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THE SPACE OF FINITE-ENERGY METRICS OVER

A DEGENERATION OF COMPLEX MANIFOLDS

by Rémi Reboulet

Abstract. — Given a degeneration of projective complex manifolds X → D∗ with meromorphic
singularities, and a relatively ample line bundle L on X, we study spaces of plurisubharmonic
metrics on L, with particular focus on (relative) finite-energy conditions. We endow the space
Ê1(L) of relatively maximal, relative finite-energy metrics with a d1-type distance given by
the Lelong number at zero of the collection of fiberwise Darvas d1-distances. We show that
this metric structure is complete and geodesic. Seeing X and L as schemes XK, LK over the
discretely-valued field K = C((t)) of complex Laurent series, we show that the space E1(Lan

K )

of non-Archimedean finite-energy metrics over Lan
K embeds isometrically and geodesically into

Ê1(L), and characterize its image. This generalizes previous work of Berman-Boucksom-Jonsson,
treating the trivially-valued case.

Résumé (L’espace des métriques d’énergie finie sur une dégénérescence de variétés complexes)
Étant donné une dégénérescence de variétés projectives complexes X → D∗ avec des sin-

gularités méromorphes, et un fibré en droites relativement ample L sur X, nous étudions des
espaces de métriques plurisousharmoniques sur L, avec une attention particulière aux conditions
(relatives) d’énergie finie. Nous munissons l’espace Ê1(L) des métriques relativement maximales
d’énergie finie d’une distance de type d1 donnée par le nombre de Lelong en 0 de la famille des
distances de Darvas d1 fibre à fibre. Nous montrons que cette structure métrique est complète
et géodésique. En considérant X et L comme des schémas XK, LK sur le champ discrètement
valué K = C((t)) des séries de Laurent complexes, nous montrons que l’espace E1(Lan

K ) des
métriques non archimédiennes d’énergie finie sur Lan

K s’immerge isométriquement et géodési-
quement dans Ê1(L), et nous caractérisons son image. Ceci généralise un travail précédent de
Berman-Boucksom-Jonsson, traitant le cas trivialement valué.
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660 R. Reboulet

Introduction

Overview. — Given a finite-dimensional complex vector space V , the space of Her-
mitian norms on V can be endowed with a metric space structure, by taking an
Lp-norm of the vector of eigenvalues of the transition matrix between two such norms
∥·∥0, ∥·∥1; that is, the matrix whose entries are of the form ⟨ei, ej⟩1, where ⟨·, ·⟩1 is the
Hermitian product associated to ∥·∥1, and (ei)i is an orthonormal basis for ∥·∥0. This
makes the space of Hermitian norms into a negatively curved metric space, imply-
ing that geodesic rays always exist; a natural question is then to understand the be-
haviour of such geodesic rays at infinity. In this case, there is a canonical isomorphism
between equivalence classes of geodesic rays (where equivalence means that their dis-
tance remains bounded at infinity) of Hermitian norms, and non-Archimedean norms
on V , i.e., nonnegative positive functions ∥·∥ : V → R⩾0 such that ∥λ · v∥ = ∥v∥
for λ ∈ C×, v ∈ V , and satisfying the non-Archimedean or ultrametric inequality
∥v+w∥ ⩽ max(∥v∥, ∥w∥), refining the usual triangle inequality. Furthermore, asymp-
totics of functionals along geodesic rays of Hermitian norms are captured by simpler
functionals on the space of non-Archimedean norms, see e.g. [Bou18b, Th. 1.6].

A point of view on the present paper is that it aims at generalizing those results in
a more geometric setting, where we no longer consider metrics on a vector space but
rather on complex projective manifolds (we will consider the space of plurisubharmonic
metrics, which can be thought of as generalizing the notion of a Kähler metric);
and where the time-variable is, in a sense, replaced by a holomorphic time variable,
allowing the complex structure of the manifold to vary nontrivially.

The study of rays of plurisubharmonic metrics has been, for the past decade,
a central component in successful approaches to important conjectures in complex
geometry. Given a polarized compact Kähler manifold (X,L), we define a psh ray to
be a psh metric on L × D∗ over the trivial product X × D∗, which is furthermore
invariant under the usual action of S1. Setting the variable t = − log |z|, we obtain a
“psh curve”

[0,∞) ∋ t 7−→ ϕt,

and the study of the asymptotics of this curve (and of various quantities it can be
evaluated against) plays a crucial role in many questions. One can picture such a curve
as a way to deform (X,L, ϕ0). A particular striking application has been a proof
of the Kähler-Einstein case of the Yau-Tian-Donaldson conjecture due to Berman-
Boucksom-Jonsson ([BBJ21]), and further advances in the general cscK case by Li
([Li22]), both of which are major inspirations for this current work. In parallel, Darvas-
Lu have started a very interesting investigation of the metric properties of the space
of such rays ([DL20]), which has found many interesting developments.

One side of the story, very apparent in the aforementioned proof of the Yau-
Tian-Donaldson conjecture, is the introduction of valuative (non-Archimedean) tech-
niques to study asymptotics in Kähler geometry. Namely, to a psh ray t 7→ ϕt as
above, one can associate a non-Archimedean function ϕNA, defined on the Berkovich
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The space of finite-energy metrics over a degeneration of complex manifolds 661

analytification Xan of X with respect to the trivial absolute value on C. Without go-
ing into too much detail, Xan can be essentially described as the space of valuations
on C(X), which is then compactified using semivaluations, so that ϕNA can be thought
of as capturing the asymptotic singularities of ϕ along all possible birational models
of X. A beautiful result is that a class of distinguished geodesic rays (the ones of inter-
est for K-stability) are in one-to-one correspondence with non-Archimedean functions
of finite energy on Xan. Thus, the space of non-Archimedean functions can be thought
of as a boundary at infinity for the space of Archimedean plurisubharmonic functions.

In the present work, we generalize such results to the wider setting of psh metrics
on arbitrary families of projective manifolds over the punctured disc. Already in the
isotrivial case without S1-action, these spaces have garnered interest (see e.g. [Don02],
[RN15]), but our results also hold for arbitrary degenerations with “meromorphic”
singularities. This setting encompasses e.g. families of Kähler-Einstein metrics, which
have been studied for well over a decade (see [Sch12], [Tsu10], [CGPT23]...), but also
works related to the Kähler-Ricci flow, to collapsing families of Calabi-Yau mani-
folds... We refer the reader to Section 4.7 for some discussion and new questions in
various directions. A main interest of allowing such general families lies, for exam-
ple, in Donaldson’s example ([Don12, §5.1]) of a special fiber not accessible via test
configurations.

The complex side of the story: the space of degenerating metrics. — We will be working
on meromorphic degenerations (or simply degenerations) π : X → D∗, which are
defined as follows: π : X → D∗ is a proper holomorphic submersion endowed with
a relatively ample line bundle L → X (in particular, the fibers of π are projective),
which we furthermore assume to be the restriction of a normal complex analytic
space X fibered over D. We shall say that such a space X is a model of X, and call
its fiber X0 over zero its central or special fiber. If L is a relatively ample line bundle
on a model X, isomorphic to L away from X0 and compatible with the identification
X− X0 ≃ X, we say that (X,L) is a model of (X,L). We will be interested in spaces
of psh metrics on line bundles L over a (meromorphic) degeneration X.

Fixing a fiber Xz for the moment, Darvas introduces in [Dar15] a L1-type metric
structure on the space of finite-energy metrics E1(Xz, Lz), where the distance between
two metrics ϕ0,z, ϕ1,z is given by

d1,z(ϕ0,z, ϕ1,z) = E(ϕ0,z)− E(ϕ1,z) + 2E(P (ϕ0,z, ϕ1,z)).

The term E is the Monge-Ampère (or Aubin-Yau) energy of a psh metric, which is a
normalized primitive of the Monge-Ampère operator

ϕz 7−→ (ddcϕz)
d

(where d = dimXz), for ϕz smooth, and which is extended to general finite-energy
metrics via decreasing limits, as in [BBGZ13]. On the other hand, the P term is the
“rooftop” envelope

P (ϕ0,z, ϕ1,z) = sup{ϕz ∈ PSH(Xz, Lz), ϕz ⩽ ϕ0,z, ϕ1,z},
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662 R. Reboulet

which generalizes the convex envelope of the minimum of two convex functions. If the
two metrics in the left-hand side have finite energy, then their rooftop envelope can
also be shown to have finite energy, so that all the terms in the above expression are
finite.

We wish to define a distance on the space of metrics on L (with fiberwise finite
energy) via taking the Lelong number of the collection of fiberwise distances above.
This is to be understood as a generalized (signed) Lelong number as follows: given a
subharmonic function f on the punctured disc such that g := f + a log |z| is bounded
above for some a, then g is also subharmonic on the whole disc with finite Lelong
number at zero, and we define ν0(f) := ν0(g) − a. Assuming z 7→ d1(ϕ0,z, ϕ1,z) to
satisfy this claim, we then define the distance d̂1(ϕ0, ϕ1) to be its generalized Lelong
number. As the reader can see, we have made two assumptions: that the distance
between ϕ0,z and ϕ1,z has at most logarithmic growth, and that this distance function
is subharmonic on the disc.

The first assumption is implied by a natural condition on such metrics ϕ, which we
abusively also call logarithmic growth, and can equivalently be described as requiring
that ϕ extends plurisubharmonically over the central fiber of some analytic model
of X. This is a very general condition and really the necessary minimum to ask for;
therefore, we will denote PSH(L) the space of psh metrics of logarithmic growth
on L. In the case of rays, this corresponds to the usual linear growth condition (as in
[BBJ21]).

Regarding the subharmonicity statement, if one looks at the S1-invariant case,
similar statements (see [BDL17]) require that rays be geodesic. This suggests that
in our setting, we must look at maximality conditions coming from the base. In our
setting, this is understood in a “relative” pluripotential theory sense, i.e., a metric ϕ
with logarithmic growth on L is relatively maximal if for any relatively compact open
set U on the base D∗, ϕ|π−1(U) is larger than all psh metrics on L|U bounded above
by ϕ on ∂U . The space of fiberwise finite-energy, logarithmic growth metrics on L

is denoted by E1(L), the subspace of E1(L) corresponding with metrics which are
furthermore relatively maximal is then denoted by Ê1(L) Note that, although there
appears to be many assumptions, this is exactly the generalization of the setting
considered in [BBJ21] and [DL20]; more precisely, assuming S1-invariance, our space
E1(L) corresponds to the space of (non-necessarily geodesic) psh rays, while Ê1(L)

corresponds with the space R1(L) of [DL20], and our distance d̂1 corresponds with
the distance

dR1 (ϕ0, ϕ1) := lim
t→∞

t−1d1(ϕ0,t, ϕ1,t).

We then show the following:

Theorem A (2.5.1, 2.6.1). — The space (Ê1(L), d̂1) is a complete metric space.

In a nutshell, this result means that we obtain a genuine “space of families of
metrics” in which one can use the tools of metric and variational analysis. We obtain
a natural notion of distance between such families, which allows us to say how “close”
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they are to each other in a geometrically meaningful way, and also helps in formulating
fundamental notions such as compactness.

Going non-Archimedean. — As explained for example in [Fav20], one can interpret
a projective (meromorphic) degeneration X as a projective variety over the field
K = C((t)). This is a discretely-valued field, i.e., the possible values of its usual valua-
tion form a discrete additive subgroup of R. As in the trivially valued case discussed
at the very beginning, we define a metric ϕNA on the Berkovich analytification Lan

K

of L seen as a K-line bundle, associated to a metric ϕ in PSH(L), which captures the
algebro-geometric information of the singularities of ϕ via generic Lelong numbers
along vertical divisors in models of X. We prove that the metric ϕNA is plurisubhar-
monic in the non-Archimedean sense (see Section 3.2), which roughly means that it
satisfies the statement of Demailly’s regularization theorem, i.e., can be approximated
by a decreasing net of Fubini-Study metrics.

Energies and Deligne pairings. — More structure arises when one considers finite-
energy metrics. For this, it will be more convenient to express complex and non-
Archimedean Monge-Ampère energies as metrized Deligne pairings (see Section 1.2).
Briefly, one can associate to a flat projective morphism of complex manifolds

π : X −→ Y

of relative dimension d, and to d+1 pairs (Li, ϕi) of relatively ample line bundles Li
over X together with continuous psh metrics ϕi, a line bundle

⟨L0, . . . , Ld⟩X/Y

together with a metric
⟨ϕ0, . . . , ϕd⟩X/Y

in a multi-additive and symmetric fashion. Furthermore, this construction satisfies
– a change of metric formula: given another continuous psh metric ϕ′0 on L0,

(1) ⟨ϕ0, . . . , ϕd⟩X/Y − ⟨ϕ′0, . . . , ϕd⟩X/Y = π∗ ((ϕ0 − ϕ′0)(dd
cϕ1 ∧ · · · ∧ ddcϕd)) ;

– and a pushforward formula:

(2) ddc⟨ϕ0, . . . , ϕd⟩X/Y = π∗(dd
cϕ0 ∧ · · · ∧ ddcϕd).

If Y is a point, we omit the subscript ·X/Y , and upon contemplating the change of
metric formula, one can see that the (relative) Monge-Ampère energy between two
metrics ϕ0 and ϕ1 may be written as

⟨ϕd+1
0 ⟩ − ⟨ϕd+1

1 ⟩,

suggesting that the Monge-Ampère energy could be seen as a genuine metric ⟨ϕd+1⟩.
In the present article, we also extend the Deligne pairing construction in the com-

plex setting, from continuous psh metrics to fiberwise finite-energy metrics. We direct
the interested reader to Section 1.2.
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664 R. Reboulet

Perfecting the complex/non-Archimedean correspondence. — In the space of non-
Archimedean psh metrics, one can also define the subclass of finite-energy met-
rics E1(Lan), by defining for example the Monge-Ampère energy ENA as a non-
Archimedean Deligne pairing (using the machinery of [BE21]). (Other approaches,
which all give the same functional, include the intersection theory-based formalism
of Gubler ([Gub07], and the locally tropical approach of Chambert-Loir and Ducros
([CLD12]) based on the superforms of Lagerberg ([Lag12]).) A natural question is
now whether the Monge-Ampère energy is equivariant under the “Archimedean to
non-Archimedean” map. We can write this statement as

(3) E(ϕ)NA = ENA(ϕNA)

(seeing Monge-Ampère energies as Deligne pairings, as previously), and can under-
stand it as saying that the generalized Lelong number at zero of the Monge-Ampère
energy along a metric ϕ in Ê1(L) coincides with the non-Archimedean Monge-Ampère
energy of ϕNA, in a sense made precise in Remark 4.2.1. It turns out that, in general,
we only obtain an inequality

E(ϕ)NA ⩽ ENA(ϕNA),

as in Theorem 4.3.3. As pointed out by the anonymous referee, this inequality has a
local analogue using the valuative transform of Boucksom-Favre-Jonsson. Let ϕ be a
germ of a psh function near 0 in Cd, and ϕ̂ is its valuative transform (in the sense
of [BFJ08, §5.2]) on the space of normalized valuations centered at zero. Then, the
inequality above corresponds to the fact that

(ddcϕ)d({0}) ⩾ MANA(ϕ̂),

where MANA is then the Monge-Ampère measure on this valuation space in the sense
of [BFJ08, §4.2].

It becomes natural to take our interest to the class of metrics in Ê1(L) for which
equality holds. We define them as “hybrid maximal” metrics, which correspond to
the maximal psh geodesic rays of [BBJ21]. We give equivalent characterizations of
such metrics, in particular using more “complex pluripotential”-theoretic notions such
as an extremal characterization. Denoting the space of hybrid maximal metrics by
Ê1
hyb(L) ⊂ Ê1(L), we then prove that it can be completely realized by the space

E1(Lan). The following theorem generalizes results of [BBJ21, §6], [Li22, §4].

Theorem B (combining Theorems 4.4.1, 4.3.3 & 4.5.1). — Let (X,L) be a meromor-
phic degeneration, and (Xan, Lan) be the Berkovich analytifications of their associated
varieties over the field C((t)). We then have the following:

– there is an isometric embedding of (E1(Lan), dNA
1 ) into (Ê1(L), d̂1) with image

Ê1
hyb(L); this image is characterized as the class of metrics for which (3) holds;

– in particular, (E1(Lan), dNA
1 ) and Ê1

hyb(L) are complete, geodesic metric spaces;
– there is a general “plurifunctional extension” property in this space, as follows:

suppose given d+1 relatively ample line bundles Li on X. Then, for any (d+1)-uple
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of metrics ϕi ∈ Ê1
hyb(Li), we have

(⟨ϕ0, . . . , ϕd⟩X/D∗)NA = ⟨ϕNA
0 , . . . , ϕNA

d ⟩.

This result states that the more important degenerations of psh metrics can be stud-
ied using purely non-Archimedean techniques. Conversely, we may also deduce proper-
ties of non-Archimedean metrics from their complex counterparts; non-Archimedean
metrics are a priori quite mysterious objects, and Theorem B says that we can com-
pletely realize them using more familiar complex objects. This dictionary, combined
with e.g. the third point, is very powerful: in the S1-invariant case, testing slopes at
infinity of certain functionals along a geodesic ray allows one to check for existence of
the fabled constant scalar curvature Kähler metrics, and parts of such functionals are
of the type given in point three. This result then states that one needs only to check
these parts of the functionals on the “easier”, more algebraic non-Archimedean side.
We therefore expect our result to help in the study of similar problems in families,
such as existence of families of metrics satisfying Kähler-Einstein-type or cscK-type
equations, as we discuss briefly in Section 4.7.

In a different direction, the second point of Theorem B shows that the space of
non-Archimedean functions has good topological properties; on the other side of the
dictionary, the geodesicity statement gives a canonical way to transform a family of
metric into another, and allows one to introduce a notion of convexity directly in the
space Ê1

hyb(L). In particular, one can now understand what it means for a functional
to be (geodesically) convex in this space, and to speak of e.g. their minimizers, which
likely would have great geometric importance.

Organization of the paper. — In Section 1, we study spaces of psh metrics with rela-
tive finite energy in the general relative case. In Section 2, we specialize to degenera-
tions over the punctured disc, and study our space Ê1(L), building up to Theorem A.
In Section 3, we construct the “Archimedean to non-Archimedean” map, after recall-
ing some notions of non-Archimedean pluripotential theory. In Section 4, we study the
non-Archimedean limits of energy functionals, then hybrid maximal metrics, proving
Theorem B. We also study the trivially-valued case in Section 4.6, and discuss other
applications regarding families of Kähler-Einstein metrics.

Acknowledgements. — The author thanks his advisors, Sébastien Boucksom and
Catriona Maclean. He thanks Robert Berman, Bo Berndtsson, Tamás Darvas, Vin-
cent Guedj, Léonard Pille-Schneider, and Steve Zelditch for various discussions.
He also thanks the anonymous referee for many valuable remarks on the paper,
in particular regarding clarity of exposition and for pointing out unclear points in
certain proofs.

1. Relative finite-energy spaces

1.1. Reminders on finite-energy spaces. — We begin with some reminders concern-
ing d1-structures on spaces of finite-energy metrics in the classical setting. We thus
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666 R. Reboulet

consider a fixed compact Kähler manifold X, with dimX =: d, endowed with an
ample line bundle L (so that X is projective). Throughout this article, we will use
additive conventions for tensor products of line bundles, meaning that if L and M are
line bundles and k a positive real integer, then kL−M denotes L⊗k⊗M−1. Likewise,
if ϕ and ψ are metrics on L and M , then we shall write kϕ−ψ to denote the induced
metric on kL−M .

Recall that a singular metric ϕ on L is a Hermitian metric given in a trivialization
L|U ≃ U × C by a function of the form e−ϕU with ϕU ∈ L1

loc(U). We say that a
singular metric ϕ is plurisubharmonic or psh if the current locally given by i∂∂ϕU is
positive. We define PSH(L) to be the set of psh metrics on L.

Consider two metrics ϕ0, ϕ1 ∈ C0 ∩PSH(L). Their relative Monge-Ampère energy
is the quantity

E(ϕ0, ϕ1) =
1

(c1(L)d)(d+ 1)

d∑
i=0

ˆ
X

(ϕ0 − ϕ1) (dd
cϕ0)

i ∧ (ddcϕ1)
d−i.

Note that we have a cocycle identity

E(ϕ0, ϕ1) = E(ϕ0, ϕ
′) + E(ϕ′, ϕ1)

for any other continuous psh metric ϕ′. Having fixed a continuous psh metric ϕref
on the right, E(ϕ) := E(ϕ, ϕref) can be seen as an operator on C0 ∩ PSH(L). This
operator is also a primitive of the Monge-Ampère operator MA : ϕ 7→ (ddcϕ)d in the
sense that

d

dt

∣∣∣∣
t=0

E(ϕ+ tf) =

ˆ
X

f MA(ϕ)

for f ∈ C0(X). It admits a (possibly infinite) extension to PSH(L) via

E(ϕ) = lim
k→∞

E(ϕk),

where ϕk is a net of continuous psh metrics decreasing to ϕ, which always exists by
[Dem92] (see also [BK07] for a simpler and more recent proof). The space of finite-
energy metrics is the space

E1(L) = {ϕ ∈ PSH(L), E(ϕ) is finite}.

By the cocycle identity, this space does not depend on the choice of a reference metric.
From the work of Darvas, we know this space to admit a d1-type complete metric space
structure via

d1(ϕ0, ϕ1) = E(ϕ0) + E(ϕ1)− 2E(P (ϕ0, ϕ1)),

where P (ϕ0, ϕ1) is the envelope

P (ϕ0, ϕ1) = sup {ϕ ∈ PSH(L), ϕ ⩽ min(ϕ0, ϕ1)).

It will be more practical to use a different expression of the Monge-Ampère energy,
as a difference of absolute Deligne pairings.
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1.2. Relative finite-energy metrics and extended Deligne pairings

The Deligne pairing has a long history, starting from Deligne’s original article,
treating the case of relative dimension 1 ([Del87]), further generalized by Elkik in
[Elk89], [Elk90]. Its use to formulate functionals arising in complex geometry has
been popularized via [PRS08], and recently, Deligne pairings have also been shown to
be of great use in non-Archimedean geometry ([BHJ19], [BE21], [PRS08, Rem. 6]), see
also [YZ21]. The non-Archimedean case over a point has been thoroughly developed
in [BE21].

We consider a proper holomorphic submersion between complex manifolds π:X→Y

of relative dimension d. Pick d + 1 pairs (Li, ϕi), where Li is a line bundle over X,
and ϕi is a continuous metric on Li. To this data, one associates a line bundle
over Y , ⟨L0, . . . , Ld⟩X/Y , together with a metric ⟨ϕ0, . . . , ϕd⟩X/Y in a way that is
multi-additive, symmetric; the construction furthermore commutes with base change
(in particular, is stable upon restriction to an open set on the base), and satisfies

– the change of metric formula: given another continuous metric ϕ′0 on L0, we have

(4) ⟨ϕ0, . . . , ϕd⟩X/Y − ⟨ϕ′0, . . . , ϕd⟩X/Y = π∗ ((ϕ0 − ϕ′0)(dd
cϕ1 ∧ · · · ∧ ddcϕd))

(see [Elk90, Th. I.1.1(d)]);
– the curvature formula

(5) ddc⟨ϕ0, . . . , ϕd⟩X/Y = π∗(dd
cϕ0 ∧ · · · ∧ ddcϕd)

(see [Elk90, Th. I.1.1(d)]).
The last formula shows that the metric ⟨ϕ0, . . . , ϕd⟩X/Y is positive if all the ϕi are
psh. We also remark that, by multi-additivity, the Deligne pairing of OX with any
other line bundles yields the trivial line bundle on the base, so that any metric on
a Deligne pairing of the form ⟨OX , L1, . . . , Ld⟩X/Y can naturally be identified with a
function on Y (since metrics on the trivial line bundle are simply functions).

Assume for the moment that Y is a point. In that case, Deligne pairings can be
seen as complex lines together with a Hermitian norm. In this setting, we will omit the
subscript ·X/Y . Using the change of metric formula, one can see the relative Monge-
Ampère energy between two continuous psh metrics on a fixed line bundle L over X
as a difference of Deligne pairings:

(d+ 1)E(ϕ0, ϕ1) = ⟨ϕd+1
0 ⟩ − ⟨ϕd+1

1 ⟩,

which suggests that the Monge-Ampère energy can be seen intrinsically as a genuine
(Hermitian) metric (d+ 1)E(ϕ) = ⟨ϕd+1⟩ on the line ⟨Ld+1⟩.

We now return to arbitrary Y . Our goal is to extend the Deligne pairing construc-
tion to the class of metrics of finite-energy, in a way that the change of metric and
curvature formulas still hold. To that end, we first introduce a new class of metrics
allowing us to make sense of such formulas.

Definition 1.2.1. — Let π : X → Y be a proper holomorphic submersion between
complex manifolds of relative dimension d. Let L be a relatively ample line bundle
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on X. We define the class of relative finite-energy metrics E1
X/Y (L) to be the class of

plurisubharmonic metrics ϕ on L such that, for all y ∈ Y , ϕy ∈ E1(Ly). Here, Ly is
the restriction of L to the fiber π−1(y).

Since we have required plurisubharmonicity on all of L, it follows that any metric
in E1

X/Y (L) can be approximated by a decreasing net of continuous psh metrics on L.
In particular, such metrics admit Deligne pairings.

Theorem 1.2.2. — Let π : X → Y be a proper holomorphic submersion between
complex manifolds of relative dimension d, and let (Li)

d
i=0 be a collection of d + 1

relatively ample line bundles on X. There exists a unique extension of the Deligne
pairing construction to metrics in E1(Li)X/Y , giving a finite-valued metric on the
Deligne pairing ⟨L0, . . . , Ld⟩X/Y over Y , which is multilinear, symmetric, stable upon
restriction to a smaller open set on the base, and such that the change of metric
formula (4) holds.

Note that the curvature formula a priori will not hold in general, due to a lack of
control of the right-hand side of (5) along arbitrary decreasing limits.

Along the way, we will need the following lemma regarding finiteness of products
of absolute finite-energy classes. This is a very standard result, which follows from
e.g. the arguments of [BJ22, Th. 5.8], therefore we leave the details to the interested
reader.

Lemma 1.2.3. — Let X be a compact Kähler manifold of dimension d, and let (Li)

be a collection of d + 1 ample line bundles on X. Fix, for all i = 0, . . . , d, a metric
ϕi ∈ E1(Li), and a continuous metric ϕ′0 ∈ E1(L0). Then, the integralˆ

X

(ϕ0 − ϕ′0) dd
cϕ1 ∧ · · · ∧ ddcϕd

is finite.

Proof of Theorem 1.2.2.. — We first restrict to an open set U on the base Y , so that we
may apply Demailly regularization on π−1(U). Fix for each i a metric ϕi ∈ E1

X/U (Li),
and let k 7→ ϕki be a sequence of continuous psh metrics on Li decreasing to ϕi.
We claim that the sequence

k 7−→ ⟨ϕk0 , . . . , ϕkd⟩X/U
decreases to a finite-valued, finite-energy metric on ⟨L0, . . . , Ld⟩X/U , independent of
the choices of approximating sequences, which defines our construction restricted to U .
Assuming this convergence to hold, one sees that this construction is multilinear,
symmetric, satisfies the change of metric formula. Uniqueness follows from the change
of metric formula, which itself shows that the construction glues well over X.

That it would define a finite-valued metric on U follows from Lemma 1.2.3 above,
so that all that is left in order to prove the theorem is that the limit in question is
decreasing. By the relative finite energy hypothesis, this limit will be finite and hence
define a finite-energy metric on the pairing over Y . We proceed by induction on the
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number n of indices i ∈ {0, . . . , d+1} such that ϕi belongs to E1
X/U (Li)−C

0∩PSH(Li).
In the case n = 0, all metrics are continuous psh and this is the classical Deligne
pairing, so that we have nothing more to prove.

Assume thus that the assertion holds for some d+ 1 > n > 0. Assume the metrics
ϕi, i = 1, . . . , d+ 1− n to belong to C0 ∩PSH(Li), and the n+ 1 other metrics ϕi to
belong strictly to E1

X/U (Li), i = 0 or i = d + 2 − n, . . . , d. (We can do this without
loss of generality, by symmetry and up to reordering the indices.) We approximate
ϕ0 and the (ϕi)

d
i=d+2−n by sequences k 7→ ϕki of continuous psh metrics. For a fixed

ℓ ∈ N∗ and by the induction assumption, the sequence

k 7−→ ⟨ϕℓ0, ϕ1, . . . , ϕd+1−n, ϕ
k
d+2−n, . . . , ϕ

k
d⟩X/Y

is decreasing and converges to a limit ⟨ϕℓ0, ϕ1, . . . , ϕd+1−n, ϕd+2−n, . . . , ϕd⟩X/U . This
limit satisfies, for any fixed metric ϕ′0 ∈ C0 ∩ PSH(L0) the formula

⟨ϕℓ0, ϕ1, . . . , ϕd+1−n, ϕd+2−n, . . . , ϕd⟩X/U − ⟨ϕ′0, ϕ1, . . . , ϕd+1−n, ϕd+2−n, . . . , ϕd⟩X/U

=

ˆ
X/U

(ϕℓ0 − ϕ′0) dd
cϕ1 ∧ · · · ∧ ddcϕd+1−n ∧ ddcϕd+2−n ∧ · · · ∧ ddcϕd.

Now, this expression yields a decreasing net as ℓ increases, and its limit is finite. In
particular, it can be seen to be the decreasing limit of

k 7−→ ⟨ϕℓ0, ϕ1, . . . , ϕd+1−n, ϕ
k
d+2−n, . . . , ϕ

k
d⟩X/U ,

which proves our desired statement by induction. □

1.3. Relatively maximal metrics

Definition 1.3.1. — Let π : X → Y be a holomorphic submersion with projective
fibers, where Y is a possibly open complex manifold. Let L be a relatively ample
line bundle on X. We say that a metric ϕ on L is relatively maximal if for any
relatively compact open subset U of Y , for any relatively compact open subset V
of π−1(U), and for any psh metric ψ on the restriction of L to π−1(V ) such that
lim sup(ψ(z)− ϕ(z)) ⩽ 0 as z approaches the boundary of π−1(V ), then

ψ(z) ⩽ ϕ(z)

for all z in π−1(V ).

Note that this means that, for all open sets π−1(U) as above, the restriction of ϕ
to π−1(U) is maximal in the sense of Sadullaev (i.e., on such open sets, ϕ satisfies the
usual definition of maximality as can be found in e.g. [Kli91]).

Remark 1.3.2. — One sees from this definition that a decreasing limit of relatively
maximal psh metrics is also relatively maximal.

Remark 1.3.3. — Let M be a projective manifold together with an ample line bundle
LM . Let [0,∞) ∋ t 7→ ϕt be a psh ray of psh metrics on LM . We can identify ϕ with a
S1-invariant psh metric ϕ̃ on the product L×D∗, by setting ϕ̃z := ϕ− log |z| for z ∈ D∗.
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Then, ϕ̃ is relatively maximal in our sense if and only if ϕ is “geodesic” in the sense
of [BBJ21].

A nice way to generate relatively maximal metrics is via Perron-Bremmermann
envelopes, as we now prove. We extend our setting slightly, to allow for singular
fibers, which will be useful later on. We state our result in maximal generality, but
the case to keep in mind is that of a holomorphic submersion over the punctured disc
with a singular fiber over zero.

Theorem 1.3.4. — Let π : X → Y be a holomorphic projective surjective morphism.
Let Ω be a relatively compact open subset of Y with smooth boundary, such that π is
a submersion above (hence near) ∂Ω. Let L be a π-ample line bundle on X. Let ϕ be
a continuous collection of fiberwise psh metrics on π−1(∂Ω). We then have that:

(1) if there exists a continuous psh extension of ϕ to all of π−1(Ω), then there exists
a (unique) relatively maximal continuous psh extension of ϕ to all of π−1(Ω);

(2) if Ω is defined as {ρ < 0}, where ρ is a smooth strictly psh function on Y , such
that ∇ρ ̸= 0 whenever ρ = 0, then a continuous psh extension as above exists.

Remark 1.3.5. — An open subset that satisfies the second point above is called a
hyperconvex open subset. In particular, D and annuli centered at zero are such open
sets. The proof of the first point follows some ideas dating back to the work of Bedford-
Taylor ([BT76]), see e.g. [BBGZ13, Prop. 6.3].

Proof of Theorem 1.3.4.. — The hypotheses in the theorem give that π−1(Ω) is an
analytic space with boundary, which we denote M := π−1(Ω), and whose boundary
is π−1(∂Ω), which we denote ∂M := π−1(∂Ω). We will finally write M := π−1(Ω).

Proof of the first point: existence of a continuous relatively maximal metric, assuming exis-
tence of a subsolution. — We assume that there exists a (weak) subsolution to the
problem, i.e., that there exists a metric ψ ∈ C0 ∩ PSH(L|M ) which is equal to ϕ on
L|∂M . (We will show that this is true in the second part of the proof.) Under this
assumption, we claim that the envelope

Pϕ = sup ∗{ψ ∈ C0 ∩ PSH(L|M ), ψ ⩽ ϕ on L|∂M}

is our desired relatively maximal, continuous metric on L|M which coincides with ϕ on
L|∂M . Because there exists a continuous subsolution, it follows by definition that Pϕ

is relatively maximal; furthermore, because a subsolution is a candidate ψ to the
envelope which coincides with ϕ on L|∂M , it also follows that Pϕ has the correct
boundary values. We are therefore left to show continuity of Pϕ.

We begin with a continuity estimate near the boundary. Having fixed a reference
smooth, strictly psh metric ϕref on L (which we assume to exist, up to possibly
restricting to a smaller relatively compact open subset inside Ω), and setting ω =

ddcϕref , we can see any candidate ψ for the envelope Pϕ as a continuous ω-psh function
g = ψ − ϕref . Fix such a g, and set

f0 = ϕ− (ϕref)|∂M .
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We now argue as in [PS10, §4.2(a)]. Since ddcg ⩾ −ω, the Laplacian ∆ωg of g with
respect to ω is bounded below by −d − 1. Let f be the (continuous) solution on M

to the Dirichlet problem

∆ωf + (d+ 1) = 0, f |∂M = f0.

We then have that ∆ω(g − f) ⩾ 0, which implies by the maximum principle that

sup
M

(g − f) = sup
∂M

(g − f),

while this supremum is nonpositive since ψ = g + ϕref is a candidate for the enve-
lope Pϕ. We then have that g ⩽ f on all of M , and this is true for any candidate ψ,
so that Pϕ ⩽ ϕref + f on M .

We now look at the continuity on M . Let ϕ̃ denote a continuous psh extension
of ϕ to L|M . We fix ε > 0, and define U = {Pϕ < ϕ̃ + ε}. This is the complement
of a compact set Cε, with ∂Ω ⊂ Cε, and Cε shrinks as ε → 0. By regularization
(e.g. [Bou18a, Th. 3.8]), we can find a sequence ψk ∈ C0 ∩PSH(L|U ) which decreases
to Pϕ. Now, by Dini, using compactness, we have that U is covered by finitely many
of the Uk = {ψk < ϕ̃+ ε} (since such inequality holds, for all z ∈M , and for all large
enough kz). In particular, for large enough k, one has ψk < ϕ̃ + ε. We now define
ψ̃k := max(ψk − ε, ϕ̃), which is defined on all of M . For all k, ψ̃k is continuous, as ψk
is continuous away from the boundary and ϕ̃ is continuous everywhere (in particular,
near and up to the boundary). Furthermore, ψ̃k is equal to ϕ on the boundary, so that

ψk − ε ⩽ ψ̃k ⩽ Pϕ ⩽ Pϕ∗ ⩽ ψk.

This implies that ψk converges uniformly to Pϕ, i.e., Pϕ is continuous on M . Further-
more, since:

(1) Pϕ ⩽ ϕref + f , as at the end of the first point of the proof;
(2) ϕref + f converges continuously to ϕ near the boundary, and Pϕ is continuous

on M ;
(3) there exists a psh extension ϕ̃, ensuring that Pϕ = ϕ on the boundary,

then Pϕ is continuous up to the boundary.

Proof of the second point: construction of a subsolution under the hyperconvexity assump-
tion. — The second point of the theorem will follow from a more general principle:
consider the class C(L|∂M ) consisting of continuous, fiberwise psh metrics on L|∂M
admitting a continuous psh extension to all of L|M . We claim that this class is stable
under uniform limits. Indeed, pick such a metric ψ, and consider the envelope

Pψ = sup ∗{ψ′ ∈ C0 ∩ PSH(L|M ), ψ′ ⩽ ψ on L|∂M},

the star denoting usc regularization. One sees that P is increasing (i.e., ψ′ ⩽ ψ implies
Pψ′ ⩽ Pψ and that, given a constant C ∈ R, P(ϕ + C) = P(ϕ) + C, from which it
follows formally that the mapping C(L|∂M ) ∋ ϕ 7→ Pϕ is continuous under uniform
convergence.

J.É.P. — M., 2023, tome 10



672 R. Reboulet

To prove the second point, we therefore have to show that there exists a sequence
ϕk ∈ C(L|∂M ) converging uniformly to our boundary data ϕ. We proceed by Bergman
kernel approximation, i.e., we will construct this sequence using the data of relative
sections of L. Since L is π-ample, the sheaves π∗(kL) are locally free for all k large
enough, and correspond to the sections of a vector bundle Ek whose fibers are the
H0(kLz), z ∈ M . We then have a continuous collection of Hermitian metrics hk =

(hk,z)z on Ek|∂Ω, which (identified with their associated Hermitian norms ∥·∥hk,z
) are

given by
∥sz∥2hk,z

=

ˆ
Xz

|sz|2e−kϕz dωz,

where ωz is the restriction to Xz of a Kähler form on X, and s = (sz)z is a section
of Ek. We pick a sequence of smooth families of Hermitian metrics (hk,j)j on π∗(kL)
so that hk,j → hk uniformly on π∗(kL)|∂Ω. We recall that, to a Hermitian norm h

on the space of sections of kLz, we can associate a smooth, strictly plurisubharmonic
metric on Lz given by

FS(h) = k−1 log
∑
i

|si|2,

where (si)i is an orthonormal basis for h, and the metric so obtained is independent of
the choice of such a basis. Using this construction, we obtain collections of smoothly
varying metrics

ϕk,z = FS(hk,z), ϕk,j,z = FS(hk,j,z)

on L. Since they are fiberwise smooth and strictly psh (both of which are necessary
conditions for the following argument), we may compensate for the lack of plurisub-
harmonicity in the direction of z, by pulling back a high enough multiple mk,jπ

∗ρ

of the defining function ρ of Ω, which as we recall vanishes on the boundary of Ω.
We therefore have a continuous psh extension

ϕk,j +mk,jπ
∗ρ

of (ϕk,j)|∂M . This implies that ϕk,j ∈ C(L|∂M ); furthermore, (ϕk,j)|∂M → ϕk uni-
formly which implies that ϕk ∈ C(L|∂M ). Now, by Bergman kernel asymptotics in
families, as in e.g. [MM07, Th. 4.1.1], the ϕk themselves converge uniformly and in-
creasingly to ϕ, which implies ϕ ∈ C(L|∂M ), concluding the proof. □

Lemma 1.3.6. — In the setting of Theorem 1.3.4, let ϕ be a continuous psh metric
on L. Then, the following are equivalent:

(1) ϕ is relatively maximal;
(2) (ddcϕ)d+1 = 0, where d is the dimension of the fibers of π;
(3) over each relative open subset π−1(U), ϕ equals its Perron-Bremmermann en-

velope
PUϕ = sup ∗{ψ ∈ C0 ∩ PSH(L|π−1(U)), ψ ⩽ ϕ on L|π−1(∂U)}.

Proof. — We start with (1) ⇔ (2). Recall that ϕ being relatively maximal means that,
for all relative open subsets π−1(U), ϕ|π−1(U) is maximal in the sense of Sadullaev.
Because maximality in the sense of Sadullaev is a local property, it is enough to
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check it on any open covering of π−1(U), so that we may work locally and apply
[GZ12, Th. 2.20]. Thus we find that (ddcϕ)d+1 = 0 on π−1(U) if and only if ϕ|π−1(U)

is maximal in the sense of Sadullaev, i.e., if and only if ϕ is relatively maximal.
(1) ⇔ (3) follows from the definition of (relative) maximality and of the enve-

lope PU ; one simply has to note that there always exists a candidate for the enve-
lope PU (ϕ), given by the restriction of ϕ itself to π−1(U). □

We now characterize relatively maximal metrics of relative finite energy.

Proposition 1.3.7. — Let π : X → Y be a proper holomorphic submersion. Let ϕ be
a metric in E1

X/Y (L). Let U be a relatively compact, smooth open subset of Y , such
that π is a submersion above ∂U . Then, ϕ is relatively maximal on U if and only if
the restriction of ⟨ϕd+1⟩X/Y to U has zero curvature.

Proof. — Assume ϕ to be relatively maximal on U . If ϕ is continuous, it follows from
Lemma 1.3.6 that (ddcϕ)d+1 = 0 on U , so that by (5), it follows that ddc⟨ϕd+1⟩ ≡ 0.
The non-continuous case follows from regularization on U : pick a sequence of contin-
uous metrics ϕk decreasing to ϕ on U ; by Theorem 1.3.4, there exists a continuous,
relatively maximal psh metric Φk coinciding with ϕk on L|π−1(∂U). By maximality, the
sequence Φk necessarily converges to ϕ (since ϕ is assumed to be relatively maximal),
and continuity of Deligne pairings along decreasing nets (which is implicit from the
proof of Theorem 1.2.2) ensures ⟨ϕd+1⟩X/U to have zero curvature.

Conversely, assume ⟨ϕd+1⟩X/U to have zero curvature. In the continuous case,
using (5) again, it follows that (ddcϕ)d+1 = 0, as it is a positive current. In the
general case, we again proceed base-locally, and approximate ϕ on the preimage of
a relatively compact open subset U via a decreasing sequence of continuous psh met-
rics k 7→ ϕk. Let Φk be for each k the unique continuous and relatively maximal metric
on U with prescribed boundary condition ϕk|π−1(∂U), given by Theorem 1.3.4. Let Φ

denote the limit of the decreasing sequence k 7→ Φk, which is relatively maximal. By
continuity of the Deligne pairing along decreasing nets, this sequence also defines a
decreasing sequence of zero curvature metrics ⟨Φd+1

k ⟩X/U which has to converge to
the metric ⟨Φd+1⟩X/U , which is a zero curvature metric ϕ̃ on U , coinciding on ∂U

with ⟨ϕd+1⟩X/U . Since ⟨ϕd+1⟩X/U also has zero curvature, we must have

⟨Φd+1⟩X/U = ⟨ϕd+1⟩X/U

on all of U . Fix z in U , and note that this implies

E(Φz) = E(ϕz),

while by relative maximality of Φ, ϕz ⩽ Φz, which implies Φz = ϕz, thus concluding
our proof. □
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2. Finite-energy metrics over degenerations

2.1. Analytic models and degenerations. — We now turn to our main setting.
We will consider the base Y to be the punctured unit disc, and we will assume that
our family degenerates (meromorphically) as one approaches zero.

Definition 2.1.1. — Consider a holomorphic submersion π : X → D∗ with projective
fibers, and a relatively ample line bundle L on X. An analytic model (or simply
a model) of X is the data of:

(1) a normal complex analytic space X, together with a flat, proper holomorphic
morphism π : X → D;

(2) an isomorphism X ≃ π−1(D∗
).

An analytic model of (X,L) is the data of:
(1) an analytic model X of X;
(2) an ample line bundle L over X;
(3) an isomorphism between the restriction of L to π−1(D∗

), and L.
We define a degeneration (or a degeneration with meromorphic singularities) to be a
morphism π : X → D∗ as above, such that there exists an analytic model of (X,L).

Example 2.1.2. — This construction specializes to the following well-known cases:
– if all the fibers of X are isomorphic to M , a model X can simply be viewed as a

compactification of an isotrivial degeneration of M ;
– if the above condition holds, and furthermore the isomorphism is generated by a

C∗-action, this is simply a (real) one-parameter degeneration of (M,L|M ), i.e., a test
configuration for (M,L|M ).

The central fiber of a model of X is the space X0 = π−1({0}). If the degeneration
X → D∗ is isotrivial, we say that M , the fiber over 1, is the generic fiber of X.

2.2. Generalized slopes and Lelong numbers. — As we will be working with (gen-
eralized) subharmonic functions on the base D∗, we will often have to work with some
notions of Lelong numbers. We review some (old and new) facts in this section.

Definition 2.2.1. — We say that a subharmonic function f on D∗ has logarithmic
growth (near zero) if there exists a real number a such that f(z)+a log |z| is bounded
above near zero.

Much as one can define the slope at infinity of a convex function, we can define the
(possibly signed) Lelong number of a function with logarithmic growth, as follows.

Definition 2.2.2. — Given a subharmonic function f with logarithmic growth on D∗,
we define its generalized slope (or generalized Lelong number at zero) to be the value

ν0(f) := lim
r→0

sup|z|=r f(z) + a log |z|
log r

− a,
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where a is a real number such that f + a log |z| is bounded near zero. In particular,
ν0(f) is independent of the choice of such an a.

The interested reader may find more details on the properties of Lelong numbers
in [Bou18a, §2].

Example 2.2.3. — If f is a S1-invariant subharmonic function, we can identify it with
a convex function f̃ of t = log r ∈ (−∞, 0], in which case the Lelong number of f
simply computes the slope of f̃ at infinity:

ν0(f) = lim
t→−∞

f̃(t)

t
.

In our case, we will be interested in generalizing slopes at infinity of non-decreasing
convex functions g̃ : [0,∞) → R, identified with subharmonic functions on the disc via
g(z) = g̃(− log |z|). A computation shows that the slope at infinity is then captured
by minus the Lelong number of g:

lim
u→∞

g̃(u)

u
= −ν0(g).

Remark 2.2.4. — As a consequence of Harnack’s inequality ([Bou18a, Cor. 1.9]) ν0(f)
may equivalently be computed using the integrals 

|z|=r
f(z) dz = (2πr)−1

ˆ
|z|=r

f(z) dz

in place of the suprema.

We conclude this section with an estimate that will be useful later on. It is the
subharmonic version of the estimate

f(s) ⩽ lim
t→−∞

f(t)

t
s+ f(0)

for a convex function f on (−∞, 0].

Lemma 2.2.5. — Let f be a subharmonic function with logarithmic growth on D∗.
Then, for all z, we have

f(z) ⩽ ν0(f) · log |z|+ sup
|z|=1

f(z).

Proof. — Set g(s) := sup|z|=es(f(z) + a log |z|). Let z ∈ D∗ and 0 < r < |z|, then set
t = log r. Since g is convex on (−∞, 0] (in particular on [t, 0]), we have that

f(z) + a log |z| ⩽ g(log |z|) ⩽
(
1− log |z| − t

−t

)
g(t) +

log |z| − t

−t
g(0)

⩽
log |z|g(t)

t
+

log |z|g(0)
−t

+ g(0).

Taking the limit as t = log r → −∞ we then find

f(z) + a log |z| ⩽ ν0(f) · log |z|+ a log |z|+ g(0),

which is exactly the estimate in the statement of the lemma. □
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2.3. Plurisubharmonic metrics on degenerations. — Fix now a degeneration π :

X → D∗, endowed with a relatively ample line bundle L. We will take our interest
to plurisubharmonic metrics on L, and in particular their singularities. However, a
general psh metric on a degeneration can behave very poorly near the singularity,
even though we have assumed existence of an analytic model of X. Thus, we need to
enforce a rather natural growth condition on such psh metrics, akin to that of linear
growth for geodesic rays.

Definition 2.3.1. — We say that a psh metric ϕ on L has logarithmic growth if there
exists a model (X,L) of (X,L) such that ϕ extends as a psh metric on L.

Definition 2.3.2. — We will write PSH(L) for the space of psh metrics of logarithmic
growth on L, such which do not restrict to −∞ on a given fiber. If it comes to
be necessary, we will rather write PSH(X,L) when considering the space of (non-
necessarily of logarithmic growth) psh metrics on L.

We will soon show that PSH(L) has many desirable properties. We will also shortly
explain our terminology. We begin with the following result:

Lemma 2.3.3. — Given a psh metric ϕ on L, the following are equivalent:
(i) ϕ has logarithmic growth, i.e., there exists a model (X,L) such that ϕ extends

to a psh metric on L;
(ii) for all models (X,L) of (X,L), there exists a constant c = c(X,L) such that

ϕ+ c · log |z| extends to a psh metric on L;
(iii) there exists a model (X,L) and a smooth metric ϕref on L such that

ρ∗ϕ(z) ⩽ ϕref(z) +O(log |z|)

as z → 0, where ρ denotes the isomorphism between X and X− X0;
(iv) for all models (X,L) of (X,L) and all smooth metrics ϕref on L, (iii) holds.

Proof. — By classical results of pluripotential theory, (i) ⇔ (iii) and (ii) ⇔ (iv). Since
(iv) ⇒ (iii) is immediate, we only need to prove (iii) ⇒ (iv). Assume that

ρ∗ϕ(z) ⩽ ϕrefL (z) +O(log |z|)

for a smooth reference metric ϕrefL on L. Pick another model (Y,M) together with
a smooth metric ϕrefM . Note that the equation above holds if and only if the same
equation holds for the pullbacks of ϕrefL and ρ∗ϕ to a higher model. Thus, we pick a
model (Z,N) dominating both via πX : Z → X, πY : Z → Y. There exists a unique
Cartier divisor D supported on the special fiber Z0 such that

π∗
XL+D = π∗

YM,

and given a local equation fD for D, we have
π∗
XϕL ⩽ π∗

Yϕ
ref
M − log |fD|+O(1) ⩽ π∗

Yϕ
ref
M +O(log |z|).

Thus,
π∗
Xρ

∗ϕ ⩽ π∗
Xϕ

ref
L +O(log |z|) ⩽ π∗

Yϕ
ref
M +O(log |z|),

as desired. □
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Remark 2.3.4. — The above result shows that one could equivalently define our
growth condition using some fixed reference data (Xref ,Lref), using e.g. point (ii).
In the isotrivial case, there furthermore exists some very natural reference data: the
“trivial model” given by the product family of the generic fiber with the whole disc.

Example 2.3.5. — Let [0,∞) ∋ t 7→ ϕt be a ray of psh metrics on an ample line
bundle L over a fixed variety X. It may be identified as a psh metric Φ over the
trivial model (X×D∗

, L×D∗
), by setting Φz = ϕ− log |z|. In this case, the logarithmic

growth condition is merely the usual linear growth condition on psh rays.

We then have as an immediate corollary:

Corollary 2.3.6. — The space PSH(L) is stable under limits of decreasing nets, finite
maxima, and addition of constants. It is furthermore the smallest such set containing
all psh metrics on L which admit a locally bounded extension to some model (X,L)
of (X,L).

Proof. — All of those properties are seen to preserve characterization (iv) above,
having fixed some reference model. To show that it is the smallest set closed under
those operations, only the statement about decreasing nets could a priori be delicate.
Given a metric ϕ ∈ PSH(L), (i) shows that it extends as a genuine metric on some
model (X,L), and Demailly’s regularization theorem yields a decreasing sequence of
smooth (in particular locally bounded) psh metrics decreasing to the extension of ϕ,
which shows in particular that ϕ belongs to the closure of the set of locally bounded
psh metrics on L, proving our result. □

2.4. The main setting, and some important examples. — We begin with some nota-
tion. Let π : X → D∗ be a degeneration together with a relatively ample line bundle L.
We now, and for the remainder of this article, fix some reference boundary data ϕ∂ ,
which is the restriction to the boundary π−1(S1) of a smooth psh metric on L. This is
a minor distinction which will allow us to later obtain a genuine metric structure on
a particular subspace of PSH(L), rather than a pseudometric structure, and therefore
we will define

E1(L) = E1
X/D∗(L) ∩ {ϕ ∈ PSH(L), ϕ has boundary data ϕ∂}

to be the space of fiberwise finite-energy metrics in PSH(L) (with the correct boundary
data). We also set

Ê1(L) = {ϕ ∈ E1(L), ϕ is relatively maximal}.

Example 2.4.1. — Although those are seemingly restrictive conditions, they are in
fact general enough to encompass the study of maximal geodesic rays. Let (X,L) be
a product family (M × D∗

, LM × D∗
). For a S1-invariant metric ϕ on LM × D∗, seen

as a ray [0,∞) ∋ t 7→ ϕt,

(1) being in PSH(L) corresponds to the usual linear growth condition;
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(2) being relatively maximal corresponds to being a geodesic ray in the sense of
[BBJ21];

(3) being in E1(L) corresponds to having fiberwise finite-energy and linear growth,
as well as having a fixed value ϕδ ∈ PSH(M) at t = 0;

(4) therefore, belonging to Ê1(L) corresponds to being a fiberwise finite-energy
geodesic rays with linear growth emanating from a given metric ϕδ—exactly the space
of rays R1(L) considered in [DL20].

Example 2.4.2 (Relative dimension zero, part 1). — Consider the case of relative
dimension zero with a (trivial) line bundle L over X ≃ D∗. Then,

(1) PSH(L) corresponds to the set of subharmonic functions with logarithmic
growth on D∗;

(2) the class of relatively maximal metrics in PSH(L) corresponds to the class of
harmonic functions;

(3) E1(L) corresponds to finite-valued subharmonic functions on the punctured
disc with logarithmic growth (and having determined boundary values on S1);

(4) finally, Ê1(L) corresponds to finite-valued harmonic functions on the punctured
disc with logarithmic growth and with the fixed boundary values on S1.

It is well-known that any harmonic function on the punctured disc decomposes
as a sum of a multiple of log |z| and the real part of an analytic function. This
is where our general setting starts diverging from the better-behaved S1-invariant.
Indeed, by [BBJ21, Prop. 4.1], for rays of metrics of finite energy, maximality implies
linear growth. However, in our case, maximality plus finite energy no longer implies
logarithmic growth, since there exist harmonic functions on the punctured disc that
do not have logarithmic growth at zero (e.g. the real part of z 7→ e1/z).

Assuming logarithmic growth, we then have a full description of Ê1(L) in relative
dimension zero, since we then see that any (finite-valued) harmonic function with
logarithmic growth has to be of the form c · log |z|+H(z), where H(z) is the solution
of the generalized Dirichlet problem over the whole disc with the given boundary
data. In particular, it is an affine space isomorphic to R. This agrees with the radial
case, where E1(L) is simply the set of affine functions on [0,∞) emanating from the
same point, which is isomorphic to the set of possible slopes.

Example 2.4.3 (Relative dimension zero, part 2). — Note that, in this setting, the
existence of a model for (D∗

, L) means that we can pick a trivialization τ of L over D,
which allows us to identify a metric ϕ ∈ PSH(L) (extended to L via the logarithmic
growth condition) with the function

u = − log |τ |ϕ
on D. By the discussion above, if ddcϕ = 0, then u decomposes as

u(z) = c · log |z|+H(z),

where H is bounded on D. This decomposition (in particular, c and H) depends on τ ;
but the fact that ϕ can be decomposed in any trivialization in such a way does not.
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This is a nice model case for us, because the Deligne pairing construction (in our
setting of fibrations over D∗) naturally gives line bundles over D∗, as we see in action
now.

Corollary 2.4.4. — The relative maximality condition for metrics in E1(L) can be
pushed forward to the base via the Deligne pairing, i.e., we have a well-defined map

Ê1(L) −→ Ê1(⟨Ld+1⟩X/D∗).

Furthermore, a metric ϕ ∈ E1(L) belongs to Ê1(L) if and only if, for any model
(X,L) of (X,L) and any trivialization of the Deligne pairing ⟨Ld+1⟩X/D, denoting
u = − log |τ |⟨ϕd+1⟩X/D

, one has

u(z) = c · log |z|+H(z),

where c is a real constant and H is a harmonic function on D depending only on τ

and the boundary data.

Proof. — The map above is naturally given by ϕ 7→ ⟨ϕd+1⟩X/D∗ , in which case both
statements are corollaries of Proposition 1.3.7 and the two examples above. □

2.5. Metrization. — By the work of Darvas-Lu ([DL20]), it is known that one can
endow the space of maximal psh rays with a metric structure, given by

d̂1(ϕ0, ϕ1) = lim
t→∞

d1(ϕ0,t, ϕ1,t)

t
.

As consequence of our previous results, we will define in this section a metric structure
on our space Ê1(L) of “generalized rays”, which will be given by

d̂1(ϕ0, ϕ1) := −ν0(d1(ϕ0, ϕ1)),

where d1(ϕ0, ϕ1) is the function z 7→ d1(ϕ0,z, ϕ1,z). The reason for the minus sign
appearing is explained in Example 2.2.3. In the following sections, we will show that
this structure furthermore satisfies some good properties, namely completeness and
geodesicity.

Theorem 2.5.1. — The space Ê1(L) can be endowed with a metric space structure,
defined by the generalized slope d̂1(ϕ0, ϕ1) = ν0(d1(ϕ0, ϕ1)) for any ϕ0, ϕ1 ∈ Ê1(L).

Naturally, this suggests that the d1-distance is subharmonic with logarithmic
growth along metrics in Ê1(L), a fact that we prove now.

Proposition 2.5.2. — Let ϕ0, ϕ1 ∈ Ê1(L). Then, the map

z 7−→ d1(ϕ0,z, ϕ1,z)

is subharmonic with logarithmic growth on D∗.

Proof. — By the formula for d1,

d1(ϕ0,z, ϕ1,z) = ⟨ϕd+1
0,z ⟩+ ⟨ϕd+1

1,z ⟩ − 2⟨P (ϕ0,z, ϕ1,z)d+1⟩.
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By Proposition 1.3.7, the first two metrics on the right-hand side have zero curvature,
therefore we are left to show that the metric ⟨P (ϕ0, ϕ1)d+1⟩X/D∗ is superharmonic.
We pick any zero curvature metric ϕref on D∗, and note that ⟨P (ϕ0, ϕ1)d+1⟩X/D∗ is
superharmonic if and only if ⟨P (ϕ0, ϕ1)d+1⟩X/D∗ − ϕref is a superharmonic function.
Fix a ∈ D∗ and let r > 0 be such that D(a, r) = {|z − a| ⩽ r} ⊂ D∗. Let ψ be the
relatively maximal psh metric on D(a, r) and with boundary data

(6) ψ(z) = P (ϕ0,z, ϕ1,z), ∀z ∈ S(a, r).

Such a metric is given by Theorem 1.3.4. We now deduce the two following facts:
(i) by maximality of ψ, if follows from Proposition 1.3.7 that z 7→ ⟨ψd+1⟩X/D∗ has

zero curvature;
(ii) since on the boundary S(a, r) we have ψ(z) ⩽ ϕ0,z, ϕ1,z, and ϕ0, ϕ1 are rela-

tively maximal, we have
ψz ⩽ ϕ0,z, ϕ1,z

for all z ∈ D(a, r), thus ψz ⩽ P (ϕ0,z, ϕ1,z) and finally

⟨ψd+1
z ⟩ ⩽ ⟨P (ϕ0,z, ϕ1,z)d+1⟩

by monotonicity of the Monge-Ampère energy.
Using (6), (i), and (ii) in that order, we find: 

S(a,r)

⟨P (ϕ0,z, ϕ1,z)d+1⟩ − ϕref,z =

 
S(a,r)

⟨ψd+1
z ⟩ − ϕref,z

= ⟨ψd+1
a ⟩ − ϕref,a

⩽ ⟨P (ϕ0,a, ϕ1,a)d+1⟩ − ϕref,a.

As the inequality is true for all a, our metric ⟨P (ϕ0, ϕ1)d+1⟩X/D∗ is then superharmonic
(because superharmonic functions are characterized by the “reverse” mean-value in-
equality, i.e., the value of a superharmonic function at a point is no smaller than the
mean of its values on a circle or a ball centered at the given point). We now show
that there exists a real number a ∈ R such that

z 7−→ d1(ϕ0,z, ϕ1,z) + a log |z|

is bounded above. By Lemma 2.3.3(iv), for any model (X,L) of (X,L), fixing a refer-
ence metric ϕref ∈ Ê1(L) which is locally bounded on L, one has (up to adding large
enough constants)

ϕ0 ⩽ ϕref + c · log |z|
for some real constant c. In this case,

d1(ϕ0,z − c · log |z|, ϕref,z) = ⟨(ϕ0,z − c · log |z|)d+1⟩ − ⟨ϕd+1
ref,z⟩,

and the term on the right-hand side is a harmonic function with logarithmic sin-
gularities at the origin, so that subtracting constants the result also holds for z 7→
d1(ϕ0,z, ϕref,z). Proceeding similarly for ϕ1, our result then follows from the triangle
inequality. □
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Finally, we note an immediate consequence of Lemma 2.2.5 together with the pre-
vious proposition 2.5.2.

Lemma 2.5.3. — Let ϕ0, ϕ1 ∈ Ê1(L). Then, for all z on the base, we have

d1(ϕ0,z, ϕ1,z) ⩽ d̂1(ϕ0, ϕ1)(− log |z|).

In particular, d̂1(ϕ0, ϕ1) is nonnegative.

Remark 2.5.4. — Had we not fixed boundary data, we would have an additional
error term in the above expression, corresponding exactly to the supremum of z 7→
d1(ϕ0,z, ϕ1,z) for z ∈ S1.

We are now equipped to endow the space Ê1(L) with a metric structure.

Proof of Theorem 2.5.1.. — That d̂1(ϕ, ϕ) = 0 and d̂1(ϕ0, ϕ1) = d̂1(ϕ1, ϕ0) are imme-
diate statements, and nonnegativity will follow from the triangle inequality and the
former statement. Therefore, we must show that for any other ϕ2 ∈ Ê1(L), we have

d̂1(ϕ0, ϕ1) ⩽ d̂1(ϕ0, ϕ2) + d̂1(ϕ2, ϕ1).

Let a01 be such that d1(ϕ0,z, ϕ1,z) + a01 log |z| is bounded above on the punctured
disc, and define similarly a02, a21. We have by the triangle inequality of the fiberwise
metric d1

d1(ϕ0,z, ϕ1,z) ⩽ d1(ϕ0,z, ϕ2,z) + d1(ϕ2,z, ϕ1,z)

for all z in D∗, and in particular

d1(ϕ0,z, ϕ1,z) + (a02 + a21) log |z| ⩽ d1(ϕ0,z, ϕ2,z) + d1(ϕ2,z, ϕ1,z) + (a02 + a21) log |z|.

Upon taking (negative) Lelong numbers and adding constants, we find

a02 + a21 + ν0(d1(ϕ0,z, ϕ1,z) + (a02 + a21) log |z|)
⩽ a02 + ν0(d1(ϕ0,z, ϕ2,z) + a02 log |z|) + a21 + ν0(d1(ϕ2,z, ϕ1,z) + a21 log |z|).

Since
z 7−→ d1(ϕ0,z, ϕ1,z) + (a02 + a21) log |z|

is bounded above, the previous equation is by the very definition of d1 equivalent to

d̂1(ϕ0, ϕ1) ⩽ d̂1(ϕ0, ϕ2) + d̂1(ϕ2, ϕ1),

as desired. Finally, assuming d̂1(ϕ0, ϕ1) = 0, Lemma 2.5.3 shows that we must have
ϕ0 = ϕ1. □

2.6. Completeness. — We wish to prove the following:

Theorem 2.6.1. — The metric space (Ê1(L), d̂1) is complete.

In order to prove this, we discuss possible topologies for E1(L).
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Remark 2.6.2 (Topologies on E1(L)). — We have already considered the topology of
fiberwise d1-convergence on E1(L). There is a yet finer topology, that of locally uniform
fiberwise d1-convergence (the C0

X,loc-d1 topology for short), by which ϕk converges
to ϕ if, for all relatively compact open sets U in X, d1(ϕk,z, ϕz) → 0 uniformly in z

on U . In between the two, there is the topology of “base-locally” uniform fiberwise
d1-convergence (abbreviated by C0

X/D∗
,loc

-d1), which is the same but over the π−1(U)

with U relatively compact open in D∗. By Lemma 2.5.3, the latter is equivalent to
the topology induced by d̂1 on Ê1(L).

Proposition 2.6.3. — Let ϕk be a sequence of metrics in Ê1(L) converging in the
C0
X/D∗

,loc
-d1 topology to some metric ϕ ∈ E1(L). Then, ϕ belongs to Ê1(L).

Proof. — Pick a sequence k 7→ ϕk ∈ Ê1(L) and a fixed metric ϕ in E1(L). Assume
that, for a relatively compact open U ⊂ D∗ we have

d1(ϕk,z, ϕz) −→ 0

uniformly in z ∈ π−1(U). Since convergence in Monge-Ampère energy is subordinate
to d1-convergence ([Dar19, Th. 3.46]) we have that

⟨ϕd+1
k,z ⟩ −→ ⟨ϕd+1

z ⟩

again uniformly in z; by maximality, the metrics ⟨ϕd+1
k ⟩X/D∗ have zero curvature, and

an uniform limit of such has zero curvature again. As having zero curvature is a local
property and the π−1(U) cover X, we then have that ⟨ϕd+1⟩X/D∗ has zero curvature
on all of X. By virtue of being in E1(L), this implies ϕ to be relatively maximal
by 1.3.7. □

Proof of Theorem 2.6.1.. — Consider a Cauchy sequence m 7→ ϕm ∈ Ê1(L). For all ε
and all large enough m, n,

d̂1(ϕm, ϕn) ⩽ ε,

which by Lemma 2.5.3 implies the individual sequences m 7→ ϕm,z to be d1-Cauchy.
By completeness of the fiberwise E1 spaces ([Dar19, Th. 3.36]), those sequences d1-
converge to a unique finite-energy metric ϕ(z), and in fact this convergence is seen to
hold base-locally uniformly fiberwise. The mapping z 7→ ϕ(z) is therefore a metric in
Ê1(L) by Proposition 2.6.3. □

2.7. Extension of the distance to non-maximal continuous metrics

In this section, we construct a “maximal envelope” map, which will allow us to
extend the d1-distance as a pseudodistance to the class of (non-maximal) continuous
metrics in E1(L).

Proposition 2.7.1. — For all ϕ ∈ C0∩E1(L), there exists a unique smallest relatively
maximal metric P̂ (ϕ) ∈ Ê1(L) with ϕ ⩽ P̂ (ϕ) and

d1(ϕz, P̂ (ϕ)z) = o (log |z|)

as z → 0. This defines a natural projection
C0 ∩ E1(L) −→ C0 ∩ Ê1(L).
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Before proving this result, we note this immediate corollary:

Corollary 2.7.2. — The mapping

d̂1(ϕ0, ϕ1) = d̂1(P̂ (ϕ0), P̂ (ϕ1))

defines a pseudodistance on C0 ∩ E1(L).

Proof of Proposition 2.7.1.. — Let ϕ ∈ E1(L) ∩ C0(L), and, for all r ∈ (0, 1), let Ur
denote the annulus {r < |z| < 1} ⊂ D∗, and Vr = π−1(Ur) ⊂ X. Let ϕr be the
relatively maximal metric on Vr, coinciding with ϕ on ∂Vr, given by Theorem 1.3.4.
Fixing z on the base, the sequence r 7→ ϕr,z is an increasing sequence of psh metrics in
E1(Lz) by relative maximality, just as, for a convex function on [0,∞) (corresponding
to our ϕ), the sequence of chords ct : [0, t] → R (corresponding to our ϕr) joining
f(0) and f(t) forms an increasing family ct(λ); we leave the somewhat long but
straightforward adaptation of this argument from the convex to the subharmonic
case to the interested reader. We claim that the limit family

z 7−→
(
lim
r→0

∗ϕr,z
)

is the desired envelope P̂ (ϕ). Denote this limit ϕ̂ for the moment. Fix some r. By con-
struction, ϕ̂ restricted to Vr coincides everywhere with its Perron-Bremmermann enve-
lope; furthermore, it is locally bounded (since it is approximable from below). By the
discussion in Section 1.3, since this holds for all r, ϕ̂ is relatively maximal. Further-
more, by construction again, it satisfies ϕ ⩽ ϕ̂ and is the smallest such relatively
maximal metric. We are therefore only left to prove that d1(ϕ̂z, ϕz) = o(log |z|) as
z → 0. As in Corollary 2.4.4, we pick a model (X,L) of (X,L), and we extend ⟨ϕd+1⟩
to the trivializable line bundle ⟨Ld+1⟩ (using the extension of the Deligne pairing from
Moriwaki [Mor99] when the mapping is no longer a submersion). Picking a trivial-
ization τ allows us to identify the energies ⟨ϕ̂d+1⟩ and the ⟨ϕd+1

r ⟩ with functions u
and ur on D and Ur respectively. By Proposition 1.3.7, those functions are harmonic,
and for all s ∈ (0, 1), the functions ur, r > s increase over Us to u, which implies the
convergence to be uniform (as an increasing sequence of harmonic functions over a
compact set). Now, by harmonicity, for r > s, the integrals 

|z|=r
us(z) dz

are affine functions of log r. Writing v = − log |τ |⟨ϕd+1⟩, we then have
 
|z|=r

us(z) dz =
log r

log s

 
|z|=s

v(z) dz +
(
1− log r

log s

)
·
 
|z|=1

v(z) dz,

(recall how we have defined ϕs and us). Taking the limit s → 0 using the uniform
convergence discussed above yields 

|z|=r
u(z) dz = −(log r) ν0(v) +

 
|z|=1

v(z) dz.
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Taking slopes in this equality, one then finds ν0(v) = ν0(u). Now, since ϕ ⩽ ϕ̂, we have

d1(ϕz, ϕ̂z) = u(z)− v(z),

whose slopes we have seen to coincide, proving our statement that d1(ϕ̂z, ϕz) =

o(log |z|). Therefore, ϕ̂ is our desired envelope P̂ (ϕ). □

Remark 2.7.3. — As pointed out by a referee, because of some problems related to
convergence of Lelong numbers under decreasing limits, this construction does not
a priori extend to all of E1(L). It can however be extended to slightly larger classes of
metrics, such as metrics ϕ for which there exists a sequence of metrics ϕi ∈ C0∩E1(L)

such that ϕi → ϕ pointwise and the ν0(vi) (which one would define as in the previous
proof) converge to ν0(v). This is for example the case for the class of metrics which
can be written as decreasing limits of continuous metrics in E1(L) and such that
convergence also holds in the C0

X/D∗
,loc

-d1 topology introduced in Remark 2.6.2.

3. The non-Archimedean limit

We move away from relatively maximal and finite-energy metrics for the moment,
and focus on the space PSH(L). The purpose of this section is to show that there
is a natural map from this space to a certain space of non-Archimedean metrics.
We describe the non-Archimedean setting in Sections 3.1 and 3.2. We prove some
complex preparations in Section 3.4, then describe the construction in Section 3.5.
Finally, in Section 3.6, we show how a certain subclass of metrics behaves under this
map.

3.1. Degenerations as varieties over a discretely valued field. — Any holomor-
phic degeneration of algebraic objects naturally gives rise to a corresponding object
defined over the field C((t)) of formal Laurent series. This idea has been used by
Berkovich ([Ber09]), see also [Fav20], [BJ17], to build so-called hybrid spaces, i.e.,
topological objects mixing complex analytic spaces and Berkovich analytic spaces
defined over C((t)). Although we will not rely on such constructions, Theorem B also
relates Archimedean and non-Archimedean objects, and thus fits well into this per-
spective. For clarity, we will from now on write K = C((t)) and R = C[[t]].

Pick a degeneration π : X → D∗ and an analytic model π : X → D of X. As X is
projective, it can be embedded in some Pn×D, where it is presented by a finite number
of homogeneous polynomials with coefficients in the set of holomorphic functions
on D∗ that are meromorphic at zero. Since this set of functions can be identified with
the field K of complex Laurent series, one can then view X as a variety XK over
the field K. Similarly, X can be presented by finitely many homogeneous polynomials
with coefficients in O(D), i.e., holomorphic functions over the disc, so that it can be
identified with a variety XR over R.

Example 3.1.1. — In the case of a trivial degeneration X ≃M×D∗ for some complex
projective manifold M , X can be identified with the base change of M to the field K.
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In particular, there exists a “trivial” algebraic model, defined by taking the base
change of M to R, which corresponds to the product analytic family over D.

The field K is a (non-Archimedean) valued field, with valuation

ν0(Σait
i) = min{i, ai ̸= 0}.

This also defines a valuation on the Noetherian ring R. From the general work of
Berkovich ([Ber90]), one can associate to a scheme X over a valued ring R, in a
functorial way, its analytification Xan with respect to the given valuation on the base.
The underlying points of this analytification correspond to pairs (ζ, νζ), where ζ is a
scheme point of X, and νζ is a valuation on the residue field of ζ, extending the base
valuation on K, and the topology is that of pointwise convergence.

In our setting, the Berkovich analytification Xan
K of XK contains an important

dense subset: the set of divisorial points Xdiv. It is described as follows. Let X be an
analytic model of X. We can identify the central fiber X0 of X over 0 with a Cartier
divisor, which we can decompose as a Weil divisor

X0 =
∑
i

aiEi,

with each Ei irreducible. Each component Ei of such a decomposition defines a valu-
ation νEi on K(X), given as follows: for all f ∈ K(X),

νEi(f) = ordEi(f)/ai.

We then define the set of divisorial points of Xan
K to be the set of all valuations

obtained in this manner. In other words, divisorial points are in correspondence with
irreducible component in the central fibers of models of X.

3.2. Non-Archimedean plurisubharmonic functions. — Let X be a degeneration
with a line bundle L over X. Let (X,L) be a model of (X,L). In the same way as
before, we can see L as a scheme LK on XK, and L as a scheme LR over XR. To L

one can associate a model metric ϕL on Lan
K , as explained in detail in [BFJ16]. Such

a metric is uniquely characterized as follows: given a Zariski open set U ⊂ XK and a
nonvanishing section of the restriction of L to U, then we require that |s|ϕL

= 1 on
(U ∩XK)

an.

Definition 3.2.1. — We say that a model metric ϕL is plurisubharmonic if L is
relatively nef. Given a metric ϕ on Lan

K , we say that it is plurisubharmonic, and we
write ϕ ∈ PSH(Lan

K ) if there exists a sequence of plurisubharmonic model metrics on
Lan
K decreasing to ϕ.

Fixing a psh model metric ϕL on Lan
K , one can identify psh metrics on Lan

K with
“L-psh” functions on Xan

K , via ϕ↔ ϕ−ϕL. We define more generally the set of L-psh
functions to be the unions of all L-psh functions for all nef models L of L.

We usually endow the space of L-psh functions with the topology of pointwise
convergence on divisorial points, i.e., ϕk → ϕ in PSH(Lan

R ) if and only if, for all
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ν ∈ Xdiv, ϕk(ν) → ϕ(ν). We note ([BFJ16]) that a non-Archimedean psh function is
uniquely determined by its values on Xdiv.

Any vertical ideal sheaf a on a model X of X defines a function log |a| on Xan, via

log |a|(x) = max{log |f(x)|},

where the f run over a set of local generators for a. (In particular, any vertical
Cartier divisor D on a model defines such a function.) We then have the following
crucial result:

Lemma 3.2.2 ([BFJ16]). — Let (X,L) be a model of (X,L). Let a be a vertical ideal
sheaf on X, such that L ⊗ a is globally generated. Then, ϕL + log |a| is a psh metric
on Lan

K .

3.3. The main result. — We are now equipped to describe the main construction of
this section. We fix a metric ϕ ∈ PSH(L), i.e., a globally psh metric with logarithmic
growth on L and no identically −∞ fibers (see Definition 2.3.2). Given any divisorial
point νE associated to the component E of a model X of X, we know that ϕ+a log |z|
extends to a metric over E for some a ∈ R. Pick a psh metric ϕE with divisorial
singularities of type E on X, i.e., locally of the form

ϕE = log |fE |+O(1),

where fE is a local equation for E. We can then define a generic (signed) Lelong
number

(7) φNA(νE) = ordE(ϕ) := − sup{c ⩾ 0, ϕ+ a log |z| ⩽ c · ϕE +O(1) near E}+ a.

By linearity, this is independent of the choice of such an a. Performing this construc-
tion over all possible E captures the singularities of ϕ along all possible models of X.
Our main result for this section (which, as explained in the introduction, can be seen
as parallel to some results of [BFJ08]) is then the following:

Theorem 3.3.1. — Let X be a degeneration together with a relatively ample line bun-
dle L. The Lelong numbers of a metric ϕ ∈ PSH(L) define a function on Xdiv, which
admits a unique L-psh extension, giving a map

(·)NA : PSH(L) −→ PSH(Lan
K ),

which is furthermore lower semicontinuous and order-preserving.

3.4. Some preliminaries. — We now prove some auxiliary results that will be useful
in the proof of Theorem 3.3.1. We first show that multiplier ideals of psh metrics on L
give Lan

K -psh functions.

Lemma 3.4.1. — Let ϕ be a metric in E1(L). Let (X,L) be a model of (X,L) such
that ϕ extends as a psh metric on L. Then, up to restricting to a slightly smaller disc,
for all m, the multiplier ideal am = J(mϕ) is vertical, and there exists an integer m0

(depending only on L and not on m or ϕ) such that (m +m0)L ⊗ J(mϕ) is globally
generated on X.
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Proof. — Since ϕ has fiberwise finite energy, it has zero Lelong numbers on all fibers,
hence on X − X0, as Lelong numbers cannot increase upon evaluating them on a
larger space. Skoda’s integrability theorem ([Dem12, Lem. 5.6(a)]) then yields, for
all positive integers m, L1-integrability of e−mϕ. By [Dem12, Lem. 5.6(a)] again, the
multiplier ideals satisfy am,x = OX,x for all m and for all x outside of the central
fiber, i.e., am is cosupported on the central fiber.

Now, the global generation statement, follows from a relative equivalent of [Dem12,
Prop. 6.27]. We can in fact argue just as in [BBJ21, Lem. 5.6]: we must prove that
there exists m0 such that the sheaf (m+m0)L⊗ J(ϕ) is π-globally generated. By the
relative Castelnuovo-Mumford criterion, having picked a relatively very ample line
bundle V on X and an m0 such that m0 ·L−KX− (d+1)V is relatively ample (after
possibly restricting to a smaller disc), it is enough to show that for all j = 1, . . . , d,

Rjπ∗(((m+m0)L− jV )⊗ J(mϕ)) = 0

on the disc, which follows from Kodaira and Nadel vanishing. □

We thus obtain the following:

Corollary 3.4.2. — For any metric ϕ ∈ PSH(L), and any model (X,L) of (X,L)

such that ϕ extends as a psh metric on L, there exists an integer m0 such that the
function

(m+m0)
−1 log |mJ(ϕ)|

is L-psh for all positive integers m.

Proof. — In the case where ϕ also has fiberwise finite energy, this follows from the
previous lemma. In the general case, one can approximate ϕ on L by a decreasing
sequence of locally bounded metrics ϕk. Since the integer m0 depends only on L, the
sequence

k 7−→ ϕ̃k := (m+m0)
−1 log |mJ(ϕk)|

is then a sequence of L-psh functions. Since the sequence ϕk is decreasing, we have
for all k that J(ϕk+1) ⊆ J(ϕk), i.e., the sequence ϕ̃k is also decreasing, which implies
its limit (m+m0)

−1 log |mJ(ϕ)| to be L-psh, as desired. □

We conclude our preliminaries by introducing the log discrepancy function. Given a
model X of X, let Xdiv be the set of vertical divisorial valuations on X, i.e., of divisorial
valuations of the form νE = ordE with E a divisor in the central fiber of a model X′

dominating X. Then, we can define its log discrepancy

AX : Xdiv −→ R,

which will be used in the proof of Theorem 3.3.1. Let ρ : Y → X be some model
dominating X. The log discrepancy function of X is then fully characterized by the
formula

KY + Y0 = ρ∗(KX + X0) +
∑
i

AX(νEi
)aiEi,
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where Y0 =
∑
i aiEi, and KX, KY are the canonical bundles of X and Y respectively.

Since all the points in Xdiv arise in this way, this defines the log discrepancy function
on Xdiv (see also [BJ17, §5.4]).

3.5. Proof of Theorem 3.3.1. — We fix a metric ϕ ∈ PSH(L). We need to show that
the function defined on Xdiv by

ϕNA : νE 7−→ ordE(ϕ),

where νE corresponds to a divisorial valuation and ordE is defined as a generic Lelong
number as in (7), admits a psh extension to Xan

K . As a non-Archimedean psh function
is uniquely defined on the set of divisorial points, it is then enough to show that
ϕNA can be approximated by a decreasing sequence of psh model functions on Xan

K .
Note that, by construction, the map ϕ 7→ ϕNA is lsc and order preserving. By Corol-
lary 3.4.2, the metric

ψm = (m+m0)
−1um,

where um is the model function log |J(mϕ)|, is Lan
R -psh. Pick a divisorial point νE ∈

Xdiv associated to a component in the central fiber of an analytic model (X,L) of
(X,L). Now, one shows that
(8) m · φNA(νE) ⩽ um(νE) ⩽ m · φNA(νE) +AX(νE),

where AX is the log discrepancy function of X as before, exactly as in [BBJ21,
Lem. 5.7]. Namely, by [BBJ21, Lem. B.4] applied to X, we have that, for any divi-
sorial valuation νE in X,

νE(J(mϕ)) ⩽ νE(ϕ) ⩽ νE(J(mϕ)) +AX(νE),

from which (8) follows by definition of ϕNA and um.
Having established (8), we deduce that the sequence ψm is a sequence of Lan

R -psh
functions converging pointwise on Xdiv to φNA. To show that φNA is Lan

R -psh, it is
then enough to prove that we can have this sequence be decreasing. By subadditivity
of multiplier ideals (the main theorem in [DEL00]) we have J(2mϕ) ⊆ J(mϕ)2, thus

ψ2m ⩽ 2ψm,

and as ϕm ⩽ 0,
ψ2m ⩽

2(m+m0)

2m+m0
ψm ⩽ ψm.

Picking the subsequence i 7→ ψ2i therefore yields a decreasing subsequence converging
to φNA, as desired. We then set ϕNA := φNA + ϕL, which concludes our proof. □

3.6. Non-Archimedean limit of locally bounded metrics. — We now begin study-
ing the behaviour under the map (·)NA of the class of metrics ϕ, such that there exists
a model (X,L) of (X,L) on which ϕ admits a locally bounded extension.

Proposition 3.6.1. — Let ϕ ∈ PSH(L). Then,
(1) ϕ extends to a psh metric on a model (Y,M) of (X,L) if and only if ϕNA ⩽ ϕM;
(2) if furthermore the metric ϕ extends to a locally bounded psh metric on (Y,M),

then ϕNA = ϕM.
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Proof. — Note that it is equivalent to show the following: given an analytic model
(X,L) of (X,L) and ψ be a reference metric admitting a locally bounded extension
(in particular, smooth) to L, (1) holds if and only if ϕNA − ψNA ⩽ ϕM − ϕL, and (2)
if we have equality. This will allow us to work at the level of functions and relatively
to another model, which is easier.

Assume first ϕ to extend to a psh metric on M. Let Z dominate both models via
πX : Z → X and πY : Z → Y. We have

π∗
YM = π∗

XL+D

for a unique Cartier divisor D supported in the special fiber Z0. Since ϕ extends to a
psh metric on (Y,M) if and only if it extends to a psh metric on any model dominating
(Y,M), we may without loss of generality focus on Z. Picking a local equation fD for
the divisor D obtained as above, ϕ extends to π∗

YM if

ϕ− ψ ⩽ − log |fD|+ C

near Z0. Taking generic Lelong numbers with respect to the underlying divisor of a
divisorial point ν gives ν(ϕ)− ν(ψ) ⩾ −ν(D), i.e.,

ϕNA(ν)− ψNA(ν) ⩽ ϕM(x)− ϕL(x).

In the case where ϕ admits a locally bounded extension, then there is also a lower
bound, which shows by the same argument that ϕNA = ϕM − ϕL. The converse is
obtained by uniqueness of the Siu decomposition of ϕ on X. □

4. Finite-energy spaces and the Monge-Ampère extension property

4.1. Non-Archimedean finite-energy metrics. — We begin this section with some
reminders from non-Archimedean pluripotential theory. Let X be a general variety
over K endowed with an ample line bundle L. As in complex geometry, one can
define Monge-Ampère measures associated to a tuple of d = dimX continuous non-
Archimedean L-plurisubharmonic metrics. The general construction relies on inter-
section pairings (see e.g. [Gub07], [BE21]), or Chambert-Loir and Ducros’ theory of
differential forms on Berkovich spaces ([CLD12, 5, 6]), building on Lagerberg’s theory
of differential superforms. We only describe the main results below.

Given d continuous psh metrics ϕ1, . . . , ϕd on Lan, we have a Radon probability
measure

MA(ϕ1, . . . , ϕd) = V −1 · ddcϕ1 ∧ · · · ∧ ddcϕd ∧ δX ,
where V = (Ld). For ease of notation, we will also write

MA(ϕ) = V −1 · ddcϕ ∧ · · · ∧ ddcϕ ∧ δX = V −1 · (ddcϕ)d ∧ δX .

Just as in the complex case, one can define the space of finite-energy metrics E1(Lan),
having extended the Monge-Ampère energy via decreasing limits again.

Using the results of [Reb22], one can also metrize E1(Lan) via setting

d1(ϕ0, ϕ1) = E(ϕ0) + E(ϕ1)− 2E(P (ϕ0, ϕ1)),

J.É.P. — M., 2023, tome 10



690 R. Reboulet

where P (ϕ0, ϕ1) is the envelope

P (ϕ0, ϕ1) = sup {ϕ ∈ PSH(L), ϕ ⩽ min(ϕ0, ϕ1)}.

This gives E1(Lan) a metric space structure which is furthermore geodesic, and which
admits distinguished maximal geodesics characterized by the fact that the energy
is affine along them. Finally, much as in the complex setting, one can use non-
Archimedean Deligne pairings over a point ([BE21]) to realize the relative Monge-
Ampère energy between two metrics in E1(Lan):

E(ϕ0)− E(ϕ1) = ⟨ϕd+1
0 ⟩ − ⟨ϕd+1

1 ⟩.

Finally, much as in Section 1.2, we note that we can extend the Deligne pairing
construction over a point in the non-Archimedean case, to line bundles metrized by
non-Archimedean finite-energy metrics.

4.2. The Monge-Ampère energy in the non-Archimedean limit. — In the trivially-
valued setting, we have already seen that a S1-invariant metric in Ê1(L) coincides with
a finite-energy psh geodesic ray t 7→ ϕt. Two natural “asymptotic” energies arise:

(1) the radial limit limtE(ϕt)/t;
(2) the non-Archimedean energy of the non-Archimedean metric ϕNA associated

to ϕ.
In [BBJ21], it is established that if ϕ extends to a locally bounded metric on a test
configuration, then those two quantities coincide. This is not the case in general,
however. In this section, we generalize those results to our relatively maximal psh
metrics on degenerations. It will be clearer to express this using the relative dimension
zero case of the construction from the previous section.

Remark 4.2.1 (Relative dimension zero and the non-Archimedean limit)
As mentioned in Example 2.4.3 and Corollary 2.4.4, given a model (X,L) of (X,L)

and a metric ϕ ∈ Ê1(L), one can identify the Monge-Ampère energy ⟨ϕd+1⟩X/D∗ of ϕ
with a function on the punctured disc, by picking a trivialization τ of ⟨Ld+1⟩ and
setting u = − log |τ |ϕ. The function u then has a finite generalized slope (or Lelong
number) at zero, but this Lelong number depends on the choice of a trivialization.
A nice way of capturing all possible such Lelong numbers is by looking directly at
the metric (⟨ϕd+1⟩X/D∗)NA on ⟨Ld+1

K ⟩. The Lelong number of u specifically is then
recovered as the difference of Deligne pairings (⟨ϕd+1⟩X/D∗)NA − ⟨ϕd+1

L ⟩, where ϕL is
the model metric associated to L on Lan

K .

Theorem 4.2.2. — For all ϕ ∈ E1(L) admitting a locally bounded extension to some
model (X,L), we have

(⟨ϕd+1⟩X/D∗)NA = ⟨(ϕNA)d+1⟩,
as non-Archimedean metrics on the Deligne pairing ⟨Lan⟩ over SpecK.

Proof. — Note that the metric ⟨ϕd+1⟩X/D∗ is subharmonic by (5), so that the left-
hand side is well-defined (this is the relative dimension zero case of Example 2.4.3).
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We pick a model (X,L) such that ϕ extends to a locally bounded metric on L.
By Proposition 3.6.1, we necessarily have ϕNA = ϕL, the model metric on Lan

K asso-
ciated to L, so that we are left to show that, given a trivialization τ of ⟨Ld+1⟩X/D
and setting u(z) = − log |τ(z)|⟨ϕd+1

z ⟩, we have ν0(u) = 0 (recall how we defined the
model metric ϕL in Section 3.2). But ϕ is locally bounded near the central fiber of L,
so that u is locally bounded near zero, which implies ν0(u) = 0 as desired. □

Remark 4.2.3. — We will occasionally refer to a metric satisfying the statement of
Theorem 4.2.2 as satisfying the Monge-Ampère extension property. We also remark
that the proof of the theorem works more generally for arbitrary Deligne pairings:
given d + 1 pairs of relatively ample line bundles Li on X and metrics ϕi ∈ E1(Li)

admitting locally bounded extensions to some model of Li, one has

(⟨ϕ0, . . . , ϕd⟩X/D∗)NA = ⟨ϕNA
0 , . . . , ϕNA

d ⟩.

The fact that the slopes are well-defined follows as in the proof of the above theorem
from the general property (5) of Deligne pairings. In Section 4.5, we will show how
to extend this result to the class of metrics satisfying the Monge-Ampère extension
property.

4.3. Hybrid maximal metrics: existence and uniqueness. — We now study hybrid
maximal metrics. Such metrics can be described as being relatively maximal, but
with boundary values prescribed both at the complex boundary of X and at the
“asymptotic” or non-Archimedean boundary. We will then see that they correspond
exactly to metrics satisfying the Monge-Ampère extension property.

Definition 4.3.1. — Let ϕ ∈ Ê1(L). We say that ϕ is hybrid maximal if for any
ψ ∈ E1(L) such that ψNA ⩽ ϕNA and lim sup(ψ − ϕ) ⩽ 0 near the boundary of X,
we have ψ ⩽ ϕ.

Remark 4.3.2. — We show how to relate our terminology with that of [BBJ21], which
deals with special cases of our objects:

– a geodesic ray in [BBJ21] is a relatively maximal C∗-invariant (logarithmic
growth) psh metric on a line bundle over a test configuration in our article;

– a maximal geodesic ray in [BBJ21] is a hybrid maximal C∗-invariant (logarithmic
growth) psh metric on a line bundle over a test configuration in our article.
The “hybrid” refers to e.g. the work of Boucksom-Jonsson, in which a hybrid property
is a property that passes well from the complex setting to the non-Archimedean limit.
Other possible denominations could be “Lelong-maximal” or “maximal in the non-
Archimedean limit”, but both of those seem to focus more on the limit behaviour
while we require our metric to also be maximal in the complex world.

Recall that, for the definition of E1(L), we had fixed some boundary data ϕ∂ , which
is the restriction to π−1(S1) of a smooth psh metric on X.
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Theorem 4.3.3. — For any ΦNA ∈ E1(Lan), there exists a unique metric ϕ ∈ Ê1(L)

such that ϕNA = ΦNA. In general, the space E1(L) is mapped by (·)NA to E1(Lan
K );

and, for any ϕ ∈ E1(L), we have

(⟨ϕd+1⟩X/D∗)NA ⩽ ⟨(ϕNA)d+1⟩.

Remark 4.3.4. — In other words, we do not have non-Archimedean extension of the
Monge-Ampère energy in E1(L) in general, but simply an inequality.

Proof. First step: the ample model case. — Assume ΦNA to be a model metric corre-
sponding to an ample model (X,L) of (X,L). Define

ϕ := sup ∗{ψ ∈ PSH(L), lim
z→ξ

ψ(z) ⩽ ϕ∂(ξ) for all ξ ∈ ∂X, ψNA ⩽ ΦNA}.

Note that the class of metrics over which the supremum is taken is nonempty: since L

is relatively ample, one can always pick a smooth psh metric ψ on L, and by Propo-
sition 3.6.1 the restriction of ψ to L belongs to this class (up to subtracting a large
enough constant c so that ψ − c ⩽ ϕ∂ on the boundary).

We first show that ϕ ∈ Ê1(L). By Proposition 3.6.1, ϕ is the restriction to L of the
envelope

ϕ̃ := sup ∗{ψ ∈ PSH(L), limz→ξ ψ(z) ⩽ ϕ∂(ξ) for all ξ ∈ ∂X}.

This envelope is (continuous) psh and relatively maximal by Theorem 1.3.4, and
therefore so is ϕ. Because ϕ is the supremum of metrics with logarithmic growth,
it also has logarithmic growth; and by continuity it naturally has fiberwise finite-
energy. Thus, ϕ belongs to Ê1(L). We now only have to argue hybrid maximality. This
will follow from Proposition 3.6.1(1) and the extremal definition of ϕ, if we can show
there exists a metric ψ ∈ PSH(L) whose associated non-Archimedean metric ψNA

coincides with ΦNA. But this is ensured by Proposition 3.6.1(1), since we can always
construct a locally bounded metric on L. Thus ϕ satisfies the statement of the theorem.

Second step: an inequality for Lelong numbers of Monge-Ampère energies. — For the
moment let ϕ ∈ Ê1(L), and let ϕNA be its corresponding non-Archimedean metric.
We approximate ϕNA by a decreasing net of non-Archimedean model metrics ϕNA

i

corresponding to ample models Li, to which are associated hybrid maximal metrics ϕi
on L by the first part of the proof. Because ϕ and the ϕi have logarithmic growth,
we can by Lemma 2.3.3 pick a model (X,L) of (X,L) such that they extend quasi-
plurisubharmonically to L. We then pick a trivialization τ of ⟨Ld+1⟩X/D, and set

E(ϕ) : z 7−→ E(ϕz) = − log |τ(z)|⟨ϕd+1
z ⟩,

and define similarly E(ϕi). By the first part of the proof,

E(ϕi,z) = ENA(ϕNA
i ) log |z|+ f(z)

with f(z) bounded on D and depending only on the choice of boundary data for the
definition of E1(L). On the other hand, because ϕNA ⩽ ϕNA

i , Proposition 3.6.1 implies
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that ϕ defines a psh metric on Li, hence there exists a constant c with ϕ ⩽ ϕi + c.
Therefore, much as in [BBJ21, Lem. 5.8],

E(ϕz) ⩽ E(ϕi,z) + c = ENA(ϕNA
i ) log |z|+ f(z) + c,

thus ν0(E(ϕ)) ⩽ ν0(E(ϕi)) = ENA(ϕNA
i ). We can as in Theorem 3.3.1 up to a divisible

enough subnet assume that ϕNA
i is decreasing, so that by continuity of ENA along

decreasing limits, we obtain

(9) ν0(E(ϕ)) ⩽ ENA(ϕNA)

for all ϕ ∈ Ê1(L).

Third step: the general case. — We pick a net of model metrics ϕNA
i associated to

ample models, and decreasing to ΦNA. Let ϕi ∈ Ê1(L) be the corresponding hybrid
maximal metrics given by the first part of the proof. By maximality, the net (ϕi)i is
decreasing: let ϕ be the limit of this net. By Lemma 2.3.3, PSH(L) is stable under
decreasing limits, so that ϕ has maximal growth. Then, we can pick its associated
non-Archimedean metric ϕNA. Note that it has finite energy: using the notations of
the second part of the proof, for all i,

E(ϕi,z) = ENA(ϕNA
i ) log |z|+ f(z) ⩾ ENA(ΦNA) + f(z),

so that E(ϕz) > −∞ for all z on taking decreasing limits; and because

E(ϕz) = ENA(ΦNA) log |z|+ f(z)

it follows from Corollary 2.4.4 that ϕ is a relatively maximal metric. Thus, ϕ ∈ Ê1(L).
As follows from the above equality, ν0(E(ϕ)) = ENA(ΦNA), so that to show that ϕ is
our desired metric, we only need to prove the equality ϕNA = ΦNA.

Since the mappings ϕ 7→ ϕNA are order-preserving, we find ϕNA ⩽ ϕNA
k for all k, i.e.,

ϕNA ⩽ ΦNA.

By [Reb22, Prop. 6.3.2], we must then show that ENA(ϕNA) = ENA(ΦNA). By mono-
tonicity of ENA we already have

ENA(ϕNA) ⩽ ENA(ΦNA).

Recalling that ν0(E(ϕ)) = ENA(ΦNA) it then suffices to show that

ν0(E(ϕ)) ⩽ ENA(ϕNA).

But this is given by (9) and thus shows that E(ϕNA) = E(ΦNA), hence ϕNA = ΦNA.
This concludes the proof of the first statement, i.e., the existence (and uniqueness) of
a hybrid maximal metric giving the correct non-Archimedean metric.
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Fourth step: the inequality in the case of a metric in E1(L). — We pick a metric ϕ ∈
E1(L), and we define Φ to be the hybrid maximal metric with ΦNA = ϕNA obtained
from the first statement of this theorem. Then, since Φ is relatively maximal, ϕ ⩽ Φ,
so that by monotonicity of ϕ 7→ ϕNA (and again keeping the energy notation from the
second step of the proof),

(E(ϕ))NA ⩽ (E(Φ))NA,

while (E(Φ))NA = ENA(ΦNA) by hybrid maximality, proving our inequality. Note
that the logarithmic growth condition built into E1(L) forces (E(ϕ))NA to be finite,
ensuring that ϕNA belongs to E1(Lan

K ). □

4.4. The isometric embedding. — We denote by

Ê1
hyb(L)

the subspace of hybrid maximal metrics in Ê1(L). Again we fix the following boundary
condition for metrics in Ê1(L): they are equal to ϕδ on π−1(S1), where ϕδ is the
restriction of a smooth metric on L. Our main theorem is the following:

Theorem 4.4.1. — The inverse of the mapping (·) 7→ (·)NA given by Theorem 4.3.3
is an isometric embedding of (E1(Lan), dNA

1 ) into (Ê1(L), d̂1) with image Ê1
hyb(L).

In particular, Ê1
hyb(L) and (E1(Lan), dNA

1 ) are complete, geodesic metric spaces.

Remark 4.4.2. — The first statement of the theorem can be thought of as saying that
hybrid maximal metrics have the d1-extension property. In general, Theorem 4.4.1
essentially means that we realize the (non-Archimedean) space E1(Lan) as a purely
complex geometric object.

Proof. — Assume first the isometry statement to hold. Because (E1(Lan), dNA
1 ) is

closed and the map is an isometry, Ê1
hyb(L) is a d̂1-closed subspace of Ê1(L). On the

other hand, the latter is d̂1-complete by Theorem 2.6.1, which implies Ê1
hyb(L) to be

complete as well. Because the mapping is an isometry again, (E1(Lan), dNA
1 ) is then

itself complete. Similarly, Ê1
hyb(L) is geodesic because the mapping is an isometry and

(E1(Lan), dNA
1 ) is geodesic by [Reb22, Th. A].

We now prove the isometry statement. Pick ϕ0, ϕ1 in Ê1
hyb(L). We assume both

metrics to be continuous, and the general result will proceed as usual from regu-
larization. Using Theorem 4.3.3 together with the expressions of the distances and
additivity of Lelong numbers,

dNA
1 (ϕNA

0 , ϕNA
1 ) = ⟨(ϕNA

0 )d+1⟩+ ⟨(ϕNA
1 )d+1⟩ − 2⟨P (ϕNA

0 , ϕNA
1 )d+1⟩,

d1(ϕ0,z, ϕ1,z) = ⟨ϕd+1
0,z ⟩+ ⟨ϕd+1

1,z ⟩ − 2⟨P (ϕ0,z, ϕ1,z)d+1⟩,

we only have to show that

(10) (−⟨P (ϕ0, ϕ1)d+1⟩X/D∗)NA = −⟨P (ϕNA
0 , ϕNA

1 )d+1⟩.

Recall that we have seen z 7→ ⟨P (ϕ0,z, ϕ1,z)d+1⟩ to be superharmonic, so that the
left-hand side is well-defined, being a Lelong number of a subharmonic function.
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To prove (10) we construct another relatively maximal metric as follows. Set some
r ∈ (0, 1). We consider the relatively maximal metric ψr on the preimage Ur of the
annulus {r ⩽ |z| ⩽ 1} with boundary data given by z 7→ P (ϕ0,z, ϕ1,z) for z ∈ ∂Ur,
which exists by Theorem 1.3.4. Note that for all z ∈ {r ⩽ z ⩽ 1} we have

ψr,z ⩽ P (ϕ0,z, ϕ1,z).

Indeed, by relative maximality, P (ϕ, ψ)⩽ϕ, ψ on ∂Ur implies that for all z∈{r⩽z⩽1},
ψr,z ⩽ ϕr,z, ψr,z holds. Because ϕr,z, ψr,z are psh, the inequality then follows from
the definition of the envelope P (ϕ0,z, ϕ1,z).

This inequality implies again by relative maximality that for z ∈ D∗, the sequence
r 7→ ψr,z, r ⩽ |z|, is decreasing as r decreases. Indeed let r′ < r ∈ (0, 1) and z with
|z| = r. We then have ψr′,z ⩽ P (ϕ0,z, ϕ1,z), which means that the restriction of ψr′
to Ur ⊂ Ur′ is a relatively maximal metric with boundary data smaller than that
of ψr (which equals exactly P (ϕ0,z, ϕ1,z) at z), and the comparison principle implies
ψr′,z ⩽ ψr,z on Ur. Therefore, the limit limr→0 ψr =: ψ is still a relatively maximal
metric. We first prove that

(11) P (ϕNA
0 , ϕNA

1 ) = ψNA.

To that end, we first claim that ψ realizes the supremum

(12) ψ = sup{φ ∈ PSH(L), φ ⩽ ϕ0, ϕ1}.

Since ψ is itself such a metric, it is enough to show that for all candidates φ, we have
φ ⩽ ψ. But for all z ∈ X, since φz ⩽ ϕ0,z, ϕ1,z, we have φz ⩽ P (ϕ0,z, ϕ1,z), hence
φz ⩽ ψr,z and finally

φz ⩽ lim
r
ψr,z = ψz.

We now conclude the proof of (11), using throughout Theorem 4.2.2. By the extremal
characterization (12) of ψ, we have that φNA ⩽ ψNA for all φ ⩽ ϕ0, ϕ1. In particular,
since the construction is order-preserving, the hybrid maximal metric Ψ with ΨNA =

P (ϕNA
0 , ϕNA

1 ) satisfies Ψ ⩽ ψ, so that

P (ϕNA
0 , ϕNA

1 ) ⩽ ψNA,

while on the other hand, ψ ⩽ ϕ0, ϕ1, hence ψNA ⩽ ϕNA
0 , ϕNA

1 and finally ψNA ⩽
P (ϕNA

0 , ϕNA
1 ), establishing (11). We now show that

(13) −(⟨ψd+1⟩X/D∗)NA = (−⟨P (ϕ0, ϕ1)d+1⟩X/D∗)NA.

We will slightly abuse notation and consider each Deligne pairing as a function on D∗

(or a subset thereof), by which we mean that we have fixed a model (X,L) and
subtract Deligne pairings of the associated model metric. By definition, the function

fr(z) : z 7−→ ⟨ψd+1
r,z ⟩X/{z}

has as boundary values ⟨ϕd+1
δ ⟩ on S1 and ⟨P (ϕ0, ϕ1)d+1⟩ on rS1. In particular, for all

r > 0 we have

⟨−P (ϕ0, ϕ1)d+1⟩X/D∗⟩NA = − lim
r→0

´
rS1 fr(z) dz

log r
,
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so that it suffices to show that

(14) lim
r→0

´
rS1 fr(z) dz

log r
= (⟨ψd+1⟩X/D∗)NA.

By maximality, on the annulus {r ⩽ |z| ⩽ 1}, the harmonic function f : z 7→
⟨ψd+1
z ⟩X/{z} is a (uniform) limit as r > r′ → 0 of the harmonic functions fr′ . It is a

classical property of harmonic functions that their average functions are linear in log r,
i.e., of the formˆ

rS1
f(z) dz = a0 log r + b;

ˆ
rS1

fr′(z) dz = ar′ log r + b,

from which one easily deduces that b =
´
S1⟨ϕδ(z)

d+1⟩X/{z} dz,

a0 = (⟨ψd+1⟩X/D∗)NA; ar′ =

ˆ
r′S1

fr′(z) dz.

Because fr′ → f uniformly on each annulus {r ⩽ |z| ⩽ 1} for r′ < r we have ar′ → a0.
which proves (14), hence (13). Equation (13) together with (11) shows that (10) holds,
concluding the proof. □

Remark 4.4.3. — The proof of the above result in the case of geodesic rays, which
does not appear explicitly in the literature (but is based on some ideas from [BDL17]),
was nicely explained to the author by Tamás Darvas.

Remark 4.4.4. — In the above proof, we implicitly defined an envelope operator
sending two metrics ϕ0, ϕ1 in Ê1

hyb(L) to the largest metric P̂ (ϕ0, ϕ1) in Ê1
hyb(L)

bounded above by ϕ0 and ϕ1. In [Xia19, Ex. 3.3], this construction appears already in
the case of geodesic rays, and Xia uses this envelope to define the alternative distance

d̂′1(ϕ0, ϕ1) := lim
t
t−1(E(ϕ0,t) + E(ϕ1,t)− 2E(P̂ (ϕ0, ϕ1)t),

which (a specialization of) our proof shows to coincide with the usual distance d̂1.
In fact, Xia defines this envelope more generally in [Xia19, Ex. 3.2], in the radial
equivalent of the space Ê1(L). It is likely that this construction generalizes to metrics
in Ê1(L) in our setting, although this is outside the scope of the present article.

4.5. Non-Archimedean extension of generalized functionals. — In Theorem 1.2.2,
we have seen that the fiberwise finite energy condition is the adequate condition for
finiteness of fiberwise Deligne pairings. Further following the mantra that properties
pertaining to the energy govern the same properties for more general Deligne pairings,
we show that non-Archimedean extension of generalized energy functionals in the
sense of Remark 4.2.3 holds for our class of hybrid maximal metrics, i.e., metrics
satisfying the Monge-Ampère extension property.

Proposition 4.5.1. — Suppose given d + 1 relatively ample line bundles Li on X.
Then, for any (d+ 1)-uple of metrics ϕi ∈ Ê1

hyb(Li), we have

(⟨ϕ0, . . . , ϕd⟩X/D∗)NA = ⟨ϕNA
0 , . . . , ϕNA

d ⟩.
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Proof. — We approximate each of the ϕNA
i by a decreasing sequence of model metrics

ϕNA
i,k , and denote by ϕi,k their associated hybrid maximal metrics. By our previous

results, ϕi,k decreases to ϕi by hybrid maximality. The desired convergence of slopes
now follows from some estimates from [BBJ21, App. A], as in [Li22, §4], which we
sketch now. To that end we introduce the relative I-functional on E1(Lz):

I(ϕ, ψ) := ⟨ϕ− ψ,ψn⟩X/{z} − ⟨ϕ− ψ, ϕn⟩X/{z} ⩾ 0.

Now, the difference ⟨ϕ0,k,z, . . . , ϕd,k,z⟩ − ⟨ϕ0,z, . . . , ϕd,z⟩ can be expressed, via the
change of metric formula, as a sum of expressions of the form

0 ⩽ Ii :=

ˆ
X

(ϕi,k,z − ϕi,z)(dd
cϕ0,z ∧ · · · ∧ ddcϕi−1,z ∧ ddcϕi+1,k,z ∧ · · · ∧ ddcϕn,z).

We estimate each individual such term via [BBJ21, Lem. A.2]:

0 ⩽ Ii ⩽ C · d1(ϕi,k,z, ϕi,z)2
−n

D(z),

with
D(z) = max(I(ϕi,k,z), I(ϕi,z),max

j<i
(I(ϕj,z)),max

j>i
(I(ϕj,k,z)))

1−2−n

,

writing I(ϕi,z) := I(ϕi,z, ϕ
i
ref,z) for some fixed reference metrics ϕiref on each Li. As in

[Li22, §4], one proceeds to see that the I-terms on the right-hand side are bounded by
C ′ log |z| where C ′ is a constant independent of k, while by the d1-extension property
of hybrid maximal metrics, the d1-terms are bounded by dNA

1 (ϕNA
i,k , ϕ

NA
i )(− log |z|),

so that

0 ⩽ ⟨ϕNA
0,k , . . . , ϕ

NA
d,k ⟩ − (⟨ϕ0, . . . , ϕd⟩X/D∗)NA ⩽ C ′′ ·max

i
dNA
1 (ϕNA

i,k , ϕ
NA
i ),

and taking the limit in k in the above inequality finally gives our result. □

Example 4.5.2. — Many functionals acting on PSH(L) satisfy the statement of the
above Proposition. Having fixed some reference metric ϕref ∈ Ê1

hyb(L), some among
the most important are:

(1) the I-functional, which appeared in the estimates mentioned in the above proof,
which has many important norm-like properties and is commonly used to study prop-
erties of finite-energy spaces;

(2) the J-functional, defined as

J(ϕ) = ⟨ϕ, ϕdref⟩X/D∗ − ⟨ϕd+1
ref ⟩X/D∗ − (d+ 1)−1(E(ϕ)− E(ϕref)),

which can be seen as a corrected relative Monge-Ampère energy which is translation
invariant;

(3) twisted energy functionals, defined as Eψ(ϕ) = ⟨ψ, ϕd⟩X/D∗ , for ψ ∈ Ê1
hyb(L

′),
where L′ is another line bundle on X. A special case of it appears in the expression
of the Mabuchi K-energy, and the study of its slopes in the trivially-valued case is
essential to establish the general (cscK) case of the Yau-Tian-Donaldson conjecture,
as in [Li22].
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4.6. Test configurations and the trivially valued case. — All of our previous re-
sults encapsulate the trivially valued case, as we explain now. Let π : X → D∗ be
now a polarized test configuration, i.e., a degeneration with relatively ample line bun-
dle L such that π and L are equivariant under some C∗-action (forcing all fiber pairs
(Xz, Lz) to be isomorphic). One may then choose a reference continuous psh metric
ϕref on the fiber at 1 and require our psh metrics ϕ to satisfy ϕz = iz

∗ϕref for z ∈ S1,
and with

iz : Xz −→ X1

the isomorphism as mentioned above. The authors in [BBJ21] study the space E1
0(X

an
1 )

of finite-energy metrics over the analytification of X1 with respect to the trivial abso-
lute value on C. We denote by R1(L1) the space of hybrid maximal finite-energy rays
in PSH(L1) emanating from ϕref (where, as mentioned before, a hybrid maximal ray
corresponds in the terminology of [BBJ21] to a maximal psh geodesic ray). We then
claim the following:

Proposition 4.6.1. — There is a sequence of distance-preserving maps

E1
0(L

an
1 ) ≃ R1(L1) ↪−→ Ê1

hyb(L) ≃ E1(Lan),

where the first and last maps are bijective (i.e., isometries), while the middle map is
injective.

Proof. — The case of the last map has been treated by Theorem 4.4.1. The rest of
the proof is merely a matter of correctly defining our maps.

For the first map, the bijection is given by [BBJ21, Th. 6.6]. The metrization of
the space E1

0(L
an
1 ) is described in a [BJ22], but proceeds much as the metrization of

E1(Lan) in [Reb22], while we recall that we metrize the space of maximal rays by

d̂1,0(ϕ, ϕ
′) = lim

t
t−1d1(ϕt, ϕ

′
t)

and take equivalence classes to yield the space R1(L1). (We direct the reader to
e.g. [BDL17]. Note that in the cited article, the authors consider the space of all
(non-necessarily hybrid) maximal psh rays.) Proving the distance-preserving-ness of
the isomorphism is then essentially a simpler version of Theorem 4.4.1, which we leave
to the interested reader.

We claim that the middle map, which we will denote ι0, can be represented as
follows: let ϕ : t 7→ ϕt be a hybrid maximal psh geodesic ray in X1. Let iz be as before
the isomorphism iz : Xz → X1, and define ι0(ϕ) to be the metric z 7→ iz

∗(ϕ− log |z|).

The distance-preservingness is immediate, so that we are left to check that ι0(ϕ) is a
hybrid maximal metric. By [BBJ21, Cor. 6.7], t 7→ E(ϕt) is affine, which implies by
invariance of the energy under polarized isomorphisms that z 7→ ι0(ϕ)(z) is harmonic
on D∗, proving maximality by Proposition 1.3.7, and hybrid maximality is given by
construction. □
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4.7. Kähler-Einstein metrics in families. — Let M be a complex projective man-
ifold with ample canonical bundle KM . It is a consequence of the by now classical
Aubin-Yau theorem that M carries a Kähler-Einstein metric. If X is more generally
a family of canonically polarized projective manifolds, the family z 7→ ϕz of fiberwise
Kähler-Einstein metrics is known to have plurisubharmonic variation (from the work
of e.g. Schumacher [Sch12]) and to have logarithmic growth ([Sch12, Th. 3]). In partic-
ular, ϕ defines a metric in our class E1(KX). Interpreting the work of Pille-Schneider
through our lens, [PS22, Th. A] should conjecturally imply that ϕNA corresponds to
a model Kan

X -function associated to a distinguished model of (X,KX).
An immediate question arises: how does the metric ϕ relate to our relatively max-

imal metrics framework? In particular, how does ϕ relate to the hybrid maximal
metric Φ corresponding to ϕNA? Interestingly, ϕ is not even relatively maximal when
the Kodaira-Spencer class of the family X is nontrivial, by [Sch12, Main Th.], since ϕ
will be strictly positive (in particular, cannot satisfy MA(ϕ) = 0). As a consequence,
we have that ddcd1(ϕ,Φ) = ddc(E(Φ) − E(ϕ)) is given explicitly by the formula of
Schumacher, using the pushforward formula for Deligne pairings.

Naturally, it would be interesting to know whether one could detect via non-
Archimedean tools the existence of a family of Kähler-Einstein metrics in the class
of a hybrid maximal metric. This seems a bit ambitious, since one only captures the
“asymptotic” behaviour of a family of metrics when considering non-Archimedean
data. A more realistic (and perhaps just as interesting) problem would be solving the
following hybrid “almost Kähler-Einstein” problem: to find ϕ ∈ Ê1

hyb(KX), such that
ϕNA = ψNA where ψNA is an “almost Kähler-Einstein metric”:

(ωz + i∂∂ψz)
d − ehωz+ψzωz

d −→ z→00.

The upshot is that this problem gives, intuitively, a purely non-Archimedean criterion
for the existence of a family of complex manifolds degenerating to a Kähler-Einstein
manifolds. (Of course, the same problem arises in the (possibly twisted) Fano case.)

Finally, we briefly mention an additional difficulty in the Calabi-Yau case. By a
counterexample of Cao-Guenancia-Paun, we know that a family ϕ = (ϕz)z of Kähler-
Einstein metrics on a degeneration of Calabi-Yau manifolds does not necessarily vary
plurisubharmonically ([CGPT23, Th. 3.1]). One can however take the plurisubhar-
monic envelope P (ϕ) of ϕ, and then the hybrid maximal metric Φ with ΦNA = P (ϕ)NA.
In [BJ17], Boucksom-Jonsson show that the family of measures MA(ϕz) converge in
a certain sense to the non-Archimedean Monge-Ampère measure of some metric ψNA.
We therefore formulate the following conjecture, which would connect our hybrid max-
imal setting with degenerations of Kähler-Einstein metrics on Calabi-Yau manifolds:

Conjecture 4.7.1. — ψNA = P (ϕ)NA = ΦNA.
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