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Background:Deep learning (DL) has shown promising results in molecular-based

classification of glioma subtypes from MR images. DL requires a large number of

training data for achieving good generalization performance. Since brain tumor

datasets are usually small in size, combination of such datasets from di�erent

hospitals are needed. Data privacy issue from hospitals often poses a constraint

on such a practice. Federated learning (FL) has gained much attention lately as it

trains a central DL model without requiring data sharing from di�erent hospitals.

Method: We propose a novel 3D FL scheme for glioma and its molecular subtype

classification. In the scheme, a slice-based DL classifier, EtFedDyn, is exploited

which is an extension of FedDyn, with the key di�erences on using focal loss

cost function to tackle severe class imbalances in the datasets, and on multi-

stream network to exploit MRIs in di�erent modalities. By combining EtFedDyn

with domain mapping as the pre-processing and 3D scan-based post-processing,

the proposed scheme makes 3D brain scan-based classification on datasets from

di�erent dataset owners. To examine whether the FL scheme could replace

the central learning (CL) one, we then compare the classification performance

between the proposed FL and the corresponding CL schemes. Furthermore,

detailed empirical-based analysis were also conducted to exam the e�ect of using

domain mapping, 3D scan-based post-processing, di�erent cost functions and

di�erent FL schemes.

Results: Experiments were done on two case studies: classification of glioma

subtypes (IDH mutation and wild-type on TCGA and US datasets in case A) and

glioma grades (high/low grade glioma HGG and LGG on MICCAI dataset in case

B). The proposed FL scheme has obtained good performance on the test sets

(85.46%, 75.56%) for IDH subtypes and (89.28%, 90.72%) for glioma LGG/HGG all

averaged on five runs. Comparing with the corresponding CL scheme, the drop in

test accuracy from the proposed FL scheme is small (−1.17%, −0.83%), indicating

its good potential to replace the CL scheme. Furthermore, the empirically tests

have shown that an increased classification test accuracy by applying: domain

mapping (0.4%, 1.85%) in case A; focal loss function (1.66%, 3.25%) in case A and

(1.19%, 1.85%) in case B; 3D post-processing (2.11%, 2.23%) in case A and (1.81%,

2.39%) in case B and EtFedDyn over FedAvg classifier (1.05%, 1.55%) in case A

and (1.23%, 1.81%) in case B with fast convergence, which all contributed to the

improvement of overall performance in the proposed FL scheme.

Conclusion: The proposed FL scheme is shown to be e�ective in predicting

glioma and its subtypes by using MR images from test sets, with great potential

of replacing the conventional CL approaches for training deep networks. This

could help hospitals to maintain their data privacy, while using a federated trained

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1181703
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1181703&domain=pdf&date_stamp=2023-05-23
mailto:jakola.asgeir@gu.se
https://doi.org/10.3389/fnins.2023.1181703
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1181703/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ali et al. 10.3389/fnins.2023.1181703

classifier with nearly similar performance as that from a centrally trained one.

Further detailed experiments have shown that di�erent parts in the proposed

3D FL scheme, such as domain mapping (make datasets more uniform) and

post-processing (scan-based classification), are essential.

KEYWORDS

federated learning, multi-stream FL deep network, deep learning, glioma subtype

classification, IDH genotype, domain mapping, extended FedDyn

1. Introduction

Deep learning (DL) models require large training datasets to

obtain reliable test performance. It has shown promising results

for tumor segmentation and classification, in assisting medical

diagnostics. However, such studies are mostly focused on a dataset

from single cohort/hospital (Zhou et al., 2021), where its size

is often small for training a good model and the generalization

performance to unseen data from multiple hospitals is poor.

In medical area, one commonly used approach is to share

datasets from different hospitals for DL network training. We refer

to this approach as the central learning (CL), depicted in Figure 1a,

where the datasets from multiple hospitals are combined to train

a classifier. However, it has disadvantages, for instance, sharing

datasets among hospitals; (1) puts constrain on data privacy and

security issues, which many hospitals may not allow. This becomes

increasingly difficult when hospitals from multiple countries are

involved. (2) Can be complicated by domain shift of datasets from

different scanner machines.

Recently, federated learning (FL) has gained much attention as

it enables training DLmodels across hospitals without sharing their

datasets, as depicted in Figure 1b. In FL, a set of local models are

trained by individual dataset owners in parallel, and the gradients of

local model errors are sent to the central model for the update. The

central model then sends back the updated model weights to the

local model weights before further training. This iteration process

continues until the central model converges. One such iteration

is referred to as a communication round. Naturally, networks

obtained from FL has put demands on communication network,

where it is desirable that the required communication rounds

are small. It is worth mentioning that heterogeneous data could

also prevent FL algorithms from fast converging (Karimireddy

et al., 2020a; Khaled et al., 2020). Domain mapping (Khaled et al.,

2020) would be desirable in such a scenario. There exist many

research directions on FL, e.g., in communication, and in FL

network learning, among others. Our study will be focused on latter

direction. More specifically, we focus on glioma and its subtype

classification based on DL networks trained in the FL fashion.

One of the most common types of brain tumors is glioma.

According to World Health Organization (WHO), grade 2 gliomas

are referred to as LGG and grade 3 and 4 are referred to

as HGG. Based on biopsies from the tumor tissues, gliomas

can be further divided into several subtypes (Goodenberger and

Jenkins, 2012). WHO has recently revised the glioma classification

definition where biomarkers now play more important role in

both classification and prognostication. One subtype defined by

biomarker is the isocitrate dehydrogenase (IDH) mutation. IDH

mutation is found in 70–80% of morphological defined LGG

(Parsons et al., 2008) and in ∼10% of morphological defined

glioblastoma (is now classified as IDHmutated astrocytoma, WHO

grade 4). Today IDH mutation provides important information

concerning prognosis, response to therapy and clinical decisions

(Fuller and Perry, 2005). To identify these subtypes, tissue

diagnosis is performed through invasive methods (e.g., biopsy,

resection), which comes with inherent risks. Recently, non-invasive

methods have been proposed for identifying such information

from Magnetic Resonance Images (MRIs) without using biopsy

(Buda et al., 2019; Ali et al., 2022; de Dios et al., 2022; Hsu et al.,

2022). Though many challenges remain, including, among others,

the lack of large amount of annotated training datasets, and data

privacy and security issues related to sharing training datasets from

different hospitals in different countries.

Several FL approaches have been proposed recently. Among

them, one of the basic and most commonly adopted FL methods

is Federated Averaging (FedAvg; McMahan et al., 2017). It was

reported that FedAvg often suffers from slow convergence if when

datasets are heterogeneous. In such a scenario, each local learner

pushes the model in a different direction during the training,

and the model either does not converge to a global optimum

due to client drifting, or, takes excessive number of rounds of

communication causing high communication demand. Effort has

been made to tackle the heterogeneity data issue in FL. One

possible way is to reduce the communications by applying one

communication round after several local iterations. Since local

optimum in each user is often not consistent with the centralized

one (Khaled et al., 2020), further improved approaches were

proposed (McMahan et al., 2017; Karimireddy et al., 2020b;

Malinovskiy et al., 2020), e.g., by running fewer epochs with each

local learner for obtaining a stable though inexact minimization

that could perform desirable convergence centrally. Other studies

were proposed to deal with heterogeneous data. Karimireddy et al.

(2020b) proposed SCAFFOLD that used client variance reduction

to correct local updates while assuming that client drift was caused

by this variance. Li T. et al. (2020) proposed FedProx to improve

the convergence of FedAvg by allowing each local device to train

on variable number of local epochs. Wang et al. (2021) proposed

FedNova that used variable local updates as well as different local

solvers.

FL have also been explored in several medical application.

Zerka et al. (2020) proposed a block-chain based platform that

combined sequential distributed learning for helping lung cancer

diagnosis and claimed similar performance to that of the CL

one. Roth et al. (2020) built a FL classification model with

improved generalization on seven clinical datasets for breast
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FIGURE 1

Depiction of FL and CL methods. (a) CL: Learning based on centrally shared pool of datasets. (b) FL: Learning based on the locally learned models

with their private datasets, where local gradients are transferred to the central model for the update and redistribution.

density classification. Further, only a few FL-based studies were

conducted on brain images, e.g., brain tumor segmentation (Li

X. et al., 2020; Yi et al., 2020; Nalawade et al., 2022) and brain

tumor metastasis identification (Huang et al., 2022). On the other

hand, several CL-based approaches were reported for brain tumor

classification using datasets such as TCGA and MICCAI. Ge

et al. (2019) proposed a classification method for IDH genotype

prediction that used GAN for cross modality data augmentation for

missingMRmodalities. Liang et al. (2018) suggested to use 3DMRI

scans withmore advanced DenseNets for IDH genotype prediction.

Pan et al. (2015) usedMR images with some combination operation

between multi-phase MRIs, to leverage the learning capability

of CNNs for glioma grading. Ge et al. (2018b) proposed to

incorporate multi scale features of CNN to extract fine features

for glioma grading. However, FL-based brain tumors classification

based on glioma and its biomarker-defined subtypes has rarely been

reported. One of the main reasons is the lack of large amount of

annotated training data since relatively small percentage of tumors

are related to the brain, there also exists class imbalance as well as

dataset size varies in hospitals. In addition, there is an insufficient

amount of annotated brain tumors since both the tumor mask

and (newly introduced) molecular-based biomarker are required

as the ground truth (GT) labels. Another reason is that different

datasets contain MRI scans from different patient cohorts obtained

by scanner machines with different acquisition protocols causing a

domain shift issue among these datasets.

Motivated by the above issues, this paper proposes a novel and

effective glioma and its subtype classification scheme through FL-

based training of DL networks on multiple datasets. To the best

of our knowledge, this is the first reported successful work on

FL-based brain tumor classification on glioma and its molecular

subtype fromMRIs. The main contributions of this paper include:

• Propose a novel FL-based 3D scheme, consisting of a 2D

EtFedDyn classifier, domain mapping on datasets as the pre-

processing, and 3D scan-based post-processing to make 3D

scan-based prediction on glioma and its subtype.

• Propose a novel FL classifier, EtFedDyn (an extended FedDyn)

with the key differences to FedDyn (Acar et al., 2021) on the

use of focal loss function (to tackle severe class imbalance) and

multi-stream system (for multi-modality MRIs).

• Examine the possibility of replacing CL by FL scheme

by comparing the performance of glioma and its subtype

prediction from the proposed FL and the corresponding CL

schemes.

• Analyze the effect and contributions through empirical tests

on domain mapping of datasets, focal loss function over

cross-entropy, 3D scan-based post-processing, EtFedDyn over

FedAvg classifier including comparisons with several state-of-

the-art methods.

The remaining paper is organized as follows. Section 2 describes

the proposed FL-based scheme, including the overall description

and the details on several key component blocks. Section 3

describes the experiment setup with detailed test results and

performance comparisons included. Finally Section 4 concludes

the paper.

2. Proposed scheme

2.1. Overview of the proposed FL scheme

In this section, we propose a novel FL-based glioma and its

subtype classification scheme, Our aim is study the feasibility that
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a FL-based classification scheme may achieve similar performance

as that of the corresponding CL one. That implies that each

dataset owner may train their dataset jointly with other dataset

owners, without providing their dataset to others, yet may obtain

a trained classifier that has the similar performance as that of CL

one from training all datasets together. To achieve this, several

challenging issues are tackled in the proposed scheme, as these

issues are especially pronounced in glioma grading and its subtype

prediction. These issues include: class imbalances (e.g., between

IDH mutation/wild type and between LGG/HGG), domain shift

among different hospital datasets, existing of multi-modality MRI

data, and potential over-fitting issue when the datasets are small in

size, in addition to the concern that privacy and security issues from

different hospitals. In this study, these issues are tackled through the

use of a novel focal loss instead of cross-entropy as the cost function

of FL-based classifier to handle the class imbalances; Domain

mapping by CycleGAN on all datasets as the pre-processing; A

multi-stream network to learn multi-modality MRI features; and a

2D slice-based EtFedDyn classifier followed by 3D scan-based joint

decision as post-processing to mitigate potential over-fitting and

consistent decision.

As shown in Figure 2, the proposed 3D FL-scheme consists of

a training process (top row) and a testing process (bottom row).

In both the training and testing processes, domain mapping of

datasets (block 1) is used to make the datasets more uniformly

distributed. In the training process, a FL-based 2D slice-based

EtFedDyn classifier (block 2) is trained, EtFedDyn is an extension of

FedDyn with the focal loss cost function and multi-stream fashion

for better network learning on class imbalanced datasets. In the test

process, MRI test set, after domain mapping, is fed to EtFedDyn

for classification (block 3) whose weights are fixed from the

training process. A 3D scan-based post-processing (block 4) is then

followed for making a 3D scan-based tumor subtype prediction.

In the following section, some essential blocks are explained

in details.

2.2. Federated learning with focal loss
function and multi-stream CNNs

The proposed EtFedDyn classifier is an extended version of

FedDyn (Acar et al., 2021). FedDyn is selected as the baseline

algorithm since it also includes a regularization term to control the

client drift, and local/central iterations to speed up the convergence

and reduce the required communication rounds. The proposed

EtFedDyn makes the following modification/extension that allows

FIGURE 2

The pipeline of the proposed scheme. Block 1: Domain mapping is performed on the datasets. Block 2: Training of multi-stream FL-based EtFedDyn

classifiers on individual dataset. Block 3: Using trained local EtFedDyn model for prediction of glioma and its subtype from MRIs in local test set.

Block 4: Post-processing on 2D slice-based to predict 3D scan-based patient’s diagnosis.
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the classifier to tackle the highly imbalanced classes in the training

datasets, and to include the use the complimentary information

from multi-modality MRIs. We explore focal loss as the cost

function for the proposed FL-based 2D classifier (block 2), inspired

by the focal loss in Lin et al. (2017) that emphasizes the errors

in small classes. We notice that some MRI training classes of

datasets are very small due to small percentage of patients with

certain glioma grades and biomarker-associated tumor subtypes.

Further, a 2D multi-stream convolutional neural network (CNN)

is exploited in FL-based classifiers (blocks 2 and 3) for feature

learning and classification, for better extracting complementary

tumor information from different modalities of MR images.

2.2.1. Focal loss function
The focal loss cost function can be briefly described as a

dynamically scaled cross entropy loss that controls the learning on

the easy class (i.e., true negatives and true positives) and hard class

images (i.e., false positives and false negatives), when the training

images have class imbalances. Since images from the major class

comprise the main loss and dominate the gradients, focal loss tries

to downweigh the confidence in predicting the easy class during

the training and allows the model to focus on images from the

hard class. To balance the importance between themajor andminor

classes, a balanced variant of focal loss Lfocal(p, p̂) is defined as:

Lfocal(p, p̂) = −[β q̂γ p log(p̂)+ (1− β) (p̂)γ q log(q̂)] (1)

where p̂ and q̂ = (1 − p̂) are the predicted probability, p and

q = (1 − p) are the probability of training images with GT labels,

β ∈ [0, 1] is the weighting factor for major class and (1 − β) for

minor class, q̂ is a modulating factor and γ is a focusing parameter.

When γ = 0, (1) becomes the same as the cross-entropy loss.

Choosing γ > 0 reduces the relative loss for easy class images while

putting more focus on hard class images. The parameter values

were set empirically as β = 0.25 and γ = 2 in our tests.

2.2.2. Multi-stream 2D FL-based classifier:
EtFedDyn

EtFedDyn uses a multi-stream 2D CNN architecture adopted

from our previous work Ge et al. (2018a). We use two separate

streams of CNNs for learning the glioma subtype features from two

MRI modalities (T1ce, FLAIR MRIs), followed by a feature fusion

layer (shown in Figure 3).

Each stream of CNN architecture consists of seven

convolutional layers with filter sized 3 × 3 in each layer. The

last convolutional layer in each stream is related to the modality-

specific tumor type features. The outputs from different stream

features are then fed to the next layer for fusion and refinement.

In the classifier an attention weighted fusion is applied which

is different from Ge et al. (2018a), as features from different

modality data contribute differently in predicting the glioma and

its subtype. Under the fusion strategy, a weighted sum of features

is computed such that weights may be learned adaptively based

on their modality-specific features. Let fn denote the vectors of

features from the final layer of streams and wn be the weight

matrices for n = 1, 2 streams, the fused feature vector is computed

by f =
∑2

n=1 anfn, where attention weights as for individual

modality is computed as:

as =
exp(wT

s fs)
∑2

n=1 exp(w
T
n fn)

(2)

where wT
n is the transpose of wn. The fused feature layer is then

followed by a bilinear layer, two fully connected layers and a final

layer for class prediction similar to Ge et al. (2018a).

Let wc denote the central model weights and wi the ith local

model weights, i = 1, · · · ,N, where all local models have the same

structures. Our objective is to minimize the central model loss Lc:

Lc = argmin
wi

[

1

N

N
∑

i=1

Lfocal,i(wi)

]

(3)

Since we have only two datasets available, all local models

participate for the weight update in each communication rounds.

In each communication round t = 1, 2, · · · ,T, the central model

weights wt−1
c at previous round (t − 1) are used for updating

local models, where ith local model weights wi, i = 1, · · · ,N, are

optimized based on the local objective function Lfocal,i in 3. This

updating process is the same as that of FedDyn baseline method,

which can be briefly summarized below. First, the local gradient

gk−1
i for ith model is updated as follows:

gk−1
i = −∇Lfocal,i(w

t,k−1
i )−∇Lfocal,i(w

t−1
i )

−α(wt−1
c − wt,k−1

i )
(4)

where k is the local epoch, k = 1, · · · ,K (K=5 in our tests), the

last term is the penalty term and α is the regularization parameter.

Then, the local model weights wi are updated using the updated

gradient:

wt,k
i = wt,k−1

i − ηi g
k−1
i (5)

where ηi is the local learning rate. The penalty term (wt−1
c −wt,k−1

i )

dynamically modifies the local model loss Lfocal,i, so that the local

model would converge similarly as the central model. After last

local update epoch K, each model weights wt
i are then transmitted

back to the central model. The averaged local model weights w̄t =
1
N

∑N
i=1 w

t
i are used for updating the central model gradient.

htc = ht−1
c +

1

N
(wt−1

c − w̄t) (6)

followed by central model weight update:

wt
c = w̄t − htc (7)

This process continues until convergence, or a pre-determined

maximum communication round T is reached.

2.3. Domain mapping

MRIs in different datasets from different hospitals/ cohorts

were usually obtained from different scanner machines with

different machine parameter settings. They often look quite
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FIGURE 3

Network architecture for 2D slice-based DL classifier (zoomed in details of block 2 shaded part in Figure 2).

FIGURE 4

MR image slices before and after the domain mapping. (Top) Original FLAIR MR images from TCGA dataset. (Bottom left) Original FLAIR MR images

from US dataset. (Bottom right) Corresponding FLAIR MR images after domain mapping.

different reflected by the fact that there is a domain shift for MRIs

within the same modality. Such differences could be due to the

applied magnetic field, the radio pulse sequence frequency, the

algorithm that the scanner device follows for image reconstruction

and many more. These settings could be different between different

hospitals, which may cause heterogeneity in different datasets. To

overcome the domain shift, we adapt a domain mapping method

from Ali et al. (2020), that uses an unpaired CycleGAN to map

MRI data from ith datasetDi to a target datasetDP, while retaining

biomarker-subtype information of gliomas.

The unpaired CycleGAN consists of two generative adversarial

networks (GANs), with two generators Gi and GP and two

discriminators Di and DP. The generators take inputs in parallel

from dataset Di and DP and learn to generate the mapped images

from D̂i and D̂P, respectively, while the discriminators learn to

discriminate between the real and the mapped generated images.

The aim is to minimize the objective function given as:

L(Gi,GP,Di,DP) = LGAN(GP,DP,Di,DP)

+LGAN(Gi,Di,D
P,Di)+ λLcyc(Gi,GP) (8)

where Lcyc is the cycle-consistency loss, minimizing Lcyc ensures

the reversible mapping between the two domains and λ is the

regularization term. To save the computation, we chose an existing

public dataset among the datasets as the target domain DP.

This mapping is performed by each individual local dataset user

independently and the mapped datasets D̂i are then used for

training the local EtFedDyn classifier.

Figure 4 shows examples of original and domain

mapped MR images from the datasets, so that MR

image domains from two different datasets are

more similar.

2.4. 3D brain scan-based post-processing

Glioma and its subtype prediction from the FL-based EtFedDyn

classifier (Figure 2 blocks 2 and 3) is based on 2D image slices. It is

desirable that a consistent prediction could be made based on each

individual 3D brain scan for assisting the diagnosis of individual

patient. This is done by applying a post-processing block (Block 4

in Figure 2) similar to that in Ge et al. (2020), where the decision

for a 3D scan is based on a majority voting-based criterion. The

majority of 2D class prediction results would decide the tumor type

or biomarker-defined tumor subtype class of a patient (as depicted

in Figure 5).
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Let M be the total number of predicted 2D slice results

(from three views) that belong to a patient O and Oj, (j =

1, . . . ,M) be the jth slice result. The patient O as IDH-

mutation/LGG class when more than half of the M slices

are predicted as class 1, otherwise it belongs to IDH wild-

type/HGG class:

O =







1
∑M

j=1 Oj > M/2

0 Otherwise
(9)

2.5. Pseudocode of the proposed FL
scheme

As shown in Algorithm 1, the pseudo codes for the training

process of the proposed FL scheme is summarized.

Input: local dataset Di, public dataset DP.

Set hyper-parameter values: N = 2, T = 50, K = 5,

ηi = 0.01, α = 0.01 initialize w0
c and ∇Lfocal,i(w

0
i ) = 0.

Domain mapping Di ↔ DP to generate D̂i

for each communication round t = 1, . . . ,T do

Local models update:

for each dataset owner i = 1, . . . ,N do

Transfer w
(t−1)
c to local model wi

t

for local epoch k = 1, . . . ,K do

for each batch of D̂i do

Update local gradient gk−1
i using (4)

Update local weights wt,k
i using (5)

return wt
i to central model

Central model update:

Compute central gradient htc using (6)

Update central weight wt
c using (7)

return wt
c

Output: The central model weights wT
c = wT

i .

Algorithm 1. Training process for proposed FL scheme.

2.6. Criteria for performance evaluation

The evaluation is performed on the test sets based on the

predicted results of glioma or biomarker-defined its subtype classes.

All results were averaged in five runs, where each run was

performed by patient-wise and random re-partition of training and

test sets, retraining and re-testing. Criterion functions; accuracy,

sensitivity, and specificity are used for the performance evaluation,

defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, Sensitivity =

TP

TP + FN
,

Specificity =
TN

FP + TN
(10)

Where we define the IDH mutation/LGG as the positive class,

then the definitions of TP, FP, TN, and FN become:

True positive (TP): IDH mutated (or, LGG) class and is

predicted as IDH mutated (or, LGG).

False positive (FP): IDH wild-type (or, HGG) class and is falsely

predicted as IDH mutated (or, LGG).

True negative (TN): IDH wild-type (or, HGG) class and is

predicted as IDH wild-type (or, HGG).

False negative (FN): IDH mutated (or, LGG) class and is falsely

predicted as IDH wild-type (or, HGG).

2.7. Other implementation issue: data
augmentation

A simple data augmentation approach is applied including

horizontal flipping and random small angle rotation (≤ 100) during

online training process.

3. Results and comparisons

3.1. Setup, datasets, pre-processing

3.1.1. Setup
Experiments on the proposed FL scheme were conducted

in Python by using Pytorch library (Paszke et al., 2019) in a

workstation with Intel-i7 3.40 GHz CPU, 48 G RAM and an

NVIDIA Titan Xp 12 GB GPU. By tuning the network carefully

through experiments, different hyper-parameters were selected for

the proposed FL and the corresponding CL schemes. We simulated

FL scheme for T = 50 communication rounds on two case studies

(case A and B). On each round, datasets are trained locally for

K = 5 epochs with a batch size of 50 and learning rate ηi = 0.01.

Weight decay of 0.001 was applied to prevent over-fitting and no

learning rate decay was used across communication rounds. The

α value was selected as 0.01. For the corresponding CL, we chose

batch size as 50, weight decay parameter as 0.0001 and learning rate

as 0.001 for 50 iterations. The test performance was then evaluated

using the network trained from the last communication round.

All experiments were repeated five times on randomly patient-

wise partitioned data. Comparisons between the proposed FL and

the corresponding CL were performed based on the same data

partitions. The setup for training Cycle-GAN in domain mapping

was the same as that in Ali et al. (2020).

3.1.2. Datasets
Experiments were conducted on two case studies. Table 1

summarizes the information on all datasets for two case studies.

Case A study was conducted on 2 datasets from different data

owners, where US dataset was obtained from a university hospital

in USA and TCGA dataset was a public dataset from TCGA-GBM

(n = 101) (Bakas et al., 2017a) and TCGA-LGG (n = 66) (Bakas

et al., 2017b) for gliomas with IDH mutation/wild-type labels.

Unlike TCGA dataset, US dataset consists of only LGG (WHO

grade 2) with typical appearances of unenhanced hyperintensity in

FLAIR MRIs without contrast enhancement. For TCGA dataset,
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FIGURE 5

3D scan-based post-processing (Zoom in details of block 4 from Figure 2).

TABLE 1 Summary of two datasets used in our experiments on case A and B studies.

Case Dataset No. of patients Train set/ # 2D # 2D

study *class 0/1 Test set Train set Test set

A (IDH mut/wt) TCGA 55/112 134/33 2010 495

US 68/08 58/18 870 270

B (LGG/HGG) MICCAI 1 37/105 114/28 1710 420

MICCAI 2 38/105 115/28 1725 420

IDH mut, IDH mutation; IDH wt, IDH wild-type; LGG, low grade glioma; HGG, high grade glioma.

*Case A: Class 0 is IDH mutation and class 1 is IDH wildtype.

Class B: Class 0 is LGG and class 1 is HGG.

TABLE 2 Performance of proposed 3D scan-based FL scheme (see Figure 2) on the test sets for two case studies.

Case Dataset 3D Acc. 3D Sen. 3D Spe. Time/Local

study %(| σ |) %(| σ |) %(| σ |) Epoch (sec.)

A (IDH mut/wt) TCGA 85.46 (3.53) 78.18 (7.27) 89.09 (4.63) 137.39

US 75.56 (2.72) 78.57 (6.38) 65.00 (12.25) 59.24

B (LGG/HGG) MICCAI 1 89.28 (2.26) 79.99 (6.99) 92.38 (3.81) 116.75

MICCAI 2 90.72 (1.75) 82.85 (5.71) 93.33 (2.34) 117.30

Acc, accuracy; Sen, sensitivity; Spe, specificity.

annotation of tumor boundaries (GT) were available. For US

dataset, GT tumor boundaries were semi-manually drawn by

medical experts and controlled by senior medical doctors through

the help of 3D slicer software (v4.10.2) (Pieper et al., 2004). For

case B study, MICCAI dataset was partitioned into two parts

(according to patients), as MICCAI 1 and MICCAI 2, as two

clients in FL for LGG and HGG classification. The dataset was

downloaded from MICCAI BraTS 2017 competition (Menze et al.,

2014; Bakas et al., 2017c), consisting of 3D scans with GT tumor

annotations.
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In both case studies, two MRI modalities, i.e., FLAIR (Fluid-

Attenuated Inversion Recovery and weighted) and T1ce (T1-

contrast enhanced) MRIs in the datasets were used. 2D image

slices were used in the experiments instead of 3D scans to mitigate

possible over-fitting in DL. Since tumor regions only occupy small

parts in the entire brain, five image slices containing the tumor

were extracted from each of the three views (axial, sagittal, and

coronal). All experiments were conducted by five runs, where the

datasets in each run were split randomly patient-wise into two

sets: training (80%) and testing (20%) such that no 3D scans of

any individual patient from one set would be used in another

set. For final performance evaluation, results from five runs were

then averaged.

3.1.3. Pre-processing
For US dataset, anatomical images from FLAIR/T1ce MRI

scans were registered to 1 mm MNI space template. In addition to

this, the bias field correction and skull-stripping were performed

using software FSL (Khaled et al., 2020) and ANTs (Malinovskiy

et al., 2020). Since MRI scans in TCGA and MICCAI datasets

were already pre-processed and co-registered, no pre-processing

was added. Further for case A study, domain mapping was applied

on 2D image slices. Since TCGA is publicly available, we chose the

domain of TCGA dataset as the target domain, instead of creating

a new domain. Hence, domain mapping was only needed for the

US dataset in case A study. Since case B study uses partitioned

datasets from a single dataset, no domain mapping was required.

For enhanced learning of tumors, tumor masks were applied where

the pixel values outside the tumor were reduced to 1/3 of its original

values (Ge et al., 2018a). Moreover, the image size was rescaled to

128 × 128 pixels and pixel values in the images were normalized

to [0, 1].

3.2. Performance of the proposed FL
scheme

3.2.1. Overall performance of the proposed FL
scheme

To test the effectiveness of the proposed FL scheme,

experiments were conducted on 2 case studies. Table 2 summarizes

the 3D scan-based results on the test sets from the proposed FL

scheme (see Figure 2). Observing Table 2, for case A study, one

can see that a relatively high accuracy (85.46%) was obtained

on TCGA test set. Due to imbalance classes in TCGA, higher

specificity (89.09%) was obtained for the relatively large class of

IDH wild-type, and lower sensitivity (75.18%) for a relatively

small class of IDH mutation type. Since US dataset has a much

smaller size and extremely imbalance classes, a reasonably good

accuracy (75.56%) with sensitivity (78.57% for IDH mutation) and

specificity (65% for IDH wild-type, with a very small training set)

was obtained. For case B study, higher test accuracy (MICCAI

1: 89.24%, MICCAI 2: 90.72%) was obtained. Here again, due

to the imbalance classes in the training sets, there are some

differences between sensitivity (MICCAI 1: 79.99%, MICCAI 2:

82.85%) and specificity (MICCAI 1: 92.38%, MICCAI 2: 93.33%)

TABLE 3 Performance comparison on 3D scan-based test results of the

proposed FL vs. its corresponding CL scheme on 2 case studies (see

Figure 2 with block 4).

Case Proposed FL Corresponding CL Performance

study % (| σ |) % (| σ |) di�erence

A 81.96 (2.88) 83.13 (2.94) −1.17

B 89.88 (1.68) 90.71 (1.33) −0.83

The bold numbers indicate relatively higher values.

in the two classes. The last column of Table 2 shows, the time

required for training an individual dataset during each local epoch.

Further, the total number of parameters in the DL network was

76,478,979.

3.2.2. Comparison of proposed FL vs.
corresponding CL scheme

The aim of this part of the study is to examine whether one

may replace a CL scheme by a FL scheme, such that individual

dataset owner may train their DL network while retaining their

dataset without loosing the privacy. More specifically, we would

like to examine the performance degradation by using FL scheme

in place of the corresponding CL scheme. For FL scheme, the

performance is computed by combining the test sets from two

datasets. For CL scheme, the datasets were combined (neglecting

the privacy concerns) before using them for training and testing.

For fair comparison, we used the same data partitions of the

datasets, where the CL network was corresponding to the FL

network in terms of DL network architecture, also the same domain

mapping (case A only) and 3D post-processing. Table 3 summarizes

the average performance on the test sets from the proposed FL

scheme and the corresponding CL one. One may observe that

the proposed FL has a small performance degradation of about

1.17% in average test accuracy on case A study and 0.83% on case

B study.

3.2.3. Performance of 2D slice-based results and
e�ect of post-processing

The aim of this part is to examine the performance of the 2D

EtFedDyn classifier (i.e., Figure 2 without using block-4) and to

find the effect of 3D post-processing (i.e., Figure 2 with block-4).

The EtFedDyn performance from the proposed FL scheme on the

test sets are shown in Table 4 and the corresponding training and

testing curves are shown in Figure 6.

From Tables 2, 4, one can calculate the values in Table 5,

which indicate the effect of 3D post-processing. Observing Table 5,

one can see that 3D scan-based post-processing has significantly

improved the performance of the proposed scheme on the test sets

(case A: by 2.11%, 2.23% for TCGA and US datasets, Case B: by

1.81%, 2.39% for MICCAI 1 and MICCAI 2).

In the rest of subsections below, the performance analysis was

conducted on the FL-based 2D EtFedDyn classifier (Blocks 2, 3 of

Figure 2) on test sets.
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TABLE 4 Performance of EtFedDyn classifier (see Figure 2 without using block 4) on the test sets from two datasets.

Case study Dataset 2D Acc. 2D Sen. 2D Spec.

%(| σ |) %(| σ |) %(| σ |)

A (IDH mut/wt) TCGA 83.35 (2.94) 75.39 (7.40) 87.33 (4.00)

US 73.33 (3.38) 76.76 (6.62) 61.33 (8.59)

B (LGG/HGG) MICCAI 1 87.47 (1.42) 79.05 (6.57) 90.28 (3.29)

MICCAI 2 88.33 (1.93) 80.38 (6.61) 90.98 (2.59)

Acc, accuracy; Sen, sensitivity; Spe, specificity.

FIGURE 6

Training and testing curves of the proposed EtFedDyn scheme on both case studies for a single run. (Top) Case A study on TCGA and US datasets.

(Bottom) Case B study on MICCAI 1 and MICCAI 2. Green curve: Training curve. Red curve: Testing curve.

3.2.4. Performance comparison of proposed
EtFedDyn by using di�erent loss functions

The aim of this part is to examine the effect of using different

loss functions in the EtFedDyn classifier (i.e., loss function in blocks

2 and 3 of Figure 2). Observing that the high class imbalance in the

brain tumor and its subtype data, focal loss function was applied in

order to enhance the performance.

Table 6 shows the performance of EtFedDyn classifiers

from using focal loss Lfocal and cross-entropy Lce in

the proposed scheme. Observing Table 6 and Figure 7,

one can see that the test accuracy from using focal loss

function is improved over that from cross-entropy one

(case A: by 1.66%, 3.25% for TCGA and US datasets,

case B: by 1.19%, 1.85% for MICCAI 1 and MICCAI 2)

all with decreased standard deviation. Further, one may

observe that using focal loss has improved sensitivity

in TCGA and MICCAI dataset, and specificity in US

dataset, respectively.
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3.2.5. Comparison of 2 FL schemes: proposed
EtFedDyn vs. corresponding FedAvg

This part is aimed at comparing the test performance by

using two different FL schemes. More specifically, we compare

the performance of proposed EtFedDyn classifier and the

corresponding FedAvg classifier (with focal loss function)

in terms of classification accuracy and the convergence

speed. Case A study uses domain mapped data in both

the methods.

Table 7 shows the performance on the test sets from the two

FL schemes on two case studies. Observing the results in Table 7,

one can see that the proposed EtFedDyn classifier has obtained

better test accuracy (case A: 83.35%, 73.33% for TCGA and US

datasets, case B: 87.47%, 88.33% for MICCAI 1 and MICCAI

2) than the corresponding FedAvg classifier (case A: 82.30%,

71.78% for TCGA and US, case B: 86.24%, 86.52% for MICCAI 1

and MICCAI 2).

Figure 8 shows the convergence curves as a function of

communication rounds for the two FL classifiers during the

training processes on two case studies. From the curves, one can

see that the proposed EtFedDyn classifier converges faster hence

required less communication rounds (EtFedDyn converged after

10–20 rounds, FedAvg converged after 30–40 rounds) for reaching

the convergence on test performance.

It is worth noting, that the performance comparison

between the proposed EtFedDyn and the original FedDyn

(with inclusion of 2 streams, added domain mapping

and 3D post processing similar to that shown in Figure 2

has also been compared, see the results in Table 6 in

Section 3.2.4.

TABLE 5 E�ect of 3D-based post-processing on the test accuracy for two

case studies.

Case study Dataset Acc. improvement (%)

A (IDH mut/wt) TCGA 2.11

US 2.23

B (LGG/HGG) MICCAI 1 1.81

MICCAI 2 2.39

3.2.6. E�ect of domain mapping
This analysis is aimed at examining the effect of applying

domain mapping. Since only case A study required domain

mapping (while in case B, two partitioned datasets were obtained

from the same MICCAI dataset, hence no domain mapping

was required), the study was only conducted on case A study.

Domain mapping is aimed at making the classifiers less affected

by the data made from different scanner settings and/or from

different equipment in hospitals. Experiments were conducted

using the proposed FtFedDyn, with and without applying domain

mapping (i.e., with/without block-1 in Figure 2). Table 8 shows the

performance on the test sets using EtFedDyn with and without

domain mapping.

One can see from Table 8 that adding domain mapping block

in Figure 2 has moderately improved the test accuracy (0.4% for

TCGA, 1.85% for US dataset) with a slight increase of standard

deviations. The performance improvement was relatively small

since the baseline FedDyn has already contained a regularization

term to handle data heterogeneity. It is worth mentioning

that for the FedAvg (with focal loss) classifier more significant

improvement on test accuracies were obtained (with +2.79% for

TCGA and +4.45% for US dataset).

3.2.7. Comparison to state-of-the-art methods
The performance comparison to some of the existing methods

that have used the same datasets as the proposed scheme are shown

in Table 9. All methods in Table 9 used for comparison with the

proposed scheme, have employed CL approaches. Therefore, results

from Liang et al. (2018), Ge et al. (2019), and Ali et al. (2020)

for case A and the results from Pan et al. (2015) and Ge et al.

(2018b) for case B can only be used as a performance indication,

especially when datasets were not exactly the same in some cases.

Observing Table 9, it is shown that the proposed scheme has better

performance than Liang et al. (2018), Ge et al. (2019), and Ali

et al. (2020) for predicting IDH mutation and wild-type glioma

subtypes and also better performance than Pan et al. (2015) and Ge

et al. (2018b) for LGG and HGG classification. These comparisons

have also indicated that the proposed scheme is effective with the

performance comparable to the state-of-the-art methods with the

additional FL advantage on preserving dataset privacy/security.

TABLE 6 Performance comparison of proposed EtFedDyn classifier by using focal loss Lfocal and cross-entropy loss Lce on case studies.

Case Dataset Loss Acc. Sen. Spe.
study Func. %(| σ |) %(| σ |) %(| σ |)

A TCGA Lfool 83.35 (2.94) 75.39 (7.40) 87.33(4.00)

IDH mut/wt Lce 81.69 (3.21) 70.06 (8.34) 87.51 (4.93)

US Lfocal 73.33 (3.38) 76.76 (6.62) 61.33 (8.59)

Lce 70.08(5.33) 76.72 (7.53) 50.33 (10.61)

B MICCAI 1 Lfool 87.47 (1.42) 79.05 (6.57) 90.28 (3.29)

LGG/HGG Lce 86.28(2.89) 73.71 (4.95) 90.47 (3.19)

MICCAI 2 Lfocal 88.33 (1.93) 80.38 (6.61) 90.98 (2.59)

Lce 86.48 (2.61) 74.85(6.69) 90.22(2.27)

Acc, accuracy; Sen, sensitivity; Spe, specificity.

The bold numbers indicate relatively higher values.
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3.3. Discussion and future work

Some insights obtained from our experimental results using the

proposed scheme are:

• The proposed 3D brain scan-based FL scheme has obtained

competitive performance as comparing to the corresponding

CL approach. It has only a slight decrease of 1.17% for

glioma subtype and 0.83% for glioma LGG/HGG classification

in terms of average test accuracy, while enable hospitals

maintaining their own datasets, where privacy/security issues

may be tackled through FL.

• The proposed EtFedDynwith focal loss function has improved

the test performance, by overweighing errors from small data

class and alleviating the class data imbalances in the training

sets (case A: +1.66%, +3.25% for glioma IDH subtypes and

case B: +1.19%, +1.85% for glioma LGG/HGG in our tests).

• Domain mapping is useful to handle datasets consists

of scans from different cohorts/hospitals with different

scanners/scanner settings. For EtFedDyn (already contains

FIGURE 7

Comparison of proposed EtFedDyn on accuracy, sensitivity, and specificity. (Top) TCGA and US datasets for case A study. (Bottom) MICCAI 1 and

MICCAI 2 datasets for case B study. Red bar: With focal loss Lfocal. Blue bar: With cross-entropy loss Lce.
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regularization term for data heterogeneity), moderated

improvement is expected (0.4%, 1.85% increase in test

accuracy in our tests). For Basic FedAvg classifier, the

improvement is expected relatively large (2.79%, 4.45% in our

tests).

• EtFedDyn classifier has a fast convergence and better

classification accuracy on the test sets than the corresponding

TABLE 7 Performance comparison between EtFedDyn classifier and the

corresponding FedAvg (with Lfocal) classifier on test sets, in terms of

classification accuracy and convergence speed.

Case study Dataset EtFedDyn FedAvg

A (IDH mut/wt) TCGA 83.35 (2.94) 82.30 (2.61)

US 73.33 (3.38) 71.78 (3.95)

B (LGG/HGG) MICCAI 1 87.47 (1.42) 86.24 (1.86)

MICCAI 2 88.33 (1.93) 86.52 (1.32)

The bold numbers indicate relatively higher values.

FedAvg classifier (improved by 1.05%, 1.55% for glioma

IDH subtypes in case A study and 1.23%, 1.81% for glioma

LGG/HGG in case B study in our tests, and also with ∼50%

faster convergence speed).

• Post-processing offered a 3D scan-based patient level decision

on glioma subtypes, while being relatively simple, it offers

relatively significant gains in performance (test accuracy

improved by 2.11%, 2.23% for glioma subtypes in case A study

TABLE 8 Comparison of EtFedDyn classifier test results in case A study, to

examine the e�ect of domain mapping for proposed FL scheme on two

datasets.

Domain mapping TCGA US

With 83.35 (2.94) 73.33 (3.38)

Without 82.95 (2.54) 71.48 (2.93)

Difference 0.4 (0.4) 1.85 (0.45)

The bold numbers indicate relatively higher values.

FIGURE 8

Comparison of communication rounds required in the proposed EtFedDyn and the FedAvg (with focal loss) scheme. The test curves during training

for a single run. (Top) The convergence curves for TCGA and US datasets in case A study. (Bottom) The convergence curves for MICCAI 1 and

MICCAI 2 in case B study. Red curve: For EtFedDyn. Blue curve: For FedAvg (with focal loss).
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TABLE 9 Comparison of two case studies from the proposed scheme with some existing methods.

References Method Dataset No. of patients (IDH Test
mut/wt) Acc. (%)

Case A (IDH mut/wt)

Ge et al. (2019) CL TCGA 55/122 81.03

Liang et al. (2018) CL TCGA 55/112 84.60

Ali et al. (2020) CL US+France 137/24 72.38

Proposed FL US 68/08 75.56

TCGA 55/122 85.46

References Method Dataset No. of patients (LGG Test

/HGG) Acc. (%)

Case B (LGG/HGG)

Pan et al. (2015) CL MICCAI 25/188 73.33

Ge et al. (2018b) CL MICCAI 75/210 89.47

Proposed FL MICCAI 1 75/210 89.88

MICCAI 2

The bold numbers indicate relatively higher values.

and 1.81%, 2.39% for glioma LGG/HGG grades in case B study

tests).

• Comparison of performance with several state-of-the-art

methods has indicated that the proposed FL scheme has

reached comparable performance to those of some of the

existing methods based on CL approach.

3.4. Limitations and future work

The datasets on glioma types and their biomarker defined

subtypes have been mostly found in a small/moderate size from

different hospitals in different countries. Hence, handling data

privacy constraint becomes pronounced issue. Our current work

was only conducted on two datasets. Future work will be on

using more hospital datasets for testing the performance of the

proposed FL scheme and to evaluate its possibility of replacing the

corresponding CL approach.

4. Conclusion

The proposed 3D brain scan-based FL scheme, consisting

of a novel 2D FL classifier (EtFedDyn), in combination with

domain mapping as pre-processing and scan-based decision as

post-processing, is shown to be effective in providing good

test performance on classifying glioma subtypes (IDH mutation

and IDH wild type) on two datasets and on classifying glioma

grades (LGG/HGG) on a single dataset. Comparing with the

corresponding CL approach, the proposed scheme has provided

a competitive performance with only a small drop in average

test accuracy (−1.17%, −0.83%), while offered the advantage of

maintaining data privacy where each hospital may train its own

dataset on its local DL network. Detailed empirical analysis was

also performed to verify the contributions from individual parts

of the scheme, including cost functions, FL schemes, domain

mapping and post-processing, among others. Comparisons with

several existing state-of-the-art CL methods, the proposed FL-

based method EtFedDyn still maintains competitive performance.

Comparisons with two existing FL approaches (FedAvg and

FedDyn) have also shown improved test performance. Limitations

and future work were also discussed.
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