering problem of practical interest requires the 
boundary value problem (2)-(5) to be complemented with additional information that is intentionally omitted below in the 
derivation of the Huygens’ surface (cf. Sec. 2.1), since it simplifies the presentation. Thus, we would need to, given an actual 
scattering problem, place the scatterer in the interior of �tot and apply a free-space truncation of �sca at its outer boundary 
�∞ . Thus, Eq. (2) may involve inhomogeneous material parameters μ and ε in the interior of �tot, should �tot contain 
penetrable scatterers. In addition, the interior of �tot may feature additional boundary conditions that model, e.g., perfect 
electric conductor (PEC) surfaces or waveguide ports associated with antennas. The outer boundary �∞ of the computational 
domain is equipped with some sort of free-space truncation and, for the numerical tests in this article, we use a PML backed 
by a PEC. For other options on free-space truncation of the finite element mesh for electromagnetic problems, the reader is 
referred to the book by Jin [3].
3
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2.1. Finite element formulation using Nitsche’s method

Here, we derive the weak form for the boundary value problem (2)-(5). First, we define the function spaces [13,18]

H(curl,�tot) =
⎧⎨
⎩E tot :

∫
�tot

|E tot|2d�tot < ∞ and
∫

�tot

|∇ × E tot|2d�tot < ∞
⎫⎬
⎭ and (6)

H 0(curl,�sca) =
⎧⎨
⎩Esca :

∫
�sca

|Esca|2d�sca < ∞ and
∫

�sca

|∇ × Esca|2d�sca < ∞ and n̂ × Esca = 0 on �∞

⎫⎬
⎭ . (7)

We multiply Eq. (2) with the weighting function W tot
i ∈ H(curl, �tot) and integrate over �tot. Next, we integrate by parts 

based on the identity ∇ · (u × v) = (∇ × u) · v − u · (∇ × v) and Gauss’ theorem. This yields∫
�tot

(∇ × W tot
i

) · (μ−1∇ × E tot) − ω2W tot
i · (εE tot)d�tot +

∫
�H

(
n̂ × W tot

i

) ·
(
μ−1

0 ∇ × E tot
)

d�H = 0, (8)

where we assume that μ = μ0 in the immediate (infinitesimal) neighborhood of �H as it is approached from �tot. Similarly, 
we multiply Eq. (3) with the weighting function W sca

i ∈ H 0(curl, �sca) and integrate over �sca. Next, we integrate by parts 
again in combination with the boundary condition n̂ × Esca = 0 on �∞ , which yields∫

�sca

(∇ × W sca
i

) ·
(
μ−1

0 ∇ × Esca
)

− ω2W sca
i · (ε0 Esca)d�sca −

∫
�H

(
n̂ × W sca

i

) ·
(
μ−1

0 ∇ × Esca
)

d�H = 0. (9)

In summary, we have the two separate expressions
(∇ × W tot

i ,μ−1∇ × E tot)
�tot − ω2 (

W tot
i , εE tot)

�tot +
(

n̂ × W tot
i ,μ−1

0 ∇ × E tot
)

�H
= 0 and (10)

(
∇ × W sca

i ,μ−1
0 ∇ × Esca

)
�sca

− ω2 (
W sca

i , ε0 Esca)
�sca −

(
n̂ × W sca

i ,μ−1
0 ∇ × Esca

)
�H

= 0, (11)

which apply to the two separate sub-domains �tot and �sca, respectively, without regard to the interface conditions (4)-(5)
at the Huygens’ surface �H. It should be emphasized that the permeability is assumed to be μ0 at the interface �H and in 
its immediate (infinitesimal) neighborhood inside �tot . Here and in the following, (u, v)X = ∫

X u · v dX denotes the inner 
product of u and v on the region X , where X may be a sub-domain or an interface between two sub-domains.

We add Eqs. (10)-(11) to arrive at the weak form
(∇ × W tot

i ,μ−1∇ × E tot)
�tot +

(
∇ × W sca

i ,μ−1
0 ∇ × Esca

)
�sca

− ω2 (
W tot

i , εE tot)
�tot − ω2 (

W sca
i , ε0 Esca)

�sca

+
(

n̂ × W tot
i ,μ−1

0 ∇ × E tot
)

�H
−

(
n̂ × W sca

i ,μ−1
0 ∇ × Esca

)
�H

= 0 (12)

To incorporate the interface conditions (4)-(5) at �H, we use the two average operators { {E} } = κ1 Esca +κ2 E tot and { {E} }� =
κ2 Esca + κ1 E tot, cf. Wadbro et al. [19]. Here, the non-negative values κ1 and κ2 can be chosen given the constraint that 
κ1 + κ2 = 1. Given these definitions, we have that

usca · vsca − utot · vtot = {{u}} · �v� + �u� · {{v}}� = {{u}}� · �v� + �u� · {{v}}
for any two fields u and v on the interface �H, where the notation presented in Eq. (1) is applied to both u and v . Thus, 
we may express the surface terms associated with �H in Eq. (12) by(

n̂ × W tot
i ,μ−1

0 ∇ × E tot
)

�H
−

(
n̂ × W sca

i ,μ−1
0 ∇ × Esca

)
�H

= −
(

n̂ × {{W i}}�,μ−1
0 �∇ × E�

)
�H

−
(

n̂ × �W i�,μ
−1
0 {{∇ × E}}

)
�H

=
(
{{W i}}�,μ−1

0 Q H

)
�H

−
(

n̂ × �W i�,μ
−1
0 {{∇ × E}}

)
�H

, (13)

where we incorporate the interface condition (5). The second term in the right-hand side of Eq. (13) contributes to the 
system matrix and it is not symmetric. To render the final stiffness matrix symmetric and preserve the reciprocity in the 
discrete formulation of the problem, we exploit the interface condition (4) and subtract(

{{∇ × W i}},μ−1
0 (n̂ × �E� − P H)

)
�H

= 0 (14)
4
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from the weak form (12). In addition, the problem must be stabilized and this is accomplished by also adding

γ
(

n̂ × �W i�,μ
−1
0 h−1(n̂ × �E� − P H)

)
�H

= 0, (15)

to the weak form (12), which again is based on the fulfillment of the interface condition (4). Here, h is the element size and 
γ is a stabilization parameter that renders a stable problem for sufficiently large γ . The steps accounted for by Eqs. (14)-(15)
are known as Nitsche’s method [11,12].

We now solve the problem: seek E tot ∈ H(curl, �tot) and Esca ∈ H 0(curl, �sca) such that(∇ × W tot
i ,μ−1∇ × E tot)

�tot +
(
∇ × W sca

i ,μ−1
0 ∇ × Esca

)
�sca

− ω2 (
W tot

i , εE tot)
�tot − ω2 (

W sca
i , ε0 Esca)

�sca

−
(

n̂ × �W i�,μ
−1
0 {{∇ × E}}

)
�H

−
(
{{∇ × W i}},μ−1

0 n̂ × �E�
)

�H
+ γ

(
n̂ × �W i�,μ

−1
0 h−1n̂ × �E�

)
�H

= −
(
{{W i}}�,μ−1

0 Q H

)
�H

−
(
{{∇ × W i}},μ−1

0 P H

)
�H

+ γ
(

n̂ × �W i�,μ
−1
0 h−1 P H

)
�H

(16)

for all W tot
i ∈ H(curl, �tot) and W sca

i ∈ H 0(curl, �sca).
In order to arrive at a discrete problem, we expand the electric field according to E tot = ∑

j Etot
j N tot

j on �tot and Esca =∑
j Esca

j N sca
j on �sca, where N tot

j ∈ H(curl, �tot) and N sca
j ∈ H 0(curl, �sca) are curl-conforming basis functions to be detailed 

later. Here, we wish to compute the unknown electric field coefficients E tot
j and Esca

j . We choose the weighting functions 
W tot

i from the set of basis functions N tot
j and, similarly, the weighting functions W sca

i from the set of basis functions N sca
j , 

which corresponds to Galerkin’s method. (It should be understood by now that the indexing of degrees of freedom, basis 
functions and weighting functions is different for �tot and �sca, despite that the same notation for the index is used in 
both sub-domains.)

Thus, the final weak formulation can be expressed as a system of linear equations(
S − SH,0 + γ SH,γ − ω2M

)
e = −qH − pH,0 + γ pH,γ (17)

where e is a vector with the electric field coefficients E tot
j and Esca

j that we wish to compute. The matrix entries and 
remaining vector entries are given by

Sij =
(
∇ × N tot

i ,μ−1∇ × N tot
j

)
�tot

+
(
∇ × N sca

i ,μ−1
0 ∇ × N sca

j

)
�sca

SH,0,i j =
(

n̂ × �N i�,μ
−1
0 {{∇ × N j}}

)
�H

+
(
μ−1

0 {{∇ × N i}}, n̂ × �N j�
)

�H
,

SH,γ ,i j =
(

n̂ × �N i�,μ
−1
0 h−1n̂ × �N j�

)
�H

,

Mij =
(

N tot
i , εN tot

j

)
�tot

+
(

N sca
i , ε0 N sca

j

)
�sca

qH,i =
(
{{N i}}�,μ−1

0 Q H

)
�H

,

pH,0,i =
(
{{∇ × N i}},μ−1

0 P H

)
�H

,

pH,γ ,i =
(

n̂ × �N i�,μ
−1
0 h−1 P H

)
�H

.

It should be noted that all matrices above are symmetric and, thus, the reciprocity of the continuum problem is preserved, 
which is a consequence of our formulation in combination with Galerkin’s method.

2.2. Relation to the higher-order brick-tetrahedron hybrid

In Ref. [14], we present a higher-order brick-tetrahedron hybrid for Maxwell’s equations. The Huygens’ surface presented 
in this article reduces to this higher-order hybrid if P H = Q H = 0 and the total field region is discretized by tetrahedrons 
(�tot = �tet) whereas the scattered-field region is discretized by brick-shaped elements (�sca = �hex), which implies that 
the hybrid interface �I coincides with the Huygens’ surface (�I = �H). In the following, we use this discretization since it 
provides three computational advantages:

1. Scatterers (and other physical objects) often involve complicated geometry and materials and, thus, it is advantageous 
to treat this part of the problem in terms of the total electric field expressed on an unstructured and body-conforming 
mesh of tetrahedrons, which also allows for local mesh-refinement where the solution may vary rapidly due to e.g. field 
singularities. It should be noted that our formulation allows for non-conforming meshes and function spaces at both �H
and �I , which can be useful in cases that require local mesh-refinement in the vicinity of the Huygens’ surface and/or 
the hybrid interface.
5
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�PML

�T

�H

�PEC

Fig. 2. Computational domain for the scattering problem: (i) thick solid circle – PEC scatterer that occupies the sub-domain �PEC; (ii) thick dashed line – 
Huygens’ surface �H that is collocated with the hybrid interface �I in all tests in this article; (iii) thin dashed line – near-to-far-field transformation surface 
�T; (iv) thick solid square box – computational domain truncated at �∞ by a PEC equipped with a PML region �PML for the absorption of the outward 
propagating scattered field.

2. The computational region that surrounds the scatterers (and other objects) consists typically of free-space and, thus, 
it is desirable to use brick-shaped elements that allow for efficient computations in large homogeneous regions. In 
addition, it is favorable to compute the scattered field in this region since it allows for direct usage of a wide variety of 
methods to truncate the computational domain for free-space problems.

3. The formulation of the Huygens’ surface requires two sets of degrees of freedom to represent the discontinuity of the 
tangential electric field for the entire interface �H. Also, the hybrid interface �I that connects the structured grid of 
brick-shaped elements to the unstructured mesh of tetrahedrons requires a double representation of the tangential 
field on the interface [14], which is a consequence of the different curl-conforming spaces that describe the tangential 
electric field on the triangular and the rectangular faces that coincide with the hybrid interface. The collocation of the 
Huygens’ surface �H with the hybrid interface �I requires only one double representation for the tangential field. Also, 
this type of arrangement often brings the Huygens’ surface rather close to the scatterers, which in turn reduces the 
size of the interface with the double representation. Finally, the accumulation of dispersion errors is also mitigated by 
a shorter distance between the Huygens’ surface and the scatterer.

It should be noted that problems with several disjoint scatterers may be treated by a separate Huygens’ surface with a 
hybrid interface for each individual scatterer, where the homogeneous regions between the scatterers can be treated by a 
grid of structured brick-shaped elements.

3. Results

We test the Huygens’ surface formulation on two scattering problems with PEC scatterers: (i) a sphere; and (ii) a double 
ogive. The scattering problem with the PEC sphere can be solved analytically on closed form [1,15], which allows for an 
assessment of the error in the numerical solution. The double ogive features two sharp tips that support field singularities 
and it has a very low monostatic radar cross section, which makes it a useful and interesting test case since it provides 
additional challenges for the numerical solution of the scattering problem. Before the numerical results are presented, we 
describe the test-case setup with reference to the computational domain for the scattering problem shown in Fig. 2, where 
the PEC scatterer occupies the domain �PEC.

The total field region �tot is located inside the Huygens’ surface �H, which is shown by a thick dashed line in Fig. 2. 
Here, we typically discretize a relatively thin layer next to the scatterer’s surface by tetrahedrons and, in this article, we 
employ the hierarchical basis functions presented by Ingelström [20]. This unstructured mesh is body conforming to the 
surface of the scatterer and we use an isoparametric representation of curved surfaces as higher-order basis functions are 
used to represent the electric field. In the following, we denote the polynomial order of the basis functions by ptet for the 
tetrahedrons. The lowest-order curl-conforming elements are, thus, denoted by ptet = 1i, where the subindex i refers to that 
the basis is incomplete. Should the space of gradients be added to this set of basis functions, we have a complete linear 
representation of the electric field and the polynomial order is denoted by ptet = 1c, where the subindex c denotes that the 
basis is complete. Similarly, the quadratic basis is denoted ptet = 2i if incomplete and ptet = 2c if complete, etc.

Outside the Huygens’ surface �H, we solve for the scattered field in the homogeneous free-space region �sca. Here, 
�sca is discretized with brick-shaped elements of incomplete order phex = 1i, 2i, . . .. This construction allows for mass 
lumping [6] that renders the mass matrix diagonal, which reduces the memory requirements and allows for explicit time-
6
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stepping. Given that we solve for the scattered field in �sca, there is a number of possibilities for the free-space truncation 
of the computational grid. Here, we use a PML [21,22] terminated by a PEC at �∞ and we employ the PML formulation for 
Cartesian coordinates with the diagonal material tensors ¯̄ε = ε0

¯̄� and ¯̄μ = μ0
¯̄� [21,22], where

¯̄� = x̂

(
γyγz

γx

)
x̂ + ŷ

(
γxγz

γy

)
ŷ + ẑ

(
γxγy

γz

)
ẑ. (18)

Given the orthogonal distance ζa from the PML-vacuum interface into the PML, we have γa(ζa) = 1 + σa(ζa)/( jωε0) for the 
Cartesian axes a = x, y and z. Further, we use a quadratic profile for the PML conductivity σa(ζa) = σa,max(ζa/La)

2, where La

is the thickness of the PML layer. In the following, we specify the desired reflection coefficient R0 at normal incidence and, 
given an idealized theoretical analysis [23] of the PML in the continuum case, we have σa,max = −(3 ln(R0))/(2η0 La), where 
η0 = √

μ0/ε0 is the impedance of vacuum.

The scatterer is illuminated by an incident plane wave E inc = p̂inc E0 exp(− jk0k̂
inc· r) where the polarization is dictated 

by the unit vector p̂inc and the direction of propagation by k̂
inc

. Here, the free-space wavenumber is denoted k0 = ω/c0

and p̂inc · k̂
inc = 0. For this situation, we compute the bistatic radar cross section as a function of the elevation angle θ and 

azimuth angle φ in spherical coordinates, where the radar cross section is

σ(θ,φ) = lim
r→∞ 4πr2 |Esca|2

|E inc|2 = 4π

|E0|2 (|Fθ (θ,φ)|2 + |Fφ(θ,φ)|2).

Here, the radial coordinate in spherical coordinates is denoted by r and the scattered electric field in the far-field region is 
related to the far-field amplitude F by Esca = r−1 exp(− jk0r)F . The two components Fθ and Fφ (in spherical coordinates) 
of the far-field amplitude F are computed based on the scattered electromagnetic fields in the vicinity of the scatterer 
according to

F = jk0

4π
r̂ ×

∮
�T

[−n̂ × Esca(r′) + η0r̂ × (n̂ × H sca(r′))
]

exp( jk0r̂ · r′)d�′,

where �T is a closed surface that encloses the scatterer and n̂ is the unit normal to �T that points away from the enclosed 
volume. Here, r̂ = r̂(θ, φ) is the unit radial vector that points in the direction for evaluation of σ(θ, φ).

We use a curl-conforming basis to solve for the electric field Esca in �sca and, as a post-processing step, we compute the 
magnetic field by H sca = −( jωμ0)

−1∇ × Esca, where ∇ × Esca is discontinuous at the faces of the mesh. It is convenient 
to let the discretization and its faces conform to �T, where the tangential component of the scattered electric field E sca is 
easily accessed. For the magnetic field, we use H sca = −( jωμ0)

−1{ {∇ × Esca} } as it is evaluated on �T with κ1 = κ2 = 1/2. It 
should be noted that it is feasible to let �T coincide with �H and, in that case, we must use Esca = E tot − E inc in the region 
�tot as the average { {∇ × Esca} } is evaluated. Thus, this operation amounts to a simple post-processing step of subtracting 
the (known) incident field E inc from the computed solution E tot, which is trivial and inexpensive from a computational 
point of view. One benefit of the choice �T = �H is that it is feasible to shrink the computational domain and, thus, reduce 
the total number of degrees of freedom, which also lowers the computational cost.

In the following, we compute the electromagnetic fields by means of the weak formulation described in Sec. 2.1, where 
we use κ1 = 1 with κ2 = 0 since this choice typically results in fewer non-zero elements in the system matrix. Furthermore, 
the stabilization parameter γ is set to 103, which works well (with some margin) for all the numerical tests that follow 
where we use at most complete quadratic polynomial basis functions to approximate the electric field.

3.1. Sphere

First, we test the Huygens’ surface for the scattering problem with a PEC sphere of radius a = 1 m. We perform a 
convergence test with respect to the cell size for the bistatic radar cross section computed at the frequency f = 71.6 MHz, 
which corresponds to k0a = 1.5. Here, we collocate �H with the hybrid interface �I and place �H = �I rather close to the 
PEC sphere, which implies that it has a staircased shape as shown in Fig. 3 by the thick solid lines in the vicinity of the 
sphere. To facilitate comparisons with the literature [24], we choose �T as the faces of a cube with the side length 3.2 m, 
where the PEC sphere is placed at the center of this region. Thus, �T is completely located in the scattered-field region �sca.

The computational domain is truncated at �∞ , which is constructed from the faces of a cube with the side length of 
4.2 m that is also placed with the sphere at its center. On the outer boundary �∞ , we use a PEC boundary condition and 
the scattered field is absorbed by a PML of thickness La = 0.1 m with NPML = 4 cells, which is placed inside and in direct 
contact with �∞ . For the PML, we set σa,max such that the reflection coefficient is R0 = 10−4 for normal incidence in the 
continuum case.

For the convergence test, we use cube-shaped elements of side length hn = h1/n for n = 1, 2, 3 and 4, where h1 = 0.4 m. 
The rest of the mesh is hierarchically refined in a similar fashion except for the PML region where we use NPML = 4 cells 
in the direction perpendicular to �∞ for all values of hn . (Tests demonstrate that this type of discretized PML yields a 
7
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Fig. 3. Computational mesh for the resolution h4 of the PEC sphere with a triangulated surface �PEC. The vicinity of the sphere is discretized by unstructured 
tetrahedrons, where this mesh is truncated at the staircased hybrid interface indicated by thick solid lines. Outside the hybrid interface, we have the near-
to-far-field surface �T and use a discretization of cube-shaped elements. The PML region with PEC backing conforms to the outer box-shaped boundary of 
the computational domain.

Fig. 4. Relative error in the bistatic radar cross section versus mesh resolution at k0a = 1.5 for the PEC sphere of radius a: circles – hybrid Huygens’ surface; 
squares – scattered-field formulation. The lines show a least-squares fit of the computed data to the error model erel(h) = chα .

sufficiently small reflection coefficient for the convergence study performed here.) The discretized geometry of the PEC 
sphere for the mesh with cell size h4 is shown in Fig. 3, where the staircased hybrid interface is indicated by thick solid 
lines. Below, the electric field is represented by phex = ptet = 1i everywhere except for the tetrahedrons’ faces that coincide 
with the hybrid interface �I , where ptet = 1c is used.

Fig. 4 shows the relative error erel(hn) = ||σ(hn) − σMie||/||σMie|| for the bistatic radar cross section as a function of 
the normalized cell size hn/λ, where we use the norm ‖ · ‖ = ((4π)−1

∫
�4π

(·)2 d�)1/2 that corresponds to the root mean 
square (rms) value computed over the solid angle 4π subtended by the full unit sphere �4π . We show two different 
methods to illuminate the scatterer by a plane wave: (i) circles – the Huygens’ surface presented in this article collocated 
with the hybrid interface; and (ii) squares – the same hybrid method with P H = Q H = 0 and, instead, a conventional 
scattered-field formulation imposes the incident field directly on the surface of the sphere by an inhomogeneous Dirichlet 
boundary condition n̂ × Esca = −n̂ × E inc. It is clear that the Huygens’ surface presented in this article yields an error that 
is on par with the conventional scattered-field formulation, where the small difference is expected since the scattered-field 
formulation suffers less from dispersion errors.
8
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Fig. 5. PEC double ogive and computational domain viewed from the side (left) and from the front (right). The vicinity of the double ogive is discretized by 
unstructured tetrahedrons, where this mesh is truncated at the staircased hybrid interface indicated by thick solid lines. Outside the hybrid interface, we 
use a discretization of cube-shaped elements, where the PML region with PEC backing conforms to the outer box-shaped boundary of the computational 
domain.

Fig. 6. Monostatic radar cross section versus the azimuth angle φinc for the PEC double ogive at 1.57 GHz: (i) solid curve – the horizontal polarization; 
dashed curve – the vertical polarization.

In Fig. 4, the lines show a least-squares fit of the error model erel(h) = chα to the computed results and we find that 
α ≈ 1.9, which is close to the second-order convergence that is expected for a linear approximation of the electric field 
applied to a problem without field singularities. The computed radar cross section also compares rather well with earlier 
works on hybrid formulations for scattering problems [24] that exploit a regular Huygens’ surface in the context of the 
FDTD scheme.

3.2. Double ogive

We also test the proposed Huygens’ surface on the PEC double ogive described in Ref. [16], where we compute the 
monostatic radar cross section at 1.57 GHz and 9 GHz. The monostatic radar cross section of the double ogive is very small 
for certain angles of incidence, which makes this test case challenging.

Fig. 5 shows a discretization of the double ogive, where the sharp tips support singular field solutions. The total length of 
the double ogive is 7.5 inch, where the maximum radius is 1 inch perpendicular to the axis of revolution. It consists of two 
ogival parts that both are generated by revolving a circular arc around the x-axis: (i) the shorter half-ogive has a half length 
of 2.5 inch and a half angle of 46.4◦ at its tip; and (ii) the longer half-ogive has a half length of 5 inch and a half angle of 
22.6◦ at its tip. Thus, the double ogive is one wavelength long at the frequency f = 1.57 GHz and about 5.7 wavelengths at 
the frequency f = 9 GHz.

Again, we discretize the surface of the PEC scatterer by triangular elements and use an unstructured mesh of tetrahedrons 
in the vicinity of the double ogive. The hybrid surface is staircased and placed rather close to the double ogive. Here, we 
collocate both �H and �T with the hybrid interface, which makes the computational mesh relatively small and saves a 
substantial amount of memory. Outside the hybrid interface (with �H and �T), we use a structured grid of cube-shaped 
elements. The computational domain is truncated at �∞ by a PEC with a PML layer.

The computed monostatic radar cross section versus the azimuth angle φinc for the incident plane wave, as it propagates 
in the horizontal plane z = 0, is shown in Fig. 6 for the frequency f = 1.57 GHz and Fig. 7 for the frequency f = 9 GHz: 
9
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Fig. 7. Monostatic radar cross section versus the azimuth angle φinc for the PEC double ogive at 9 GHz: (i) solid curve – the horizontal polarization; dashed 
curve – the vertical polarization.

(i) solid curve – horizontal polarization; and (ii) dashed curve – vertical polarization. The two frequencies are analyzed for 
different settings of the computational parameters: (i) f = 1.57 GHz – the electric field and the geometry is represented by 
linear elements with λ/h ≈ 33 and the PML is described by La = 0.05λ, NPML = 4 and R0 = 10−4; and (ii) f = 9 GHz – the 
electric field and the geometry is represented by quadratic elements with λ/h ≈ 5.8 and the PML is described by La = 0.05λ, 
NPML = 3 and R0 = 10−4. For both frequencies, we use an incomplete basis to represent the electric field everywhere, except 
for tetrahedron faces that coincide with the hybrid interface �I where we enrich the basis with the gradient space to arrive 
at a complete polynomial approximation of the tangential electric field. The monostatic radar cross section for the double 
ogive computed by our hybrid method equipped with the proposed Huygens’ surface formulation compares very well with 
both experiments and computations found the open literature [16,25].

4. Conclusion

We present and test a new Huygens’ surface formulation for Maxwell’s equations, where the equivalent electric and 
magnetic surface currents on the closed Huygens’ surface are incorporated in the finite element method (FEM) by means 
of Nitsche’s method. The method allows for a discontinuous tangential component in the electric field (associated with the 
equivalent magnetic surface current) on the Huygens’ surface, which is accomplished by two sets of degrees of freedom that 
describe the tangential electric field on the surface. For the rest of the computational domain, we use a curl-conforming 
representation of the electric field. The weak form is derived based on Nitsche’s method, where we employ Galerkin’s 
method and arrive at symmetric discrete operators that preserve the reciprocity of the continuous system. The method 
features one stabilization parameter and one averaging parameter that can be chosen.

The Huygens’ surface formulation is particularly useful in combination with our previously presented higher-order 
hybridization of a mesh of unstructured tetrahedrons with a Cartesian grid of brick-shaped elements. The brick-shaped 
elements allow for mass lumping, which reduces memory requirements and is very useful for time-domain computations 
since it allows for explicit time-stepping. However, the brick-shaped elements are not suited to model complicated geometry 
and, here, the hybridization with tetrahedrons is very useful since they can conform to complicated surfaces and allow for 
local mesh-refinement. It is noted that the Huygens’ surface formulation presented in this article reduces to this higher-
order hybrid formulation as a special case. In addition, the two sets of degrees of freedom for the tangential component of 
the electric field can be used simultaneously by the Huygens’ surface and the hybrid interface, should the two be collocated. 
Also, we demonstrate that the near-to-far-field transformation surface can be applied to the same closed surface without 
any significant loss of numerical accuracy, which further reduces the overall memory requirements as the total size of the 
computational domain can be reduced.

We test the new Huygens’ surface formulation with the higher-order brick-tetrahedron hybrid on two scattering problems 
with perfect electric conductor (PEC) scatterers: (i) a sphere that also allows for an analytical solution and the corresponding 
assessment of the numerical error; and (ii) a double ogive that features two sharp tips which support field singularities. 
For all tests, the Huygens’ surface is collocated with the hybrid interface between the unstructured mesh of tetrahedrons 
and the structured grid of brick-shaped elements. In the first test, we study the root-mean-square (rms) error with respect 
to the scattering angle for the bistatic radar cross section of the PEC sphere, where k0a = 1.5 given the wavenumber k0
and the radius a of the PEC sphere. Here, we use the lowest-order elements to represent the electric field throughout 
the computational domain, where the tetrahedron basis-functions are (locally) complemented to achieve a complete linear 
10
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polynomial representation for the tangential electric field at the hybrid interface. A convergence study with respect to the 
cell size h for the PEC sphere shows that our formulation converges towards the analytical solution with an error that is 
proportional to h2. It is also demonstrated that the new Huygens’ surface yields a numerical error that is similar to the 
conventional scattered-field formulation, where the incident field is imposed on the surface of the PEC sphere by means 
of an inhomogeneous Dirichlet boundary condition. In the second test, the PEC double ogive is analyzed at both 1.57 GHz 
and 9 GHz, where its electrical length is one wavelength and 5.7 wavelengths respectively. The monostatic radar cross 
section displays a number of minima with very small values and it is rather low for some relatively large angular intervals, 
where the angle is measured with respect to the axis of revolution. The low monostatic radar cross section in combination 
with the field singularities supported by the sharp tips make the PEC double ogive a challenging scattering problem. For 
both frequencies, the proposed Huygens’ surface and the near-to-far-field transformation surface are both collocated with 
the hybrid brick-tetrahedron interface, which makes it possible to reduce the total number of elements significantly. For 
the frequency 1.57 GHz, we use the same representation for the electric field as in the first test for the PEC sphere. For the 
frequency 9 GHz, we use incomplete quadratic elements for both the brick elements and tetrahedrons to express the electric 
field, where the tetrahedrons are enriched with the gradients that yield a complete quadratic polynomial approximation for 
the tangential electric field on the brick-tetrahedron interface. We use 33 cells per wavelength at 1.57 GHz. For the frequency 
9 GHz, we use a discretization with about 5.8 cells per wavelength, which corresponds to 11.6 points per wavelength for the 
interpolatory basis of quadratic polynomial order on the brick-shaped elements. At both frequencies, the results compare 
very well with benchmark radar cross section measurements and computations reported in the open literature.

In conclusion, we find that the new Huygens’ surface yields accurate and reliable results, which are in good agreement 
with important reference solutions found in the open literature. The proposed method may be combined with our higher-
order brick-tetrahedron hybrid such that the Huygens’ surface can be collocated with both the hybrid interface and the 
near-to-far-field transformation surface, which is a unique feature for the method presented in this article that cannot be 
reproduced by other Huygens’ surface formulations in the open literature. Thus, the collocation of these three surfaces is 
new and, for a given scatterer, it allows for a considerably reduction in the total number of elements required, which is very 
attractive with respect to the efficient usage of both computational time and memory.
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