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Distributed Channel Access for Control over
Known and Unknown Gilbert-Elliott Channels

Tahmoores Farjam, Henk Wymeersch, and Themistoklis Charalambous

Abstract—We consider the distributed channel access problem
for a system consisting of multiple control subsystems that
close their loop over a shared wireless network with multiple
channels subject to Markovian packet dropouts. Provided that
an acknowledgement/negative-acknowledgement feedback mech-
anism is in place, we show that this problem can be formulated as
a Markov decision process. We then transform this problem to a
form that enables distributed control-aware channel access. More
specifically, we show that the control objective can be minimized
without requiring information exchange between subsystems
as long as the channel parameters are known. The objective
is attained by adopting a priority-based deterministic channel
access method and the stability of the system under the resulting
scheme is analyzed. Next, we consider a practical scenario in
which the channel parameters are unknown and adopt a learning
method based on Bayesian inference which is compatible with
distributed implementation. We propose a heuristic posterior
sampling algorithm which is shown to significantly improve
performance via simulations.

Index Terms—Wireless networked control systems, distributed
channel access, Gilbert-Elliott channel, Bayesian inference, online
learning.

I. INTRODUCTION

Recent technological advancements have enabled mass pro-
duction of low-power wireless sensors with high compu-
tational capabilities at a lower cost. Wireless communica-
tion plays a key role in modern control environments since
adopting wireless sensors leads to scalability, flexibility, and
facilitates breaking new disruptive technologies into the market
[2]. The communication resources within these environments
are often shared among various control loops and such systems
are often referred to as wireless networked control systems
(WNCSs).

Using wireless communication for information exchange in
the control loops introduces several unique challenges that
stem from non-negligible transmission error probability. This
leads to packet dropouts which are typically modeled as an
independent and identically distributed (i.i.d.) Bernoulli se-
quence. The impact of this phenomenon on the solution of the
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optimal estimation and linear quadratic Gaussian (LQG) con-
trol problem for a single loop has been investigated in seminal
works [3] and [4], respectively. The i.i.d. assumption, however,
corresponds to environments where path loss and small-scale
fading are dominant. In industrial environments, large moving
objects lead to shadow fading and burst error which cause
correlated packet dropouts [5], [6]. This correlation can be
approximated by modeling the communication channel as
a time-homogeneous two-state Markov chain known as the
Gilbert-Elliott (GE) model [7], [8]. The impact of this type of
channel on a single control loop has also been studied [9]–
[12].

Typically, WNCSs contain several control loops, hereon
called subsystems, which communicate over a shared network
to perform their individual tasks. The limited capacity of
the network necessitates that only a subset of subsystems
are allowed to communicate within each time slot. Devising
a policy for choosing a suitable subset of subsystems for
achieving the desired objective given the communication con-
straints is known as the scheduling or channel access problem.
These policies often require solving a complex optimization
problem by a central entity in the network which orchestrates
channel access thus impeding scalability. In this paper, we
consider the channel access problem over GE channels in the
absence of a central coordinator in the network. We derive the
stability conditions for our proposed distributed channel access
method and also extend its application to scenarios where the
underlying parameters of the GE channels are unknown.

A. Related works

The seminal work [3] investigated the effect of i.i.d. packet
dropouts on Kalman filtering which showed that a critical
dropout rate exists beyond which the estimation error covari-
ance cannot be bounded. This paved the way for a plethora of
works on sensor scheduling policies over ideal channels such
that stability of the filter is preserved despite the intermittent
arrival of data packets. For instance, the single, two, and multi-
sensor scheduling problem subject to energy constraints were
studied in [13], [14], and [15], [16], respectively, showing that
the optimal schedule can be approximated by a periodic one.
Sensor scheduling with possibility of i.i.d. packet dropouts
during transmission has also been studied for bandwidth-
limited systems [17]–[19] as well as systems with energy
harvesting capabilities [20]–[22]. In many practical scenarios,
channel states, and consequently, packet dropouts are time-
correlated which motivates the use of GE channel model
instead. The study of this model in WNCSs has been mainly
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concerned with stability [9], [11], [23], [24] and scheduling of
a single sensor for remote estimation [25], [26]. To the best
of our knowledge, the only works that consider the closely
related scenario of multiple GE channels are [27], [28].

The sensor scheduling problem for remote estimation is
in itself an interesting and prominent problem for applica-
tions such as target tracking. Nevertheless, state estimation
is also of paramount importance to feedback control. In the
seminal work [4], the LQG problem for a single control
loop subject to i.i.d. packet losses was considered and the
certainty equivalence principle was shown to hold if instanta-
neous packet acknowledgements/negative-acknowledgements
(ACK/NACKs) are available through an error-free feedback
channel. Regarding the design of channel access policy, how-
ever, it is shown that the channel access decisions should also
be independent of the control inputs for certainty equivalence
to hold [29], [30]. It has been shown that minimizing the LQG
cost for WNCSs with certainty equivalent controller and i.i.d.
channels requires solving a mixed-integer quadratic program
[31]. The high computational complexity of this problem has
motivated the adoption of LQG-related cost for prioritizing
data transmission in a computationally tractable manner [32],
[33].

Distributed channel access methods are desirable for
WNCSs since they offer higher security and allow for flexibil-
ity and scalability. Typically, due to computational intractabil-
ity of the optimal scheduling solutions [14]–[19], approximate
solutions are proposed as a threshold policy [15], [17], [18]
or periodic schedule [14], [16] which, in theory, can be
successfully implemented with time division multiple access
(TDMA) or carrier sense multiple access (CSMA) schemes,
respectively. Nevertheless, performance of such systems can
deteriorate drastically in practice due to additional packet
dropouts that happen because of the prolonged delay or colli-
sions [34]. This has motivated novel control-aware distributed
channel access methods such as Try-Once-Discard (TOD)
[35] and timer-based mechanism (TBCoIL) [36] for wired
networks. Unlike TOD, TBCoIL is also capable of operating
over wireless networks [37], and more importantly, it allows
for learning the parameters of the communication channels for
control-aware channel access. Applying reinforcement learn-
ing methods for learning the unknown system dynamics has a
long history in the control community; see [38]. Such methods
have also been applied for near-optimal sensor scheduling over
channels with known i.i.d. packet dropout rates [18], [39] or
for learning the unknown dropout rates [37]. In the closest
settings to us, a centralized method for learning of the channel
statistics and scheduling over GE channels have been proposed
in [27], where the variations of channel states are assumed to
be fully observable.

B. Main contributions

In this paper, we consider a WNCS consisting of multi-
ple subsystems and multiple GE channels without a central
scheduling unit for coordinating channel access. The limited
communication resources are such that only a subset of sensors
can utilize the shared network to communicate with their

corresponding estimator. We first show that despite the partial
observations of the channel states the optimal scheduling
problem in the LQG sense can be formulated as an MDP. To
the best of our knowledge, this is the first time that multiple
partially observable GE channels have been considered in
WNCSs and such a formulation is provided. The scenario
closest to ours is investigated in [27], where the state variations
of wireless links are assumed to be identical for all subsystems,
thereby resulting in full observations. For distributed control-
aware channel access, we then utilize the concept of cost of
information loss (CoIL), originally introduced in [33], and
show that the resulting priority measure can be utilized in
TBCoIL. More specifically, the resulting priority measure for
minimizing the stage cost can be calculated by each sensor
individually and without requiring any explicit information
exchange between them which enables distributed channel
access with TBCoIL. We then derive the conditions under
which implementing TBCoIL is guaranteed to stabilize the
system. The framework used for stability analysis is inspired
by a work done on protocols with redundant data transmission
[40], but our method significantly differs from the original
work [40] and also seminal works [3], [4], [9].

Operation of TBCoIL assumes knowledge of the param-
eters of the underlying GE model. This can be restrictive
in practice and thus we relax this assumption by adopting a
Bayesian framework [41] for learning the channel parameters.
This method enables us to reduce uncertainty in the channel
parameters by incorporating information that is obtained from
partial observations of the channel state variation. We then
propose a heuristic posterior sampling algorithm that, in ad-
dition to computational tractability, allows us to address the
exploration/exploitation dilemma in a distributed and control-
aware manner through TBCoIL.

C. Organization and notation
The remainder of the paper is organized as follows. In

Section II, we provide the system model and the necessary
preliminaries. In Section III, we provide the MDP formulation
of the channel access problem and propose a distributed
solution and establish the stability conditions. The adopted
Bayesian framework for learning the GE channel parameters is
described in Sections IV and the proposed learning algorithm
is presented therein. In Section V, we numerically evaluate
the performance of the proposed methods and finally we draw
conclusions and discuss future directions in Section VI.

Notation: Z≥0 (Z>0) denotes the set of nonnegative (pos-
itive) integers. The transpose, inverse, and trace of a square
matrix X are denoted by XT, X−1, and tr(X), respectively,
while the notation X⪰0 (X≻0) means that matrix X is pos-
itive semi-definite (definite). E{·} represents the expectation
of its argument and P{·} denotes the probability of an event.
fn(·) is the n-fold composition of f(·), with the convention
that f0(X)=X . The Euclidean norm of a vector x is denoted
by ∥x∥ and σmax(X) denotes the spectral radius of a matrix
X . The n by n identity matrix is represented by In. 1n×p

and 0n×p present an all-one and all-zero n by p matrix,
respectively. Finally, the cardinality of a set X is denoted by
|X |.
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II. SYSTEM MODEL AND PRELIMINARIES

The layout of the considered WNCS is depicted in Fig. 1.
We consider multiple subsystems with decoupled dynamics
share a multi-channel wireless network for information ex-
change between their sensor and controller. The detailed model
of the involved components is described in the following.

Subsystem 1 Subsystem N

Subsystem 2 Subsystem N-1

Channel  

Subsystem 2

Subsystem 3

Fig. 1. Example of the WNCS layout with N subsystems competing to access
a shared channel j. Pi represents the plant of subsystem i, with Si, Ei, and
Ci being its sensor, estimator and controller, respectively. Note that the timer
is embedded in the sensor block.

A. Local processes and measurements

Let N denote the index set of subsystems with |N | = N .
Each subsystem i ∈ N is modeled by a linear time-invariant
process as follows:

xi,k+1 = Aixi,k +Biui,k + wi,k, (1a)
yi,k = Cixi,k + vi,k, (1b)

where xi,k ∈ Rni , yi,k ∈ Rpi , and ui,k ∈ Rmi are the local
states, output, and control input at time k, respectively. Ai

and Ci are the system and observation matrices, respectively,
and we assume the open-loop dynamics are unstable to avoid
trivial problems, i.e., σmax(Ai) > 1. The initial state, process
disturbance, and measurement noise, denoted by xi,0, wi,k,
and vi,k, respectively, are assumed to be uncorrelated zero-
mean Gaussian random variables with respective covariances
Xi,0 ⪰ 0, Wi ⪰ 0, and Vi ≻ 0.

We assume that smart sensors with sufficient memory
and computational capacity take the measurements (1b). This
allows each sensor to run a local Kalman filter to compute
the minimum mean square error (MMSE) estimate of the state
which is to be transmitted to the corresponding estimator. This
setup is commonly used for remote estimation since it im-
proves performance by resulting in a smaller error covariance
at the estimator [42]. Let Yi,k = {yi,0, . . . , yi,k} be the history
of measurements at smart sensor for subsystem i ∈ N and
define

x̂s
i,k|k−1 ≜ E{xi,k|Yi,k−1},
x̂s
i,k|k ≜ E{xi,k|Yi,k},

as the a priori and a posteriori state estimates, respectively,
and define

P s
i,k|k−1 ≜ E{(xi,k − x̂s

i,k|k−1)(xi,k − x̂s
i,k|k−1)

T|Yi,k−1},
P s
i,k|k ≜ E{(xi,k − x̂s

i,k|k)(xi,k − x̂s
i,k|k)

T|Yi,k},

as the a priori and a posteriori error covariance at the smart
sensor, respectively. All these are determined by the standard
Kalman filter equations. We assume that for all i ∈ N the pair
(Ai, Ci) is observable, and the pair (Ai,W

1/2
i ) is controllable.

As a result, the steady-state value of the a posteriori error
covariance, i.e., P s

i,k|k for k → ∞, exists and we denote it
by P i [43, Ch. 5, p. 110]. Since convergence to steady-state
occurs at an exponential rate, we can safely assume that the
local Kalman filter has already entered steady-state [18], [27],
[39], [44]. Therefore, at each time k, the generated data packet
at the sensor contains x̂s

i,k|k which has error covariance P i.

B. Communication channels

Let M denote the index set of the available channels with
|M| = M and define

δi,j,k =

{
1, if i transmits x̂s

i,k|k on channel j,
0, otherwise.

(2)

Since the wireless links are unreliable, transmission of sensor
i on channel j at time k, i.e., δi,j,k = 1, might be unsuc-
cessful. We assume that each subsystem can listen to each of
the M channels simultaneously. We further assume that the
network protocol supports packet ACK/NACKs and that they
are guaranteed to be received by the transmitter [19], [45].
Let γi,j,k ∈ {0, 1} correspond to this such that γi,j,k = 1
if δi,j,k = 1 and the data packet is successfully received;
otherwise, γi,j,k = 0. In addition, to represent whether the
estimator i receives the data packet at k, we define

θi,k =

{
1, if

∑
j∈M γi,j,k = 1,

0, otherwise.
(3)

We assume that one slot is sufficient for conveying all the
information from the sensor to the estimator and at any time
slot k, each subsystem occupies one channel at most, i.e.,∑

j∈M
δi,j,k ≤ 1, ∀i ∈ N , ∀k ∈ Z≥0. (4)

Furthermore, we impose the following constraint on the chan-
nel access decisions to ensure collision-free transmission∑

i∈N
δi,j,k ≤ 1, ∀j ∈M, ∀k ∈ Z≥0. (5)

The effects of state quantization and transmission delays are
considered negligible and are thus ignored henceforth.

Fig. 2 depicts the two-state Markov chain corresponding to
the GE channel model considered here. Let ci,j,k ∈ {G,B}
denote the (possibly hidden) state of the wireless link at
k which can be either good or bad denoted by G and B,
respectively. Then, data transmission over a link (δi,j,k = 1) is
successful (γi,j,k = 1) if the link is in good state (ci,j,k = G),
otherwise the data packet is dropped. The quality of each link
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is associated with the failure rate and recovery rate defined as

pi,j = P{ci,j,k = B|ci,j,k−1 = G}, (6a)
qi,j = P{ci,j,k = G|ci,j,k−1 = B}, (6b)

respectively.

G B

pi,j

1− pi,j

qi,j

1− qi,j

Fig. 2. The two-state Markov chain of the GE channel model.

In case the channel state is not observed at a given time k,
the sensor can still maintain a belief of the channel being G
at the next time step. The evolution of the belief is given by

bi,j,k+1 =


1− pi,j , if δi,j,k = 1 and γi,j,k = 1,

qi,j , if δi,j,k = 1 and γi,j,k = 0,

bi,j,k(1−pi,j) + (1− bi,j,k)qi,j , otherwise.
(7)

When the channel state is not observed consecutively, the
belief monotonically converges to the stationary probability
of the channel state being G, which is given by

bi,j,∞ =
qi,j

pi,j + qi,j
. (8)

C. Control and estimation

We choose the standard quadratic cost over the infinite
horizon as the performance metric which is given by

J∞ = lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

(
xT
i,kQixi,k + uT

i,kRiui,k

)}
,

(9)

where Qi ⪰ 0 and Ri ≻ 0 are weighting matrices of
appropriate dimensions. We assume that the channel access
decisions are independent of the control inputs thus guaran-
teeing that the certainty equivalence principle holds [32]. As
it will become apparent in the following sections, our channel
access policies indeed satisfy this assumption. Therefore, the
optimal controller is linear and given by

ui,k = Li,∞x̂k|k, (10)

where Li,∞ is the optimal feedback gain determined by

Li,∞ = −(BT
iΠi,∞Bi +Ri)

−1BT
iΠi,∞Ai, (11)

where Πi,∞ is the positive semi-definite solution of discrete-
time algebraic Riccati equation (DARE)

Πi,∞ = AT
iΠi,∞Ai +Qi − LT

i,∞(BT
iΠi,∞Bi +Ri)Li,∞.

(12)

By making the common assumption that the actuation links are
perfect [21], [29]–[33] and based on the assumption that the
pairs (Ai, Bi) and (Ai, Q

1/2
i ) are controllable and observable,

respectively, the positive semi-definite solution of (12) always
exists [46, Ch. 6]. Let x̂i,k|k ≜ E{xi,k|Ii,k} denote the

a posteriori state estimate provided by the estimator at the
controller side. The information pattern can be described as

Ii,k={ui,0, . . . , ui,k−1, θi,0, . . . , θi,k, x̂
s
i,0|0θi,0, . . . , x̂

s
i,k|kθi,k},

(13)

i.e., the successfully received estimates from the sensor and the
past applied inputs. Furthermore, the estimator can infer the
time elapsed since the most recent successful packet reception
which is defined by

ti,k = min{κ ≥ 0 : θi,k−κ = 1} (14)

Then, the computations at the estimator can compactly be
written as

x̂i,k|k = (Ai +BiLi,∞)ti,k x̂s
i,k−ti,k|k−ti,k

, (15)

Pi,k|k = h
ti,k
i (P i), (16)

where Pi,k|k ≜ E{(xi,k − x̂i,k|k)(xi,k − x̂i,k|k)
T|Ii,k} denotes

the estimation error covariance at the estimator and the Lya-
punov operator hi is defined as hi(X) ≜ AiXAT

i +Wi.
Due to optimality of the certainty equivalent controller and

separation of its design from the channel access decisions, the
problem for obtaining the optimal channel access scheme for
minimizing (9) can be formulated as Problem 1.

Problem 1.
min

∆1,∆2,...
J∞,

subject to (4), (5),
(17)

where ∆k is a binary matrix that includes all the optimization
variables at time k, i.e.,

∆k ≜


δ1,1,k . . . δN,1,k

δ1,2,k . . . δN,2,k

...
...

δ1,M,k . . . δN,M,k

 . (18)

D. Cost of Information Loss (CoIL)
The concept of CoIL was introduced in [33] to capture the

impact of the loss of information of a subsystem on the cost
of the entire system. Define E0

i,k as the cost of subsystem i
in case it does not receive any data at k; similarly, E1

i,k is the
cost when its data packet is successfully received. The CoIL
for subsystem i at time k is defined as

CoILi,k ≜ E0
i,k − E1

i,k. (19)

This concept can be utilized for solving the optimal channel
access problem. Let Fk ⊆ N denote the set of subsystems that
transmit their data packet at k and Fk ≜ N \ Fk. Assuming
perfect communication channels and one-step horizon, the
expected value of the stage cost, denoted by Jk, can be written
as

E{Jk|Fk} =
∑
i∈Fk

E0
i,k +

∑
i∈Fk

E1
i,k

=
∑
i∈N

E0
i,k +

∑
i∈Fk

(
E1

i,k − E0
i,k

)
=

∑
i∈N

E0
i,k −

∑
i∈Fk

CoILi,k. (20)
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Since the first term in the last line of (20) is independent of
the channel access decisions, minimizing the cost is equivalent
to finding Fk such that the last term is maximized.

E. Timer-based mechanism

Inspired by the celebrated result for relay selection in wire-
less cooperative networks [47], the timer-based mechanism
was adopted and modified in [36] for providing distributed
channel access in Networked Control Systems (NCSs). Al-
though the original mechanism was developed for networks
with a single perfect shared channel, its application was
later extended to WNCSs with multiple lossy channels [37].
Suppose that each subsystem is equipped with M independent
timers, i.e., a separate timer for each channel. At the beginning
of each transmission slot k, subsystems set their timers and
start the countdown to zero while being in listening mode. The
timer values are given by

τi,j,k =
λj

mi,j,k
, (21)

where λj is a constant specific to channel j ∈ M but is
identical for all i, and the local cost, denoted by mi,j,k,
is calculated individually for each channel. Consequently, a
larger local cost corresponds to a smaller timer. For simplicity,
we will assume that λj is the same for all channels, i.e.,
λj = λ for all j. Let {i∗, j∗} = argmini,j{τi,j,k} represent
the indices of the smallest timer at k. As this timer reaches
zero, subsystem i∗ switches to transmission mode and sends
a flag packet on channel j∗ immediately, which informs the
listening subsystems to stop their timers for j∗ and back off.
Simultaneously, i∗ stops its running timers, i.e., withdraws
from competition for the other channels, and transmits its data
packet on j∗. By assuming that the flag packet is always
detected by all the listeners and that it has a very short
duration, data transmission will be collision-free. Meanwhile,
the remaining subsystems compete for the available channels
until all M channels are allocated. As this time slot ends, the
new timer values are determined based on the updated local
cost (mi,j,k+1) and the entire procedure is repeated in the
next slot. Fig. 3 demonstrates how this mechanism works for
an illustrative case of two subsystems sharing a channel at k.

The contention period can be adjusted by choosing λ as
required by the communication protocol. Its value cannot
be arbitrarily small though, because collision-free channel
access requires that multiple timers do not expire within a
shorter interval than the duration of the flag. This trade-off
is addressed by fine-tuning λ for specific configurations and
based on the involved control and communication parameters
[36], [47]. Regarding the local cost mi,j,k, it can be any
non-zero cost which is to be defined according to a specific
design objective. Defining it is a rather challenging task since
it should be such that the resulting channel access decisions
accomplish the prespecified objective, whilst each subsystem
is able to evaluate it based on its local information. Recall
that explicit information exchange between subsystems is
impossible, and thus distributed channel access requires mi,j,k

to be based on local information. In the following sections, we

Frame

 

Subsystem 1

Subsystem 2

0

Start timer Send flag Send data

Start timer Stop timer and back offHear flag

0

Fig. 3. Two subsystems sharing a single channel via timers at k. Subsystem
1 has a smaller timer (τ1,k<τ2,k) and claims the channel.

will specify this cost in a way that implementing the timer-
based mechanism achieves the channel access objective in a
distributed manner.

III. DISTRIBUTED CHANNEL ACCESS OVER KNOWN GE
CHANNELS

In this section, we first demonstrate that Problem 1 can
be formulated as an MDP despite the partial observations of
the channel state variations. Since the complexity of solving
the MDP impedes tractability, we adopt the concept of CoIL
to allow for solving the problem over a finite horizon in a
distributed manner. The solution is obtained by implementing a
specific timer setup in TBCoIL. Then we derive the conditions
that guarantee the stability of the system under the resulting
channel access scheme.

For notational convenience and without loss of generality,
we drop the subscript j and consider M = 1 when necessary
and then provide the generalized results by reintroducing it.

A. An MDP formulation
Problem 1 can be simplified by only considering the com-

ponents of J∞ which are influenced by the channel access
decisions.

Problem 2.
min

∆1,∆2,...
J̃∞,

subject to (4), (5),
(22)

where

J̃∞ = lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

tr
(
Γi,∞Pi,k|k

)}
, (23)

and Γi,∞ = LT
i,∞(BT

iΠi,∞Bi +Ri)Li,∞.

Proposition 1. Problem 2 is equivalent to Problem 1.

Proof. From [48, Lemma 6.1, Ch. 8] it follows that for the
setup considered here, (9) can be written as

J∞ =
∑
i∈N

tr (Πi,∞Wi)

+ lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

tr(Γi,∞Pi,k|k)

}
. (24)
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Since the first term is independent of the channel access
decisions, the assertion follows.

In order to formulate Problem 2 as an MDP, we define
two additional variables which can be inferred from the
information available at the sensors. Considering M = 1
hereafter, we define the holding time as

thi,k ≜ min{κ ≥ 0 : γi,k−κ = 1}, (25)

which describes the time elapsed since i transmitted success-
fully on the channel. In addition, we define the observation
time as the time since the most recent observation of the
channel state by i, i.e.,

toi,k ≜ min{κ ≥ 0 : δi,k−κ = 1}. (26)

From the definitions, we have toi,k ≤ thi,k for all k. Recall
that keeping track of the belief in (7) is crucial for sensors
since channel states variations are not constantly observed.
Thanks to the definition of (25) and (26), this belief can now
be expressed in closed form as

bi,k =


qi + (1− pi − qi)

toi,k−1+1pi
pi + qi

, toi,k−1 = thi,k−1,

qi − (1− pi − qi)
toi,k−1+1qi

pi + qi
, otherwise,

(27)

where the conditions indicate whether the most recently ob-
served channel state was G or B. In case of a failed trans-
mission, i.e., channel state being B, observation time is reset
to zero, while holding time grows (toi,k−1 ̸=thi,k−1). Hence,
toi,k−1=thi,k−1 indicates that the last transmission attempt has
been successful, i.e., the most recent observed channel state
was G.

Problem 2 can be formulated as an MDP problem with
an infinite time-averaged cost which can be described by a
quadruple (S,A,P{·|·, ·}, R(·, ·)), in which:

1) The state space S: is the collection of all holding times
and observation times, which can in turn determine the
beliefs as per (27). Let a hyperstate be defined by Ti,k ≜
(thi,k, t

o
i,k). Then, the state at k can be described by sk =

(T1,k, . . . , TN,k), i.e., the collection of all hyperstates
and thus the collection of all beliefs.

2) The action space A: contains all allowable channel
access decisions, i.e., A={a=[a1, . . . , aN ]∈{0, 1}N :∑

i∈N ai ≤ 1}. For M = 1, the action at k, i.e., ak, is
the first column of (18) and it inherently satisfies (4).

3) The transition Kernel P{·|·, ·}: P{sk+1|sk,a} is the
probability of moving from state sk to sk+1 if the action
ak is executed at k and it can be written as

P{sk+1|sk,ak} =
N∏
i=1

P{Ti,k+1|Ti,k, δi,k}, (28)

where

P{Ti,k+1|Ti,k, δi,k} = (29)
bi,k, if Ti,k+1=(0, 0) and δi,k=1,

1−bi,k, if Ti,k+1=(thi,k+1, 0) and δi,k=1,

1, if Ti,k+1=(thi,k+1, toi,k+1) and δi,k=0,

0, otherwise.

Despite the possibly misleading appearance of (29), one
should distinguish the transition Kernel from the states.
When δi,k=1, the transition probability is determined
by simply substituting the holding time and appearance
time included in Ti,k within (27) which yields a constant
value between 0 and 1. By evaluating (29) for all i, one
can obtain the transition probability Kernel from (28).

4) The cost function R(·, ·): From Proposition 1 and (16)
we obtain

R(sk,ak) =

N∑
i=1

tr
(
Γi,∞Pi,k|k

)
, (30)

where Pi,k|k is given in (16) which depends on ti,k (14)
which is inferred from the holding time, i.e.,

ti,k = min
j∈M

thi,j,k. (31)

We define a policy π : S → A to be a mapping from the
states to actions and denote by Π the set of all admissible
policies. The goal of the MDP is to find the optimal policy
which minimizes the expectation of the time-averaged cost
over the infinite horizon as

inf
π∈Π

Eπ

{
lim

K→∞

1

K

K−1∑
k=0

R(sk,ak)

}
. (32)

This framework is applicable to the case of M>1 by con-
sidering the hyperstates for each wireless link. Thus, the
state space is S=Z2NM

≥0 and the action space and transition
probabilities are also defined accordingly. In principle, after
truncating S to a finite state space, solving (32) by dynamic
programming techniques, e.g., using policy iteration or relative
value iteration, is possible. However, even for the simplest
case of M = 1, as the number of subsystems grows linearly,
the number of states grows exponentially, and finding the
optimal policy is shown to be PSPACE-hard [49]. Although
by choosing a finite horizon in (32) the problem becomes
computationally feasible for approximate methods, a central
network managers with access to information of all subsystems
is required to solve the problem and allocate the channels
accordingly. Hereafter, we will instead consider the problem
of minimizing the expected immediate cost at each time step,
i.e.,

Problem 3.
min
∆k

E{R(sk,ak)},

subject to (4), (5).
(33)

As it will become apparent in the next subsection, the
channel access policy for solving Problem 3, i.e., ∆k as
defined in (18), can be determined in a distributed manner
as required by the WNCS architecture.
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B. Distributed channel access

In the beginning of each time slot k, the sensors decide
whether to transmit within that slot based on their local
information that is given by

Isi,k ≜ Yi,k ∪ {δi,1, . . . , δi,k−1, γi,1, . . . , γi,k−1}. (34)

Note that it is implicitly assumed that the available information
at sensor i contains the past control inputs of i. The sensor does
not require additional communication from the controller and
can infer such information from the knowledge of the control
law (10) and utilizing the ACK/NACK signal to determine the
state estimate at the controller side.

The transmission decisions and their outcomes are sufficient
for inferring the holding time and the observation time and
therefore (34) is sufficient for evaluating the belief at k. By uti-
lizing this information, the CoIL for minimizing the stage cost
can be derived in a similar way to (20). Let Isk ≜ ∪i∈NIsi,k.
From Proposition 1 it follows that Jk =

∑N
i=1 tr

(
Γi,∞Pi,k|k

)
which is the same as the immediate cost in (30). As a result,

E{Jk|Fk, Isk} =
∑
i∈N

tr
(
Γi,∞E{Pi,k|k|Fk, Isi,k}

)
(a)
=

∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
+

∑
i∈Fk

tr
(
Γi,∞P i

)
E
{
γi,k = 1|δi,k = 1, Isi,k

}
+

∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
E
{
γi,k = 0|δi,k = 1, Isi,k

}
(b)
=

∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
+

∑
i∈Fk

tr
(
Γi,∞P i

)
bi,k

+
∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
(1− bi,k)

(c)
=

∑
i∈N

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
−

∑
i∈Fk

tr
(
Γi,∞

[
h
ti,k−1+1
i (P i)− P i

])
bi,k, (35)

where (a) holds since the channel states evolve independently
of the dynamics and for subsystem that do not transmit at k,
i.e., i ∈ Fk, δi,k = 0. Since (34) is sufficient for inferring
the holding time and the observation time, the sensors can
compute the belief as per (27) which yields (b); finally, (c) is
obtained by rearranging the terms.

As a result, the optimal channel access problem for min-
imizing the stage cost is equivalent to finding Fk such that
the last summation in (35) is maximized. In accordance with
the original definition, CoIL for subsystem i at k can be
formulated as

CoILi,k = tr
(
Γi,∞

[
h
ti,k−1+1
i (P i)− P i

])
. (36)

Since the sensors can keep track of the belief over all channels
in case M>1, it readily follows that by reintroducing the

corresponding subscript in (35), Problem 3 can be formulated
as

max
∆k

∑
i∈N

∑
j∈M

CoILi,kbi,j,kδi,j,k,

subject to (4), (5),
(37)

As mentioned in Subsection II-E, if local information is
sufficient for determining mi,j,k in (21), the timer-based mech-
anism ensures that channel access is granted to the subsystems
with the highest cost in a distributed manner while inherently
satisfying constraints (4) and (5). Furthermore, each subsystem
i only utilizes its local information for evaluating CoILi,k and
bi,j,k as per (36) and (27), respectively. Therefore, by letting
mi,j,k = CoILi,kbi,j,k we obtain

τi,j,k =
λ

CoILi,kbi,j,k
. (38)

Consequently, using these values in the timer-based mech-
anism determines ∆k in a distributed fashion. Furthermore,
since the evolution of CoIL and belief are independent of the
control actions, the certainty equivalence principle holds and
the controller given in (10) is optimal for this channel access
policy.

Note that even in case of networks containing multiple sub-
systems with identical dynamics, this setup leads to collision-
free channel access since pi,j and qi,j have Lebesgue measure
zero. In other words, subsystems will almost surely have
distinct beliefs and thus distinct timer values. Additionally,
in case the network protocol requires bitwise arbitration for
granting channel access, collision-free transmission can be
guaranteed by implementing method such as the one proposed
in [50], where contention is based on dynamic and static
identifiers. In such settings, the timer value in (38) can be
utilized for assigning the dynamic identifiers, while the distinct
static identifier is assigned as in [50].

C. Stability analysis

We investigate the stability of the WNCSs in which timers
are employed as per (38) by considering the Lyapunov mean
square stability criterion. For ease of exposition, the subscript
corresponding to the index of a subsystem is dropped in
Definition 1 and Lemma 1.

Definition 1 (Lyapunov mean square stability [51]). The
equilibrium solution is said to possess stability of the second
moment if given ε > 0, there exists ξ(ε) such that ∥x0∥ < ξ
implies

E{∥xk∥2} < ε. (39)

Lemma 1. For the architecture considered in this work, (39)
is equivalent to existence of φ satisfying 0 < φ < ε such that

tr
(
E{Pk|k}

)
< φ. (40)

Proof. Let AL = A+BL∞ and ek|k ≜ xk − x̂k|k. The state
dynamics in (1a) can be rewritten as

xk+1 = ALx̂k|k +Aek|k + wk,
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from which we obtain

E{∥xk+1∥2 |Ik} =tr
(
AT

LALE{x̂k|kx̂
T
k|k|Ik}

)
(41)

+ tr
(
ATAE{ek|keT

k|k|Ik}
)
+ tr(W ),

due to the fact that wk is zero-mean and independent of
the state and its estimate. Furthermore, E{eT

k|kx̂k|k|Ik} =
E{xT

k|Ik}x̂k|k − x̂T
k|kx̂k|k = 0. From the definition of the

error covariance matrix at the estimator and the law of total
expectation it follows that

E{∥xk+1∥2} = tr
(
AT

LALE{x̂k|kx̂
T
k|k}

)
+tr

(
ATAE{Pk|k}

)
+ tr(W ), (42)

whose boundedness guarantees stability as per Definition 1.
Due to the following property [52, Fact 8.12.28]

tr
(
ATAE{Pk|k}

)
≤ σmax(A

TA) tr
(
E{Pk|k}

)
, (43)

we conclude that boundedness of E{Pk|k} ensures that the
second term in (42) is bounded. Additionally, thanks to the
perfect communication link between the controller and actua-
tors, boundedness of E{Pk|k} guarantees that the feedback
gain L∞ is stabilizing [4]. Since the certainty equivalence
principle holds, the adopted controller ensures boundedness
of the state estimate in steady-state. Hence, the first term
in (42) is bounded. Thus, existence of 0<φ<∞ such that
tr
(
E{Pk|k}

)
<φ, ensures that (42) is bounded by some ε<∞,

which is greater than φ due to non-negativeness of all terms
in (42), thus completing the proof.

As a result of Lemma 1, the entire system is stable in the
sense of Definition 1 if and only if there exists 0 < φi < ∞
such that tr

(
E{Pi,k|k}

)
< φi for all i ∈ N . Note that the

time elapsed since the last successful packet reception at the
estimator, i.e., ti,k, is sufficient for computation of the error
covariance as

Pi,k|k = hti,k(Pi) =

ti,k∑
c=0

Ac
iPiA

T
i
c +

ti,k∑
c=1

Ac
iWiA

T
i
c, (44)

where
∑0

c=1 ≜ 0. In the following, we take advantage of the
ergodicity of the process ti,k to derive stability conditions. The
following illustrative example demonstrates how the Markov
chain modeling ti,k can be constructed and analyzed for two
unstable subsystems sharing a single channel.

Example 1. Consider a WNCS that consists of two unstable
subsystems and a single channel, i.e., N=2 and M=1, and
the channel access is granted by utilizing the timer setup
in (38). Although the channel access decisions are time-
varying, the evolution of the system can be described by
a Markov chain such that these deterministic decisions are
only dependent on the state of the chain. Let S=Z4

≥0 denote
the state space of a four-dimensional Markov chain, where
each state {(l, l′), (m,m′)}∈S corresponds to th1,k=l, to1,k=l′,
th2,k=m, and to2,k=m′. Therefore, according to their respective
definitions in (25) and (26), the state space can be reduced
to all {(l, l′), (m,m′)} ∈ Z4

≥0 such that l′ ≤ l and m′ ≤ m.
Since knowledge of the holding time and observation time is

sufficient for determining CoIL (36) and belief (27), the timer
values and the resulting channel access decisions are state-
dependent. We denote the decisions by

η =

{
0, if Subsystem 1 claims the channel,
1, if Subsystem 2 claims the channel,

(45)

where η=0 and η=1 correspond to ∆=[1 0]T and ∆=[0 1]T,
respectively. As a result, the (possibly) non-zero transition
probabilities are

P {{(0, 0), (m+ 1,m′ + 1)} | {(l, l′), (m,m′)}, η}
≜ ξ1 = (1− η)b1, (46a)

P {{(l + 1, 0), (m+ 1,m′ + 1)} | {(l, l′), (m,m′)}, η}
≜ ξ2 = (1− η)(1− b1), (46b)

P {{(l + 1, l′ + 1), (0, 0)} | {(l, l′), (m,m′)}, η}
≜ ξ3 = ηb2, (46c)

P {{(l + 1, l′ + 1), (m+ 1, 0)} | {(l, l′), (m,m′)}, η}
≜ ξ4 = η(1− b2), (46d)

where bi is the belief of subsystem i (27) which is also state-
dependent despite not being included in the notation for the
ease of exposition.

In order to describe the transition probability matrix in a
compact form, we use the following convention.

{l,m,m′} ≜{(l, 0), (m,m′)}, {(l, 1), (m,m′)},
. . . , {(l, l), (m,m′)}, (47a)

{l,m} ≜{l,m, 0}, {l,m, 1}, . . . , {l,m,m}. (47b)

Let P 11
l,m ≜ P{{l + 1,m + 1}|{l,m}, η} be a transition

probability submatrix given by

P 11
l,m =


Ξ4 Ξ2 0 0 . . . 0
Ξ4 0 Ξ2 0 . . . 0
...

...
...

... . . .
...

Ξ4 0 0 0 . . . Ξ2

 ,

where Ξ4 =
[
0l+1×1 ξ4Il+1

]
and Ξ2 =[

ξ21l+1×1 0l+1×l+1

]
. Similarly, define submatrices P 10

l,m ≜
P{{l+1,0}|{l,m}, η} and P 01

l,m ≜ P{{0,m+1}|{l,m}, η}
which are given by

P 10
l,m =


Ξ3

Ξ3

...
Ξ3

 , P 01
l,m =


0 Ξ1 0 0 . . . 0
0 0 Ξ1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . Ξ1

 ,

where Ξ3 =
[
0l+1×1 ξ3Il+1

]
and Ξ1 = ξ11l+1×1. As a

result, the transition probability matrix of the chain, denoted
by P , can be formed as shown in (48).

Note that the state {0,0} is transient and it only exists when
initiating and thus we exclude it from the chain. Furthermore,
the unreachable states are removed from the chain and the
transition probability matrix is modified accordingly, in order
to ensure that the resulting chain has a unique stationary
distribution. More specifically, the communication constraints
imply that both subsystems cannot transmit simultaneously.
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Consequently, {(l, l′), (m,m′)} ∈ S which satisfy l = m,
l = m′, l′ = m, or l′ = m′ are unreachable. By excluding
such states from the state space, the resulting chain has a
single communicating class and it is irreducible, aperiodic
and positive recurrent. Hence, it has a unique stationary
distribution denoted by π which is found by solving

πP = π π1 = 1, (49)

where 1 is the all-ones column vector of appropriate dimen-
sions [53, Ch. 1]. With respect to the introduced notation
in (47a) we can write π = [π{0,1},π{0,2}, . . .], where the
dimensions of π complies with the transition probability
matrix P , and the invariant probability of holding times at
each subsystem is found by solving (49). Since M = 1,
ti,k = thi,k and we define

µ1(t) ≜ P{t1,k = t} =
∞∑

m=0

π{t,m}, (50)

µ2(t) ≜ P{t2,k = t} =
∞∑
l=0

π{l,t}, (51)

which are essential for the stability analysis.

Remark 1. Regarding the properties of the discussed Markov
chain, note that CoIL of unstable subsystems grows exponen-
tially with respect to time elapsed since the last successful
transmission. Since all subsystems in this work are assumed
to be unstable, regardless of their specific characteristics and
the parameters of the communication channels, a subsystem
i with a large enough holding time will attempt to trans-
mit until its packet goes through meaning that eventually
Ti,k = (0, 0). As a consequence, all states are accessible from
each other (communicating), which ensures that the chain is
irreducible. The chain is indeed aperiodic due to the possibility
of packet dropouts which means that all the nonzero transition
probabilities are less than 1. Moreover, from the preceding
discussion it follows that the waiting time for the chain to
return to a state is almost surely finite meaning that the chain
is positive recurrent. Hence, the chain has a unique stationary
distribution.

The method described in Example 1 can readily be applied
to larger WNCSs. In such settings, the state space is given by
S = Z2NM

≥0 and each recurrent state can possibly transition

to N !/(N −M)! other states. Despite the larger state space,
in principle, the transition probability matrix can be formed
similarly. By removing the transient states as discussed, the
resulting chain will have a unique limiting distribution and thus
µi(t) can be determined for all i ∈ N and t ≥ 0 accordingly.
The following result demonstrates how the boundedness of
tr
(
E{Pk|k}

)
in Lemma 1 and µi(t) are connected.

Theorem 1. The proposed channel access method stabilizes
the WNCS in the sense of Definition 1 if the following condition
holds for all i ∈ N .

lim
t→∞

µi(t)
1/t <

1

σ2
max(Ai)

(52)

Proof. The chain is irreducible, aperiodic and positive recur-
rent. Thus, the ergodic theorem allows to write the limit of
the expected value of (44) as

lim
k→∞

E{Pi,k|k} =
∞∑
t=0

µi(t)

t∑
c=0

(Ac
iPiA

T
i
c)

+

∞∑
t=0

µi(t)

t∑
c=1

(Ac
iWiA

T
i
c). (53)

Subsequently,∥∥∥∥ lim
k→∞

E{Pi,k|k}
∥∥∥∥ ≤ (

∥∥Pi

∥∥+ ∥Wi∥)
∞∑
t=0

µi(t)

t∑
c=0

∥Ac
i∥

2
.

(54)

Similar to the proof in [40, Theorem 1], by Cauchy’s root test,
this series is convergent if

lim
t→∞

µi(t)
1/t

∥∥At
i

∥∥2/t < 1, (55)

and from Gelfand’s formula we obtain

σ2
max(Ai) lim

t→∞
µi(t)

1/t < 1. (56)

Hence, if (52) holds for all i ∈ N , lim
k→∞

E{Pi,k|k} in (54) is

bounded. Thus, 0 < φi <∞ exists such that tr
(
E{Pi,k|k}

)
<

φi and the assertion follows.

As in Example 1, finding an analytical expression for
µi(t) to evaluate (52) is not always possible. Despite this,
Theorem 1 can be utilized for examining stability in practice
by utilizing the p-series convergence test as it will be shown
in Section V-A.

P =

{0,1} {0,2} {0,3} . . . {1,0} ✘✘✘{1,1} {1,2} {1,3} . . . {2,0} {2,1} ✘✘✘{2,2} . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓



{0,1} → 0 P 01
0,1 0 . . . P 10

0,1 0 P 11
0,1 0 . . . 0 0 0 . . .

{0,2} → 0 0 P 01
0,2 . . . P 10

0,2 0 0 P 11
0,2 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

{1,0} → P 01
1,0 0 0 . . . 0 0 0 0 . . . P 10

1,0 P 11
1,0 0 . . .

✘✘✘{1,1} → 0 P 01
1,1 0 . . . 0 0 0 0 . . . P 10

1,1 0 P 11
1,1 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(48)
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IV. CHANNEL ACCESS OVER AN UNKNOWN
GILBERT-ELLIOTT CHANNEL

Implementing the timer-based mechanism according to (38)
assumes complete knowledge of the transition probabilities
of the GE model. However, this is a strong assumption and
such information is not known a priori in practice. This
assumption can be relaxed by adopting a Bayesian learning
method which maintains a probability distribution over the
possible settings of each unknown parameter. We first address
how the new channel state observation can be incorporated for
updating the prior distribution over the unknown parameters.
Then, we propose a heuristic posterior sampling algorithm for
computational tractability in practice and exploit the learning
outcome for providing channel access with TBCoIL.

A. Bayesian framework

In Bayesian approach, an initial prior distribution is assumed
over the unknown parameters, and the posterior distribution
is updated using the Bayes’ rule. The unknown channel
parameters are within the interval [0, 1] and they can be viewed
as random variables consisting of the number of successes in
Bernoulli trials with unknown probability of success p and q.
Here, we drop the subscripts for distinguishing each wireless
link for ease of exposition. Beta distribution is the conjugate
prior for Bernoulli distribution. Therefore, we assume that the
prior distribution of the unknown transition probabilities of
the GE model, i.e., p and q, follow the Beta distribution.
Furthermore, they are independent which yields

P{p, q; Φ} = P{p;ϕ1, ϕ2}P{q;ϕ3, ϕ4}, (57)

where

P(p; ϕ1, ϕ2) =
pϕ1−1(1− p)ϕ2−1

B(ϕ1, ϕ2)
, (58)

P(q; ϕ3, ϕ4) =
qϕ3−1(1− q)ϕ4−1

B(ϕ3, ϕ4)
, (59)

and B(·) denotes the Beta function. These prior distributions
are parameterized by Φ = [ϕ1 ϕ2 ϕ3 ϕ4] ∈ Z4

≥0 which we will
refer to as posterior count. This choice of prior distribution
highly facilitates the posterior update. More specifically, after
new observations are made, the posterior update can easily
be done by updating the posterior counts (ϕ1, ϕ2) for p and
(ϕ3, ϕ4) for q.

Example 2. Consider that the channel state is G and Φ =
[1, 2, 2, 3]. Then, we observe that the channel stays G (G
to G transition with probability 1− p) for the first three time
steps and then transitions to B (G to B with probability p).
The updated posterior count is then simply calculated as Φ =
[1 + 1, 2 + 3, 2, 3].

Let ok ∈ {G,B,Z} denote the observation at k, where
ok = Z represents no transmission attempt k. More specif-
ically, if the sensor transmits at k, the actual channel state
ck ∈ {G,B} is observed and ok = ck. Otherwise, ok = Z
which corresponds to not observing the actual channel state.
We denote the channel state history and observation history
up to k by ck and ok, respectively. Then, the joint probability

distribution of the channel state at k and the transition prob-
abilities p and q given the observation history ok−1 is given
by

P{ck, p, q|ok−1} = P{ck, ok−1|p, q}P{p, q}/P{ok−1} (60)

=
∑
ck−1

P{ck, ok−1|p, q}P{p, q}/P{ok−1}.

Multiple state histories can lead to the same posterior count.
Consider the scenario in which there are a, b, c, and d
number of G to B, G to G, B to G, and B to B state
transitions, respectively. Regardless of the order in which the
state transitions occur, we have

P{ck|p, q}P{p, q} = P{ck|p, q} = pa(1− p)bqc(1− q)d,
(61)

where we used the fact that P{p, q} = 1. Let C(ok−1) denote
all possible state histories based on the observation history
ok−1 which is given by

C(ok−1) = {ck−1 : cκ = oκ,∀κ ∈ {k′ : ok′ ̸= Z}}. (62)

Let the total number of state histories that lead to the same
posterior count Φ be denoted by Ψ(Φ, C(ok−1), ck), which
we will refer to as the appearance count. The posterior
distribution can be fully described by the appearance count
associated with each posterior count and channel state, up to
the normalization term P{ok−1}. More specifically, by moving
the normalization term to the left side of the equation, we can
rewrite (60) as

P{ck, p, q|ok−1}P{ok−1} =
∑

sk−1∈C(ok−1)

P{ck|p, q} (63)

=
∑
Φ

Ψ(Φ, C(ok−1), ck)p
ϕ1−1(1−p)ϕ2−1qϕ3−1(1−q)ϕ4−1.

When a new observation is obtained at k, the posterior at time
k + 1 is updated recursively as follows

P{ck+1, p, q|ok} =
∑
ck

P{ck+1, p, q, ck|ok−1, ok} (64)

=
∑
ck

P{ck+1, p, q, ck, ok|ok−1}/P{ok|ok−1}

=
∑
ck

P{ck, p, q|ok−1}P{ck+1, ok|ck, p, q, ok−1}/P{ok|ok−1}

=
∑
ck

P{ck, p, q|ok−1}P{ok−1|ck+1, ok, ck, p, q}

· P{ck+1, ok|ck, p, q}/(P{ok−1|ck, p, q}P{ok|ok−1})

=
∑
ck

P{ck, p, q|ok−1}P{ck+1, ok|ck, p, q}/P{ok|ok−1}.

As a result of (64), the update has a simple form for each
posterior count. Furthermore, the number of posterior counts
remain unchanged whenever the channel state is observed, i.e.,
ok ∈ {G,B}. Otherwise, this number grows by a factor of less
than or equal to two.
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Example 3. Assume that ok = G which implies that ck = G.
The posterior for ck+1 = G is given by

P{G, p, q|ok} = P{G, p, q|ok−1}P{G|ck, p, q}/P{ok|ok−1}

=
∑
Φ

Ψ(Φ, C(ok−1), G)pϕ1−1(1− p)ϕ2−1qϕ3−1

.(1− q)ϕ4−1.(1− p)/P{ok}

=
∑
Φ′

Ψ(Φ′, C(ok−1), G)pϕ
′
1−1(1− p)ϕ

′
2−1qϕ

′
3−1

.(1− q)ϕ
′
4−1/P{ok}, (65)

where Φ′ = [ϕ1 ϕ2 + 1 ϕ3 ϕ4] and can it can readily be
used as the prior for the next time step. If ok = Z, the same
posterior update is given by iterating over both possibilities
for the channel state at k, i.e.,

P{G, p, q|ok} (66)

=
∑

ck∈{G,B}

P{ck, p, q|ok−1}P{G|ck, p, q}/P{ok|ok−1},

which can increase the number of posterior counts. Fig. 4
illustrates how the posterior counts and their respective ap-
pearance counts are updated with respect to the obtained
observation.

G, [3, 1, 2, 3], 1

B, [4, 1, 2, 2], 2

ok = Z

G, [3, 2, 2, 3], 1

G, [4, 1, 3, 2], 2

B, [4, 1, 2, 3], 3

ok+1 = G

G, [3, 3, 2, 3], 1

G, [4, 2, 3, 2], 2

B, [4, 2, 2, 3], 1

B, [5, 1, 3, 2], 2

Fig. 4. Graphical representation of the update procedure when the channel
state is not observed at k and it is G at k+1. The contents of each rectangle
are the channel state, posterior count, and appearance count, respectively. Note
that since ok = Z, the number of possible posterior counts increases.

B. Online learning through the timer-based mechanism

The aforementioned method allows for incorporating the
uncertainty in the transition probabilities in the decision mak-
ing process. Due to the lack of a priori knowledge of the
underlying channel parameters, the belief for implementing
the setup in (38) cannot be directly evaluated as per (27).
Nonetheless, in principle, the belief can be inferred from the
joint distribution of the channel state and its parameters in the
aforementioned framework. In practice, however, this method
is computationally infeasible since whenever the sensor does
not transmit over a link, the number of posteriors for that link
grows and inevitably goes to infinity over time.

To circumvent the curse of dimensionality, we propose a
heuristic method by combining the idea of approximate belief
monitoring [54] and the posterior sampling algorithm proposed
in [55]. In essence, after each update, only K posterior counts
are kept, which are drawn randomly with respect to the
respective appearance counts. Algorithm 1 presents how at
any time k, sensor i evaluates its belief for channel j which

is denoted by bLi,j,k. This belief is incorporated in TBCoIL for
providing channel access as

τi,j,k =
λ

CoILi,kbLi,j,k
. (67)

We define ζG ≜ {Φ,Ψ, P} as the posterior count Φ with
appearance count Ψ for being in state G which has the
probability P . In case of successful transmission at k − 1,
the posterior for computation of belief at k is obtained by
considering the possible state transition from ζG, which could
be to G, denoted by ζG2G, or to B, denoted by ζG2B . The
transition probabilities depend on p which is the mean of
the beta distribution associated with the posterior count, i.e.,
p = ϕ1/(ϕ1 + ϕ2). Similarly, ζB ≜ {Φ,Ψ, P} denotes
the parameters corresponding to B state which can transition
to G or B, i.e., ζB2G and ζB2B , respectively, with q =
ϕ3/(ϕ3 + ϕ4). The updated posteriors are formed in Line 9,
where ∪ denotes merging the identical posterior counts by
summing the respective appearance count and P . Then, K
number of posterior counts are chosen randomly such that the
probability of a posterior count being selected is proportional
to the associated appearance count. Finally, P ’s are normalized
for the remaining posterior counts and the learned belief is
determined by summing the probability of all the posteriors
of being in G, as in Line 13.

Remark 2. Typically, the initial probability distribution over
the unknown parameters is assumed to be uniform and thus
Φ = [1, 1, 1, 1] when initiating. To ensure that implementing
(67) guarantees collision-free channel access even in homo-
geneous WNCSs, the initial posterior count can be set to Φ =
[1 + ϵ1, 1 + ϵ2, 1 + ϵ3, 1 + ϵ4] where ϵ1, ϵ2, ϵ3, ϵ4 ∼ U(−α, α)
is chosen randomly by subsystems for each link. This ensures
that bLi,j,k is Lebesgue measure zero and by choosing α ≪ 1
the impact of the biased priors becomes negligible.

Remark 3. When the idea of approximate belief monitoring
is applied for a single agent interacting with an unknown
environment, accurate convergence is guaranteed since all
uncertainty is represented explicitly [41], [56]. Proving the
convergence of Algorithm 1 is however a challenging open
problem. In addition to the unknown channel parameters, the
decisions and thus observations are determined by the outcome
of implementing the timer-based mechanism which is highly
influenced by the time-varying CoIL. Although more unstable
subsystems observe the channel states more frequently, all
subsystems eventually make sufficient observations due to the
exponential growth of CoIL. Therefore, convergence can be
conjectured which is confirmed by the simulations in Section V.

V. NUMERICAL RESULTS

In this section, we first present a method for examining
the stability of the system in Example 1. Next, the effect of
channel access decisions on the performance of the learning
algorithm is demonstrated. Finally, we examine the perfor-
mance of the proposed timer-setups for known and unknown
GE channel parameters. The following results are obtained for
Q = I2 and R = 0.01I2 as the weighting matrices in (9) and
B = C = I2 in (1).
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Algorithm 1: Posterior sampling of sensor i for chan-
nel j at k

Input: Decision variables at the last step, δi,j,k−1 and
γi,j,k−1, and posterior sampling parameter K

Output: Learned belief bLi,j,k
1 if δi,j,k−1 = 1 and γi,j,k−1 = 1 then
2 G Update()
3 else if δi,j,k−1 = 1 and γi,j,k−1 = 0 then
4 B Update()
5 else
6 G Update()
7 B Update()
8 end
9 ζG ← ζG2G ∪ ζB2G and ζB ← ζG2B ∪ ζB2B

10 ζG ← K number of posterior counts in ζG randomly
drawn w.r.t. their respective Ψ

11 ζB ← K number of posterior counts in ζB randomly
drawn w.r.t. their respective Ψ

12 normalize ζG(P ) and ζB(P )
13 bLi,j,k ←

∑
ζG(P )

14 Procedure G Update()
15 ζG2G ← ζG and ζG2B ← ζG

16 Update posterior counts ζG2G(ϕ2)← ζG(ϕ2) + 1
and ζG2B(ϕ1)← ζG(ϕ1) + 1

17 Update probabilities ζG2G(P )← (1− p)ζG(P )
and ζG2B(P )← pζG(P )

18 Procedure B Update()
19 ζB2G ← ζB and ζB2B ← ζB

20 Update posterior counts ζB2G(ϕ3)← ζB(ϕ3) + 1
and ζB2B(ϕ4)← ζB(ϕ4) + 1

21 Update probabilities ζB2G(P )← qζB(P ) and
ζB2B(P )← (1− q)ζB(P )

A. Stability evaluation

This subsection presents a numerical approach for examin-
ing the stability of two identical subsystems sharing a channel
presented in Example 1. Although the discussed Markov
chain has countably-infinite state space, we first assume that
the maximal interval between two successful transmissions
is finite. This will enable us to determine the stationary
distribution analytically and conjecture the convergence of the
infinite series in (54), and consequently, whether the condition
in (52) holds. To this end, we consider the truncated chain
with a finite state space with 0 ≤ l ≤ l̄ and 0 ≤ m ≤ m̄.
This corresponds to assuming a maximal interval of l̄ for
successful transmission of Subsystem 1 and m̄ for Subsystem
2. Let P̂ denote the transition probability matrix of the new
chain, which is obtained by truncating P in (48). Since P̂
is row stochastic, irreducible, and aperiodic, the stationary
distribution can be obtained by [57]

π = 1T(P̂ − I +D)−1, (68)

where I , D, and 1 are the identity matrix, all-one-matrix,
and the all-one column vector of appropriate dimensions. To
examine whether the series on the right hand side of (54) is

2 4 6 8 10 12 14 16

10−5

10−2

101

t

β/tp

µ1(t) ∥A1∥2t

µ2(t) ∥A2∥2t

Fig. 5. Convergence analysis of the left hand side (69) by element-wise
comparison with the p-series (β = 100, p = 2) given failure rates p1 = 0.25
and p2 = 0.35, and recovery rates q1 = 0.80 and q2 = 0.70 for Subsystem
1 and Subsystem 2, respectively.

2 4 6 8 10 12 14 16

10−3

10−1

101

t

β/tp

µ1(t) ∥A1∥2t

µ2(t) ∥A2∥2t

Fig. 6. Convergence analysis of the left hand side (69) by element-wise
comparison with the p-series (β = 100, p = 2) given that p1 = 0.25,
q1 = 0.20, p2 = 0.35, q2 = 0.10.

convergent, we utilize the p-series convergence test. Hence, if
p > 1 and β <∞ exist such that

lim
T→∞

T∑
t=0

µi(t) ∥Ai∥2t ≤ lim
T→∞

T∑
t=0

β

tp
, (69)

then (55) holds, which guarantees stability. By using the
numerical values obtained from (68) for a finite horizon, one
can examine the behavior of (69) and conjecture whether the
condition in Theorem 1 holds.

Fig. 5 illustrates the values of µi(t) ∥Ai∥2t and β/tp as
a function of t given that p = 2 and β = 100 with the
system matrix Ai = 1.2I2. Furthermore, the GE transition
probabilities for Subsystem 1 and Subsystem 2 are assumed
to be p1 = 0.25, q1 = 0.80, and p2 = 0.35, q2 = 0.70,
respectively. As the results indicate, µi(t) ∥Ai∥2t monotoni-
cally decreases as t increases for t ≥ 2 for both subsystems.
Therefore, since the convergent series lim

T→∞

∑T
t=0

β
tp upper-

bounds lim
T→∞

∑T
t=0 µi(t) ∥Ai∥2t, stability is preserved. When

the recovery rates are reduced to q1 = 0.20 and q1 = 0.10,
however, µi(t) ∥Ai∥2t becomes an increasing function of t
as depicted in Fig. 6. This indicates that the left hand side
of (69) is not necessarily bounded and thus stability of the
system cannot be guaranteed.

B. Unknown GE model parameters

To demonstrate the impact of the dynamics of subsystems
on the outcome of the learning algorithm, we first consider
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Fig. 7. Accuracy of the learned belief for two identical subsystems sharing
a single channel.
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Fig. 8. Accuracy of the learned belief for two different subsystems sharing
a single channel. Subsystem 1 (top) is less unstable (A1 = 1.05I2) than
Subsystem 2 (bottom) with system matrix A2 = 1.2I2.

the setup in the previous subsection, where two identical
subsystems with A = 1.2I2 compete for transmitting over
one channel. Fig. 7 illustrates how their learned belief evolves
over time compared with the actual belief (7) when the
setup in (67) is utilized. Due to the identical dynamics and,
consequently, identical growth rate for CoIL, both subsystems
share the channel fairly, and both learn the belief with high
accuracy. However, when the dynamics of Subsystem 1 change
to A = 1.05I2, Subsystem 2 is expected to transmit more
frequently due to its larger eigenvalue, i.e., faster increase of
CoIL. Consequently, Subsystem 2 observes the channel states
more frequently, leading to higher accuracy of its learned
belief, as depicted in Fig. 8.

C. Performance evaluation

To evaluate the performance of the proposed setups for solv-
ing Problem 3, we consider WNCSs with N ∈ {8, 16, 24, 32}
identical subsystems with A = 1.2I2 and M ∈ {6, 12, 18, 24}
channels. The channel parameters are chosen randomly while
satisfying 0.2≤pi,j , qi,j≤0.5 for all i and j. As the bench-
mark, we consider a scenario in which a central coordinator
prioritizes subsystems with respect to CoIL only and assigns a
random channel to each of the M subsystems with the largest
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Fig. 9. Reduction in the average quadratic cost (9) achieved by using timer-
setups with the known belief bi,j,k (38), learned belief bLi,j,k (67), learned
belief proposed in [1] denoted by bL,old

i,j,k , stationary belief bi,j,∞ and UCB-V
[58] as proposed in [37]. The number of available channels is M = N/2. A
setup where the channels are selected randomly by utilizing CoILi,k as the
local measure in (21) is chosen as the benchmark.
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Fig. 10. Reduction in the average quadratic cost (9) achieved by using timer-
setups with the known belief bi,j,k (38), learned belief bLi,j,k (67), learned
belief proposed in [1] denoted by bL,old

i,j,k , stationary belief bi,j,∞ and UCB-V
[58] as proposed in [37]. The number of available channels is M = N/4. A
setup where the channels are selected randomly by utilizing CoILi,k as the
local measure in (21) is chosen as the benchmark.

CoIL. As expected, with a priori knowledge of the transition
probabilities of the GE model, the setup in (38) with the known
belief bi,j,k significantly reduces the incurred cost as depicted
in Fig. 9. This is in sharp contrast with adopting the stationary
belief bi,j,∞ (8) which leads to the worst performance. Without
any prior knowledge of the channel parameters, utilizing the
learned belief from Algorithm 1 in setup (67) results in up to
25% lower cost. This setup outperforms the performance of
the algorithm proposed in [1] which is represented by bi,j,∞.
To demonstrate the significance of tailoring a learning method
for the GE channel model, we compare the results with the
timer setup proposed in [37] where UCB-V algorithm [58]
is adopted for providing channel access over unknown i.i.d.
channels. For smaller networks, this model mismatch leads to a
considerable increase in cost. As the size of the WNCS grows,
the number of unobserved channel states increases, which
leads to more exploration of the learning method rather than
exploitation. Nevertheless, even in such settings, Algorithm 1
leads to better performance in terms of reducing the cost (9).
The same trend can be observed in heterogeneous WNCSs
as illustrated in Fig. 10, where the dynamics of half the
subsystems are changed to A = 1.05I2.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

We presented a novel method for providing distributed
channel access in WNCSs with correlated packet dropouts. We
formulated the optimal channel access problem for minimizing
the infinite-horizon LGQ cost as an MDP despite the partial
observability of the channel state variations. We then adopted
the concept of CoIL for circumventing the computational
complexity of the MDP and showed that its computation
requires no information exchange between subsystems. Based
on this, we proposed a timer setup for providing distributed
channel access by TBCoIL and derived the conditions under
which implementing this mechanism ensures mean square
stability of the system. We further investigated the scenario
in which the underlying channel parameters are not known a
priori and adopted a Bayesian framework for incorporating the
information obtained by channel state observations in estimat-
ing the channel quality. We then proposed a computationally
efficient heuristic algorithm which allows for control-aware
exploration/exploitation via TBCoIL. The simulations showed
that this setup leads to significant improvement compared with
allocating the resources with respect to control performance
only.

B. Future Directions

Interesting future research directions include considering
the scenario in which the channel model varies over time
and devising learning methods which are able to detect this
variation and adapt accordingly. Another challenging open
question is how can the stability framework be modified such
that it is applicable to WNCSs containing both stable and
unstable subsystems.
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