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Abstract i

The operating cycle representation of road transport missions

Luigi Romano
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract

The difficulties that conventionally road vehicles are facing in meeting regulation standards
require ad-hoc solutions. Moreover, the impellent shift of paradigm towards full electrification
and partial automation is posing great challenges to the automotive industry, which has set a
zero-emissions target to be reached within a short time horizon. In this context, the energy
performance of commercial vehicles may be dramatically improved if the characteristics of the
transport application, that is, the intended usage, are known prior to prototype development
and design selection. To tailor the vehicle’s specifications, however, a representative description
of the mission and the surroundings is needed.

Where many conventional approaches fail, the operating cycle format (OC) has revealed
great potential in describing road operations in a way that is, to a large extent, independent
of both vehicle and driver. More specifically, the framework consists of three levels of
representation. The first, called the bird’s-eye view, serves mainly as a classification tool and
makes use of metrics and labels to completely characterise the overall application of a vehicle
during its lifetime. The second description, the stochastic operating cycle (sOC), condenses
the main properties of a road operation using elementary statistics. It is conceived as an
intermediate representation with a higher resolution. Finally, the deterministic operating
cycle (dOC) is the most detailed description of a transport mission and collects deterministic
models to be used in simulations. In previous studies, the OC format was demonstrated to
work in theory, but some margins for improvement could still be identified. Furthermore, the
benefits deriving from the use of the OC were explored only partially.

The first objective of this thesis consists in extending the OC representation to include
stochastic models for weather, traffic, and mission properties, which were missing in the original
formulation. The new models are built to be parsimonious and to facilitate parametrisation
and implementation starting from real data. This enables reproducing and simulating realistic
environments where a transport mission may take place, with a substantial gain in accuracy.
The second purpose of this work is to showcase how the OC concept can be used in practical
applications concerning the design and sale phases. To this end, the relationships existing
between the three levels of representation included in the format are formalised mathematically
by exploiting the stochastic nature of the sOC, which acts as a bridge between the bird’s-eye
view and the dOC. It is argued that the three descriptions can work synergically to support
manufacturers in their internal processes of classification, optimal development and selection,
and virtual testing of energy-efficient vehicles.

Keywords: operating cycle, road mission, transport application, energy estimation,
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Acronyms and notation

Acronyms and notation are as follows.

Acronyms

OC Operating cycle
dOC Deterministic operating cycle
sOC Stochastic operating cycle
GTA Global Transport Application
UFD User-Factor Description
EMO Energy-metric-optimal
PDF Probability density function
PMF Probability mass function
CDF Cumulative distribution function

Notation

In this thesis, the notation is generally as follows: for a generic random variable A : ΩA 7→ SA,
its realisations are denoted by the corresponding small letter a, unless specified otherwise.
The probability and expectation operators are denoted as P(·) and E(·), respectively. The set
of real numbers is denoted by R; the sets of positive and negative real numbers are denoted
by R≥0, R≤0 when including the zero and by R>0, R<0 when excluding it. The set of positive
integer numbers is denoted by N, whereas N0 denotes the extended set of positive integers
including zero, i.e., N0 = N ∪ {0}. Sequences of random variables are denoted by {Ak} (the
subscript k is often dropped when the clarity allows). Finally, indicator functions are denoted
by 1a∈A and assume a value of one if a ∈ A and zero otherwise.
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Chapter 1

Introduction

The present chapter is dedicated to a general outline of the thesis. After discussing in detail
the motivations behind the work in Sect. 1.1, the main research questions are formulated in
Sect. 1.2. The theoretical background and limitations are presented in Sect. 1.3. Finally, the
main contributions are summarised in Sect. 1.4.

1.1 Motivation and background

An appealing way to frame this thesis is to invoke some recently published data that denounce
the entity of the anthropogenic factor contributing to the global warming phenomenon (to cite
a few documents, one may look at the technical reports authored by individual researchers [1–
4], or drafted by governmental agencies [5–10]). A conspicuous contribution to the production
of pollutants comes from the release of equivalent CO2 emissions from human activity,
particularly relating to the road transport of people and goods (Fig. 1.1). This incentivised
the European Commission to adopt several strict measures which aim at contrasting the
increasing temperature and pollution trend and target directly the transportation sector [11–
14]. More specifically, emission thresholds have been set for heavy-duty and passenger vehicles.
Preliminary tests have been designed with the very purpose of ensuring compliance with such
limits and may be carried out physically or by using simulation tools. At the same time, the
accelerated shift of paradigm towards full electrification and partly automated driving is also
posing enormous challenges to the automotive sector, with vehicle manufacturers announcing
the ambitious target of zero emissions to be reached within a relatively short time horizon.
Compared to their conventionally fuelled counterpart, electric vehicles are however heavier
and sadly associated with the well-known phenomenon of range anxiety, which in turn implies
the need for a more energy-efficient design [15–17].

In this context, the energy performance of road vehicles may be dramatically improved if
the operating conditions are known prior to prototype development and design selection. These
include mission characteristics, driver’s behaviour, and external settings like topographical,
wind and traffic conditions. All these factors correlate with both the usage itself and the

1
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Anthropogenic emissions in Europe ≈ 3.63 gigatons CO2

Transport24.6%

Fuel combustion

57.1%

Agriculture

9.8%

Industrial processes

8.4%

Transport emissions ≈ 0.89 gigatons CO2

Road transport72.1%

Railway and aviation

13.4%

Maritime

14.5%

Figure 1.1: Distribution of the CO2 emissions in Europe for the year 2017 relating to the total human
activity and transportation sector. Europe alone contributes with about 10% to the global CO2 release.

surroundings where the transport operation takes place. Since major variation may occur
depending on the location and the time (due to, e.g., the effect exerted by seasonal and diurnal
trends), the vehicle’s specifications should be tailored to meet the transport application and
the relative boundary conditions.

To investigate how these influence the vehicle’s response, however, it is necessary to
formulate mathematical models. These should of course be realistic, and ideally sufficiently
simple to allow a fundamental understanding of the physical problem. On the one hand,
limiting the attention to the vehicle and driver as separate entities, several models have been
developed over the years with different goals in mind. On the other hand, a synthetic but
complete description of a transport operation has been rarely attempted in literature. One
obvious difficulty encountered when defining a transport operation relates to the notion per
se, which might appear to be rather obscure and vague. Provided that this first obstacle can
be overcome, another question to address is how to identify all the relevant features and then
represent them in a useful manner, in a way that is independent of the vehicle itself. This is
sometimes referred to as the representation problem [18].

Accurate modelling of transport operations may also serve different purposes than those
outlined so far. For heavy-duty vehicles, an important aspect to consider is that virtual testing
is often required before a physical prototype can be built. One reason for that relates to the
immense degree of diversification that may be achieved in the actual configuration. Indeed,
whilst only a few predetermined alternatives are available for passenger cars, the panorama of
different combinations is virtually infinite for trucks. Considering the combinatorial nature of
the problem, it becomes soon obvious that physical testing is prohibitive in terms of both
costs and times, and other options should be preferred. Tailoring the vehicle for the right
mission – or spectra of missions – is an extremely delicate process. Besides, if all the relevant
factors are not accounted for properly, a solution derived analytically, or even numerically,
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may easily result in a suboptimal configuration in practice.

1.1.1 The driving cycle representation

The aspects outlined so far are themselves sufficient to legitimate the enormous research effort
lavished on addressing the representation problem. One well-established approach consists in
describing a transport mission using a driving cycle. Intuitively, a driving cycle is a mapping1

from the time or vehicle’s position along its trajectory to a speed profile, which should capture
the salient features of the operation. Speed profiles may be synthesised by using different types
of information, and several approaches have been proposed in the literature. In particular,
there exist two main variants of a driving cycle: modal and transient. The former type is
usually employed for standard tests regulated by legislation, since it allows for straightforward
comparison. Examples of modal driving cycles include the WLTC shown in Fig. 1.2 and those
used in VECTO [20]. However, such driving cycles are not very realistic and are currently
considered obsolete. More specifically, a major shortcoming of using them resides in the fact
that performance is inherently built into the model, and there is no clear separation between
the vehicle and the driving cycle itself.

Figure 1.2: The WLTC class 3 driving cycle.

Transient cycles are often preferred for powertrain optimisation and design purposes,
which require accurate feasibility studies, as those performed in [21–31]. In this context, a
crucial aspect of the efficient design is the accurate description of a transport operation, with
exhaustive information about the surroundings. Indeed, to correctly replicate the real-world
performance, it is necessary to take into account all the external factors and stimuli which may
affect the vehicle’s behaviour. These include road and mission properties, but also weather
and traffic conditions [32–35].

1For an interested reader, a more formal definition in mathematical terms may be found in [19].



4 Chapter 1. Introduction

How to synthesise representative transient cycles is an interesting and open question, and
different approaches have been explored over the years [36–49]. In particular, it is possible to
distinguish between rule-based methods and statistical ones. Rule-based methods are very
sensitive to experts’ opinions and aim to replicate a limited number of characteristics from the
measured driving cycles [50, 51]. Such a criterion may be represented by the percentages of city,
suburb, and highway speeds. By contrast, the advantage of resorting to statistical techniques
resides in the fact that generated synthetic speed profiles correlate with certain operating
conditions of the vehicle, e.g., cruising, idling, acceleration or braking events. This enhanced
approach makes use of Markov chains or machine learning techniques, and combines different
information (mostly inferred by speed and acceleration signals) to reflect the characteristics
of real-driving scenarios. Improved algorithms also account for external sources of excitation
(for example road grade) which are anticipated to have a major influence on a vehicle’s overall
performance [19, 52–63]. Traffic conditions are also modelled empirically, often based also on
the characteristics of a certain road type [35].

The above mentioned approaches are all aimed at addressing the representation problem
by synthesising a unique representative transient cycle starting from a large amount of data.
In fact, a single driving cycle is often sufficient when it comes to apply conventional algorithms
and routines for the purposes of vehicle design optimisation and selection. On the other hand,
reproducing variation in transport operations may lead to a more accurate prediction of the
energy performance of road vehicles. Ideally, departing from a single representation of the
usage, driving cycles may be constructed to be statistically equivalent, so as to produce a
meaningful spread in performance. This line of research was pioneered in [64, 65], where a
procedure was proposed that allows for the synthesis of multiple driving cycles, departing
from a single trip. More specifically, it was shown in [64, 65] that the energy performance of
electric city buses is highly sensitive to fluctuations in both the number of stops and passenger
load. Indeed, by treating both quantities as random variables, the authors deduced that the
energy consumption follows approximately a normal distribution. The variability connected
to the randomness of the external surroundings, concerning for example temperature and
rolling resistance, was also investigated in [66], where the inherent uncertainty was modelled
by adding a noise term to the assumed nominal value for the quantities in interest. These
fundamental contributions essentially explored the variation problem, which was defined by
Pettersson [18] and is concerned with similarities and differences between road missions and
within transport applications (Fig. 1.3). Limitedly to the driving cycle description, the
notion of equivalence has been defined according to different sets of measures, for example
considering the effect that a certain speed profile may have on the vehicle’s performance [54].

Along with the representation and variation problems, however, Pettersson [18] also defines
the so-called classification problem, in conjunction with the need to properly qualify a road
mission (or an entire transport application) using a simplified set of metrics and labels. This
is mainly motivated by the fact that, rather than referring to a certain speed profile, vehicle
manufacturers and operators usually describe the usage concerning the characteristics of
the environment, which are easier to interpret. In this context, whilst the conventional
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Figure 1.3: An example of different road transport missions.

description in terms of a driving cycle has been successful in addressing the first two problems
indicated by Pettersson [18], the latter still deserves particular attention. In fact, a major
limitation connected with the driving cycle representation is that the information about
the operating environment – including parameters that may dramatically impact energy
consumption [32–35, 67–73] – is often lost or accounted for only implicitly during the synthesis
of a representative speed profile.

1.1.2 The operating cycle representation

Expanding on the discussion initiated above, there are two main arguments which may be
raised against these conventional descriptions in terms of a driving cycle. The first is that their
pathological nature makes them inadequate to compare different vehicles. With ”pathological”,
it is here intended that there exists an implicit correlation between the reference vehicle and
the speed profile. This intrinsic contamination may jeopardise the general validity of the
resulting speed profile. Another demerit point is that, when a driving cycle is recorded, all the
external effects (due to, e.g., traffic or wind conditions) are automatically incorporated. This
is done implicitly, meaning that their influence cannot be understood or examined. Intuitively,
it might be argued that a general, reliable representation of a transport mission should be
independent of both the vehicle and the driver.

The operating cycle (OC) format introduced by Pettersson certainly fulfils these require-
ments [18, 74, 75]. In fact, this type of representation is not based on the concept of a driving
cycle, and therefore no speed profile needs to be postulated as an input to the longitudinal
vehicle model. On the contrary, the properties of both the mission and the external surround-
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ings are modelled separately, and then a driver model is used to translate dynamically the
external stimuli into the desired speed. This allows for circumventing the need to incorporate
the information coming from the surroundings into the speed profile.

The OC consists of three main levels of representation, each of them designed for a specific
role. Before commenting on their relative functions, the notions of transport application,
transport operation and transport mission according to [18] should be clarified. In particular,
Pettersson defines the transport application as the overall purpose of a vehicle during its
lifetime [18]. This is something antecedent to the vehicle itself, and towards which the
specifications should be tailored. The difference between transport operation and mission is
less formal: the former consists of a countable number of tasks along a given route, whereas
the latter integrates the operation with details from the surroundings2. Both the operation
and the mission presume the existence of a vehicle to make sense, i.e., are defined a posteriori.

Given the definitions above, the intuition suggests that having a realistic description of a
transport mission is not sufficient to characterise the application. There are two additional
requirements that should be imposed, which again connect to the variation and classification
problems introduced above. Specifically, the classification problem concerns the existence of
different sorts of relationships between individual representations [18]. In nature, things may
be grouped and labelled into different categories depending on certain common properties.
Identifying differences and similarities between transport missions is crucial when it comes
to defining the overall application. If transport missions can be classified based on some
well-defined metrics, then the complexity of the problem decreases significantly. Provided
that suitable metrics can be identified, even missions which belong to the same transport
application cannot be expected to be identical when interpreted as individual realisations.
Ideally, one would like to quantify the variation inside each category in a simple way. This
implies, however, the need for an intermediate description, which should be ideally built
around this principle and make use of elementary statistical tools. This is again the variation
problem indicated by Pettersson [18].

The three levels of representation comprised in the OC format, namely the bird’s-eye view,
the stochastic operating cycle (sOC), and the deterministic operating cycle (dOC), respond
exactly to these needs. In this very context, it is important to mention that the enormous
potential of the OC format was illustrated through several examples in previous works
[18, 74, 75]. However, the version delivered by Pettersson left still space for an ample margin
of improvement. In particular, concerning the representation problem, models for weather,
traffic and mission parameters had not been included. Moreover, the synergies between the
three levels of representation were explored only partially, with the consequence that the
applicability of the OC framework to the optimal vehicle design and selection processes could
not be demonstrated in practice. Such deficiencies mainly motivate the present thesis.

2In the following chapters, it will be shown that such a definition is still ambiguous from the modelling
perspective. However, subordinate to some specific stochastic models, the notions of road transport operations
and mission, respectively, might be rendered equivalent concerning any sequence of tasks.
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1.2 Research questions

The three problems identified in the preceding discussion, namely the representation, variation,
and classification problems, may be more formally stated as research questions. A fourth
question may also be formulated that connects to the notion of usefulness, and is called in
this thesis the application problem3.

I. Representation problem: How can a road transport mission be described mathe-
matically to enable a realistic representation of the usage in a way that is independent
of both the vehicle and driver?

This research question intimately connects to the need of building a comprehensive
mathematical description of the operating environment, including all the relevant factors
that may have an impact on energy performance. In conducting such an operation,
there are many aspects that need to be carefully pondered. For example, the main
parameters to consider, the level of detail required to balance accuracy and simplicity,
and the fundamental principles to follow. The scope is instead limited to individual
transport missions.

II. Variation problem: How can variation between road operations be measured and
reproduced mathematically?

The first part of this research question concerns the need for measuring the variation
between individual road missions and entire applications, using simple yet rigorous
statistical tools. The second aspect relates instead to the possibility of reproducing such
a variation through mathematical modelling. In doing so, the ambition is to bridge
together a more accurate description of the usage and a higher-level representation,
idoneous for classification purposes.

III. Classification problem: How can transport applications be classified concerning
geographical and operational features, in a way that is independent of both the vehicle
and driver?

This question formalises the need for classifying the usage of road vehicles by resorting to
scalar metrics and labels, capable of condensing the relevant information about differences
and similarities between entire applications. The chosen indicators should target directly
the characteristics of the environment, allowing for an intuitive interpretation of the
usage based on measurable physical quantities, for example concerning geographical
or operational features. A natural subquestion that arises in this context is how to
specify these metrics in a meaningful way, and how to prescribe limits and thresholds
to optimise diversification between different classes and groups of missions.

3The term application is preferred here to usefulness or applicability because the OC machinery should be
explicilty applicable to the analysis and optimisation of transport applications.
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IV. Application problem: How can the representation, variation, and classification
problems be addressed in order to support and facilitate the optimal vehicle development
and selection processes?

The models and methods delivered whilst answering the first three questions should be
successfully employed to assist vehicle manufacturers in designing more energy-efficient
vehicles, based on the characteristics of the intended application, and on the user’s
needs. That is, they should be useful in practice.

1.3 Theory, methods, and limitations

The present Section provides an overview of the theory and methods presented in this thesis,
along with possible limitations.

1.3.1 Theory and methods

Albeit eventually touching upon more classical topics like simulations and dynamical systems,
the present is not a conventional thesis in vehicle dynamics. Quite the opposite, the focus is
more on what surrounds the vehicle, including road properties, weather, and traffic conditions.
More specifically, in the sOC description, the modelling of the operational environment is
mainly based on a collection of stochastic processes. These, together with other elementary
tools borrowed from the disciplines of probability and statistics, constitute the true core of the
present research. Markovian and autoregressive processes, in particular, play both a pivotal
role in the development of some of the stochastic models introduced in Papers A, B and E.
However, to the extent that is necessary to appreciate the results advocated in this thesis,
the reader is only required to have a minimal understanding of probability laws and random
variables. Indeed, a rather friendly approach to these subjects is consistently preferred, with
emphasis on the physical aspects that motivate the inclusion of certain quantities and models.
Excellent and, in fact, more mathematically rigorous introductions to the Markovian and
autoregressive processes used in the building of the sOC format may be found, for example,
in [76, 77].

The methodology presented in Paper D presumes some knowledge about multi-objective
optimisation, including the notions of Pareto-optimality and efficiency [78]. However, the
results of Paper D are only briefly mentioned in this thesis, and thus an introductory discussion
on the above-mentioned topics is omitted for the sake of both conciseness and consistency.

Concerning more directly the simulation aspect, conventional models for (longitudinal)
vehicle dynamics are mainly based on systems of differential-algebraic equations (DAE). In
fact, even the dynamics of mechanical components described by partial differential equations
(PDEs) may be fairly approximated using simplified ODE-based representations. Examples
of such subsystems may include, for instance, tyres, combustion engines, and batteries, for
which even the quasi-static approach is frequently adopted [79–82]. The reader is presumed
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to be familiar with these topics, which are not covered explicitly in the thesis. In this context,
Appendix A provides a sufficient introduction to VehProp, which constitutes the principal
simulation tool used in the investigations conducted in the appended papers.

1.3.2 Limitations

The scope of the present research being extremely broad, some assumptions have been
introduced to simplify the analysis. This has inevitably led to some limitations.

In particular, from a pure vehicle modelling perspective, the analysis has been confined to
longitudinal dynamics. This implies that the effects from, e.g., suspension compliance and
roll dynamics have been neglected systematically. The influence from tyre slip losses has been
investigated both theoretically and numerically in other publications [83, 84], but disregarded
in simulation. In [84], it was also shown that considering the transient behaviour of the tyre
during acceleration and deceleration phases may lead to different results than those advocated
in other studies, but, to the best of the author’s knowledge, a proper ODE-based model to
account for the non-steady state slip losses has not been developed yet. The research has also
been conducted from a single-vehicle perspective, meaning that complex dynamics arising
from vehicle or fleet interaction have not been considered.

Some limitations are strictly connected to the stochastic models introduced in the operating
cycle description. In particular, the physical quantities labelled in the road and weather
categories have been assumed to only depend either on space or time, respectively. Furthermore,
the proposed traffic model is based on the assumption of stationary flow and homogeneous
road conditions, as discussed more extensively in Sect. 2.2.3 and in Paper A. Weather and
traffic models have been built in isolation and parametrised using real data available from
external databases. For both, the fitting procedures have been chosen such as to minimise
the error between the model prediction and measurements. Finally, concerning the actual
mission properties, the development and validation of stochastic models were restricted to a
specific vehicle topology in Paper E.

The examples adduced throughout the thesis mainly deal with heavy-duty trucks equipped
with diesel engines. Concerning again heavy vehicles, an illustrative example connected with
the more recent shift of paradigm towards electrification is presented in Paper C. However,
the OC format has been conceived to be generally applicable to any (road) vehicle category,
provided that a suitable model is available. Lastly, the driver model employed in this thesis is
based on a simple PID controller and tries to replicate a human driver. Simulation results
seem to suggest a realistic behaviour, but no experimental validation has been conducted.

Finally, an exhaustive discussion about the applicability of the OC machinery to the
processes of vehicle design optimisation, selection, and testing is presented in Chap. 4. In
this context, it should be mentioned that optimisation problems cover a domain which is
immensely vast per se and are not dealt with explicitly in the thesis, nor were they in the
appended papers. Instead, a summary of interesting methods and results has been presented
recently by Ghandriz [25, 85–87], who followed a similar approach to that outlined in Chap.
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4. Some of these findings are also reported in Paper C.

1.4 Thesis outline and contribution

The remainder of this thesis is organised as follows. Chapter 2 is devoted to the description of
the OC format and discusses all three levels of representation. The core of the chapter focuses
on the sOC, which may be thought of as a bridge between the bird’s-eye view and dOC models.
The relationships existing between the three representations are also analysed in detail, and
their mutual interactions and synergies are revealed. Building upon the results presented
in Papers B, C and E, Chap. 3 introduces the notions of operating classes and composite
variables, whose definition is propaedeutic to address the classification problem within the
theoretical framework established by the OC format. The chapter concludes with a brief
discussion on how to optimally design a classification system for road transport missions. In
Chap. 4, the practical usage of the OC format is exemplified starting from the investigations
conducted in Papers B and C. More specifically, the conceptual example adduced in Chap. 4
covers the optimal design, selection and virtual testing phases. The discussion is integrated
with additional comments on some technical aspects which concern the parametrisation and
the implementation of the stochastic models presented in the thesis. Chapter 5 concludes
the thesis by summarising what done and opening possible perspectives for future studies.
Finally, an introduction to the simulation tools used to in this thesis is given in Appendix A,
whereas Appendix B provides additional details about two classification systems adopted by
vehicle manufacturers for their internal processes: the Global Transport Application (GTA)
and the User-Factor Description (UFD).

1.4.1 Scientific contributions

Recalling previous works on the OC description, the representation and variation problems
were addressed to a certain extent in [74, 75], where deterministic and stochastic road models
were introduced. However, the versions of the dOC and sOC delivered by Pettersson were
deficient in weather and traffic models. Concerning a possible solution to the classification
problem, only a tentative proposal was made in [18], which was also limited to a single
stochastic model for the road topography. Finally, given the still partially unstructured nature
of the format, its applicability to product development and selection was not investigated in
earlier studies.

In this context, the main scientific contributions of this thesis are as follows.

• Concerning the representation and variation problems, an enriched version of the sOC
that includes new stochastic models for the weather and traffic categories has been
developed in Paper A. It must be remarked that the stochastic models for weather and
traffic do not constitute a novelty when considered in isolation, since a great deal of
research has been already lavished on dedicated studies. Instead, the main contribution
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of Paper A should be sought in that it makes this collection of stochastic models useful
for studies in vehicle dynamics. Similarly, a stochastic model capturing variations in
cargo weight has been introduced in Paper E and validated using real-world data logged
from a single truck.

• Taking inspiration from two existing descriptions adopted by vehicle manufacturers, a
methodology to classify road transport missions using stochastic models and statistical
indicators has been presented in Paper B. The proposed approach exploits the intrinsic
relationship existing between the bird’s-eye view and sOC descriptions, thus also enabling
to accurately quantify similarities and differences between individual operations, as well
as entire applications, based on physical quantities that are easy to interpret. This
contribution relates to the variation and classification problems.

• An operating cycle for long-haul heavy-duty vehicles, complete with the majority of the
road models presented in this thesis, has been parametrised in Paper C using log-data
collected from real-world missions. In the same paper, a technique to build a single
representative sOC for an entire application, starting from a multitude of dOCs and
sOCs, has also been discussed. The potential of the resulting description has been
elucidated by considering two examples dealing with the development of an electrified
fleet tailored to the characteristics of the transport application, and with emissions
certification, respectively. Paper C is mainly concerned with the variation, classification,
and application problems.

• A methodology to specify limits and thresholds to optimally design a classification system
has been presented in Paper D. Starting with the theoretical results advocated in Paper
B, the proposed approach relies on the definition of some vehicle-independent metrics
that may be used to characterise the usage from the perspective of energy efficiency and
builds upon some well-established concepts from multi-objective optimisation. Paper D
focuses almost exclusively on the classification problem.

The connections between the appended papers are illustrated in Fig. 1.4. More explicitly,
in Paper A, some of the stochastic models analysed in Paper B are presented. The research
directions explored in Papers C and D are not directly related, but the corresponding findings
build upon the results advocated in Paper B. Finally, Paper E continues mainly in the same
direction as Paper A, by introducing a stochastic model to describe payload variations. A
formal statistical analysis is also conducted in the same spirit of Paper B.

Before moving to the technical chapters, it is worth clarifying that this thesis should be
intended as a collection of concepts, theories, and methods established with the intent of
addressing the problems identified in Sect. 1.2, and specifically with the aim of assisting
manufacturers in the development of more energy-efficient vehicles. Whilst the perspective may
undoubtedly be seductive, the monumental futility of constructing an all-embracing theory of
the operating cycle representation is, however, not undertaken here: the models presented
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Paper C
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Figure 1.4: Connections between the appended papers. Paper A focuses on the representation and variation
problems. Some of the models developed in Paper A are analysed in Paper B, where a theoretical framework
to address the variation and classification problems is established. The results from Paper B are utilised
independently in Papers C and D, which are concerned with the application and classification problems,
respectively. Paper E partially addresses the representation and variation problems, concerning specifically
the mission modelling.

in the following should be regarded as mostly indicative, and everything but definitive.
Refinements and generalisations are of course always possible and certainly encouraged.
Besides, modularity and simplicity constitute the very inspiring principles of the operating
cycle.



Chapter 2

The operating cycle description

The present chapter is dedicated to the mathematical description of road transport missions
and applications in terms of an operating cycle (OC). The aim of the operating cycle is fourfold
and satisfies the needs for representation, variation, classification, and application, as already
mentioned in the introduction. From the modelling perspective, the first three ambitions of
the OC format naturally result in a composite representation that is built upon three different
levels: the bird’s-eye view, the stochastic operating cycle (sOC) and the deterministic operating
cycle (dOC). These three descriptions complement each other and attempt to address the
classification, variation and representation problems, respectively. The practical applicability
of the OC to the optimal design and selection processes of road vehicles is instead revealed by
the synergies existing between its three levels of representation. As shown in Fig. 2.1, these are
arranged in a pyramidal structure, which reflects their hierarchical order and their resolution.
A common feature shared amongst all three levels of description is that they discriminate
between four different categories to model a transport operation: road, weather, traffic, and
mission. The first three categories relate to the description of the operating environment,
whereas the last one concerns the modalities by which a vehicle is operated. For each of
the above-mentioned categories, the necessary models to be included may be preliminarily
deduced starting from a simple set of equations for longitudinal dynamics, like those reported
in Appendix A, Paper A, or in most of the textbooks dedicated to the description of energy
efficiency and consumption of road vehicles [82, 88].

In what follows, the three building levels of the OC format will be reviewed in order, with
particular emphasis on the sOC, which constitutes the very core of the framework. All the
models presented in this chapter may be found in similar form in [18, 74] and in Papers A
and E.

2.1 The bird’s-eye view

Descending the hierarchical order between the descriptions, the bird’s-eye view collocates on
the top of the pyramid. It is specifically conceived to address the classification problem, and

13
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Figure 2.1: Schematic representation of the pyramidal structure of an OC, using the topography parameter
as an example. All the missions being equivalent in the sense of a GTA class belong to the same transport
application (the bird’s-eye view). The individual statistical properties may however differ within the transport
application (sOC). Finally, transport missions can be statistically equivalent but significantly different in
practice. This is captured by the dOC representation.

targets individual road missions, as well as entire transport applications. The bird’s-eye view
representation makes use of simplified metrics and labels, which may easily be translated into
statistical indicators [74, 75, 89, 90]. These should be ideally chosen to be representative of
some variation in usage, performance, or properties. The metrics and labels for the bird’s-
eye view may be defined from scratch or borrowed from existing classification systems, as
exemplified briefly for the topography parameter in the following. In particular, the GTA
system introduced by Volvo specifies four different levels [91]:

I. FLAT if slopes with a grade of less than 3% occur during more than 98% of the driving
distance.

II. P-FLAT if slopes with a grade of less than 6% occur during more than 98% of the driving
distance.

III. HILLY if slopes with a grade of less than 9% occur during more than 98% of the driving
distance.

IV. V-HILLY if the other criteria are not fulfilled.



2.2. The stochastic operating cycle 15

In the above example, the bird’s-eye view labels clearly correspond to the operating classes
FLAT, P-FLAT (predominantly flat), HILLY and V-HILLY (very hilly), whilst the metrics are
the values imposed on the road grade (3%, 6% and 9%, respectively) and the probability of
occurrence, always set to 0.98. On the other hand, the UFD adopted by Scania1 proposes
only three classes:

I. FLAT if max 20% of the road section inclines more than 2%.

II. HILLY if between 20-40% of the road section inclines more than 2%.

III. V-HILLY if more than 40% of the road section inclines more than 2%.

In both cases, the given thresholds are ambiguous, and there is no guarantee that they can
reflect any significant variation in usage or performance. Furthermore, it is worth observing
that the UFD targets single road sections, whilst the GTA specifies the different classes based
on the vehicle usage, and therefore mixes the characteristics of the environment with those
of the transport operation. One main advantage of such a vague description resides in its
colloquial tone. In fact, the bird’s-eye view is the most appropriate representation when a
vehicle manufacturer is interfacing with a customer, who cannot be expected to have a deep
understanding of stochastic models and parameters. Similar to the topography parameter, a
system of classes is specified by the GTA and UFD descriptions for most of the stochastic
road models presented in this thesis, and for some of the weather models. An exhaustive list
may be found in Paper B, and in reduced form also in Paper C, along with their mathematical
formalisations in terms of probabilities and expectations.

Formally, the complete set of bird’s-eye view metrics may be defined mathematically as

OCb = {Rb,Wb, Tb,Mb}, (2.1)

in which Rb, Wb, Tb and Wb are the sets containing all the respective bird’s-eye view metrics
in the road, weather, traffic, and mission categories. The subscript (·)b in (2.1) stands for
bird’s-eye view.

2.2 The stochastic operating cycle

The stochastic operating cycle (sOC) may be considered a mid-level description of a transport
mission, and addresses the variation problem. In its general formulation, it consist of a
complete set of stochastic models grouped into four different categories: road, weather, traffic
and mission.

Each sOC model is provided with its own set of stochastic parameters, which are chosen
to condense the relevant statistical properties (mean, variance, etc.) of the corresponding
quantity. These may also be related to physical entities, but the interpretation is often less

1The information on the UFD has kindly been supplied by Scania through personal communication.
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straightforward. The structure of the sOC is conceived to be as simple as possible, and the
models are thought to be independent of each other. In a more formal way, the complete set
of sOC parameters may be defined mathematically as

OCs = {Rs,Ws, Ts,Ms}, (2.2)

where Rs, Ws, Ts and Ws are the sets containing all the sOC parameters marked as road,
weather, traffic and mission, respectively. The subscript (·)s in Eq. (2.2) stands for stochastic.
Models and parameters for the road category have been introduced by Pettersson [74], whilst
the traffic and weather categories have been more recently developed by the author of this
thesis in Paper A. Finally, a first step towards the stochastic modelling of mission properties
has been attempted in Paper E, concerning specifically variations in cargo weight.

It is essential to remark that the overall framework is built with the philosophy of being
as simple as possible. This means that complicated multivariate distributions are avoided,
thus requiring each individual model to be treated as a separate entity. Disregarding such
mutual interaction guarantees modularity and allows for ease of implementation. At the
same time, to balance complexity and realism, a certain level of interaction between each
model is preserved by arranging the sOC itself in a hierarchical fashion. Concerning the
road, weather, and traffic categories, parsimony is thus achieved by defining two separate sets
of models: primary and secondary ones (subordinate). In this way, it becomes possible to
achieve a modular structure equipped with a high level of diversification. The (main) obvious
disadvantage is that the number of effective values needed for each stochastic parameter also
increases.

Primary models are introduced to simplify the mathematical description of the format. At
present, they include stochastic models for road type and seasonality falling within the road and
weather categories, respectively. Once a mathematical formulation for both primary models
has been established, the secondary ones inherit their sets of sOC parameters accordingly. In
particular, the sOC parameters for the secondary models in the road and weather categories
are supposed to only depend on the corresponding primary counterpart. On the contrary,
the stochastic parameters for the secondary traffic model are determined by the specific
combination of road type and season. On the other hand, the mission category does not
discriminate between primary and secondary models in its current implementation (although
such distinction could be made based on different operating conditions of the vehicle, or
eventually topologies).

An illustration of the resulting composite edifice is shown in Fig. 2.2, where the hierarchical
structure comprising primary and secondary models is shown. For what follows, it is worth
clarifying that the stochastic models introduced in Sects. 2.2.1, 2.2.2, 2.2.3, and 2.2.4 may be
used to model individual road missions. The extension to entire transport applications may
be addressed as explained in Sect. 2.2.5, and later on also in Chap. 3.

In the following, the secondary models for the road, weather, traffic, as well as those for
the mission category, will be discussed in detail. The presentation follows those of Papers A,
B and E, altough with some simplifications.
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Traffic densityCurvatureTopography Temperature Wind speed
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Figure 2.2: Hierarchical structure of an sOC. Road type and season are both primary models and influence
the value of the statistical parameters for the secondary models. Whilst the (secondary) road and weather
parameters depend only on the respective primary model, the traffic ones are determined by the road type
and season simultaneously. Figure adapted from Paper A.
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2.2.1 Road models

The road models were originally developed by Pettersson [18], and are adapted from previous
formulations. The primary model for the road category concerns the road type, whereas the
secondary models presented in this thesis include those for topography, curviness, stop signs
and speed bumps, road roughness, speed signs, and ground types.

The road type per se is an abstract notion, which cannot be measured nor classified
directly. The solution envisioned by Pettersson [74] consists hence in connecting this concept
to something which may be more easily understood and quantified: the speed limit [92]. A
stochastic model is then constructed by first postulating the existence of nr different road
types. This is done by considering a sequence {r1, . . . , rnr}, based on nr − 1 characteristic
speed signs, ordered in ascending magnitude. These mark the transition from one road type
to the next, implying that each speed sign belongs uniquely to a given road type. According
to this approach, the road type may be treated as a random variable Rt, assuming values
rt ∈ SRt = {r1, . . . , rnr} as a function of the speed signs along the route. In particular, a
specific number nv|ri of speed signs is associated to each road type. Moreover, it is assumed
that the Markov property holds [76], i.e.,

P
(
Rt,k+1 = ri,k+1

∣∣Rt,1 = ri,1, Rt,2 = ri,2, . . . , Rt,k = ri,k
)

= P
(
Rt,k+1 = ri,k+1

∣∣Rt,k = ri,k
)
.

(2.3)

By modelling the locations Xk for the road types as a Poisson process, that is,

Xk+1 −Xk ∼ E(λRi), (2.4)

the complete model is then described by a continuous-time Markov chain, and parametrised
by the entries pRij of the single-step transition matrix PR ∈ Rnr×nr

≥0 and the nr intensities λRi,
reading

λRi =
1

LRi
, (2.5)

being LRi the mean length of the road type ri, collected in a vector LR = [LR1 . . . LRnr ]
T. It

should be noticed that, in the construction above, no self-transitions are allowed, i.e., pRii = 0,
i = 1, . . . , nr, which automatically implies

∑
j 6=1 pRij = 1, i = 1, . . . , nr.

Starting from the stochastic model for road types detailed above, the stationary distri-
bution2 πR of the overall process may be derived as the solution of the system [76, 93, 94]

πRGR = 0, (2.6a)
nr∑

i=1

πRi = 1, (2.6b)

2It is supposed that there exists a unique stationary distribution.
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Figure 2.3: The road type is the primary road model. The other parameters are treated as ancillary and
inherit their values depending on the road type. Figure adapted from Paper A.

where the entries gRij = gRij(pRij, LRi) of the generator matrix GR may be calculated as

gRij
(
pRij, LRi

)
=





λRipRij =
pRij
LRi

, i 6= j,

−λRi = − 1

LRi
, i = j.

(2.7)

Equations (2.6) and (2.7) describe the stationary distribution of the road types along a road
transport mission, as a function of the observed number of transitions between road types
and their mean lengths. An analytical expression for the stationary vector πR = πR(PR,LR)
is reported in Paper C concerning the case nr = 3.

As mentioned above, the secondary road models inherit their parameters from the specific
road type on which they are defined. In this context, Fig. 2.3 elucidates the hierarchical
ordering of the road models for nr = 3 (urban, rural and highway).

Starting with Eqs. (2.6) and (2.7), it should be observed that, for an individual transport
mission, the total probability and expectation of a random variable that depends on the road
type may be calculated by weighted summation over the different road types, respectively,
using the total laws for probability and expectation3. Indeed, in the sOC representation,

3With the same rationale, the variance of a process defined over different road types may also be calculated
using the corresponding formula for the total variance. However, such a formula is not explicitly used in this
thesis, nor in the appended papers.



20 Chapter 2. The operating cycle description

road segments belonging to the same road type are described using the same values for the
sOC parameters of the secondary models. Denoting with A a generic random variable, the
formulae are hence given as follows:

P(A) =
nr∑

i=1

P(A | Rt = ri)P(Rt = ri) =
nr∑

i=1

P(A | Rt = ri)πRi(PR,LR), (2.8a)

E(A) =
nr∑

i=1

E(A | Rt = ri)P(Rt = ri) =
nr∑

i=1

E(A | Rt = ri)πRi(PR,LR), (2.8b)

where the analytical expressions for the probabilities P(A | Rt = ri) and expectations
E(A | Rt = ri) may be derived starting from the secondary models illustrated in the following,
as explained in detail in Paper B.

Road topography

Topography plays a major role in determining the overall energy performance of road vehicles.
Indeed, positive road grades are responsible for resistive forces that oppose longitudinal
motion, resulting in increased energy consumption [82]. Negative road grades, in contrast,
produce forces that accelerate the vehicle downhill, and may considerably impact the life and
performance of the mechanical components of the braking system. Negative slopes are also
exploited by battery electric vehicles (BEVs) for regenerative braking [25].

In the sOC description, the road topography Yk is assumed to behave as a stationary,
first-order autoregressive AR(1) model [67, 68]. The sequence {Yk}k∈N along the road is thus
given by

Yk = φY |riYk−1 + eY,k, eY,k | Rt = ri ∼ N
(

0, σ2
eY |ri

)
, (2.9)

where φY |ri ∈ (−1, 1) and σeY |ri ∈ (0,∞) are the two characteristic parameters that depend
upon the given road type. In particular, departing from Eq. (2.9), the conditional variance of
the process may be deduced as

σ2
Y |ri =

σ2
eY |ri

1− φ2
Y |ri

, (2.10)

where the autoregressive coefficient φY |ri may be also reinterpreted as a function of the mean
hill length Lh|ri for the road type ri:

φY |ri = sin

(
π

2
− 2

Ls

Lh|ri

)
, (2.11)

being Ls the sampling length. Owing to these assumptions, the conditional standard deviation
σY |ri and the mean hill length Lh|ri condense all the information about the road topography.
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Road curviness

Lateral acceleration due to curves along the road typically induces the driver to decelerate,
resulting in increased energy consumption. In this context, two main contributing phenomena
may be identified: the reduced efficiency of the prime mover and the losses due to pure or
combined slip conditions that take place inside the tire contact patches [95–97]. Moreover,
lateral load due to road curvature has a substantial impact on the fatigue of the mechanical
components of a vehicle, reducing their useful life [98–100].

The sOC representation treats the curves along the road as isolated events, modelled
using a sequence of locations, curvatures, and lengths {Xk, Ck, Lk}k∈N. The resulting model
– referred to as the curviness of the road – was introduced by Petterson [74] based on the
description proposed by Karlsson [98]. In particular, for each road type, the locations are
assumed to follow a Poisson distribution, i.e.,

Xk+1 −Xk | Rt = ri ∼ E
(
λC|ri

)
, (2.12)

where the intensity λC|ri ∈ (0,∞) should be interpreted as the mean number of curves per
unit of distance along a certain road type. The curvatures Ck is modelled as a modified
lognormal distribution as follows:

1

Ck
= R′k + rturn, lnR′k | Rt = ri ∼ N

(
µC|ri , σ

2
C|ri

)
, (2.13)

where the parameter rturn ∈ (0,∞) appears because roads are constructed with a lower
bounded radius. In theory, rturn is not a statistical measure, but rather an inherent property
of the road type. In this thesis, and also in the appended papers, the same value of rturn

is used for all the road types. Finally, the curve length Lk is modelled using a lognormal
distribution, that is,

lnLk | Rt = ri ∼ N
(
µL|ri , σ

2
L|ri

)
. (2.14)

Stop signs, give way signs, traffic lights and speed bumps

Speed bumps along the vehicle’s trajectory force the driver to reduce their cruising speed,
often resulting in increased energy consumption. A similar effect is produced by the stop
signs, which clearly impose a driving speed of zero. Speed bumps and stop signs are modelled
similarly in the sOC representation. More specificaly, they are treated as independent events
and described by the sequences {Xk, Ts,k}k∈N and {Xk, Vb,k}k∈N, respectively, where Xk is
again the location, Ts,k is interpreted as a recommended time, and Vb,k as a recommended
speed. A Poisson process similar to that in Eq. (2.12), but with intensities λs|ri and λb|ri ,
may be used to model the distance between two consecutive stops or speed bumps.

The standstill time is then allowed to range uniformly between a minimum tmin and
maximum tmax:

Ts,k | Rt = ri ∼ U
(
tmin|ri , tmax|ri

)
. (2.15)
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Similarly, the recommended speed may be assumed to be uniformly-distributed between a
minimum vmin and maximum vmax:

Vb,k | Rt = ri ∼ U
(
vmin|ri , vmax|ri

)
. (2.16)

For a given road type ri, each model is fully described by three parameters. Additional
quantities, such as give way signs and traffic lights, may be modelled following a similar
rationale.

Road roughness

Road roughness plays an important role when it comes to durability and fatigue of mechanical
components, but has a minor impact on energy efficiency [101]. Nonetheless, it is often
included in bird’s-eye view descriptions in use by vehicle manufacturers, like the GTA and
UFD classification systems developed by Volvo and Scania, respectively.

In this thesis, the model for road roughness is only discussed briefly, whilst a more
exhaustive treatment may be found in [67, 68, 102–105]. In this context, road profiles are
traditionally modelled using Gaussian processes [106]. This choice works satisfactorily for
small sections of roads, whereas variability between sections may be better explained using
generalised Laplace models. These may be interpreted as Gaussian processes with randomly
varying variance. In the sOC representation, on each road type i = 1, . . . , nr, the model for
the road profile Z(x) is based on the definition given by the ISO standard 8608 [107], which
uses a two-parameter spectrum:

SZ(Ω) = Cr|ri

(
Ω

Ω0

)−w
, Ω1 ≤ Ω ≤ Ω2, (2.17)

and zero otherwise. In (2.17), Ω is the spatial angular frequency, Ω0 = 1, Ω1 = 2π · 0.011,
Ω2 = 2π · 2.83 are two cut frequencies expressed in radians per metre, and Cr|ri , i = 1, . . . , nr,
is the conditional degree of unevenness, also called the roughness coefficient [107]. Finally,
the waviness parameter w is assumed to be constant and set to w = 2. The sOC description
employs a Laplace ISO model [67, 68, 102–104], parametrised on each road type by its
conditional mean roughness Cr|ri and the conditional Laplace shape parameter νr|ri (or,
equivalently, its conditional variance and kurtosis).

Speed signs and ground type

The legal speed dramatically impacts the energy performance of road vehicles. In fact, whilst
constant cruising speeds may be observed to be apparently optimal from an energy efficiency
perspective, frequent variations in driving speed result in increased consumption [25].

On the other hand, the ground type and the asphalt properties play an important role
in determining the maximum traction forces that the tyres can generate, and have also a
substantial effect on rolling resistance [79–81, 108, 109]. These two aspects are particularly
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significant for electric vehicles, in conjunction with both the higher instantaneous torques
that the wheels may experience and the well-known phenomenon of range anxiety.

In what follows, only the model for road types is discussed, since the sequence of ground
types along the vehicle’s route may be modelled using exactly the same rationale. In
particular, for a given road type4 rk, the speed signs are regarded as piecewise constant,
right-side continuous functions of the position [74]. Specifically, the speed signs are modelled
as a random process V = V (x) along with the position on the road. Accordingly, the variable
V (x) assumes discrete values in the state space SV |rk = {v1|rk , . . . , vnv|rk |rk}, where nv|rk
denotes the finite number of possible speed limits for the road type rk. Also in this case, the
complete model collects a sequence of positions, marked with the corresponding values for the
legal speed, i.e., {Xk, Vk}k∈N. Similarly as for the road types, the sequence of speed limits is
approximated by using a Markov chain [76, 110], and assumes discrete values vi|rk organised
into the speed vector v|rk = [v1|rk . . . vnv|rk |rk ]

T.

Consequently, the entries of the conditional Markov probability matrix PV |rk ∈ Rnv|rk×nv|rk
≥0

fully characterise the discrete chain, with pV ij|rk modelling the conditional probability of
transitioning from state i to state j. Since no self-transition are allowed, as usual, they satisfy∑nv|rk

j 6=i pV ij|rk = 1, i = 1, . . . , nv|rk . The speed sign locations are again modelled as in Eq.
(2.12). For each road type, the nv|rk intensities λV 1|rk , ..., λV nv|rk |rk may be deduced from the
corresponding mean lengths LV i|rk :

λV i|rk =
1

LV i|rk
, (2.18)

collected into a vector LV |rk = [LV 1|rk . . . LV nv|rk |rk ]
T. The resulting model is completely

parametrised by the conditional probabilities pV ij|rk and the nv|rk mean lengths LV i|rk (or,
alternatively, the intensities λV i|rk). Additionally, it should be observed that the speed V (x)
itself behaves as continuous-time Markov chain [76], since the distance between consecutive
transitions is modelled using a Poisson process. In particular, the stationary distribution
πV |rk of the overall process may be derived departing from its generator matrix GV |rk , and
satisfies the usual set of equations

πV |rkGV |rk = 0, (2.19a)
nv|rk∑

i=1

πV i|rk = 1, (2.19b)

where the entries gV ij|rk = gV ij|rk(pV ij|rk , LV i|rk) of GV |rk are given by

gV ij|rk
(
pV ij|rk , LV i|rk

)
=





λV i|rkpV ij|rk =
pV ij|rk
LV i|rk

, i 6= j,

−λV i|rk = − 1

LV i|rk
, i = j.

(2.20)

4Here the index k is used for the road type to avoid confusion with the indexing of the model parameters
for the speed signs.
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Closed-form expressions for πV |rk = πV |rk(PV |rk ,LV |rk) are again reported in Paper C for the
cases nv|rk = 2 and 3, respectively.

2.2.2 Weather models

The stochastic models for the weather category discussed in this paper are based on the
formulations presented in Paper A, and were validated using data collected from the Swedish
Meteorological and Hydrological Institute (SMHI)5. In particular, the primary model for
the weather category consists of the season [111]. This is regarded as a random variable S,
whose possible realisations are s ∈ SS = {s1, s2, s3, s4} with probabilities psi , i = 1, 2, 3, 4,
respectively6. It is worth emphasising that the seasons considered in the sOC representation
are the meteorological ones, as opposed to the astronomical. In this context, even though the
probabilities psi should be calculated differently depending on the location of the road segment
(boreal or austral hemisphere), they may fairly be approximated as psi ≈ 1/4, i = 1, 2, 3, 4.

On the other hand, the secondary weather models include ambient temperature, atmo-
spheric pressure, precipitation, wind velocity and relative humidity. The major assumption
is that the weather properties remain approximately constant in space. Therefore, only the
explicit dependence upon time is modelled. As for the stochastic models in the road category,
the secondary models inherit their parameters from the season, as illustrated schematically in
Fig. 2.4.

Owing to the above premises, using A to denote a generic random variable (either
continuous or discrete) for a weather model, the total probability P(A) and expectation E(A)
may be computed starting from the conditional probabilities P(A | S = si) and expectations
E(A | S = si) as

P(A) =
4∑

i=1

P
(
A
∣∣ S = si

)
P
(
S = si

)
=

4∑

i=1

P
(
A
∣∣ S = si

)
psi , (2.21a)

E(A) =
4∑

i=1

E(A
∣∣ S = si

)
P
(
S = si

)
=

4∑

i=1

E
(
A
∣∣ S = si

)
psi . (2.21b)

Ambient temperature and relative humidity

Ambient (or air) temperature and humidity have a profound impact on the performance of
the engine and on the batteries of BEVs [69]. Thermal management strategies also need to be
adapted based on the combined effect of both quantities, especially for vehicles operating in
cold climates [112, 113]. In addition, the air temperature has a secondary effect on air drag.

5Available from: https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,

proxy=wpt-a,tab=vader,param=t.
6In the sOC description, the realisations si, i = 1, 2, 3, 4 correspond to winter, spring, summer and autumn,

in that order.

https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
https://www.smhi.se/en/weather/sweden-weather/observations#ws=wpt-a,proxy=wpt-a,tab=vader,param=t
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Season

Winter Spring Summer Autumn

Atm. pressure

cP |s2 , φPj|s2 , . . .

Relative humidity

µΨ|s2 , φΨ|s2 , . . .

Temperature

µT |s2 , φT |s2 , . . .

Precipitation

PH|s2 , αΛp|s2 , . . .

Wind velocity

cw|s2 , Φwj|s2 , . . .

Primary model
Define the season

Secondary models
Define the model parameters
for each season

Figure 2.4: The season is the primary weather model. The other parameters are treated as ancillary and
inherit their values depending on the season.

From a pure modelling perspective, both ambient temperature and relative humidity
exhibit seasonal trends which are deterministic in nature [114, 115]. Therefore, for both
physical quantities, a distinction is made between a deterministic component (which tries to
capture the diurnal and seasonal trends) and a stochastic one (which replicates the random
variations occurring during the day). More specifically, they are described by two sequences
{Tair,k}k∈N, {ΨRH,k}k∈N assuming values T ∗air,k and Ψ ∗RH,k in their respective spaces STair

and
SΨRH

. In both cases, the time resolution may be expressed as a fraction of hour 1/K, with
K ∈ N. Accordingly, the value k = 1 refers to the first fraction of the first hour of a first year
assumed as a reference. The models are then postulated in the form:

Tair,k = T̄k + T̃k, (2.22a)

ΨRH,k = Ψ̄k + Ψ̃k, (2.22b)

in which T̄ , Ψ̄ denote the deterministic trends, and T̃ , Ψ̃ capture the residuals [77]. In
particular, the deterministic components are modelled as

T̄k = µT + Td sin
(
ω̄dk + ϕTd

)
+ Ty sin

(
ω̄yk + ϕTy

)
, (2.23a)

Ψ̄k = µΨ + Ψd sin
(
ω̄dk + ϕΨd

)
+ Ψy sin

(
ω̄yk + ϕΨy

)
, (2.23b)

where ω̄d = 2π/(24 ·K) and ωy = 2π/(24 · 365 ·K) are the daily and annual frequencies of
the periodic signal; the quantities µT and µΨ represent the average temperature and humidity
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over the year, and the amplitudes Td, Ty and Ψd, Ψy model the daily and annual deterministic
trends.

On the other hand, a conditional AR(1) process is used to model the stochastic components,
i.e.,

T̃k = φT |siT̃k−1 + eT,k, eT,k | S = si ∼ N
(

0, σ2
eT |si

)
, (2.24a)

Ψ̃k = φΨ |siΨ̃k−1 + eΨ,k, eΨ,k | S = si ∼ N
(

0, σ2
eΨ |si

)
, (2.24b)

where the characteristic parameters are φT |si , σeT |si and φΨ |si , σeΨ |si depend explicitly upon
the season si, i = 1, 2, 3, 4, and the process variances may be more conveniently expressed as

σ2
T̃ |si

=
σ2
eT |si

1− φ2
T |si

, (2.25a)

σ2
Ψ̃ |si

=
σ2
eΨ |si

1− φ2
Ψ |si

. (2.25b)

Atmospheric pressure

The atmospheric pressure enters directly the definition of the air drag, which opposes the
vehicle’s longitudinal motion, and also influences the efficiency of the combustion process.

In the sOC, the model for atmospheric pressure is based on that by La Rocca et al. [116]
and consists of an ARIMA(p, d, q) process:

φP |si(L)(1− L)dPair,k = cP |si + θP |si(L)eP,k, eP,k | S = si ∼ N
(

0, σ2
eP |si

)
, (2.26)

where φP |si(L) is a stable degree p AR lag operator polynomial and θP |si(L) is an invertible
degree q MA operator polynomial. Concerning each season in isolation, the model for
atmospheric pressure is fully parametrised by the constant term cP |si , the autoregressive
coefficients φPj|si , j = 1, . . . , p, the moving average coefficients θPj|si , j = 1, . . . , q and the
conditional standard deviation σeP |si .

Precipitation occurrence and intensity

The intensity of the atmospheric precipitation highly conditions the driver’s choice of speed
[117, 118], which is clearly reflected in the prime mover operating conditions and, ultimately,
in its energy efficiency. Moreover, precipitation accumulated on the ground is responsible for
variations in the friction coefficient [119] (usually decreased by the presence of thin layers
of water or ice) and rolling resistance, impacting the tyre performance and their ability to
produce tractive and braking forces, and exciting the well-known phenomenon of hydroplaning.

According to the sOC representation, the sequence for atmospheric precipitation is modelled
in a two-step process [89, 111]. In the first step, the occurrence of the event {Hp,k}k∈N is
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simulated, and then a suitable probability distribution is used to fit the intensity {Λp,k}k∈N,
which corresponds to the precipitation amount expressed in millimeters per hour (it assumes
value λp,k ∈ SΛp ⊆ R>0). In particular, the occurrence is modelled by using a Markov chain of
fixed interval, similar to what was done in [120, 121]. The stochastic variable Hp,k is allowed
to take states from the finite space SHp = {1, 2}, where 1 and 2 correspond to the dry and
wet events. The Markov process for the precipitation is fully characterised by a transition
matrix PH|si ∈ R2×2

≥0 . The model for precipitation has only two states, and hence the two
following conditions also hold:

pH12|si = 1− pH11|si , (2.27a)

pH21|si = 1− pH22|si . (2.27b)

The transition probabilities pH11|si and pH22|si may be estimated by counting the number of
transitions for the dry and wet events.

For the wet event, the intensity (that is the amount of precipitation per hour) is finally
modelled using a Gamma distribution [122, 123]:

Λp,k|si ∼ Ga
(
αΛp|si , βΛp|si

)
. (2.28)

Hence, for each season, the precipitation model is fully described by the coefficients pHij|si of
the matrix PH|si and the shape and rate parameters αΛp|si ∈ (0,∞) and βΛp|si ∈ (0,∞).

Wind speed and direction

Wind speed and direction also enter the definition of the air drag and may favour or oppose
the vehicle’s motion depending on their relative velocity.

For wind modelling, different approaches have been proposed in the literature, including
hybrid and complex multivariate formulations [124, 125]. The main complication when dealing
with this parameter is that wind speed and direction often exhibit a strong correlation. Hence,
the two signals need to be modelled properly by taking into account their mutual interaction.
A natural (and simple) possibility is to resort to a VAR model, which extends the standard
notion of an autoregressive series by coupling different random processes. It may be written

Φw|si(L)Yw,k = cw|si + ew,k, (2.29)

where the vector Yw,k = [Vw,k Θw,k]
T collects the wind speed Vw,k and direction Θw,k at each

discrete time step k, the parameter cw|si ∈ R2 represents a constant offset and ew,k ∈ R2 is
the vector of normally distributed innovations with covariance matrix given by Σew|si ∈ R2×2.
Finally, the matrix operator Φw|si(L) reads

Φw|si(L) = I−
p∑

j=1

Φwj|siL
j, (2.30)
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in which every Φwj|si ∈ R2×2 is a matrix of AR coefficients that depend upon the specific
season si, i = 1, 2, 3, 4. An intermediate step is needed for the wind direction, which is a
circular variable. This requires the knowledge of the mean wind direction µΘw|si . Further
details are given in [126, 127]. To summarise, the wind model is fully described by the
average direction µΘw|si , the constant term cw|si , the error covariance matrix Σew|si and the
autoregressive matrices Φwj|si , j = 1, . . . , p.

2.2.3 Traffic model

In the sOC representation, the traffic flow is assumed to be stationary on the road section, and
thus the unique variable to be considered becomes the density, denoted by ρt, and expressed
as a number of vehicles per unit of distance. Moreover, the parameters for the traffic model
are supposed to depend upon both the road type (via the stochastic model for speed signs)
and the season. In this context, since the primary models for road type and season are
uncorrelated, and each speed sign is associated uniquely to a road type, the total probability
for the traffic density model may be calculated considering the conditional probabilities:

P(ρt ≤ ρ∗) =
nr∑

i=1

nv|ri∑

j=1

4∑

k=1

P
(
ρt ≤ ρ∗

∣∣ S = sk ∩Rt = ri ∩ V = vj|ri
)

× P
(
V = vj|ri

∣∣ S = sk ∩ V = vj|ri
)
P
(
Rt = ri | S = sk

)
P(S = sk)

=
nr∑

i=1

nv|ri∑

j=1

4∑

k=1

P
(
ρt ≤ ρ∗

∣∣ S = sk ∩ V = vj|ri
)
πV j|ri

(
PV |ri ,LV |ri

)
πRi(PR,LR)psk ,

(2.31)

where an analytical expression for P(ρt ≤ ρ∗ | S = sk ∩ V = vj|ri) may be deduced starting
from the stochastic model described below. A similar formula to that in Eq. (2.31) holds
concerning the total expectation. It is worth mentioning that Eq. (2.31) was first derived in
Paper B, altough with a different convention for the notation.

Traffic density

Especially in highly-congested scenarios, road traffic excites frequent fluctuations in the
driver’s choice of speed. As a consequence, the prime mover becomes subjected to transient
dynamics and operates in suboptimal conditions. From the perspective of energy efficiency,
detailed modelling of the interaction between individual vehicles is not usually required,
whereas a macroscopic approach is sufficient [35].

In this context, the stocastic model for traffic density discussed in this thesis is based on
that presented in Paper A, and was validated using data collected from the Trafikverket7.

7Available from: https://vtf.trafikverket.se/SeTrafikinformation.

https://vtf.trafikverket.se/SeTrafikinformation
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For each road segment, the traffic density is specifically modelled as a sequence {ρt,k}k∈N
assuming values ρ∗t,k ∈ Sρt

, and is expressed as the sum of a deterministic and stochastic
component as follows:

ρt,k = ρ̄k + ρ̃k, (2.32)

with

ρ̄k = µρ|vj|rl∩si + ρd|vj|rl∩si
sin
(
ω̄dk + ϕρd|vj|rl∩si

)
, (2.33a)

ρ̃k = φρ|vj|rl∩si ρ̃k−1 + eρ,k, eρ,k | V = vj|rl ∩ S = si ∼ N
(

0, σ2
eρ|vj|rl∩si

)
. (2.33b)

In (2.33), µρ|vj|rl∩si is the average density on a specific road segment during the season,
ρd|vj|rl∩si

is the amplitude of the daily variation, ω̄d is again the the daily frequency, ϕρd|vj|rl∩si
the initial phase. It should be noted that, as opposed to the models for the air temperature and
humidity, the deterministic parameters in this case depend explicitly upon the combination
speed signs/seasonal setting. Thus, in the sOC description, the traffic density is parametrised
by the deterministic quantities µρ|vj|rl∩si , ρd|vj|rl∩si

, ϕρd|vj|rl∩si
and the conditional stochastic

coefficients φρ|vj|rl∩si , σeρ|vj|rl∩si . As usual, the conditional error variance σ2
eρ|vj|rl∩si

may be

rewritten in terms of the process variance as

σ2
ρ̃|vj|rl∩si

=
σ2
eρ|vj|rl∩si

1− φ2
ρ|vj|rl∩si

, (2.34)

which, for a given combination speed sign/season, actually represents the variance of the
stochastic component of the traffic density, i.e., ρ̃ | V = vj|rl ∩ S = si ∼ N (0, σ2

ρ̃|vj|rl∩si
).

2.2.4 Mission model

The mission category does not distinguish between primary and secondary models. Moreover,
only a stochastic formulation to capture variations in cargo weight is currently implemented
in the format.

Cargo weight and standstill time

The cargo weight is regarded as piecewise constant, right-side continuous functions of the
position. Specifically, it is treated as a random process W = W (x) along with the position
on the road. The entire process is then split into four parts and modelled as a sequence of
positions where the payload changes value, stop (or standstill) times, operating states, and
cargo weights {Xk, Tk, Ξk,Wk}k∈N.

In paricular, the sequence of operating states is supposed to behave as a Markov chain,
and hence is completely characterised by the Markov probability matrix PΞ ∈ Rnξ×nξ

≥0 . Again,
an entry pΞij encodes the conditional probability of transitioning from state i to state j and
satisfies

∑nξ
j=1 pΞij = 1, pΞii = 0, i = 1, . . . , nξ.
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The locations where the vehicle changes its operating state, and accordingly also the
transported cargo weight, are then modelled using a Poisson process. Each state ξi, i =
1, . . . , nξ, has therefore its own intensity λΞ1, which may be deduced directly from the mean
distance Lξi over which the vehicle operates in state ξi:

λΞi =
1

LΞi
. (2.35)

The nξ mean distances LΞi may be organised into a vector LΞ = [LΞ1 . . . LΞnξ ]
T. As

usual, the stationary distribution πΞ of the overall process may be derived starting from the
knowledge of the generator matrix GΞ , and satisfies the equation

πΞGΞ = 0, (2.36)

where the entries gΞij = gΞij(pΞij, LΞ) of GΞ are given by

gΞij
(
pΞij, LΞi

)
=





λΞipΞij =
pΞij
LΞi

, i 6= j,

−λΞi = − 1

LΞi
, i = j.

(2.37)

Combined together, Eqs. (2.36) and (2.37) allow estimating the average normalised distance
covered by the vehicle in each operating state.

For the sake of conveniency, the stop time Tk is instead modelled using a Gamma
distribution, i.e., Tk ∼ Ga(αT , βT ). It is worth observing that, according to the proposed
formulation, the stop time does not depend explicitly upon the specific operating state.

The cargo weight, conditioned to each operating state, is finally modelled using a normal
distribution, restricted between zero and a maximum value wmax|ξi . The limits wmax|ξi are
prescribed in order to ensure compliance with legislation, and may depend specifically upon
the state (for example, the allowed maximum payload may be higher when the trailer is
connected). The equations are specifically as follows:

Wk = min
(

max
(
0,W ′

k

∣∣ Ξk = ξi
)
, wmax|ξi

)
, (2.38)

and
W ′
k | Ξk = ξi ∼ N

(
µW |ξi , σ

2
W |ξi

)
. (2.39)

To summarise, the complete description consists of the transition probabilities pΞij, the
mean lengths LΞi (or, alternatively, the intensities λΞi), the conditional means µW |ξi , variances
σw|ξi , and maximum values wmax|ξi , i, j = 1, . . . , nξ.

It is worth pointing out that, if all the operating states are characterised by the same
intensity λΞ ≡ λξi = 1/LΞi ≡ 1/LΞ , the the distance covered between two generic mission
stops follows the same exponential distribution E(λΞ). This introduces some freedom in the
mathematical definition of the notion of a road transport mission. Indeed, if the distance
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travelled during every operation of pick-up/delivery is exponentially distributed with the same
parameter, the length duration of any sequence of n pick-ups/deliveries becomes a Gamma
random variable of the type Ga(n, λΞ). This means that, if the same intensity parameter λΞ
is used for each state ξi, i = 1, . . . , ξi, a road transport mission may be defined as a generic
sequence of pick-up/delivery tasks to be executed along the road.

The stochastic models for road, weather, traffic and mission are finally summarised in
Table 2.1.

2.2.5 Addressing the variation over transport applications

Before concluding the presentation of the stochastic models, it is worth remarking that those
falling in the road and mission categories may be (and usually are) parametrised concerning
individual operations. As an example, considering the standard deviation σY |ri , i = 1, . . . , nr,
of the topography model, a single transport mission may be statistically represented using a
number of different values corresponding to that of the road types. However, these values may
in turn vary over the population of missions that describe an entire transport application.
As a result, the standard deviations σY |ri , i = 1, . . . , nr, may be regarded as stochastic
variables. In Fig. 2.5, the lognormal distributions fitted in Paper C for the conditional
standard deviations of the topography model are shown, assuming three different road types
(urban, rural, highway). Similar distributions may be generated for all the road parameters
described in the preceding sections, as discussed more exhaustively in Paper C, as well as for
those falling in the mission category8.

On the other hand, since the weather and traffic models are usually parametrised by
clustering and averaging data collected for a certain geographical region, a single set of values
for the sOC parameters may be generally sufficient to characterise a transport application.
Alternatively, if the individual missions span multiple areas, then the corresponding application
may be characterised by considering the proportions in which the vehicle is operated in each
locality9.

Finally, it should also be observed that, if the sOC parameters are treated as stochastic
variables considering a population of road operations, the probabilities and expectations
calculated using Eqs. (2.8) and (2.31) become generally functions of stochastic variables,
and hence stochastic variables themselves. This aspect plays a crucial role in addressing the
classification problem when it comes to entire transport applications, as better explained in
the subsequent Sect. 2.4.1 and also in Chap. 3.

8In this context, it should be however mentioned that, in Paper E, the stochastic model for cargo weight
was parametrised concerning the whole transport application.

9In the same context, it should be observed that the different treatment reserved to the road models from
the one hand, and to the weather and traffic models on the other one is legitimated by the modalities with
which the models themselves are parametrised. This aspect will be clarified later on in Chap. 4.
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Table 2.1: Summary of sOC models.

Model Category Model type Number Number
of states of conditional

parameters

Road type Road Markov process nr n2
r

Stop signs Road Marked Poisson Continuous 3

Give way signs Road Marked Poisson Continuous 5

Traffic lights Road Marked Poisson Continuous 5

Speed bumps Road Marked Poisson Continuous 3

Speed signs Road Markov process nv n2
v|rk

Topography Road Gaussian AR(1) Continuous 2

Curviness Road Marked Poisson Continuous 6

Road roughness Road Laplace AR(1) Continuous 2

Temperature Weather Deterministic Continuous 5
Gaussian AR(1) Continuous 2

Relative Weather Deterministic Continuous 5
humidity Gaussian AR(1) Continuous 2

Atmospheric Weather Gaussian ARIMA(p, d, q) Continuous 2 + p+ q
pressure

Precipitation Weather Markov process 2 4
Gamma distributed − 2

Wind speed Weather Gaussain VAR(p) Continuous 6 + 4p
and direction

Traffic Traffic Deterministic Continuous 5
density Gaussian AR(1) Continuous 2

Cargo weight Mission Markov process nξ nξ(nξ + 3) + 2

2.3 The deterministic operating cycle

Compared to the first two types of representation already discussed, the deterministic operating
cycle (dOC) describes the mission and the external environment with higher accuracy. The
dOC is the most adequate way of modelling an operating cycle when it comes to simulation,
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Figure 2.5: Comparison between the measured and fitted lognormal distribution for the conditional standard
deviations (nr = 3) of the topography model, concerning the Västra Götaland operating cycle: (a) urban; (b)
rural; (c) highway.

and tries to address the representation problem. The central idea is that it may serve as a
virtual environment for realistic prediction of the performance of road vehicles, virtual testing
and design of control algorithms and development of ad-hoc functions.

In the dOC, the same four different categories defined for the bird’s-eye view and sOC,
namely the road, traffic, weather and mission, are kept. For each of them, a different set
of parameters is used. These correspond to the physical quantities which were regarded as
models in the sOC representation10, and are defined as discrete functions of time and position.
Some parameters are only made dependent on either the position or the time, some others,
like the ones marked in the traffic category, depend on both. Additionally, each parameter
may be represented by a scalar or a vector-valued signal (see dimensionality in Table 2.2). Any
value in between two different discrete times (or positions) may be computed by interpolation
using the corresponding model in Table 2.2. For the motivation behind the choice of the
specific interpolation strategy for each individual parameter, the reader is referred to [75]. To
formalise the dOC format mathematically, the four categories (see Table 2.2) may be defined
as the sets containing the parameter sequences: Rd is the set containing all sequences labelled
as road, Wd for weather, Td for traffic, and Md for mission. Then, the dOC format may be
defined mathematically as the collection of sets:

OCd = {Rd,Wd, Td,Md}, (2.40)

where the subscript (·)d stands this time for deterministic. Interpolation may be then defined
as an operator Idyn acting on the elements in the sets (see Appendix A). However, Eq. (2.40)
is only an elegant formalism: it describes the dOC as an algebraic structure, but does not

10The relationship between the role of a physical quantity in the sOC and dOC representations is perhaps
better understood from Table 2.2, where each entity is labelled under model for the sOC and parameter for
the dOC.
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Table 2.2: Stochastic (secondary) models (sOC) and deterministic parameters (dOC parameters) for the sOC
and dOC representations. Linear and constant refer to linear and right-side continuous piecewise constant
interpolation models, respectively. The mathematical model of Dirac delta occurs when the parameter is
regarded as an isolated event.

sOC model Category Type Interpolation Dim Quantity
or dOC parameter model

Speed signs Road Function Constant 1 Speed limit
Altitude Road Function Linear 1 Vertical coordinate
Curvature Road Function Linear 1 Curvature
Ground type Road Function Constant 2 Surface type, cone index
Roughness Road Function Constant 2 Waviness, roughness coeff.
Stop signs Road Event Dirac delta 1 Standstill time
Traffic lights Road Event Dirac delta 1 Standstill time
Give way signs Road Event Dirac delta 1 Standstill time
Speed bumps Road Event Dirac delta 3 Length, height

angle of approach
Longitude Road Function Linear 1 WGS84 longitude
Latitude Road Function Linear 1 WGS84 latitude
Ambient temperature Weather Function Linear 1 Temperature
Atmospheric pressure Weather Function Linear 1 Pressure
Precipitation Weather Function Constant 1 Precipitation amount
Wind velocity Weather Function Constant 2 Velocity vector
Relative humidity Weather Function Linear 1 Humidity
Traffic density Traffic Function Constant 1 Density
Mission stops Mission Event Dirac delta 1 Standstill time
Cargo weight Mission Function, Linear, 1 Payload

event constant
Power take-off Mission Function Linear 1 Output power
Charging power Mission Function Constant 1 Input power
Travel direction Mission Function Constant 1 Driving direction

bring much more information about it. The deterministic parameters are simply defined on
different spaces, where the relative interpolation operators are allowed to act.

The dOC format provides a detailed view on individual transport operations without
making any assumptions about the driver or the vehicle. Furthermore, it is built in a
modular way such that parameters may be easily modified, added or removed. To be useful
in simulation, the dOC format must be integrated with suitable dynamic models for the
vehicle and driver. In the context of this thesis work, and also concerning the attached papers,
this has been done by resorting to the VehProp environment, which is an open platform. A
detailed description of VehProp is beyond the scope of the present chapter, and is reported in
Appendix A. Here, it might be beneficial to briefly comment on how the dOC parameters
may be used in practice to reflect variation in usage. A straightforward way to consider the
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influence of the different physical entities listed in Table 2.2 is to use an interpretative driver
model, which reacts to the external stimuli and sets its reference speed accordingly. For
example, the driver may choose to decelerate just before negotiating a curve, based on some
comfort threshold on the lateral acceleration (for instance, using a similar relationship to that
in Eq. (A.2)); similarly, the cruising speed may be adjusted depending on the traffic density
(via, e.g., Eq. (A.4)). This idea, borrowed from [128, 129], has been refined once again by
Pettersson [18]. In this context, the complete set of functions currently used to feed the driver
model is listed, e.g., in [18] and Paper A, and not reported here for brevity.

2.4 Relationships between the representations

The three levels of representation discussed so far are intrinsically related, and ordered in a
pyramidal structure, as shown graphically in Fig. 2.1.

2.4.1 Relationship between the bird’s-eye view and the sOC

The first connection which should be explored is that between the bird’s-eye view and sOC
descriptions. These are both statistical in nature, but with considerably different resolutions.
Indeed, whilst the bird’s-eye view generally encompasses an entire transport application (but
might also be used to classify single operations and even road sections), the sOC mainly
targets individual missions. Furthermore, given an sOC, the corresponding bird’s-eye view
classes may always be deduced uniquely. The inverse operation is not possible since, for
a predetermined bird’s-eye view class, infinitely many sOCs may exist. This non-bijective
nature of the relationship between the sOC and bird’s-eye view description is rather typical
of the OC format, and persists also at the lower level, in the connection between the sOC and
the dOC.

To elucidate the natural relationship between the bird’s-eye view and sOC representations,
an illustrative example may be adduced concerning the stochastic model for road topography
introduced in Sect. 2.2.1, in conjunction with the corresponding bird’s-eye view classes
prescribed according to the GTA and UFD descriptions. In this context, it is interesting to
observe that the criteria specified by both the GTA and UFD systems in Sect. 2.1 may be
reformulated in terms of a probability, that is mathematically as py,min < P(|Y | ≤ y) ≤ py,max,
where y is a limit on the road grade and py,min and py,max a minimum and maximum threshold
targeting the driving distance, expressed as a percentage of the total. In particular, the
GTA description sets y = 3, 6, 9 and imposes constant limits py,min = 0.98, py,max = 1 on
the distance, whereas the UFD representation prescribes identically y = 2 and considers
two different values for py,min = 0.8, 0.6, respectively, whilst keeping a constant py,max = 1.
Starting with the model presented in Sect. 2.2.1, it may be first noticed that Eq. (2.9) and
(2.10) imply that, for a given road mission and on each road type, the road grade itself is
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normally distributed, i.e.,

Y | Rt = ri ∼ N
(

0, σ2
Y |ri

)
. (2.41)

Since

P
(
|Y | ≤ y

∣∣ Rt = ri
)

= 2Φ

(
y

σY |ri

)
− 1, (2.42)

being Φ(·) the CDF of the normal distribution, with the aid of Eq. (2.8a), the total probability
py(y,σY ,PR,LR) , P(|Y | ≤ y) may be calculated as follows:

py(y,σY ,PR,LR) = P
(
|Y | ≤ y

)
=

nr∑

i=1

P
(
|Y | ≤ y

∣∣ Rt = ri
)
P(Rt = ri)

=
nr∑

i=1


2Φ

(
y

σY |ri

)
− 1


πRi(PR,LR),

(2.43)

where the vector σY has been defined collecting the conditional standard deviations for each
road type, i.e., σY , [σY |r1 . . . σY |rnr ]

T. Hence, a class for the topography may be specified
by considering the inequality

py,min < py(y,σY ,PR,LR) ≤ py,max, (2.44)

for appropriate values of y and py,min, and py,max. The expression in Eq. (2.44) relates the set
of sOC parameters for topography and road types to the bird’s-eye view thresholds y and
py,min. Such a relationship describes an operating class, that is, a mathematical formalism
that allows to classify an individual transport mission concerning a certain physical quantity.
More generally, the notion of an operating class has been coined in Paper B, where expressions
similar to that in Eq. (2.44) have been derived for the vast majority of the models discussed
in Sect. 2.1. In the present thesis, a comprehensive theory for the operating classes is better
established in Chap. 3.

Moreover, if a single road type is considered, and hence σY |r1 ≡ σY , the variance is
sufficient to completely characterise an operating class according to the topography parameter.
The ranges for σY corresponding to the different topography classes are listed in Table 2.3 for
both the GTA and UFD classification systems.

By exploiting the natural connection existing between the bird’s-eye view and sOC
representations, the non-trivial operation of classifying a road transport mission may be
carried out directly in terms of sOC parameters. The obvious advantage is that they are easily
quantifyiable and interpretable compared to the vague measures specified by already-existing
descriptions like the GTA and UFD. However, relationships similar to that in Eq. (2.44)
may only be used to categorise an individual road operation. In fact, when considering an
entire transport application, the sOC parameters may be generally allowed to vary over the
population of missions, and should thus be regarded as random variables. Expanding upon
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Class GTA system UFD system

FLAT σY < 1.29 σY < 1.56
P-FLAT 1.29 ≤ σY < 2.58 -
HILLY 2.58 ≤ σY < 3.87 1.56 ≤ σY ≤ 2.38
V-HILLY 3.87 ≤ σY 2.38 < σY

Table 2.3: Topography classes according to the GTA and UFD classification systems with the corresponding
intervals for the standard deviation σY .

the discussion initiated in Sect. (2.2.5), the probabilities calculated according to Eqs. (2.42)
and (2.43) also become (composite) random variables, and hence the inequality in Eq. (2.44)
cannot be employed directly to characterise the usage from a bird’s-eye view perspective.
In this case, a reasonable choice would be to compute the expectation of Eq. (2.43) (or
considering any other representative functional) over the population of missions encompassing
the application. When interpreted as a random variable, the probability appearing in Eq.
(2.43) is sometimes referred to as road grade length ratio (Paper C). The discussion above is
propaedeutic to the additional results reported in the subsequent Chap. 3, which summarises
some of the findings of Papers B and C.

2.4.2 Relationship between the sOC and the dOC

The level of formality required to illustrate the connection between the sOC and the dOC is
much lower compared to the previous case. Generally speaking, starting from a dOC, it is
possible to estimate the corresponding stochastic parameters and hence obtain an equivalent
description in terms of an sOC. This is usually done by resorting to elementary statistical
methods and assuming plausible probability distributions and stochastic models, similar to
those already detailed in Sect. 2.2. On the other hand, given a set of stochastic parameters, a
dOC may be interpreted as a single realisation of an sOC. Indeed, by simulating its stochastic
models, a fully parametrised sOC may be used to synthesise multiple dOCs. Figure 2.6 is a
schematic illustration of the typical workflow needed to synthesise a reference dOC, starting
from an equivalent sOC. First, the primary models are generated over a specific mission
distance, which may either be prescribed or simulated using an opportune distribution (see,
e.g., Paper C). For each season, the starting time (day and hour) may also be generated
randomly or specified by the user. Another input to the process is the number of days. This
then simulates the weather and traffic time series over a finite horizon. The time resolution
for this operation is the same as the one used to parametrise each sOC model. The primary
models are also simulated simultaneously, since they do not interact explicitly. It is worth
mentioning that, whilst the overall road consists of a sequence of road types, the season may
be fairly assumed to be constant over the mission. Both models are simulated depending on
their stationary distribution, which is trivial for the weather category. The secondary sOC
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Figure 2.6: Generation process of a deterministic operating cycle (dOC) from a stochastic one (sOC). Whilst
the mission category may be assigned a priori, all the other models should be generated stochastically. A
conversion is needed between the sOC and dOC formalisms. Figure adapted from Papers A and C.

models are then derived from the primary ones. Quantities such as topography and curvature
depend only on the road type. On the other hand, weather parameters like temperature,
wind speed and direction are only affected by the season in the sOC description. The traffic
time series may be only produced when the road has been completely modelled and the
season determined. For the secondary models, the simulation of road properties may be
carried out using the ad-hoc WAFO package implemented in MATLAB® [130, 131], whilst
the weather models using a standard Toolbox. The sequences obtained using this procedure
need to be converted into the dOC formalism. For example, curvature and topography are
translated into curviness and altitude11; similarly, wind speed (in magnitude) and direction
are instead reformulated in terms of a velocity vector, where the components are specified.
Furthermore, wind speed is usually measured at weather stations at approximately 10 m

11The sequence {zk}k∈N is constructed according to zk+1 = zk + yk

100Ls =
∑k

i=0 yi + z0, being {yk}k∈N the
sequence of realisations for the variable Yk describing the road grade.
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above the ground. Therefore, the value must be converted to ground level12. From the signed
curvature, the actual road profile and the tangent vector to the trajectory are also deduced
numerically using Fresnel integrals. This step is crucial since it allows computation of the
relative direction between the vehicle and wind velocity vector. The dOC parameters, plus
their location in either space or time (or both for the traffic density), are finally encoded in
the dOC description and tabulated.

Concerning the stochastic models for weather and traffic detailed in Sects. 2.2.2 and 2.2.3,
an example of generated timeseries (before conversion to the dOC formalisms) is illustrated
in Fig. 2.7, considering a time horizon of ten days. The values for the sOC parameters used
to generate the plots in Fig. 2.7 coincide with those listed in Paper A. Some realisations for
the road models are instead given in [18] for different combinations of sOC parameters, and
are not reported here for brevity.

To conclude, it should be emphasised that dOCs originating from the same sOC would
eventually be equivalent in a statistical sense but might differ significantly in practice. As for
the relationship between the bird’s-eye view and the sOC representations, this also implies
that the mapping between an sOC and a dOC is not necessarily bijective; quite the opposite.
In this context, it should be also mentioned that there is no guarantee that an individual dOC
will be realistic. Since the secondary stochastic models are simulated simultaneously, and no
explicit interaction is taken into account, it may happen, for instance, that a sharp curve is
generated in close proximity to a speed sign marking the transition to a higher speed limit.
However, it may be reasonably conjectured that the effect of these unlikely combinations on
the vehicle’s performance would be eventually filtered out by simulating a large number of
dOCs synthesised from the same set of sOC parameters.

12For example, using the logarithmic speed profile ([132]).
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Figure 2.7: Stochastically generated timeseries for the weather and traffic models presented in Sects. 2.2.2
and 2.2.3, over a time horizon of ten days: (a) ambient temperature; (b) relative humidity; (c) and (d) wind
speed and direction; (e) precipitation intensity; (f) atmospheric pressure; (g) traffic density. Figure adapted
from Paper A.



Chapter 3

Operating classes and composite
variables

The natural relationship existing between the bird’s-eye view and sOC representations may
be formulated mathematically by introducing the notion of an operating class, as already
anticipated in Sect. 2.4.1. In turn, this formalism offers an indispensable opportunity to
address the classification problem indicated by Pettersson [18]. Building upon the findings
of Papers B and C, the aim of this chapter is therefore to explore in greater detail the
connection between the two above-mentioned levels of representation, and, in doing so, derive
the mathematical relationships for the other operating classes presented in the GTA and UFD
codifications. This operation may be conducted systematically considering either individual
road missions or entire applications. In the latter case, it is necessary to resort to a similar
approach to that discussed in Sect. 2.2.5. The analysis proposed in the present chapter is
finally concluded by suggesting a possible strategy to optimally specify the thresholds and
limits of the bird’s-eye view description, following the approach proposed in Paper D.

3.1 Operating classes

The definition of the bird’s-eye view metrics and sOC parameters according to Eqs. (2.1) and
(2.2), respectively, is not merely a sterile formalism. Indeed, mutual relationships between
the elements in the sets OCb and OCs may be deduced by combining an opportunely defined
system of classes (for example, according to the GTA and UFD descriptions) with the
stochastic models presented in Chap. 2.

More precisely, it has been shown in Paper B that, for a generic model ξ in the road,

41
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weather, and traffic categories, a relationship exists in the form1

aξ
(
ηb,ξ

)
< Υξ

(
ηs,ηb

)
≤ bξ

(
ηb,ξ

)
, (3.1)

where ξ ∈ XR, XW or XT is a generic sOC model, XR, XW , and XT denote the sets of sOC
models for the road, weather, and traffic categories, respectively, ηs,ξ ∈ Rs,ξ, Ws,ξ, Ts,ξ and
ηb,ξ ∈ Rb,ξ, Wb,ξ, Tb,ξ are vectors of sOC parameters and bird’s-eye-view metrics for the
model ξ, ηs ∈ OCs, ηb ∈ OCb are generic vectors of sOC parameters and bird’s-eye view
metrics, Rs,ξ ⊂ Rs, Ws,ξ ⊂ Ws, Ts,ξ ⊂ Ts are subsets of sOC parameters for the model ξ, and
Rb,ξ ⊂ Rb, Wb,ξ ⊂ Wb, Tb,ξ ⊂ Tb are subset of bird’s-eye-view metrics for the model ξ.

Finally, aξ(ηb,ξ) and bξ(ηb,ξ) represent lower and upper bounds for the vector-valued
function Υξ(·, ·) appearing in (3.1). In this context, it should be clarified that the inequalities
(3.1) need to be interpreted element-wise. As briefly mentioned in Sect. 2.4.1, they postulate
the existence of certain relationships which mathematically formalise the so-called operating
classes. For example, it may be noticed that the inequality in Eq. (2.44) has the same form
of that in Eq. (3.1), being moreover scalar.

Concerning the stochastic models detailed in Chap. 2, the complete derivation for the
expressions describing the corresponding operating classes has been carried out in Paper B
and, for the sake of brevity, is not repeated in this thesis. Instead, the analytical formulae are
presented and explained in the following with emphasis on their physical interpretation. It
should be noticed that the expressions reported in this chapter are less general than those
obtained in Paper B. Moreover, although in paper B the attention was restricted to the road,
weather and traffic categories, relationships formally equivalent to that in Eq. (3.1) may be
derived concerning the mission models.

3.1.1 Road category

The bird’s-eye view descriptions corresponding to the GTA and UFD systems specify rela-
tionships for the operating classes concerning the models for topography, curviness, speed
bumps and stop signs, road roughness, and speed signs.

Road topography

The analytical expression describing the operating class for the topography parameter is the
same according to both the GTA and UFD classification systems, and reads specifically

py,min < py(y,σY ,PR,LR) ≤ py,max, (3.2)

1In Paper B, it was asserted that the set of sOC parameters for a given model, in a given OC category, is
only related to the corresponding bird’s-eye view metrics for the same model. This is true in the context of
Paper B, where the relationship for the operating classes were derived concerning individual road segments.
However, when considering individual missions and entire transport applications, the same result does not
hold, since the stationary distributions for road type enter the definition of the above-mentioned relationships.
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Figure 3.1: Comparison between the measured distribution and the analytical PDF and CDF of the road
topography: (a) probability density; (b) cumulative distribution. The distribution refers to a random mission
amongst those encompassing the Västra Götaland operating cycle of Paper C. Figure adapted from Paper B.

where the probability py(y,σY ,PR,LR) has been defined in Eq. (2.43). The expression is
repeated here for the sake of readability:

py(y,σY ,PR,LR) , P
(
|Y | ≤ y

)
=

nr∑

i=1


2Φ

(
y

σY |ri

)
− 1


πRi(PR,LR). (3.3)

According to Eq. (3.3), the quantity py(y,σY ,PR,LR) in Eq. (3.2) should be interpreted as
the proportion of the road for which the road grade, in absolute value, is less than a specified
threshold y. In this context, it may be realised that py(y,σY ,PR,LR) in Eq. (3.2) represents,
in fact, the CDF of the random variable |Y |. A comparison between the actual distribution of
the topography measured along the vehicle’s route and the analytical one obtained according
to Eq. (3.2) is illustrated in Fig. 3.1.

It is worth observing that the mean hill lengths, conveniently collected here in a vector
Lh , [Lh|r1 . . . Lh|rnr ]

T, do not appear in Eqs. (3.2) and (3.3). Thus, according to the bird’s-
eye view representations inspired by the GTA and UFD systems, road missions characterised
by the same process variance σ2

Y |ri , i = 1, . . . , nr, but different hill lengths are equivalent
concerning the topography parameter. However, the mean hill length may also have a
considerable influence upon the energy performance of road vehicles. To properly account for
this effect, an additional criterion has been proposed in Papers B and C:

Lh,min < Lh(Lh,PR,LR) ≤ Lh,max, (3.4)
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where, with some abuse of notation,

Lh(Lh,PR,LR) , E(Lh) =
nr∑

i=1

Lh|riπRi(PR,LR). (3.5)

The interpretation of the above relationships is straightforward.

Road curviness

The criterion imposed on the road curviness differs according to the GTA and UFD descriptions.
Indeed, the latter prescribes lower and upper bounds on the expected number of curves per
unit of length for which the curvature is higher than a certain thresholds κ. The formula
reads as follows:

n̄′C,min < n̄′C(κ,λC ,µC ,σC ,PR,LR) ≤ n̄′C,max, (3.6)

in which, as usual, λC , [λC|r1 . . . λC|rnr ]
T, µC , [µC|r1 . . . µC|rnr ]

T, σC , [σC|r1 . . . σC|rnr ]
T,

and n̄′C(κ,λC ,µC ,σC ,PR,LR) may be deduced to have the form

n̄′C(κ,λC ,µC ,σC ,PR,LR) , E
(
N ′C
Ltot

)

=
nr∑

i=1

λC|ri
2


1 + erf

(
ln(1/κ− rturn)− µC|ri√

2σC|ri

)
πRi(PR,LR),

(3.7)

where N ′C represents a binomial random variable describing the number of curves for which
the curvature exceeds the above-mentioned limit κ, and Ltot denotes the total length of the
road.

Conversely, the GTA codification regards the road curvature K (clearly interpreted as
a random variable) as a continuous function of the position along the vehicle’s route, i.e.,
K = K(X). Therefore, the corresponding expression for the operating class targets the
proportion of road length for which the curvature is below a certain value κ, according to

pκ,min < pκ(κ,λC ,µC ,σC ,µL,σL,PR,LR) ≤ pκ,max, (3.8)

being by definition µL , [µL|r1 . . . µL|rnr ]
T, σL , [σL|r1 . . . σL|rnr ]

T, and

pκ(κ,λC ,µC ,σC ,µL,σL,PR,LR) , P(K ≤ κ) = 1−
nr∑

i=1

λC|ri
2

exp

(
µL|ri +

σ2
L|ri

2

)

×


1 + erf

(
ln(1/κ− rturn)− µC|ri√

2σC|ri

)
πRi(PR,LR).

(3.9)
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Comparing the functions appearing in Eqs. (3.7) and (3.9), respectively, it may be in-
ferred that the criterion imposed by the GTA system is more refined than that adopted
by the UFD description, since the probability pκ(κ,λC ,µC ,σC ,µL,σL,PR,LR) involves all
the sOC parameters connected with the model for road curviness, whereas the expression
n̄′C(κ,λC ,µC ,σC ,PR,LR) neglects the contribution of the quantities related to the curve
length. This may be intuitively explained by recalling that, according to the GTA representa-
tion, the curves along the road are treated as isolated events. In this context, it should also
be emphasised that Eq. (3.9) represents indeed the CDF for the random variable K.

Speed bumps and stop signs

Only the UFD includes a system of classes for the speed bumps and stop signs. The criteria
specified on both parameters prescribe upper and lower bounds on the expected number of
events per unit of length along the vehicle’s route. The corresponding analytical expressions
are particularly simple and read

n̄′b,min < N̄b(λb,PR,LR) ≤ n̄′b,max, (3.10a)

n̄′s,min < N̄s(λs,PR,LR) ≤ n̄′s,max, (3.10b)

where, with the conventional notation, λb , [λs|r1 . . . λb|rnr ]
T, λs , [λs|r1 . . . λs|rnr ]

T, and
the expectations λb(λb,PR,LR) and λs(λs,PR,LR) are given respectively by

N̄b(λb,PR,LR) , E
(
Nb

Ltot

)
=

nr∑

i=1

λb|riπRi(PR,LR), (3.11a)

N̄s(λs,PR,LR) , E
(
Ns

Ltot

)
=

nr∑

i=1

λs|riπRi(PR,LR), (3.11b)

in which Nb and Ns are random variables describing the number of speed bumps and stop signs
along the vehicle’s route. It is worth mentioning that the sOC parameters tmin|ri , tmax|ri , vmin|ri ,
and vmax|ri , i = 1, . . . , nr, have deliberately not included in the definition of the relationships
for the operating classes for the speed bumps and stop signs models. A more refined criterion
may be instead found in Paper B.

Road roughness

Taking inspiration from the ISO classification [107], a road transport mission may be labelled
in respect to the roughness depending on the degree of unevenness Cr:

Cr,min < Cr(Cr,PR,LR) ≤ Cr,max, (3.12)

clearly with

Cr(Cr,PR,LR) , E(Z) =
nr∑

i=1

Cr|riπRi(PR,LR), (3.13)



46 Chapter 3. Operating classes and composite variables

where Cr = [Cr|r1 . . . Cr|rnr ]
T collects the conditional mean roughnesses Cr|ri , i = 1, . . . , nr.

In particular, the ISO standard [107] specifies eight different road levels, ranging from
class A to H in increasing roughness order. Amongst these, however, only the first five
are important for automotive applications [101]. A similar criterion is adopted in Paper B.
Accordingly, only Eq. (3.12) is required to establish a relationship between the set of sOC
parameters and the two limits prescribed by the bird’s-eye view description. It should be
noticed that the proposed criterion systematically neglects the effect of variability between
sections, since the conditional shape parameters νr|ri , i = 1, . . . , nr does not appear in the
inequality of Eq. (3.12). By contrast, a more refined classification approach would prescribe
an additional relationship including the shape parameters. To this end, further details on
generalised Laplace distributions may be found in [104, 105].

Speed signs

The speed signs represent perhaps the most delicate parameter when dealing with the operation
of specifying a mathematical relationship for the operating class. The criteria set by the GTA
and UFD codifications are rather vague and may eventually fail to build a univocal system of
classes. The approach reported in this thesis is instead analogous to that proposed in Papers
B and C, which has been in turn adapted from [25]. The criterion, which is also extremely
intuitive, targets the mean legal speed along the road, on which upper and lower bounds are
opportunely imposed, i.e.,

v̂min < v̂
(
PV |r1 , . . . ,PV |rnr ,LV |r1 , . . . ,LV |rnrPR,LR

)
≤ v̂max, (3.14)

with

v̂
(
PV |r1 , . . . ,PV |rnr ,LV |r1 , . . . ,LV |rnrPR,LR

)
= E(V )

=
nr∑

i=1

nv|ri∑

j=1

vj|riπV j|ri
(
PV |ri ,LV |ri

)
πRi(PR,LR).

(3.15)

Together, Eqs. (3.14) and (3.15) conclude the collection of relationships for the operating
classes related to the road category.

3.1.2 Weather category

The weather parameters considered by the GTA and UFD classification systems include
ambient temperature, relative humidity, and precipitation intensity, for which stochastic
models have been introduced in Chap 2. Criteria on the wind speed and direction, and on
the atmospheric pressure, are not explicitly specified.
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Ambient temperature and relative humidity

The ambient temperature and relative humidity parameters are introduced simultaneously
since the criteria specified on both, as well as the corresponding stochastic models, are
similar. More specifically, they are both interpretable as limits imposed on the corresponding
probabilities, according to

pT ∗air,min < pTair

(
µT , Td, Ty, ϕTd

, ϕTy ,σT̃
)
≤ pT ∗air,max, (3.16a)

pΨ∗RH,min < pΨRH

(
µΨ , Ψd, Ψy, ϕΨd

, ϕΨy ,σΨ̃
)
≤ pΨ∗RH,max, (3.16b)

clearly with σT̃ , [σT̃ |s1 σT̃ |s2 σT̃ |s3 σT̃ |s4 ]
T, σΨ̃ , [σΨ̃ |s1 σΨ̃ |s2 σΨ̃ |s3 σΨ̃ |s4 ]

T. The probability
pTair

(µT , Td, Ty, ϕTd
, ϕTy ,σT̃ ) appearing in the inequality displayed in Eq. (3.16a) has the form

pTair

(
µT , Td, Ty, ϕTd

, ϕTy ,σT̃
)
, P

(
T ∗min < Tair ≤ T ∗max

)

=
4∑

i=1

∑

T̄k∈ST̄ |si

pT̄k|sipsi1T ∗max∈[T0,∞)

× Φ

(
T ∗max − T̄k

(
µT , Td, Ty, ϕTd

, ϕTy

)

σT̃ |si

)

−
4∑

i=1

∑

T̄k∈ST̄ |si

pT̄k|sipsi1T ∗min∈[T0,∞)

× Φ

(
T ∗min − T̄k

(
µT , Td, Ty, ϕTd

, ϕTy

)

σT̃ |si

)
,

(3.17)

where T0 denotes the zero point for thermodynamic temperature, ST̄ |si , i = 1, . . . , 4, represent
the seasonal subsets collecting the values for the deterministic component of the ambient
temperature, and pT̄k|si the probabilities associated to those values. Similarly, the probability
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Figure 3.2: Comparison between the measured and analytical temperature distributions for the city of
Gothenburg, Sweden, in 2019: (a) probability density; (b) cumulative distribution. Figure adapted from
Paper B.

pΨRH
(µΨ , Ψd, Ψy, ϕΨd

, ϕΨy ,σΨ̃ ) in Eq. (3.16b) may be deduced as follows:

pΨRH

(
µΨ , Ψd, Ψy, ϕΨd

, ϕΨy ,σΨ̃
)
, P

(
Ψ ∗min < ΨRH ≤ Ψ ∗max

)

= 1Ψ∗max∈[1,∞) +
4∑

i=1

∑

Ψ̄k∈SΨ̄ |si

pΨ̄k|sipsi1Ψ∗max∈[0,1)

× Φ

(
Ψ ∗max − Ψ̄k

(
µΨ , Ψd, Ψy, ϕΨd

, ϕΨy

)

σΨ̃ |si

)

−
4∑

i=1

∑

Ψ̄k∈SΨ̄ |si

pΨ̄k|sipsi1Ψ∗min∈[0,1)

× Φ

(
Ψ ∗min − Ψ̄k

(
µΨ , Ψd, Ψy, ϕΨd

, ϕΨy

)

σΨ̃ |si

)
− 1Ψ∗max∈[1,∞),

(3.18)

where the definition for SΨ̄ |si , i = 1, . . . , 4, and pΨ̄k|si is analogous to that given for the ambient
temperature. Equations (3.17) and (3.18) may be interpreted as CDFs by setting opportunely
the values for the minimum thresholds T ∗min and Ψ ∗min, respectively. As an example, the
temperature distributions for the city of Gothenburg, Sweden, in 2019, obtained using data
collected from the SMHI, are compared to the analytical PDF and CDF derived according to
Eqs. (2.21), (2.22a) and (2.24a) in Fig. 3.2. The relative humidity exhibits a similar trend.
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Precipitation intensity

Concerning the precipitation intensity, the criterion specified by the UFD representation is
formulated in terms of probability, which translates in a formula as

pλp,min < pλp

(
αΛp ,βΛp ,PH|s1 , . . . ,PH|s4

)
≤ pλp,max, (3.19)

as usual with αΛp , [αΛp|s1 αΛp|s2 αΛp|s3 αΛp|s4 ]T, βΛp , [βΛp|s1 βΛp|s2 βΛp|s3 βΛp|s4 ]T, and the
probability pλp(αΛp ,βΛp ,PH|s1 , . . . ,PH|s4) reading

pλp

(
αΛp ,βΛp ,PH|s1 , . . . ,PH|s4

)
, P

(
λp,min < Λp ≤ λp,max

)

=
4∑

i=1

πH1|si

(
PH|si

)
psi
[
1λp,max∈R≥0

− 1λp,min∈R≥0

]

+
4∑

i=1

1

Γ
(
αΛp|si

)γ
(
αΛp|si , βΛp|siλp,max

)

× πH2|si

(
PH|si

)
psi1λp,max∈R>0

−
4∑

i=1

1

Γ
(
αΛp|si

)γ
(
αΛp|si , βΛp|siλp,min

)

× πH2|si

(
PH|si

)
psi1λp,min∈R>0 .

(3.20)

The above Eq. (3.20) yields again the CDF for the precipitation intensity, provided that the
lower bound λp,min is specified correctly.

3.1.3 Traffic category

The traffic category only includes a stochastic model for the density. The equivalent interpre-
tation from the perspective of the bird’s-eye view description is detailed below.

Traffic density

No criterion is explicitly specified by the GTA and UFD classification systems concerning the
traffic density parameter. However, the latter is included here since, similar to what done for
the ambient temperature and relative humidity, a relationship for the corresponding operating
class may be stated mathematically in terms of probability, on which upper and lower limits
are imposed, that is,

pρ∗t ,min < pρt

(
ρ∗min, ρ

∗
max,µρ,ρd,ϕρd

,σρ̃,PV |r1 , . . . ,PV |rnr ,LV |r1 , . . . ,LV |rnr ,Pr,LR
)
≤ pρ∗t ,max.

(3.21)
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In the above Eq. (3.21), the vector-valued parameters have been defined respectively as
µρ , [µρ|v1|r1∩s1 . . . µρ|vnv|r1 |r1∩s1

. . . µρ|v1|rnr∩s4
. . . µρ|vnv|rnr |rnr

∩s4 ]
T for the means, ρd ,

[ρd|v1|r1∩s1 . . . ρd|vnv|r1 |r1
∩s1 . . . ρd|v1|rnr∩s4

. . . ρd|vnv|rnr |rnr
∩s4 ]

T for the daily amplitudes,

ϕρd
, [ϕρd|v1|r1∩s1 . . . ϕρd|vnv|r1 |r1

∩s1 . . . ϕρd|v1|rnr∩s4
. . . ϕρd|vnv|rnr |rnr

∩s4 ]
T for the phases,

and σρ̃ , [σρ̃|v1|r1∩s1 . . . σρ̃|vnv|r1 |r1∩s1
. . . σρ̃|v1|rnr∩s4

. . . σρ̃|vnv|rnr |rnr
∩s4 ]

T for the standard

deviations. The probability pρt(µρ,ρd,ϕρd
,σρ̃,PV |r1 , . . . ,PV |rnr ,LV |r1 , . . . ,LV |rnr ,Pr,LR)

may be derived as

pρt

(
ρ∗min, ρ

∗
max,µρ,ρd,ϕρd

,σρ̃,PV |r1 , . . . ,PV |rnr ,LV |r1 , . . . ,LV |rnr ,Pr,LR
)

, P(ρ∗min < ρt ≤ ρ∗max)

=
nr∑

l=1

nv|rl∑

j=1

1ρ∗max∈[ρc|vj|rl
,∞) +

nr∑

l=1

nv|rl∑

j=1

4∑

i=1

∑

ρ̄k∈Sρ̄|vj|rl∩si

pρ̄k|vj|rl∩sipsi1ρ
∗
max∈[0,ρc|vj|rl

)

× Φ



ρ∗max − ρ̄k

(
µρ|vj|rl∩si , ρd|vj|rl∩si

, ϕρd|vj|rl∩si

)

σρ̃|vj|rl∩si


πV j|rl

(
PV |rl ,LV |rl

)
πRl(PR,LR)

−
nr∑

l=1

nv|rl∑

j=1

4∑

i=1

∑

ρ̄k∈Sρ̄|vj|rl∩si

pρ̄k|vj|rl∩sipsi1ρ
∗
min∈[0,ρc|vj|rl

)

× Φ



ρ∗min − ρ̄k

(
µρ|vj|rl∩si , ρd|vj|rl∩si

, ϕρd|vj|rl∩si

)

σρ̃|vj|rl∩si


πV j|rl

(
PV |rl ,LV |rl

)
πRl(PR,LR)

−
nr∑

l=1

nv|rl∑

j=1

1ρ∗min∈[ρc|vj|rl
,∞) ≤ pρ∗t ,max,

(3.22)

where ρc|vj|rl
is a threshold specified for the maximum allowable density on a generic segment

for a given combination of speed signs and road types (see, e.g., Eq. (A.4) in Appendix
A), Sρ̄|vj|rl∩si are subsets corresponding to given combinations of speed signs and road types
in which the deterministic component of the traffic density is allowed to take values, and
pρ̄k|vj|rl∩si are the associated probabilities. The function in Eq. (3.22) provides an analytical
expression for the CDF of the traffic density by fixing appropriate values of ρ∗min.

3.1.4 Mission category

The mission category only includes a stochastic model for the cargo weight. The equivalent
interpretation from the perspective of the bird’s-eye view description is formalised in terms of
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expectation.

Cargo weight

An expression for the operating class concerning the cargo weight is not explicitly specified by
the GTA and UFD codifications. Nonetheless, the expectation may be conveniently adopted,
that is,

ŵmin < ŵ(µW ,σW ,wmax,PΞ ,LΞ) ≤ ŵmax, (3.23)

where

ŵ(µW ,σW ,wmax,PΞ ,LΞ) = E(W )

=

nξ∑

i=1

1

2



√

2

π
σW |ξi

(
e
−µ2

W |ξi
/(2σ2

w|ξi
) − e

−(wmax|ξi−µW |ξi )
2/(2σ2

w|ξi
)
)

+
(
µW |ξi − wmax|ξi

)
erf

(
wmax|ξi − µW |ξi√

2σW |ξi

)

+ µW |ξi erf

(
µW |ξi√
2σW |ξi

)
+ wmax|ξi


πΞi(PΞ ,LΞ),

(3.24)

and, for convenience of notation, the conditional mean, variance, and maximum param-
eters have been be collected into vectors by defining µW , [µW |ξ1 . . . µW |ξnξ ]

T, σW ,

[σW |ξ1 . . . σW |ξnξ ]
T, and wmax , [wmax|ξ1 . . . ww|ξnξ ]

T, respectively.
All the relationships for the operating classes, together with their interpretation in terms

of probability or expectation, are summarised in Table 3.1.

3.2 Composite random variables

In the derivation of the mathematical relationships defining the operating classes, attention has
been restricted to individual road missions. When considering an entire transport application,
the sOC parameters for the stochastic road and mission models may be allowed to vary over
the population of missions. In this case, the probabilities and expectations computed in
Sect. 3.1 become evidently random variables. Since they are functions of simpler random
variables, i.e., the stochastic counterparts of the sOC parameters, in this thesis, and also in
Paper C, they are generally referred to as composite variables. The present section reports
for completeness the expressions for their analytical formulae. The only categories considered
here are those for road, traffic (since the traffic density depends upon the speed signs and
indirectly on the road types) and mission. By contrast, the weather models are deliberately
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Model Mathematical Operating class sOC parameters Bird’s-eye view
interpretation relationships OCs metrics OCb

Road category

Topography py,min < P(|Y | ≤ y) ≤ py,max Eq. (3.3) σY , Lh, y, py,min, py,max

Lh,min < Lh ≤ Lh,max Eq. (3.5) PR, LR Lh,min, Lh,max

Curviness n̄′C,min < E
(
N ′C
Ltot

)
≤ n̄′C,max, Eq. (3.7) λC , µC , σC , n̄′C,min, n̄′C,max,

pκ,min < P(K ≤ κmax

)
≤ pκ,max Eq. (3.9) µL, σL, PR, LR κ, pκ,min, pκ,max

Speed bumps n̄′b,min < E
(
Nb

Ltot

)
≤ n̄′b,max Eq. (3.11a) λb, PR, LR n̄′b,min, n̄′b,max

Stop signs n̄′s,min < E
(
Ns

Ltot

)
≤ n̄′s,max Eq. (3.11b) λs, PR, LR n̄′s,min, n̄′s,max

Road roughness Cr,min < E(Z) ≤ Cr,max Eq. (3.13) Cr, PR, LR Cr,min, Cr,max

Speed signs v̂min < E(V ) ≤ v̂max Eq. (3.15) PV |ri , LV |ri , PR, LR v̂min, v̂max

Weather category

Air temperature pT ∗air,min < P(T ∗min < Tair ≤ T ∗max) ≤ pT ∗air,max Eq. (3.17) µT , Td, Ty, ϕTd
, T ∗min, T ∗max,

ϕTy , σT̃ , pT ∗air,min, pT ∗air,max

Atm. humidity pΨ∗RH,min < P(Ψ ∗min < ΨRH ≤ Ψ ∗max) ≤ pΨ∗RH,max Eq. (3.18) µΨ , Ψd, Ψy, ϕΨd
, Ψ ∗min, Ψ ∗max,

ϕΨy , σΨ̃ , pΨ∗RH,min, pΨ∗RH,max

Precipitation pλp,min < P(λp,max < Λp ≤ λp,max) ≤ pλp,max Eq. (3.20) PH|si , αΛp , βΛp λp,min, λp,max

pλp,min, pλp,max

Traffic category

Traffic density pρ∗t ,min < P(ρ∗min < ρt ≤ ρ∗max) ≤ pρ∗t ,max Eq. (3.22) µρ, ρd, ϕρd
, σρ̃, ρ∗min, ρ∗max

PV |ri , LV |ri , PR, LR pρ∗t ,min, pρ∗t ,max

Mission category

Cargo weight ŵmin < ŵ(µW ,σW ,wmax,PΞ ,LΞ) ≤ ŵmax Eq. (3.24) µW , σW , wmax, ŵmin, ŵmax

PΞ , LΞ

Table 3.1: Summary of the relationships for the operating classes, with corresponding interpretation in
terms of probabilities and expectations.
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disregarded, being implicitly assumed that their parameters are already averaged concerning a
certain geographical region. With respect to the mission category, the analytical expression for
the composite variable is derived considering the mean cargo weight; additionally, a stochastic
model is proposed to capture the variation of the mission length over the transport application.
In this context, it should be mentioned that, whilst the exact form for the distributions of the
original sOC parameters in the road category, treated as random variables, is irrelevant to
the results advocated in the following, the same does not hold true for the mission length.

3.2.1 Road category

The composite variables in the road category include those for road topography, curviness,
speed bumps and stop signs, and speed signs.

Road topography

Departing from Eq. (3.3), the composite random variable corresponding to the road grade
length ratio may be deduced as follows:

Py

(
y,ΣY , P̃R, L̃R

)
,

nr∑

i=1


2Φ

(
y

ΣY |ri

)
− 1


ΠRi

(
P̃R, L̃R

)
, (3.25)

where the vector ΣY , [ΣY |r1 . . . ΣY |rnr ]
T collects the conditional stochastic standard

deviations ΣY |ri , i = 1, . . . , nr, and P̃R and L̃R denote the stochastic counterparts of the
single-step transition matrix PR and mean length vector LR, respectively, and the generic
ΠRi(P̃R, L̃R), i = 1, . . . , nr, is the stochastic version of the stationary probability πRi(PR,LR)
for the road type. The relationship for the random mean hill length may be instead derived
by starting from Eq. (3.5):

L̃h

(
L̃h, P̃R, L̃R

)
,

nr∑

i=1

L̃h|riΠRi

(
P̃R, L̃R

)
, (3.26)

in which L̃h , [L̃h|r1 . . . L̃h|rnr ]
T is a vector collecting the stochastic mean hill lengths L̃h|ri ,

i = 1, . . . , nr.

Road curviness

For the curviness model, two different composite variables may be introduced based on
Eqs. (3.7) and (3.9), respectively. These would correspond to the relationships derived by
considering the criterion imposed by the UFD and GTA codifications, in turn. For the
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expected number of curves, the stochastic variable describing the variation over the mission
population may be expressed as

N̄ ′C

(
κ,ΛC ,MC ,ΣC , P̃R, L̃R

)
,

nr∑

i=1

ΛC|ri
2


1 + erf

(
ln(1/κ− rturn

)
−MC|ri√

2ΣC|ri

)


×ΠRi

(
P̃R, L̃R

)
,

(3.27)

being this timeΛC , [ΛC|r1 . . . ΛC|rnr ]
T,MC , [MC|r1 . . . MC|rnr ]

T,ΣC , [ΣC|r1 . . . ΣC|rnr ]
T

the vectors collecting the variables ΛC|ri , MC|ri , ΣC|ri , i = 1, . . . , nr, which represent the
stochastic counterparts of the sOC parameters λC|ri , µC|ri , σC|ri .

On the other hand, combining Eqs. (2.8) and (3.9) yields

Pκ

(
κ,ΛC ,MC ,ΣC ,ML,ΣL, P̃R, L̃R

)
, 1−

nr∑

i=1

ΛC|ri
2

exp

(
ML|ri +

Σ2
L|ri

2

)

×


1 + erf

(
ln(1/κ− rturn)−MC|ri√

2ΣC|ri

)


×ΠRi

(
P̃R, L̃R

)
,

(3.28)

with, as usual, ML , [ML|r1 . . . ML|rnr ]
T, and ΣL , [ΣL|r1 . . . ΣL|rnr ]

T collecting the
variables ML|ri , ΣL|ri , i = 1, . . . , nr, which are the stochastic versions of the parameters µL|ri ,
σL|ri . Comparing Eq. (3.28) to (3.27), it may be clearly noticed that the former relationship is
more complete, and involves all the characteristic parameters of the curviness model. Indeed,
the analytical expression for N̄ ′C = N̄ ′C(ΛC ,MC ,ΣC , P̃R, L̃R) in Eq. (3.27) does not depend
upon the stochastic mean lenghts ML|ri and standard deviations ΣL|ri , i = 1, . . . , nr.

The variable in Eq. (3.28) is sometimes referred to as curviness length ratio (Paper C).

Speed bumps and stop signs

The composite variables corresponding to the expectations in Eqs. (3.11a) and (3.11b) may
immediately be deduced as follows:

N̄b

(
Λs, P̃R, L̃R

)
,

nr∑

i=1

Λb|riΠRi

(
P̃R, L̃R

)
, (3.29a)

N̄s

(
Λs, P̃R, L̃R

)
,

nr∑

i=1

Λs|riΠRi

(
P̃R, L̃R

)
, (3.29b)

where the vectors Λb , [Λb|r1 . . . Λb|rnr ]
T, Λs , [Λs|r1 . . . Λs|rnr ]

T have been defined whose
elements Λb|ri , Λs|ri , i = 1, . . . , nr, represent the stochastic counterpart of the intensities λb|ri ,
λs|ri .
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Road roughness

The composite value for the road roughness may be derived starting directly with Eq. (3.13):

C̃r

(
C̃r, P̃R, L̃R

)
,

nr∑

i=1

C̃r|riΠRi

(
P̃R, L̃R

)
, (3.30)

where C̃r = [C̃r|r1 . . . C̃r|rnr ]
T collects the stochastic conditional mean roughnesses C̃r|ri ,

i = 1, . . . , nr.

Speed signs

The composite variable describing the distribution of the mean legal speed over the population
of missions encompassing an application may be derived from Eq. (3.15) and reads specifically

V̂
(
P̃V |r1 , . . . , P̃V |rnr , L̃V |r1 , . . . , L̃V |rnr , P̃R, L̃R

)
,

nr∑

i=1

nv|ri∑

j=1

vj|riΠV j|ri

(
P̃V |ri , L̃V |ri

)

×ΠRi

(
P̃R, L̃R

)
,

(3.31)

where the variables ΠV j|ri(P̃R, L̃R), j = 1, . . . , nv|ri , represent the stochastic counterparts of
the conditional stationary probabilities πV j|ri(PR,LR) for the speed signs.

Figure 3.3 illustrates the PDFs of the composite random variables for the road category, con-
cerning the Västra Götaland operating cycle parametrised in Paper C. In particular, it is inter-
esting to notice that the variables Py(y,ΣY , P̃R, L̃R) and Pκ(κ,ΛC ,MC ,ΣC ,ML,ΣL, P̃R, L̃R)
in Eqs. (3.25) and (3.28) only assume value in the range [0, 1]. This may be easily explained
by recalling that they should be interpreted as stochastic CDFs. Along with the actual
distributions, the mean value is also reported, computed both numerically (solid grey lines),
and estimated using a first-order approximation2 (dashed yellow lines).

Before moving to the treatment of the composite variable for the traffic density, it is
essential to realise that all the composite variables in the road category are correlated through
the stationary probabilities ΠRi(P̃R, L̃R), i = 1, . . . , nr for any value of nr > 1.

3.2.2 Traffic category

The traffic category includes a single model for the density. All the sOC parameters of such a
model are supposed to depend explicitly upon a given combination of speed signs and season.
However, since these parameters are usually estimated concerning certain geographical regions,
they may already be interpreted as averaged values over the application. Hence, the only
contribution to the traffic density variation over the population of missions is assumed to
come from those for speed signs and, consequently, road types.

2For a generic vector-valued function f(·) of random variables X = [X1 . . . Xn]T, its expectation may be
approximated as E(f(X)) ≈ f(E(X)) using the propagation of the uncertainty technique.
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Figure 3.3: Distributions of the composite variables, with estimated (solid grey lines) and approximated
(dashed yellow lines) mean values, concerning the Västra Götaland operating cycle: (a) road grade length
ration; (b) mean hill length; (c) expected number of curves; (d) curviness length ratio; (e) expected number
of stops; (f) mean legal speed. Figure adapted from Paper C.
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Traffic density

Owing to the premises above, the analytical expression for the composite variable corresponding
to Eq. (3.22) may be deduced to have the form

Pρt

(
ρ∗min, ρ

∗
max,µρ,ρd,ϕρd
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(3.32)

It should be observed that, even though it belongs to another category, the composite
variable for the traffic density is also correlated to those in the road section, again via the
stationary stochastic distributions ΠRi(P̃R, L̃R), i = 1, . . . , nr, and possibly also via the
random terms ΠV j|ri(P̃V |ri , L̃V |ri), j = 1, . . . , nv|ri .

3.2.3 Mission category

Apart from the cargo weight already considered, an additional stochastic model for the mission
length is introduced in the following, concerning entire transport applications.
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Cargo weight

The analytical formula for the composite variable corresponding to the mean cargo weight in
Eq. (3.24) may be deduced as
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(3.33)

where the variables MW , [MW |ξ1 . . . MW |ξnξ ]
T and ΣW , [ΣW |ξ1 . . . ΣW |ξnξ ]

T have been
defined, whose components represent the stochastic counterparts of the parameters µW |ξi and

σW |ξi , i = 1, . . . , nξ. Similarly, P̃Ξ , L̃Ξ denote the random version of the transition matrix

and mean length vector PΞ , LΞ , respectively. Finally, the generic ΠΞi(P̃Ξ , L̃Ξ) represents
the stochastic counterpart of the stationary probability πΞi(PΞ ,LΞ).

Mission length

A stochastic variable for the mission length is not technically a composite random variable;
nonetheless, it is discussed in this thesis since the mission length parameter is included in
both the GTA and UFD representations. In this context, it should be observed that it refers
to a population of missions, that is, a transport application. Indeed, no stochastic model is
required when considering road operations in isolation. The model presented here is based on
that developed in Paper C, and assumes that the mission length follows a Gamma distribution,
i.e., L̃m ∼ Ga(αL̃m

, βL̃m
), with Lm ∈ SL̃m

≡ R>0. This specific choice is motivated by the fact
that the sum of Gamma variables with the same rate parameter is still a Gamma variable.
For the case of mission length, all the realisations for a certain transport application would
be generated from a unique distribution, and thus any sequence of consecutive missions
would also obey the same law. This introduces some freedom in the definition of a mission
itself, which could be interpreted as a single trip associated with a specific task, as well as a
collection of trips or subtasks.

Actually, if a transport mission is defined as a single pick-up/delivery operation, then the
cargo weight model is already sufficient to describe the mission length if it is parametrised
concerning the whole transport application. Indeed, by assuming the same intensity parameter
for each operating state, every sequence of mission becomes may be modelled using a gamma
distribution, which is simply the generalisation of an exponential random variable. However, if
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Figure 3.4: Measured distribution and the analytical PDF and CDF of the mission length for the Västra
Götaland operating cycle: (a) probability density; (b) cumulative distribution. Figure adapted from Paper C.

different intensities are employed for each operating state, this is not true anymore, and then
the notion of a road mission should be specified a priori depending on the specific application.

Concerning the Västra Götaland operating cycle parametrised in Paper C, the comparison
between the empirical and analytical distributions for the mission length is shown in Fig. 3.4.

3.3 Specifying limits and thresholds

In Sect. 3.1, the notion of an operating class has been introduced based on the intrinsic
relationship existing between the sOC and bird’s-eye view descriptions. This concept has been
formalised by deriving analytical expressions connecting several subsets of sOC parameters to
the metrics and thresholds imposed by the bird’s-eye view representation. However, nothing
has been said about how to specify limits and bounds in an effective way. This is a rather
intriguing dilemma, that has been conventionally addressed by vehicle manufacturers by simply
relying on experience. Ideally, the bird’s-eye view thresholds should be instead prescribed
so as to yield a classification system that is optimally representative of the usage from the
perspective of energy efficiency, that is, an energy-metric-optimal (EMO) classification system,
as referred to as in Paper D.

To illustrate the general idea behind Paper D, a simple example may be adduced concerning
only the topography parameter, and in particular the road grade length ratio. Owing to the
additional simplification of having a unique road type, i.e., σY |r1 ≡ σY , the expression in Eq.
(3.3) simplifies to

P
(
|Y | ≤ y) = 2Φ

(
y

σY

)
− 1 (3.34)
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and hence the inequality in Eq. (3.2) may be recast directly in terms of standard deviation

σY,min ≤ σY < σY,max, (3.35)

where it has been defined

σY,min ,
y

Φ−1

(
py,max + 1

2

) , and σY,max ,
y

Φ−1

(
py,min + 1

2

) , (3.36)

being y fixed. Considering then a sequence of ñY intermediate limits between minimum and
maximum values σ̃Y,0 and σ̃Y,ñY +1, collected opportunely into a vector σ̃Y , [σ̃Y,1 . . . σ̃Y,ñY ]T,
a system of ñY + 1 classes may be specified similarly by setting

σ̃Y,i ≤ σY < σ̃Y,i+1, i = 0, . . . , ñY , (3.37a)

where σ̃Y,0 = σ̃0
Y and σ̃Y,ñY +1 = σ̃ñY +1

Y are assigned.
The objective would then consists in optimising the values of the intermediate thresholds

σ̃Y,i, i = 1, . . . , ñY so as to minimise the variation of a certain metric inside each class,
whilst maximising that between the different classes. This may be done systematically
by computing an appropriate function, and then evaluating its variation over the given
intervals. Since the OC format targets explicitly energy performance, the obvious choice
would be to consider a vehicle-independent mean energy function µEY (·) that, for a given
transport application, exhibits an explicit dependency solely upon σY . Assuming reasonably
µEY ∈ C1([σY,0, σY,ñY +1];R), its total variation over the interval i may thus be computed as
[133–136]

TVµEY ,i

(
σ̃Y
)

=

∫ σ̃Y,i

σ̃Y,i−1

∣∣∣∣∣
∂µEY (σY )

∂σY

∣∣∣∣∣ dσY , i = 1, . . . , ñY + 1. (3.38)

Consequently, the problem of building an EMO classification system may be formulated
as follows in minimisation form:

minimise
σ̃Y ∈RñY

fY
(
σ̃Y
)
,

subject to gY
(
σ̃Y
)
≤ 0,

(3.39)

where fY (·) = [fY,1(·) . . . fY,ñY +1(·)]T , [TVµEY ,1
(·) . . . TVµEY ,ñY +1(·)]T, and the functions

gY (·) = [gY,1(·) . . . gY,ñY +1(·)]T describing the inequality constraints are of the type

gY,i
(
σ̃Y
)

= σ̃Y,i − σ̃Y,i−1, i = 1, . . . , ñξ + 1. (3.40a)

In Eq. (3.39), the the inequality constraints gY (·) ≤ 0 ensure that any optimal (and, in fact,
feasible3) solution σ̃∗Y to (3.39) yields an ordered sequence {σ̃∗Y,i}ñYi=1 of limits σ̃∗Y,i ∈ [σ̃0

Y , σ̃
ñY +1
Y ].

3It should be noticed that the set SY , {σ̃Y ∈ RñY | gY (σ̃Y ) ≤ 0} is polyhedral and bounded, which
implies that the problem described by Eq. (3.39) is feasible [137].
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Hence, the minimisation problem described by Eq. (3.39) provides a useful method for building
an EMO classification system for road transport missions, concerning a fixed number of classes
ñY + 1.

For a multi-objective optimisation problem like that in Eq. (3.39), however, it is often
impossible to find a unique solution which would be simultaneously optimal for all the objective
functions, due to their inherently conflicting natures and their possible incommensurability
[78]. Therefore, the notion of optimality is usually replaced by those of Pareto-optimality or
efficiency. In this context, a common approach to recover Pareto-optimal solutions consists in
simplifying the original formulation, which is then reduced to a single-objective optimisation
problem by resorting, for example, to ε-constraint or weighting methods [78]. The latter
approach has been followed in Paper D, where the formulation above has been extended to
most of the road models discussed in Sect. 3.1. It is also important to clarify that, in Paper
D, the mean energy functions were deduced by generating virtual environments for different
values of the sOC parameters, and then performing complete vehicle dynamics simulations in
VehProp. The corresponding energy functions were then parametrised by considering different
vehicle configurations, for which the same trend could be observed. For example, a quadratic
trend with the standard deviation could be deduced4, i.e., µEY ∝ σ2

Y , under the assumption
that the contributions relating to different sOC parameters were simply additive.

The optimised bird’s-eye view thresholds obtained by solving the minimisation problem in
Eq. (3.39) are compared in Table 3.2 to those imposed by the GTA and UFD representations,
considering the same extremal values σ̃ñY +1

Y = 3.87 and 2.38, respectively. It may be noticed
that the intermediate limits differ considerably from those prescribed originally by the two
classification systems. In particular, the GTA description subdivides the interval [0, 3.87]
into segments of equal lengths, whereas some unprecise criterion is adopted by the UFD
codification. Instead, for a generic ñY , the optimal thresholds are specified according to the
progression

√
i/(ñY + 1)σ̃ñY +1

Y , i = 1, . . . , ñY .

4It may be realised that any function of the type f(x) = ax2 + b would yield the same sequence of
thresholds according to Eq. (3.39), provided that the same strategy is used to solve the original multi-objective
optimisation problem.
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Class Original UFD Optimised UFD

FLAT σY < 1.56 σY < 1.69

HILLY 1.56 ≤ σY ≤ 2.38 1.69 ≤ σY ≤ 2.38

V-HILLY 2.38 < σY 2.38 < σY

Class Original GTA Optimised GTA

FLAT σY < 1.29 σY < 2.23

P-FLAT 1.29 ≤ σY < 2.58 2.23 ≤ σY < 3.16

HILLY 2.58 ≤ σY < 3.87 3.16 ≤ σY < 3.87

V-HILLY 3.87 ≤ σY 3.87 ≤ σY

Table 3.2: Comparison between the original and optimised thresholds for the UFD and GTA classification
systems. The classes for both descriptions may be obtained by specifying σ̃ñY +1

Y = 2.38 and 3.87, with ñY = 1
and 2, respectively.



Chapter 4

Applications: from design
optimisation to virtual testing

In the previous Chaps. 2 and 3, the mathematical foundation of the operating cycle format
was outlined, and the relationships existing between the three levels of representation were
analysed in detail. In spite of the appearances, the construction of such a theoretical edifice is
not a sterile exercise and is in fact propaedeutic to more conventional studies concerning the
energy efficiency of road vehicles. Indeed, the applicability of the OC description extends to a
wide variety of applications, spacing from theoretical investigations, like pure optimisation,
to more practical situations requiring a strict interaction between the stakeholders. In this
context, the aim of the present chapter is to briefly comment on how the OC framework can
be used in practice concerning the entire process of optimal design and selection, and virtual
testing of commercial vehicles, with particular emphasis on the classification problem.

4.1 Vehicle design optimisation

The first phase concerns vehicle design optimisation, depending on the characteristics of the
transport application. This operation may be conducted by taking into account a number
of different factors, including road properties, weather and traffic conditions. Specifically,
vehicle manufacturers may optimise individual configurations by considering a combination of
classes, defined according to their internal bird’s-eye view descriptions, like, e.g., the GTA
and UFD systems adopted by Volvo and Scania1. Building upon the relationship between the
bird’s-eye view and sOC representations illustrated in Chap. 3, an sOC may be parametrised
that corresponds uniquely to each combination of classes. Moreover, the resulting sOCs may
be simulated to yield an equivalent description in terms of a dOC. In turn, the latter may be

1The very starting point would be the development of a suitable classification system, the existence of
which is not really questioned here. Possible methods to address this problem would be based on iterative
processes or similar arguments to that presented in Paper D and Sect. 3.3.

63
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added with a simple model for longitudinal vehicle dynamics to enable classic optimisation
routines. This would ultimately allow tailoring the vehicle design based on the characteristics
of the transport application, for which a representation is available concerning all three levels
of the OC format. For example, referring to the road and mission parameters listed in Table
B.1 in Appendix B, a total of 9216 different vehicle configurations may be obtained depending
on how the different classes interact, concerning both the GTA and UFD descriptions. A
similar procedure has been followed, for instance, in [25].

In the process outlined above, the most delicate step consists perhaps in the parametrisation
of a representative sOC concerning every combination of classes. Vehicle manufacturers may
easily succeed in such an operation using their internal datasets, which are usually assembled
from log data. Statistical indicators may be calculated for road missions translated into
the dOC and sOC formalisms, and then their representativeness may be evaluated based
on such indicators. For example, if the sOC parameters are treated as random variables
and their probability distribution is known, their conditional expectations (restricted, i.e.,
to a certain transport application interpreted as a given combination of bird’s-eye view
classes) may be estimated to parametrise a unique sOC. This expedient would assure the
mean performance to be optimised over any population of missions defining the application
itself, as corroborated by the findings in Paper C. To illustrate this concept, it may be
beneficial to introduce a vector XOCs collecting the relevant stochastic sOC parameters
entering the mathematical expressions for the composite variables that define the operating
classes. For example, restricting the attention to the road and mission parameters listed
again in Table B.1, for which specific values are available concerning the bird’s-eye view
metrics imposed by the GTA and UFD descriptions, such a vector may be constructed
as XOCs , [P̃R L̃R Σy . . . P̃V |r1 . . . P̃V |rnr L̃V |r1 . . . L̃V |rnr L̃m]T. Assuming that the
distributions for the random sOC parameters collected in XOCs may be estimated, e.g., from
log data or external sources, the conditional distributions of the composite variables are
also known, at least numerically. Consequently, the mathematical mean of the vector XOCs ,
conditioned to a certain transport application, may be defined as µTC

XOCs
, ETC(XOCs).

The problem of designing an energy-efficient vehicle translates then into minimising
the mean energy consumption calculated over the population of missions encompassing the
transport application. In this context, the existence of a function fE(·) may be postulated
describing the mean energy consumption (i.e., averaged concerning a given set of sOC
parameters) for a certain vehicle configuration. In general, the mathematical expression for
such a function may not be known analytically, but it might reasonably be expected to be
deterministic, and dependent solely upon the sOC parameters, the vehicle’s specifications,
and possibly the driver’s behaviour. Then, treating the sOC parameters as random variables
as already done in Sect. 3.2, its conditional expectation over the relevant population of
missions may be approximated as ETC(fE(XOCs)) ≈ fE(ETC(XOCs)) ≡ fE(µTC

XOCs
) using the

propagation of the uncertainty technique. This result, which may perhaps appear trivial,
asserts that the average energy performance may be estimated simply by simulating an
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adequately large number2 of dOCs generated from a single representative sOC, parametrised
by the conditional mean vector µTC

XOCs
. Hence, a vehicle configuration whose consumption is

minimised over a set of missions generated from such a unique sOC would also be optimally
designed (at least on average) concerning the whole transport application. This observation
allows to considerably reduce the number of required simulations which need to be run during
the optimisation phase, with obvious advantages in terms of computational cost, whilst at the
same time avoiding overfitting. Moreover, since the approximation discussed above is valid
for any other function, it may be conjectured that, in order to estimate the mean value of a
quantity in interest, simulating an appropriate number of dOCs originating from such a unique
representative sOC may always be sufficient. Except for the advantage of minimising the risk
of overfitting, another aspect justifies this strategy: individual dOCs synthesised stochastically
may not be completely realistic. Instead, simulating a large number of dOCs would smoothen,
on average, the effect of unlikely scenarios on the predicted energy performance.

In this context, is also worth mentioning that the dimension of the optimisation problem
may be reduced even further by considering a few (possibly a single) representative dOCs
instead of an entire population. However, since dOCs generated from the same sOC are statis-
tically equivalent, the selection of a typical dOC would require measuring representativeness
in terms of energy performance instead. This may be done by first simulating different vehicle
configurations considering the given population of missions, and evaluating the statistical
distributions of their energy performance. Then, a few dOCs may be designated corresponding
to energy performances that are sufficiently close to the mean value. In this process, there is
again no guarantee that such dOCs would be completely realistic. An alternative possibility
would then consist in constructing dOCs starting directly from log data, thus avoiding the
intermediate step of parametrising an equivalent description in terms of an sOC.

4.2 Optimal selection

The second phase concerns the optimal selection of single vehicles or entire fleets, based on
the available information about the intended usage, possibly integrated with other criteria
specified by the customer. This operations heavily relies on the relationship between the
bird’s-eye view and sOC levels of representation. In fact, if a large optimisation problem
has been solved as described in Sect. 4.1, it merely reduces to that of classifying a certain
transport application, and should hence be addressed concerning individual road operators.
To this end, two complementary strategies are envisioned.

I. If log data are available for a specific customer, individual missions may be converted
into the dOC and sOC formalisms. In this way, the stochastic parameters needed to
properly classify the transport application would be estimated directly without the need
of interacting explicitly with the stakeholders.

2Typically, around 300.
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II. If log data are not available, a preliminary understanding of the intended application
may be gained by resorting to questionnaires, to be answered either online or physically.
The questions should be formulated so as to allow a conversion from the bird’s-eye view
to the sOC representation, and vice versa. The process should ideally involve active
participation from the stakeholders, which may include not only the final customer but
also, e.g., drivers.

There are numerous advantages connected with the availability of log data. The first one is
that the procedure for extracting the sOC parameters may be easily automatised. Indeed, for
most of the road models presented in Sect. 2.2.1, the estimation may be carried out starting
from available signals measured by onboard sensors. In this process, standard open-access
tools may be used, like the WAFO3 package implemented in MATLAB®. On the other hand,
detailed information about weather and traffic conditions is often not available directly from
log data and must be supplemented using external sources. This can be certainly done if the
GPS coordinates and the exact daytime of the mission are known. The most intuitive and
simple choice is perhaps to resort to external databases which offer data free to download.
Some examples are the SMHI service and Trafikverket database, which collect weather and
traffic data at a fixed time resolution (usually one hour). This is particularly practical when
it comes to analysing transport operations taking place within a well-defined geographical
area, for which the weather parameters can be assumed to remain approximately constant in
space. If the road operations extend into a larger area, an option is to build a weather map
by combining information collected from several stations. The interaction with third actors
like Here and Klimator may be also desirable since they would be able to integrate quantities
deducible from log data with additional information required to estimate the sOC parameters
for the weather and traffic models.

The relationships derived in Sect. 3.2 provide the analytical expressions for the stochastic
variables involved in the characterisation of an entire transport application. In particular, to
properly address the classification problem, the definition of a random vector is required that
should condense all the information (in terms of composite variables) necessary to qualify
the transport application according to the specific bird’s-eye view description in use. This
is necessary since the composite variables are usually correlated via the simple stochastic
counterparts of the sOC parameters. For example, concerning the GTA codification for the

3Available from: http://www.maths.lth.se/matstat/wafo/.

http://www.maths.lth.se/matstat/wafo/
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parameters specified in Table B.1, such a vector may be defined as

XGTA(XOCs) ,




Py

(
3,ΣY , P̃R, L̃R

)

Py

(
6,ΣY , P̃R, L̃R

)

Py

(
9,ΣY , P̃R, L̃R

)

L̃h

(
L̃h, P̃R, L̃R

)

Pκ

(
0.008,ΛC ,MC ,ΣC ,ML,ΣL, P̃R, L̃R

)

N̄s

(
Λs, P̃R, L̃R

)

C̃r

(
C̃r, P̃R, L̃R

)

V̂
(
P̃V |r1 , . . . , P̃V |rnr , L̃V |r1 , . . . , L̃V |rnr , P̃R, L̃R

)

L̃m




, (4.1)

whereas for the UFD representation it may be constructed as

XUFD(XOCs) ,
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, (4.2)

where XOCs has already been introduced in Sect 4.1.
Departing from Eqs. (4.1) and (4.2), a transport application may be classified either

by computing numerically the expectations of the random vectors XGTA and XUFD, or
alternatively by resorting again to a first-order approximation based on the propagation
of uncertainty method4, i.e., E(XGTA(XOCs)) ≈ XGTA(E(XOCs)) ≡ XUFD(µXOCs ) and
E(XUFD(XOCs)) ≈ XUFD(E(XOCs)) ≡ XUFD(µXOCs ). The latter approach may be even-
tually preferred to avoid performing large Monte-Carlo simulations, and would moreover
enable the synthesis of a unique representative sOC describing the entire application. In this
context, the main reason to consider the mathematical expectation resides in the semplicity
of such a choice5; however, there are also other strong arguments that support the adoption

4Here the expectation is calculated over the population of missions concerning a given road operator or
customer, so it is not interpreted as conditioned to a certain transport application.

5For example, it is relatively easy to estimate numerically, or by resorting to some analytical approximation,
the expectation of a vector-valued composite variable collecting a combination of the composite variables
introduced in Sect. 3.2. Additional difficulties could be encountered if other functionals for the individual
composite variables were instead considered, given that most of them are correlated.
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Description Composite variable Estimated Approximated Relative Unit
expectation expectation error

Road grade length ratio

Py(2,ΣY , P̃R, L̃R)

Py(3,ΣY , P̃R, L̃R)

Py(6,ΣY , P̃R, L̃R)

Py(9,ΣY , P̃R, L̃R)

0.761
0.893
0.989
0.998

0.720
0.887
0.996
0.999

5.39%
0.68%
0.71%
0.10%

-

Mean hill length L̃h(L̃h, P̃R, L̃R) 728 748 2.75% m

Number of curves N̄ ′C(0.008,ΛC ,MC ,ΣC , P̃R, L̃R) 2.892 2.780 5.57% km−1

Curviness length ratio Pκ(0.008,ΛC ,MC ,ΣC ,ML,ΣL, P̃R, L̃R) 0.823 0.840 2.07% -

Number of stops N̄s(Λs, P̃R, L̃R) 0.224 0.168 25.00% km−1

Mean legal speed V̂ (P̃V |r1 , . . . , P̃V |rnr , L̃V |r1 , . . . , L̃V |rnr , P̃R, L̃R) 75.61 79.65 5.34% km h−1

Table 4.1: Estimated and approximated expectations for the composite variables of Sect. 3.2.

of such a criterion, like that already presented in Sect. 4.1 and in Paper D.

As an example, Table 4.1 reports the error committed by the first-order approximation
concerning the Västra Götaland operating cycle developed in Paper C, whereas Table 4.2
lists the set of sOC parameters for the single representative sOC parametrised using the
mean vector µXOCs . Moreover, considering both the GTA and UFD classification systems, the
marginal PMFs for the road transport missions comprised in the Västra Götaland application,
concerning the legal speed, mission length, and topography (only via the road grade length
ratio) parameters is illustrated in Fig. 4.1. According to both the approaches outlined above,
the entire transport application is labelled as MEDIUM/L-DISTANCE/P-FLAT by the GTA, and
as HIGH/L-DISTANCE/HILLY by the UFD, with respect to the speed signs, mission length, and
topography parameters (see Table B.1). Clearly, by visual inspection, it may be realised the
overall application spans also other combinations of classes than those which is assigned to.
In the very same context, the discrepancy between the labels assigned by the GTA and UFD
representations is symptomatic of the fact that a non-unified interpretation of the operating
environment may yield completely different results in terms of classification, and indirectly of
optimal vehicle design to be selected concerning a certain application. This aspect intimately
relates to the notion of representativeness discussed exhaustively in Paper C.

Another advantage connected with the availability of log data is that the conversion of
information between the bird’s-eye view and sOC representations is not required when dealing
with the stakeholders. This aspect is particularly important since it eliminates the additional
uncertainty deriving from the perception of individual drivers and road operators, which may
not share the same interpretation of the external surroundings. Moreover, recalling that the
relationship between the bird’s-eye view and sOC descriptions is not bijective and that the
resolution of the former is much lower than that of the latter, small discrepancies between the
customers’ perception and the actuality would potentially lead to misclassifying the transport
application. In turn, this may obviously have detrimental implications concerning the selection
of the optimal vehicles or fleets. By contrast, if the sOC parameters are known for all the
road missions defining a certain application, the operating classes defined according to the
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Model Parameter Value (per road type) Unit

Urban Rural Highway

Road type
LRi 1.38 6.77 7.57 km

pRij

[
0 0.89 0.11

] [
0.55 0 0.45

] [
0.11 0.89 0

]
-

Speed signs
vi|rk

[
30 40 50

]T [
60 70 80

]T [
90 100

]T

km h−1

LV i|rk

[
0.54 0.49 1.44

]T [
0.97 1.36 6.47

]T [
7.00 1.83

]T

km

pV ij|rk




0 0.48 0.52
0.49 0 0.51
0.45 0.55 0







0 0.54 0.46
0.32 0 0.68
0.22 0.78 0




[
0 1
1 0

]
-

Stop signs
λs|ri 1.18 0.10 0.06 km−1

tmin|ri 21.00 19.75 34.50 s
tmax|ri 277.00 95.19 64.79 s

Curviness

λC|ri 6.59 1.92 0.89 km−1

µC|ri 4.27 4.86 5.07 ln m
σC|ri 1.03 0.92 0.82 ln m
rturn 12.5 12.5 12.5 m
µL|ri 3.92 3.91 3.79 ln m
σL|ri 0.65 0.59 0.54 ln m

Topography
Lh|ri 291 811 739 m
σY |ri 2.30 1.76 1.58 %

Table 4.2: Parameters for a single representative sOC, parametrised by the vector-valued mean µXOCs
.
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(a) Joint PMF for the mission length and road grade parameters, according to the GTA
(left) and UFD (right) classification systems.

(b) Joint PMF for the mission length and legal speed parameters, according to the GTA
(left) and UFD (right) classification systems.

(c) Joint PMF for the mission length and curviness parameters, according to the GTA (left)
and UFD (right) classification systems.

Figure 4.1: Joint PMFs for different combination of parameters according to the GTA (left) and UFD
(right) bird’s-eye view representations: (a) mission length and road grade; (b) mission length and legal speed;
(c) mission length and curviness. The distributions refer to the Västra Götaland operating cycle. Figure
adapted from Paper C.
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bird’s-eye view description may be uniquely deduced as explained in Sect 2.4.1, without any
loss of information.

Finally, once an optimal vehicle or fleet has been selected for a given transport application,
the energy performance may be tested in a virtual environment considering a population of
missions.

4.3 Virtual testing

The last phase concerns virtual testing of optimised configurations or prototypes, considering
a more accurate description of the transport application that explicitly accounts for the
inherent variation between individual missions. This process exploits the connection between
the sOC and dOC descriptions. In particular, similar to what was discussed in the previous
Sect. 4.2, two different possibilities may be identified:

I. If log data are available from a specific customer or operator, the performance of an
optimally selected vehicle or fleet, according to the processes outlined in Sects. 4.1 and
4.2, may be assessed considering the real distribution of road missions for that specific
application, starting from a fully-parametrised population of sOCs.

II. In absence of log data from a specific customer, vehicle and fleet may be tested considering
virtual representations of a typical transport application (described in terms of a single
or multiple sOCs) for, e.g., a certain geographical area, parametrised starting from other
sources.

Clearly, the first option would provide a customer with more accurate information about
how much the performance can deviate from the optimal target. Concerning instead the
second option, typical transport applications tailored to specific markets or geographical areas
may be parametrised, for instance, starting from data logged from other road operators active
in the same region. Additional information about the characteristics of the intended usage may
also be supplemented by external sources, including services similar to the above-mentioned
SMHI and Trafikverket. Generally speaking, vehicle manufacturers such as Volvo and Scania
do have access to large databases that enable them to parametrise regional applications in
terms of sOCs. In the context of the present thesis, the Västra Götaland operating cycle
developed in Paper C may be adduced as an emblematic example of such a description.

Starting from a fully parameterised sOC, a virtually infinite number of dOCs may be
synthesised and integrated with dynamic models for the vehicle and the driver. In this
way, performance may be assessed by exploiting the natural connection between the two
levels of representation. Remarking again that two dOCs originating from the sOC are only
statistically equivalent, it is worth observing that simulating a complete vehicle model would
then produce a distribution in performance rather than a scalar metric. This is represented
graphically in Fig. 4.2.
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Figure 4.2: A stochastic operating cycle (sOC) may be used to synthesise different deterministic realisations
(dOCs) which share the same statistical properties. The distribution in performance produced by a specific
combination of sOC parameters and vehicle’s specification may be evaluated by simulating each dOC and
clustering the output data. Figure adapted from Paper A.

In the same context, it should be mentioned that virtual testing may be performed
concerning either an entire population of sOCs or a single parametrisation, built opportunely
so as to be representative of the whole application. This may again be done by estimating
numerically or analytically the mean values for the sOC parameters interpreted as random
variables. If the objective consists in predicting the mean performance for a certain application,
both options are viable and ultimately equivalent, according to the discussion in Sect. 4.1 and
Paper C. Indeed, simulating a unique sOC parametrised using the expected values for the sOC
parameters would again ensure the consistency of the estimated mean performance according
to both methods. A proper assessment of the variation in performance would instead require
considering all the individual missions that define the application. Concerning the Västra
Götaland application developed in Paper C, an example of the discrepancy between the
two strategies is illustrated in Fig. 4.3, where the distribution of CO2 emissions obtained
by considering a unique reference sOC, parametrised according to the values reported in
Table 4.2, is compared to that produced by simulating the complete population of missions.
Unfortunately, whilst the mean emissions almost coincide, analogous considerations cannot
be extended to other statistical indicators like the variance. However, it should be clarified
that, in the context of virtual testing, reducing the dimension of the problem, particularly
the number of simulations to be run, is not as crucial as in the optimisation phase.



4.3. Virtual testing 73

Figure 4.3: Distribution of CO2 emissions estimated in simulation by generating dOCs according to both
the entire transport application (blue histogram) and the reference sOC (orange histogram). Figure adapted
from Paper C.





Chapter 5

Discussion, conclusions and future
research

The present chapter summarises the main results of the thesis, also providing an outlook on
future research.

5.1 Discussion and conclusions

In the introducory chapter, four main research objectives were identified. The first three
were related to the representation, variation, and classification problems and were mainly
theoretical in nature; the fourth concerned the practical usefulness of the OC description,
in conjunction with its concrete applicability. The formulation of these four problems was
motivated by the necessity of developing more energy-efficient vehicles, in order to contrast the
threat posed by climate change and support the development of a sustainable transportation
system.

To address the representation and variation problems, the OC format has been extended to
include new stochastic models and parameters for the weather, traffic and mission categories.
These have been introduced in Paper A and E, respectively, and discussed in more general
terms in Chap. 2. To establish a continuity with the original sOC formulation, relatively simple
descriptions, based, e.g., on Markovian and autoregressive processes, have been preferred.
The outcome is an enriched collection of stochastic models and parameters, which can be
used to describe the statistical properties of a transport mission. The enhanced framework
has been conceived to allow for modularity and to preserve the mutual independence between
the preexisting road models and the new ones. At the same time, parsimony has been
achieved by defining a new primary model for the weather category: seasonality. In this
way, it has been possible to introduce a high level of diversification without resorting to
complicated multivariate distributions. Starting from the novel sOC description, synthetic
operating cycles may be generated which are able to reproduce dynamically the weather
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and traffic characteristics. These may be used as a virtual environment for detailed vehicle
dynamics simulations. For example, an investigation of the effect of the weather and traffic
settings on the vehicle’s performance has been presented in Paper A. More specifically, a
categorical analysis has been made to assess the influence of seasonality and traffic regime
(free or congested) on CO2 emissions. It has been shown that both factors play a major
role in determining the vehicle’s response, but simulation results have not been corroborated
experimentally. The principal reason why the study has been limited to the theoretical domain
is that information about weather and traffic conditions is generally not available from log
data and needs to be supplemented by external databases. In any case, similar studies to
that conducted in Paper A may be carried out concerning other performance indicators than
energy efficiency.

The classification and variation problems have been simultaneously addressed in Paper B,
where the connection between the bird’s-eye view and sOC representations has been explored
in detail. By taking inspiration from two existing descriptions in use by vehicle manufacturers,
namely the GTA and UFD systems, a method to statistically analyse and classify road
transport missions and applications has been proposed. The suggested approach exploits
the non-bijective relationship between the two above-mentioned levels of the OC format and
allows one to qualify road missions based on physical quantities that are easy to estimate and
interpret. More specifically, the notion of an operating class has been introduced in Paper B,
which consists of a mathematical relationship connecting the sOC parameters to the bird’s-eye
view metrics and thresholds. The method has been exemplified considering a number of
individual road operations, as well as entire transport applications. In the same context
outlined above, it is worth observing that the limits imposed by the GTA and UFD systems
are sometimes ambiguous, and it is also unclear how they have been specified. Therefore,
concerning the pure classification problem, a technique to optimally prescribe thresholds for
certain classes of parameters, summarised concisely in Chap. 3, has been first proposed in
Paper D. The envisioned method departs from the definition of some vehicle-independent
energy metrics to maximise the variation in performance amongst a target number of classes
and relies again on the relationship existing between the bird’s-eye view and the sOC.

The representation, variation and classification problems have also been dealt with in
Paper C, in which an OC complete with all the stochastic road models discussed in Sect.
2.2.1 has been parametrised starting from log data collected from vehicles operating in
the region of Västra Götaland, Sweden. In Paper C, the potential of the OC has also
been exemplified concerning real applications, including certification of early prototypes and
production planning. These aspects relate to the fourth research question formulated in the
present thesis and formalised in the so-called application problem. The discussion initiated
in Paper C has been further extended in Chap. 4, considering the applicability of the OC
machinery to the entire process of product development, optimal selection, and virtual testing
of commercial vehicles, depending on the characteristics of the intended application. In
particular, it was argued that the three levels of description comprised in the OC format,
namely the bird’s-eye view, the sOC and the dOC, can cooperate synergically to assist
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vehicle manufacturers in the design of more energy-efficient vehicles. In this context, the
preliminary optimisation phase outlined in Sect. 4.1 requires an accurate description of the
entire application to which the vehicle should be tailored. It has been shown, using a simple
mathematical argument, that the dimension of the problem may be enormously reduced by
considering a mean sOC in place than the actual distribution of missions encompassing the
application. Even resorting to this expedient, the optimisation process may be expected to
be computationally expensive. The recent trend towards quantum computing may offer an
adequate solution to tackle the problem in a few years.

5.2 Future research

Thus far, this thesis may appear to be an apology for the operating cycle description. Quite
the contrary, it should be regarded instead as a constructive criticism of the OC concept.
Indeed, there are still numerous issues to tackle, and enormous margins for improvement.

To start, one of the greatest limitations of this work is connected with the difficulty to
provide a unique, scientific method to classify road transport missions. Taking inspiration
from the GTA and UFD representations, the duality between the bird’s-eye view and the
sOC has been explored to a large extent, but it is still unclear whether this approach is
generally good, or can be significantly improved. The metrics and labels used so far have been
demonstrated to be representative of variations in usage, but this is not necessarily reflected in
variations in performance. Moreover, it would be amenable for all the interacting stakeholders
who take part in the development, selection, testing and certification processes to share a
unique classification system. This aspect intimately relates to the notion of representativeness
introduced in Paper D, and highlights the need for a unified description of a transport
mission. Whilst there is no current scientific evidence that the GTA and UFD descriptions
may effectively support the internal processes of vehicle manufacturers, empirical findings
may eventually corroborate this hypothesis.

How to choose metrics and thresholds is an open and interesting question. As shown in
Paper D, one choice could be to formalise it as an optimisation problem and then solve it
analytically or numerically. This however implies the need to identify vehicle-independent
metrics. Alternative approaches may reveal to be more suited for this purpose. Currently,
vehicle manufacturers like Volvo and Scania have access to an enormous database that provides
detailed information about the distribution of sOC parameters amongst different transport
applications. In fact, understanding how the sOC parameters vary over entire populations
of missions is crucial when it comes to specifying metrics and thresholds in a way that is
independent of the vehicle’s design, in accordance with the very fundamental philosophy
animating the OC framework.

Descending the hierarchical ordering of OC representations, another intriguing option
concerns the stochastic modelling of the mission properties. So far, statistical models have
been introduced almost exclusively for the road, weather and traffic categories. A first attempt
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to develop an equivalent description for the mission properties has been made in Paper E,
limitedly to the cargo weight parameter. With few exceptions [64, 65], stochastic approaches
are not common in this context, and therefore this could potentially represent a research
topic even in isolation. Furthermore, there is the tangible risk that stochastic models for the
mission might not be developed to be completely independent of the vehicle itself. This was
also evident concerning the stochastic model for proposed in Paper E, which was developed
based on a specific vehicle topology. Indeed, whilst the road, the weather and the traffic
are separate entities which exist before the transport operation, vehicles are developed with
a specific purpose in mind. From this perspective, the problem is soon complicated when
considering that the mission properties should probably be estimated from log data, implying
unavoidably some sort of contamination. The question seems to be rather delicate, and
dedicated approaches may be required to overcome these difficulties. Eventually, the same
building principles of the OC description might contrast with the need for stochastic modelling
of the mission. Another important add-on to the current version of the framework would
include the external infrastructure, in primis fuel and charging stations. Whether to include
these features amongst the road parameters is debatable, but the need for stochastic models
is quite obvious, especially in conjunction with the possibility of using the OC format for
optimisation analyses online (see, e.g., [23–25, 87]). Furthermore, in this thesis, as well as in
the appended paper, the weather models have been consistently assumed to be independent of
the road type. This simplification may be removed to improve the accuracy of the description,
for example considering that in urban areas the air temperature may increase due to the
presence of conditioning systems, or using different parameters for the logarithmic speed
profile of the wind.

Finally, by exploiting the inherent uncertainty of the sOC representation, the methods of
stochastic calculus may be applied to model the longitudinal dynamics of vehicles stochastically,
specifically using a system of stochastic differential equations (SDEs) [138, 139]. This approach,
very innovative and peculiar concerning the context explored in this thesis, would eventually
not be dissimilar to those adopted in some branches of physics, like molecular dynamics and
quantum mechanics. From this perspective, a particularly interesting opportunity would reside
in the fact that, starting from an SDE-based formalism, a Fokker-Planck equation may be
derived describing the PDF of the required power output along the vehicle’s trajectory [140],
depending on the stochastic behaviour of the road and traffic parameters1. This information
may be then converted into a certain distribution concerning the total energy consumption,
enabling faster estimation than simulating a large number of sOCs and dOCs, as well as the
synthesis of a refined classification system according to the principles discussed in Sect. 3.3.
This research line, combining methods and analytical tools from PDE and SDE theories with
the theoretical foundation of the sOC, has recently started and is currently ongoing.

Concerning the dOC description, there are several chances for improvement. All the vehicle
models used in this thesis are in fact very simple, with a reduced number of components.

1For example, the simple AR(1) model used for topography may be approximated exactly by a continuous
Ornstein-Uhlenbeck process for any value of the sampling length Ls.
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There is nothing really new in this direction, however, and the development of more realistic
models should definitely not represent the true core of future research. The driver constitutes
perhaps the unique exception. At present, the model is split into a tactical and operational
part, as detailed in Appendix A.2. The former interprets the external stimuli coming from the
environment and translates them into the desired speed input. Mathematical relationships
have been derived only for some dOC parameters (curviness, speed bumps, legal speed, traffic
density), but other factors might be influential as well. This is the case, for example, of
precipitation amount: a driver may prefer to travel slower in case of heavy rain. Understanding
the correlation existing especially between some weather parameters and the speed set by
the driver is an involving task. It may be anticipated that some relationships will need to be
established starting from empirical evidence rather than deductive principles. In this context,
it would be crucial to collect a large amount of data to make a statistical inference, or to
perform dedicated experiments. Virtual settings built in a driver simulator are mainly effective
to study the influence of road parameters, but other approaches could be advantageous when
it comes to weather or traffic. A preliminary effort has been already made in this sense, but
both aspects need to be explored more in detail. The operational module of the driver is
instead based on a simple PID controller, which tries to replicate human behaviour during
normal driving conditions. A possible direction for future research would be to account for
different driving styles. In fact, several studies have shown that it is possible to distinguish
amongst different driver categories (aggressive, mild, etc.), but at present only one generic set
of parameters is used.

The last direction which should be indicated is more broadly connected with the overall
idea behind the OC concept. As remarked throughout the whole thesis, the format has been
conceived to assist vehicles manufacturer in product development, from the early stage to
the sale phases. Possible applications in the context of product development, selection, and
testing have been extensively discussed. However, the applicability of the OC format should
not be limited to virtual models of physical products. Algorithms and control strategies may
be effectively tested and validated in simulation environments. An opportunity for future
research resides therefore in the possibility of using the OC description (or some methods
and tools borrowed from it) for online estimation. The idea has only been formulated in
embryonic form, but can be worthy of further investigations.





Appendix A

VehProp

VehProp is a modular, open platform for simulations of longitudinal vehicle dynamics. It
classifies as a simplified version of the virtual environments adopted internally by vehicle
manufacturers and consists of three main modules that interact dynamically: the operating
cycle, the driver, and the vehicle itself. It was originally developed to conduct studies on
powertrain efficiency and has been gradually improved over the years to allow more extensive
investigations concerning longitudinal motion. The present appendix provides an introduction
to VehProp to the extent that is necessary to understand the thesis, as well as the findings of
the appended papers.

A schematic of the three models included in VehProp, along with a typical workflow of
signals, is illustrated in Fig. A.1.

A.1 Operating cycle model

The first model discussed here is that of an OC. By acting in cooperation with the vehicle
and driver models, this should be able to translate the static information encoded in the dOC
into dynamic signals. This operation is executed by interpolating between the sequences of
values for each physical quantity, based on either time, position, or both. More formally,
denoting the dynamic values of the dOC parameters by OCdyn, an interpolator operator may
be defined as Idyn : OCd 7→ OCdyn. The parameters relating to the road category only depend
on the position of the vehicle along the route, whereas the quantities in the weather category
are assumed to only vary with time for the sake of simplicity. Conversely, the parameters
labelled as traffic and mission may exhibit strong dependencies on time and position and
hence require both as input.

In addition, concerning the mission category, the current value of the vehicle’s speed
is necessary to separate the two opposite situations of standstill and motion, which are
handled via a state machine. This separates the two behaviours by scanning through the dOC
mission parameters and extracting all the standstill events in a sequence of action matrices.
The action matrices describe the actions to execute whilst at standstill. The resulting lean
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Figure A.1: Schematic representation of the three main modules comprised in VehProp, with a typical
workflow. Figure adapted from Paper A.

mission parameters depend explicitly only upon the position along the trajectory, whereas
the information encoded in the action matrices is only made dependent on time. The current
implementation of VehProp involves two different modules for motion and standstill. The
state machine deliberates which one should be active and keeps track of which action matrix
to use. The standstill time consists of the total duration of all the actions that need to
be executed during the stops, whereas the stop zone defines the effective length of the site.
Additional details are given in [18].

A.2 Driver model

In VehProp, the driver model mainly serves as a connection between the dynamic OC model and
the vehicle. It must interpret the information concerning the operating environment, originally
encoded in the dOC format and then opportunely translated into dynamic parameters, into
control actuator signals. To this end, it is split into a tactical and an operational part. The
former interprets the OC parameters based on simplified physical models and converts them
into a desired speed input for the operational driver. The underlying assumption is that
the driver wants to travel as fast as possible, in compliance with legal and comfort criteria.
Therefore, at each time step and position, the final desired speed vd is chosen as:

vd = min
(
vsign, v

′
sign, vκ, v

′
κ, vb, v

′
b, vstop, v

′
stop, vt, v

′
t

)
, (A.1)

where the generic vp is function of the dynamic OC parameters, i.e., vp = fp(OCdyn). More
specifically, the speeds vsign, vκ, vb and vstop correlate with the legal speed limit, road curvature
κ, speed bumps and stops, respectively. Concerning the stop signs, the corresponding desired
speed is automatically set to zero, i.e., vsign = 0. The functions fp(·) corresponding to
the desired speeds for curvature and speed bumps are given in [75] and reported here for
completeness.
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Starting with the curvature, it is assumed that the driver has a maximum lateral accelera-
tion limit,

∣∣ay
∣∣ ≤ amax

y , above which they are not comfortable driving. A simple kinematical
relationship implies

vκ(κ) =

√
amax
y

κ
. (A.2)

Concerning the speed bumps, an empirical formula is used based on the results reported
in [141], in which was found that a mean speed V̄b may be observed for a a certain bump type
with given height, length and geometry. Accordingly, the equation is postulated as follows:

vb(β) = C1
π/2− β

β
+ C2, (A.3)

where β denotes the angle describing the bump deflection, and C1 and C2 are two constants
chosen such that vb(β0) = V̄b and vb(π/2) = V min

b .

An expression for the traffic speed vt has been introduced in Paper A and is based on an
equilibrium equation relating the traffic density and the flow speed, according to

vt(ρt) = vf

(
1− ρt

ρc

)
, (A.4)

where vf represents the free-flow speed, i.e., the traffic speed corresponding to have almost no
vehicle on the road, and ρc is the critical density.

Furthermore, for each speed vp, a corresponding dynamic value is calculated as

v′p =
√
vp,i+1 − 2amax

x (xi+1 − x), (A.5)

where x is the current position, xi+1 the next (discrete) position at which the speed vp changes
value, and amax

x denotes the maximum lateral acceleration threshold. Once the desired speed
has been set, the operational part of the driver computes the difference between the desired
and the actual speed to produce the pedal outputs ap, bp ∈ [0, 1]. In paper A, as well as in
the current implementation of VehProp, the operational part of the driver is modelled using a
PID controller. Specifically, the expressions for ap and bp read as follows:

ap =
1

2
fPID(vd − vx)

[
1 + sgn

(
fPID(vd − vx)

)]
, (A.6a)

bp = −1

2
fPID(vd − vx)

[
1− sgn

(
fPID(vd − vx)

)]
, (A.6b)

where fPID(·) is the function describing the PID control law.

A graphical illustration of the driver module, together with the input and output quantities,
is given in Fig. A.2.
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Tactical
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Driver model

[vsign κ ρt . . . ]
T

[ap bp]
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x

vx

Figure A.2: Schematic representation of the driver model. The inputs to the module are the vehicle’s
longitudinal speed and position [vx x]T and the dynamic OC parameters OCdyn which determine the speeds
in Eq. (A.1). The outputs are the acceleration and brake pedal positions [ap bp]T. Figure adapted from Paper
A.

A.3 Vehicle model

The model used in the current implementation of VehProp approximates the vehicle with a
point-mass and neglects the tyre slip. Owing to these assumptions, the total longitudinal force
acting at the tyres’ contact patch may be deduced as Fx = (Td − Tb sgn(vx))/Rw, where Td

and Tb are the total driving torque reported at the wheels and the braking torque, respectively.
Therefore, the governing equations for the longitudinal vehicle dynamics can be derived as
follows:

m∗v̇x =
Td − Tb sgn(vx)

Rw

− Fgrade − Froll − Fair, vx 6= 0, (A.7a)

Fb = Fgrade + Froll + Fair −
Td

Rw

, |Fb| ≤
Tb

Rw

, (A.7b)

where m∗ = m + Jw/R
2
w is given by the total mass of the vehicle plus the sum of the

reduced rotational inertias Jw, Rw is the wheel radius, vx its longitudinal speed, Fgrade is the
longitudinal projection of the gravitational force in the vehicle reference frame, Froll is the
rolling resistance, and Fair the drag force. The resistive forces appearing in Eq. (A.7a) read
specifically

Fgrade = −mg sinα, (A.8a)

Froll = frmg cosα, (A.8b)

Fair =
1

2
ρairCdA

∣∣∣vrel
x

∣∣∣ vrel
x , (A.8c)
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where α is the road slope angle defined according to ISO 8855, fr is the rolling resistance
coefficient, ρair the air density, Cd the drag coefficient, A the effective frontal area and vrel

x is
the relative speed between the vehicle and the wind. Equations (A.7a) and (A.7b) are valid
under normal driving conditions and at standstill.

The torques Td and Tb in Eqs. (A.7) are calculated starting from the engine torque Te

and the output from the operational part of the driver as

Td = ηtigiFD

(
Te −

PPTO

ωe

)
, (A.9a)

Tb = Tmax
b bp, (A.9b)

where ig and iFD are the gear ratio and final drive gear, and ηt is the overall efficiency of the
transmission. In turn, the engine torque Te is modelled using steady-state maps as a function
of the engine speed ωe and fuel injection q:

Treq = Tmax
e ap, (A.10a)

q = fq
(
ωe, Treq

)
, (A.10b)

Te = fT (ωe, q) , (A.10c)

where the mappings fT (·, ·) and fq(·, ·) are given in the form of look-up tables.
For a vehicle equipped with an internal combustion engine, the total mass of fuel may be

calculated departing from Eqs. (A.10) as

mf =

∫ tf

t0

γωeq dt, (A.11)

in which t0 and tf are the initial and final times, and γ is a proportionality constant. The
corresponding mass of CO2 is then computed from Eq. (A.11) by multiplying for the factor
cf, expressed in grams of CO2 per kilogram of fuel.

A graphical illustration of the vehicle module, together with the input and output quantities,
is shown in Fig. A.3.
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q = f1(ωe, Treq),

Te = f2(ωe, q),

...

v̇x = fn(Td, Tb, α, Tair, pair,vw, . . . ).

Vehicle model

[α Tair pair vw . . . ]T

[ap bp]
T

[vx x]
T

Figure A.3: Schematic representation of the vehicle, modelled as a system of DAEs. The inputs to the
module are the acceleration and brake pedal positions [ap bp]T and the dynamic OC parameters OCdyn in
Eqs. (A.8). The outputs are the vehicle’s longitudinal speed and position [vx x]T. The functions f1(·, ·) and
f2(·, ·) correspond specifically to the ones on the right-hand side of the last two Eqs. (A.10). Figure adapted
from Paper A.



Appendix B

The GTA and UFD systems

The GTA and UFD classification systems developed by Volvo and Scania are conceived
as high-level representations targeting individual road missions, as well as entire transport
applications. They have been refined over the years in an iterative process, and are intended
to facilitate the interaction with the customer during the selection and sales stages. To
this end, they describe the operating environments using colloquial tones and statements,
which may however be reformulated in terms of statistical indicators, including mathematical
expectations and probabilities. Imposing limits and thresholds on these, the GTA and UFD
systems build a discrete representation of the usage. Consequently, a transport application
may be qualified by resorting to a countable number of labels, each of them relating to a
certain operating class.

For the sake of brevity, the original formulation of each operating class is not discussed
in this appendix, whereas Table B.1 lists the classes specified by both the GTA and UFD
representations in mathematical form, with respect to the different relationships derived in
Chap. 3 concerning the road and mission categories. In this context, the quantities appearing
in Table B.1 should be interpreted as realisations of the composite variables introduced
in Sects. 3.2.1 and 3.2.3. It is worth mentioning that the original classification systems
are actually deficient in the mean hill length parameter and, concerning the topography,
completely qualify a mission depending on the value of the road grade length ratio. Moreover,
the GTA description does not include any indication about the mean speed. However, in
this thesis, and also in Paper C, the latter parameters have been added to allow for a fair
comparison with the UFD system. In this context, the values for the speed limits have been
inspired by the stochastic model for the road type. Finally, the value κ = 0.008 m−1 appearing
in both the expressions for the expected number of curves and the curviness length ratio
corresponds to a speed reduction of nearly 20% when driving at 70 km h−1 (Paper B).

Concerning the stochastic models falling in the weather and traffic categories reported in
Sect. 2.2, the GTA and UFD do not explicitly specify thresholds for the relative humidity,
precipitation intensities, and traffic density parameters. On the other hand, the ambient
temperature is treated differently in the GTA and UFD classification systems and deserves

87



88 Chapter B. The GTA and UFD systems

Model Variable Operating GTA Relationship UFD Relationship
Class

Topography

Road grade length ratio

FLAT py(3,σY ,PR,LR) > 0.98 py(2,σY ,PR,LR) ≥ 0.8
P-FLAT py(6,σY ,PR,LR) > 0.98 -
HILLY py(9,σY ,PR,LR) > 0.98 0.6 ≤ py(2,σY ,PR,LR) < 0.8
V-HILLY else else

Mean hill length

SHORT Lh(Lh,PR,LR) ≤ 500 Lh(Lh,PR,LR) ≤ 500
MEDIUM 500 < Lh(Lh,PR,LR) ≤ 1000 500 < Lh(Lh,PR,LR) ≤ 1000
LONG 1000 < Lh(Lh,PR,LR) ≤ 1500 1000 < Lh(Lh,PR,LR) ≤ 1500
V-LONG else else

Curviness
Number of curves

LOW - n̄′C(0.008,λC ,µC ,σC ,PR,LR) ≤ 2
HIGH - else

Curviness length ratio
LOW pκ(0.008,λC ,µC ,σC ,µL,σL,PR,LR) > 0.8 -
HIGH else -

Stop signs Number of stops

FLUID n̄s(λs,PR,LR) ≤ 0.2 n̄s(λs,PR,LR) ≤ 0.2
LIGHT 0.2 < n̄s(λs,PR,LR) ≤ 0.5 0.2 < n̄s(λs,PR,LR) ≤ 0.5
RESIDENTIAL 0.5 < n̄s(λs,PR,LR) ≤ 1.5 0.5 < n̄s(λs,PR,LR) ≤ 1.5
DENSE 1.5 < n̄s(λs,PR,LR) ≤ 2.5 1.5 < n̄s(λs,PR,LR) ≤ 2.5
START&STOP 2.5 < n̄s(λs,PR,LR) ≤ 5 2.5 < n̄s(λs,PR,LR) ≤ 5
VF-START&STOP else else

Road roughness
Mean roughness

SMOOTH Cr(Cr,PR,LR) ≤ 16 · 10−6 Cr(Cr,PR,LR) ≤ 16 · 10−6

ROUGH 16 · 10−6 < Cr(Cr,PR,LR) ≤ 64 · 10−6 16 · 10−6 < Cr(Cr,PR,LR) ≤ 64 · 10−6

V-ROUGH 64 · 10−6 < Cr(Cr,PR,LR) ≤ 256 · 10−6 64 · 10−6 < Cr(Cr,PR,LR) ≤ 256 · 10−6

OFF-ROAD else else

Speed signs Mean legal speed

LOW v̂(PV |r1 , . . . ,LV |r1 , . . . ,PR,LR) ≤ 50 v̂(PV |r1 , . . . ,LV |r1 , . . . ,PR,LR) ≤ 50
MEDIUM 50 < v̂(PV |r1 , . . . ,LV |r1 , . . . ,PR,LR) ≤ 80 50 < v̂(PV |r1 , . . . ,LV |r1 , . . . ,PR,LR) ≤ 70
HIGH else 70 < v̂(PV |r1 , . . . ,LV |r1 , . . . ,PR,LR) ≤ 90
V-HIGH - else

Mission length Mission length

STOP&GO Lm < 0.5 Lm < 0.5
LOCAL 0.5 ≤ Lm < 5 0.5 ≤ Lm < 5
REGIONAL 5 ≤ Lm < 50 5 ≤ Lm < 50
L-DISTANCE else else

Table B.1: Operating classes according to the GTA and UFD classification system. The limits on the
mean hill length Lh are expressed in m; those for the expected number of curves and stop signs n̄′C and n̄s,
respectively, in km−1; the thresholds on the mean legal speed v̂ are prescribed in km h−1; finally, the limits
on the mission length Lm are specified in km.
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special attention. In particular, the GTA description specifies the lower and upper bound on
the thresholds T ∗min and T ∗max (Table B.2). From Table B.2, it may be understood there are
eight possible combinations between the upper and lower limits, and therefore eight possible
classes1. Accordingly, each operating class only needs one relationship to be completely
determined.

Upper limit Lower limit
T ∗max = 40◦C T ∗min = −15◦C
T ∗max > 40◦C T ∗min = −25◦C

T ∗min = −40◦C
T ∗min < −40◦C

Table B.2: Upper and lower limits on the air temperature according to the GTA classification system.

Instead, the UFD description uses a more sophisticated strategy. Five levels are specified
as follows:

I. V-COLD if sometimes colder than −30◦C, rarely warmer than 20◦C and never warmer
than 30◦C.

II. COLD if sometimes colder than −15◦C, rarely warmer than 25◦C, and never warmer than
25◦C.

III. MIXED if rarely colder than −15◦C and rarely warmer than 30◦C.

IV. WARM if sometimes colder than 5◦C, never colder than 0◦C and rarely warmer than 40◦C.

V. V-WARM if rarely colder than 15◦C, never colder than 0◦C and sometimes warmer than
45◦C.

However, in the list above, the classes are formulated rather vaguely, since ’sometimes’ and
’rarely’ are not specified in terms of frequencies or probabilities. As a first interpretation, they
may be assumed to indicate frequencies of around fifty and twenty percent, respectively, as
done first in Paper B. Moreover, in the UFD system, each class is determined using multiple
conditions on the limits T ∗min, T ∗max and the probabilities pT ∗air, min

and pT ∗air, max
. Table B.3

summarises the operating classes for the air temperature parameter according to the UFD
interpretation.

However, concerning of the operating classes defined using the values in Tables B.2 and
B.3, it should be observed that the relationship (3.17) does not guarantee absolute lower and
upper limits on the air temperature (apart from the zero point for thermodynamics).

1In each case, the corresponding probability pT∗air,max could be assumed to be close to the unity (for
example pT∗air,max = 0.99) when it is not possible to define a class using unit probabilities.
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Air temperature classes in the UFD description

Operating Number of UFD thresholds

class relationship i T
∗(i)
min T

∗(i)
max p

(i)
T ∗air,min p

(i)
T ∗air,max

V-COLD 1 −∞ −30◦C 0 0.5
2 20◦C ∞ 0 0.2
3 30◦C ∞ 0 0

COLD 1 −∞ −15◦C 0 0.5
2 25◦C ∞ 0 0.2
3 30◦C ∞ 0 0

MIXED 1 −∞ −15◦C 0 0.2
3 30◦C ∞ 0 0.2

WARM 1 −∞ 5◦C 0 0.5
2 −∞ 0◦C 0 0
3 40◦C ∞ 0 0.2

V-WARM 1 −∞ 15◦C 0 0.2
2 −∞ 0◦C 0 0
3 45◦C ∞ 0 0.5

Table B.3: The operating classes for the air temperature parameter in the UDF description. The V-COLD,
COLD, WARM and V-WARM classes are defined by three relationships of the same type. On the other hand, the
MIXED class only needs two inequalities to be completely defined.
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”Impact of horizontal geometric design of two-lane rural roads on vehicle co2 emissions”,
Transportation Research Part D: Transport and Environment, vol. 59, pp. 46-57, 2018.
DOI: doi.org/10.1016/j.trd.2017.12.020.

[35] A. Sciarretta, ”Energy-Efficient Driving of Road Vehicles”, 1st ed. Springer (Cham),
Springer Nature Switzerland AG, 2020. Available: https://doi.org/10.1007/

978-3-030-24127-8.
[36] H. Achour and A.G. Olabi, ”Driving cycle developments and their impacts on energy

consumption of transportation”, Journal of Cleaner Production, vol. 112, pp. 1778-1788,
2016. DOI: 10.1016/j.jclepro.2015.08.007.

[37] J. Liu, X. Wang and A. Khattak, ”Customizing driving cycles to support vehicle pur-
chase and use decisions: Fuel economy estimation for alternative fuel vehicle users”,
Transportation Research Part C: Emerging Technologies, vol. 67, pp. 280-298, 2016. DOI:
10.1016/j.trc.2016.02.016.

[38] P. Shen, Z. Zhao, J. Li and X. Zhan, ”Development of a typical driving cycle for an intra-
city hybrid electric bus with a fixed route”, Transportation Research Part D: Transport
and Environment, vol. 59, pp. 346-360, 2018. DOI: 10.1016/j.trd.2018.01.032.

https://doi.org/10.1007/978-3-030-24127-8
https://doi.org/10.1007/978-3-030-24127-8


94 BIBLIOGRAPHY

[39] X. Liu, J. Ma, X. Zhao, J. Du and Y. Xiong, ”Study on Driving Cycle Synthesis Method
for City Buses considering Random Passenger Load”, Journal of Advanced Transportation,
Hindawi, 2020. DOI: 10.1155/2020/3871703.

[40] S. Shi, S. Wei, H. Kui, L. Liu, C. Huang and M. Liu, ”Improvements of the design
method of transient driving cycle for passenger car”, in 2009 IEEE Vehicle Power and
Propulsion Conference, 2009, pp. 1581-1586. DOI: 10.1109/VPPC.2009.5289594.

[41] L. Liu, C. Huang, M. Liu and S. Shi, ”Study on the Combined Design Method of
Transient Driving Cycles for Passenger Car in Changchun”, in 2009 IEEE Vehicle Power
and Propulsion Conference, 2009. Available: https://ieeexplore.ieee.org/stamp/

stamp.jsp?arnumber=4677594.
[42] W.T. Hung, H.Y. Tong, C.P. Lee, K. Ha and L.Y. Pao, ”Development of a practical

driving cycle construction methodology: A case study in Hong Kong”, Transportation
Research Part D: Transport and Environment, vol. 12, no. 2, pp. 115-128, 2007. DOI:
10.1016/j.trd.2007.01.002.

[43] K. S. Nesamani and K. P. Subramanian, ”Development of a driving cycle for intra-city
buses in Chennai, India”, Atmospheric Environment, vol. 45, no. 31, pp. 5469-5476, 2011.
DOI: 10.1016/j.atmosenv.2011.06.067.

[44] S.-H. Ho, Y.-D. Wong and V. Wei-Chung Chang, ”Developing Singapore Driving Cycle
for passenger cars to estimate fuel consumption and vehicular emissions”, Atmospheric
Environment, vol. 97, pp. 353-362, 2014. DOI: 10.1016/j.atmosenv.2014.08.042.

[45] F. Guo and F. Zhang, ”A study of driving cycle for electric cars on Beijing urban and
suburban roads”, in 2016 IEEE International Conference on Power and Renewable
Energy (ICPRE), pp. 319-322, 2016. DOI: 10.1109/ICPRE.2016.7871224.

[46] S. Ou, Y. Zhou, L. Lian, P. Jia and B. Tian, ”Development of hybrid city bus’s driving
cycle”, in 2011 International Conference on Electric Information and Control Engineering,
pp. 2112-2116, 2011. DOI: 10.1109/ICEICE.2011.5777149.

[47] L. Berzi, M. Delogu and M. Pierini, ”Development of driving cycles for electric vehicles
in the context of the city of Florence”, Transportation Research Part D: Transport and
Environment, vol. 47, pp. 299-322, 2016. DOI: 10.1016/j.trd.2016.05.010.

[48] S. Shi, N. Lin, Y. Zhang, C. Huang, L. Liu, B. Lu and J. Cheng, ”Research on Markov
Property Analysis of Driving Cycle”, in 2013 IEEE Vehicle Power and Propulsion
Conference (VPPC), pp. 1-5, 2013. DOI: 10.1109/VPPC.2013.6671737.

[49] Z. Jing, G. Wang, S. Zhang and C. Qiu, ”Building Tianjin driving cycle based on linear
discriminant analysis”, Transportation Research Part D: Transport and Environment,
vol. 53, pp. 78-87, 2017. DOI: 10.1016/j.trd.2017.04.005.

[50] Z. Zou, S. Davis, K. Beaty et al., ”A New Composite Drive Cycle for Heavy-Duty Hybrid
Electric Class 4-6 Vehicles”, SAE Technical Paper, 2004. DOI: 10.4271/2004-01-1052.

[51] M. Naghizadeh, ”Development oF Car Drive Cycle For Simulation of Emissions and Fuel
Economy”, 2003.

[52] P. Nyberg, ”Evaluation, generation and transformation of driving cycles”, Ph.D. disser-
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