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A B S T R A C T   

Structural elements with corrugated webs are used in a variety of applications, including buildings and bridges. 
Due to the high shear strength of the corrugated web, these elements offer a material-efficient design. Among 
various design aspects of beams with corrugated webs, studies on the flange buckling in these beams are scarce. 
Previous research has shown that the EN1993–1-5 flange buckling resistance model frequently predicts unsafe 
resistances. Moreover, the design model in EN1993–1-5 is developed exclusively for carbon steel and not updated 
for stainless steel. 

In this paper, an investigation into the flange buckling behaviour in duplex stainless-steel girders is provided. 
A parametric finite element model is developed and validated. Linear buckling analysis (LBA) and geometrically 
and materially nonlinear analysis with imperfections (GMNIA) are conducted using finite element analysis for 
410 girders with typical bridge girders dimensions. The results are compared to previously developed models for 
C–Mn steel, and a new buckling curve and entire design procedure for duplex stainless-steel girders with 
corrugated webs are provided to account for flange buckling. The study demonstrates that the new proposed 
design model provides better estimations of flange buckling resistance than prior proposed models.   

1. Introduction 

Carbon steel corrugated web beams have been widely used in civil 
engineering applications such as buildings and bridges. The use of 
corrugated web beams in buildings dates back to the early 1960s in 
Europe. In bridges, corrugated web beams as bridge girders were already 
seen in the 1980s in Japan and Europe [1]. The reason for using these 
beams is that they have shown to be a cost-effective option. This is 
because using a corrugated web enables using thinner plates in the web 
without the need for vertical stiffeners, minimizing the cost of beam 
manufacturing while also improving fatigue life [2]. 

Using stainless steel material as an alternative for C–Mn steel ma-
terial in corrosive environments and weight-sensitive structures such as 
bridge girders is now gaining popularity. In addition to offering excel-
lent resistance to corrosion, stainless steel offers good weldability and 
high strength [3]. 

The structural behaviour of beams with corrugated webs is relatively 
well studied. Previous experimental and numerical studies showed that 
the profile of the corrugated web has a substantial impact on the 

distribution of axial stress in the web. Normal stress in the web di-
minishes rapidly at a short distance below the junction between the web 
and flange and is non-existent in the main part of the web [4], a phe-
nomenon is known as “the accordion effect”. In the design of these 
girders, therefore, it is common to assume that only the flanges carry the 
bending moment, whereas the corrugated web carries the shear force 
[4]. 

Investigations on the flange buckling resistance of corrugated web 
beams and its impact on the bending resistance have been limited. There 
is no commonly accepted method for calculating the flange buckling 
resistance of C–Mn steel beams with corrugated webs. EN1993–1-5 
suggests using the same Winter-curve based formula for trapezoidal 
corrugated web girders as for flat web girders (i.e., the relationship 
between relative slenderness and the buckling reduction factor). How-
ever, previous experimental and numerical investigations demonstrated 
that when the compressed flange has a cross-sectional class of 4, the 
model in EN1993–1-5 frequently results in unsafe resistances [5]. 
Moreover, C–Mn steel was used for all prior tests and established 
models and these models have not been updated for stainless steel. 

* Corresponding author at: Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, 412 96 Gothenburg, 
Sweden. 

E-mail address: fatima.hlal@chalmers.se (F. Hlal).  

Contents lists available at ScienceDirect 

Journal of Constructional Steel Research 

journal homepage: www.elsevier.com/locate/jcsr 

https://doi.org/10.1016/j.jcsr.2023.108031 
Received 3 February 2023; Received in revised form 27 April 2023; Accepted 22 May 2023   

mailto:fatima.hlal@chalmers.se
www.sciencedirect.com/science/journal/0143974X
https://www.elsevier.com/locate/jcsr
https://doi.org/10.1016/j.jcsr.2023.108031
https://doi.org/10.1016/j.jcsr.2023.108031
https://doi.org/10.1016/j.jcsr.2023.108031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcsr.2023.108031&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Constructional Steel Research 208 (2023) 108031

2

In this paper, the buckling strength of flanges in girders composed of 
duplex stainless steel is investigated using finite element models. Linear 
buckling analysis (LBA) and geometrically and materially nonlinear 
analysis with imperfections (GMNIA) are employed. The finite element 
model is validated based on the experimental and numerical in-
vestigations performed by Jager et al. [6] on girders made of C–Mn 
steel. In this study, duplex 1.4162 is used as this material is most com-
mon for bridge applications. As to the magnitude of initial imperfection, 
a value of cf/50, where cf is the larger outstand of the flange, was 
verified for C–Mn steel beams with corrugated webs by Jager et al. [5] 
following an imperfection sensitivity study. A similar sensitivity study is 
performed in this work for duplex 1.4162 and a justification for the use 
of imperfection magnitude of cf/50 is established for duplex 1.4162. The 
linear buckling analysis is conducted to determine the buckling coeffi-
cient kσ . After that, a parametric study using geometrically and mate-
rially nonlinear analysis with imperfections (GMNIA) is performed to 
investigate the relationship between the relative slenderness of the 
compression flange and the reduction factor. Based on the results, a new 
design equation for determining the buckling coefficient kσ and a new 
buckling curve ρ ( λp) are proposed to calculate the limit for cross- 
section class 4 and the effective width of the compressed flange in 
plate girders made of duplex stainless steel. The configuration of the 
studied girders along with various dimensions and notations used in this 
study is illustrated in Fig. 1. 

2. Literature study 

2.1. Elastic stress distribution in flanges of beams with corrugated webs 

It is common to assume, in the design of beams with corrugated 
webs, that the moment is carried entirely by the flanges. Previous 
research has also showed that the flow of shear forces in the corrugated 
web generates transverse bending moment in the flanges, resulting in 
extra normal stresses [7–9]. However, there are different opinions on the 
impact of the additional normal stresses. EN1993–1-5 Annex D Section 
D.2.1 [10] specifies a reduction factor (fT) for the bending resistance of 
corrugated web girders subjected to shear and bending, which depends 
on the flange yield strength and the maximum normal stress level caused 
by the transverse bending moment. The commentary document of the 
EN1993–1-5 [2] emphasizes that, theoretically, these transverse 
bending moments are essential for reasons of equilibrium, although it is 
debatable how crucial they are in practice. In 1997–98, Elgaaly et al. 
[11–13] examined the bending and shear resistance of trapezoidal 
corrugated web girders. Their finding was that there is no interaction 
between the bending and shear resistance of trapezoidal corrugated web 
girders. Kövesdi et al. [7] conducted numerical analyses to estimate the 
transverse bending moment and its effect on the load-carrying capacity 
of trapezoidal corrugated web girders. The authors stated that when a 

plastic design is used, there is no relationship between the magnitude of 
the transverse bending moment and the reduction in bending resistance. 
Elamary et al. [14] used experimental, numerical, and analytical study 
to examine the behaviour of corrugated web beams loaded with bending 
and shear on inclined and horizontal folds. The authors concluded that 
there is a strong relationship between the load application location and 
the stress distribution on the flange, i.e., applying a load to the hori-
zontal fold increases moment capacity because the tension stress 
generated at the shorter outstand width of the flange reduces 
compression stress in the wider outstand width side and delays buckling. 

2.2. Previous design models on flange buckling resistance in beams with 
corrugated webs 

2.2.1. EN1993–1-5 model 

2.2.1.1. Elastic buckling coefficient, kσ . Design models to account for the 
effect of instability on the resistance of elements require the calculation 
of the elastic critical buckling load or stress. For plates in compression, a 
buckling coefficient kσ is needed for calculating the critical buckling 
stress. The value of this coefficient depends on the plate loading and 
support conditions. For a long plate simply supported on three edges and 
subjected to uniform compression, the value of the buckling coefficient 
is 0.425 [15]. In a corrugated web beam, the inclined folds of the 
corrugation can provide partial support to the flange by reducing the 
plate aspect ratio. The EN1993–1-5 [10] model that describes the elastic 
buckling coefficient kσ for flanges in I-girders with corrugated webs 
recognizes this additional support, as shown in Eq. (2-1), where the 
buckling coefficient for plate with a length (a) is modified by adding the 
term

( cf
a
)2. An upper limit of 0.6 is also stipulated in this model. It was 

believed that there are two possible scenarios in which the flange in a 
corrugated web beam may buckle. Buckling of the largest flange 
outstand is the first possible buckling mode. This buckling mode is ex-
pected to govern for webs with deep corrugations [2]. The buckling 
coefficient kσ for this mode is given in “case a” in EN1993–1-5 [16] as: 

kσ1 = 0.43+
(cf

a

)2
(2-1) 

where a = a1 + 2a4 and cf =
bf
2 + a3

2 is the larger flange outstand from 
the toe of the weld to either free edge of the flange, see Fig. 1. 

The second buckling mode is twisting the flange and rotating around 
its centreline. This mode was expected to govern in beams with webs 
having shallow corrugations [2]. The “case b” in EN1993–1-5 [10] 
provides the buckling coefficient kσ for this mode as follows: 

kσ2 = 0.6 and b̄ =
bf

2
(2-2) 

The most unfavourable situation between “case a” and “case b” 

Fig. 1. Notations for beams with corrugated webs.  

F. Hlal and M. Al-Emrani                                                                                                                                                                                                                     



Journal of Constructional Steel Research 208 (2023) 108031

3

should be considered: 

kσ = min(kσ1, kσ2) (2–3) 

The flange plate's slenderness is then defined as: 

λ̄p =

̅̅̅̅̅̅

fy

σcr

√

=
b̄
t

28.4ε
̅̅̅̅̅
kσ

√ (2–4) 

where ε =
̅̅̅̅̅̅̅̅̅̅̅̅
235MPa

fy

√
, b̄ = bf

2 , t is the plate thickness 

σcr is the critical elastic buckling stress σcr = σE*kσ ,σE = π2Et2
12(1− v2)b2 

b and t are the width and the thickness the plate, v is Poisson's ratio 

2.2.1.2. Reduction buckling factor, ρ. When determining the relation-
ship between relative slenderness ̄λp and the buckling reduction factor ρ 
for flanges in trapezoidal corrugated web girders, EN1993–1-5 [10] uses 
the same Winter-curve based formula as for flat web girders. In section 
4.4 of EN1993–1-5 [10], the reduction factor is calculated as: 

ρ = 1.0 for λ̄p ≤ 0.748 (2-5)  

ρ =
λ̄p − 0.188

λ̄2
p

≤ 1.0 for λ̄p > 0.748 (2-6)  

2.2.2. Model by Jager et al. [5] 

2.2.2.1. Elastic buckling coefficient, kσ . In 2017, Jager et al. [5,6] pub-
lished the results of an experimental and numerical study on flange 
buckling in girders with corrugated webs made of C–Mn steel. The 
authors reported three flange failure modes to be dependent on the ri-
gidity of the flange-to-web junction (i.e., the degree of restraint provided 
to the flange by the web). According to the authors, fixed support 
transitions to pinned support at approximately tf

tw = 2.5. The three 
observed failure modes were:  

a. Separated local flange buckling for tf
tw < 2.5, Fig. 2 (a)  

b. Combined buckling mode for 5 >
tf
tw > 2.5, Fig. 2 (b)  

c. Flange-induced web buckling for tf
tw ≥ 5,Fig. 2 (c) 

Based on a large set of parametric linear buckling analyses, Jáger 
et al. [5] proposed a new formula for calculating the buckling coefficient 
for a compression flange in girders with the trapezoidal corrugated web. 
The model considers the aspect ratio of the plate confined within one 
corrugation, the enclosing effect R (defined as the ratio of areas EFGH 
and ABCD in Fig. 1), and the effect of the flange-to-web thickness, with 
an upper limit of 1.3, see Eq. 2-7. 

kσ = min

(

1.3, 0.43⋅
(

2.5⋅
tw

tf

)(0.6+R)

+

(
cf

a1 + 2⋅a4

)2
)

(2-7) 

Johnson and Cafolla [17] were the first to identify the effect of the 
enclosing effect on the effective width due to flange buckling. Based on 
their experimental findings and finite element analysis, the authors 
determined that the average flange outstand (bf/2) should be employed 
to calculate the relative slenderness ratio of corrugated web girders for 
R <= 0.14 and a corrugation angle of 30 degrees. For R > 0.14, the 
greater outstand cf should be used instead. 

2.2.2.2. Reduction buckling factor, ρ. To derive a buckling curve that can 
be used for the calculation of effective width for flanges in beams with 
corrugated webs, Jager et al. [5] performed parametric numerical 
analysis considering geometrical and materially nonlinear behaviour 
with imperfections. Regarding imperfection shape and amplitude, 
Annex C in EN1993–1-5 [10] suggests an imperfection value for the 
flange twist of l

50, l being the outstand length cf . However, this value is 
not specific for corrugated web beams. Therefore, Jager et al. [5] con-
ducted an imperfection sensitivity analysis to investigate the applica-
bility of using cf

50 as the imperfection amplitude together with the 1st 
eigen buckling mode as the imperfection shape for corrugated web 
beams. The moment capacity of corrugated web girders was estimated 
using the numerical model developed in their work, and the findings 
were compared to test data for girders having flanges with various cross- 
sectional classes. It was concluded that an initial imperfection magni-
tude of cf

50 with 1st eigen buckling mode as the imperfection shape 
provides a satisfactory estimate for the flange buckling resistance of 
corrugated web girders. Based on their numerical results the authors 
developed a new model for the flange buckling resistance of corrugated 
web beams. The model can be summarized as follows: 

The buckling reduction factor can be calculated as: 

ρa = min

(

1,
(

14⋅ε⋅
tf

cf

)β
)

(2-8) 

The factor β considers the corrugation configuration and it is defined 
as: 

β = 5⋅η⋅R⋅
(

1
tan(α)

)η

where 0.5 ≤ β ≤ 1
(2-9) 

The enclosing effect can be calculated as follows: 

R =
(a1 + a4)⋅a3

(a1 + 2⋅a4)⋅bf
< 0.14 (2-10) 

The factor η considers the flange to web thicknesses ratio and it is 
defined as follows: 

η = 0.45+ 0.06⋅
tf

tw
(2-11) 

Fig. 2. Observed flange failure modes in Jager et al.'s experiments [6]. (a) Separated local flange buckling, (b) Combined flange buckling, (c) Flange induced 
web buckling. 
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And the larger outstand of the compression flange being: 

cf =
bf + a3

2
(2-12)  

2.2.3. DASt-Richtlinie 015 model 
The DASt-Richtlinie 015 proposes a simple model which considers 

only the thickness and the yield strength of the compressed flange [18]. 
The suggested effective width for the compression flange of corrugated 
web girders in this model is: 

bf .eff = 30.7⋅tf ⋅

̅̅̅̅̅̅̅̅
240
fyf

√

≤ bf (2-13)  

3. Numerical parametric study on duplex 1.4162 

In this study, the problem of flange buckling in girders with corru-
gated webs made of duplex stainless steel is investigated using FE 
analysis. Linear buckling analysis (LBA) is used in the first step to obtain 
the critical elastic flange buckling stress in each studied beam. The 
corresponding buckling mode is then used as an initial imperfection in 
the subsequent geometrically and materially nonlinear analysis with 
imperfections (GMNIA). This analysis step provides the ultimate 
moment capacity for each studied girder from which the effective width 
of the compression flange is derived. Results from the FE analysis are 
then compiled and analysed to derive an appropriate model for calcu-
lating the buckling coefficient kσ (from the LBA) and a buckling curve to 
calculate the reduction factor of slender flanges (from the GMNIA). The 
limit for cross-section class 4 for flanges in beams with corrugated webs 
is also derived. 

3.1. Investigated parameters domains 

In total, 410 beams with different geometrical properties are 
included in the parametric numerical analysis. The domains of the pa-
rameters investigated are chosen to represent dimensions and geome-
tries typical for bridge girders. The flange-to-web thicknesses ratio tf/tw, 
corrugation angle α, and the enclosing effect R are the parameters pre-
viously proved to have a significant impact on the buckling and failure 
modes of beams with the corrugated web [5,14,19,20]. The height of the 
web is fixed in this study to 500 mm and the examined parameters are 
presented in Table 1. 

The studied parameters domains result in slenderness and enclosing 
effect values of cf/tf/ε = 7.1 − 37 and R = 0.085 − 0.44 

3.2. Numerical model description and validation 

The FE models are constructed and analysed using ABAQUS CAE 
2020. The software is compatible with Python programming language, 
making it suitable for parametric studies. The constructed numerical 
model, which is represented in Fig. 3, is comprised of a simply supported 
beam with a pinned support at one end and a roller support at the other. 
This beam is subjected to pure bending. To ensure that the outer sections 
respect the condition of ‘a plane section remaining plane’, the shell 
edges of the web and flanges on both ends are tied to their corresponding 
section master middle nodes that are positioned at the cross-section 
gravity centre (Node 1 and Node 2 in Fig. 3). Equal and opposite end 

moments are applied at these master points to load the model in pure 
bending. The applied boundary conditions at the master nodes are 
illustrated in Table 2. 

To validate the FE model, the girders tested and reported by Jager 
et al. [6] are first modelled and analysed. These girders were made of 
S355 steel. Tensile tests were conducted by the authors on the steel 
material to register the material behaviour. An elastic-plastic with linear 
strain hardening material model as reported by Jager et al. [6] is 
implemented in this study for the finite element model validation, see 
Fig. 4. The yield plateau begins at the end of the linear elastic part, 
defined by the strain εel = fy/E, and a strain of ε = 0.01. At a strain of 
ε = 0.15, the ultimate strength is assumed to be reached. Young's 
modulus is 210 GPa. 

The model validation performed in this study is conducted on five 
selected girders (2TP1–1, 7TP1, 9TP3, 3TP1–1, 10TP4) from the 
experimental program reported by Jager et al. [6]. In their study, the 
authors tested 16 large-scale simply supported girders under four-point- 
bending to investigate the effect of flange buckling on the bending 
resistance of corrugated web beams. An illustration of the test setup is 
shown in Fig. 5. The central section of the beam was made up of a 1050 
mm long, replaceable corrugated test specimen which was subjected to 
pure bending. To ensure a fixed connection, the central section was 
fastened to the external girder parts with bolted connections. To prevent 
lateral torsional buckling, the beam was supported in the lateral direc-
tion at the loading points. The nominal web height of all tested girders 
was 500 mm, and the total span was 8 m. The geometrical and material 
properties of the chosen girders for validation are summarized in 
Table 3. 

Furthermore, in order to increase the credibility of the developed 
numerical model in this study, a supplementary girder (CWNCF101) 
tested under four-point bending by Elamary et al. [21] is included in the 
validation. The girder dimensions are also presented in Table 3. 

The numerical model validation starts with a linear buckling analysis 
(LBA) and uses the first eigen buckling shape as an initial geometric 
imperfection in subsequent nonlinear analysis with imperfection 
(GMNlA). According to Jager et al. [5], an imperfection amplitude of cf

50, 
based on the first eigen buckling mode, can be used as an equivalent 
initial imperfection with adequate accuracy. Two initial imperfection 
amplitude values are considered during the validation process including 
the measured geometric imperfection from the tests, shown in Table 4, 
and the equivalent initial imperfection cf

50. It is important to note that 
residual stresses are not implicitly considered in this analysis. 

To determine the most suitable mesh type and size for linear elastic 
buckling analysis (LBA), a mesh sensitivity study is carried out for two 

Table 1 
Investigated parameters ranges  

Parameter Investigated range 

α [deg] 30 − 45 − 60 
bf/a3 2 − 2.4 − 2.7 − 3 − 3.2 − 3.3 − 4 − 5 − 6 − 6.7 − 8 
a1/a3 2 − 3 − 4 
tf/tw 2.5 − 3.5 − 4.17 − 5 − 5.83 − 6.25 − 8.33 − 8.75 − 12.5 
bf [mm] 400 − 600 − 800 − 1000  

Fig. 3. Load and boundary conditions of a typical girder  

Table 2 
The applied boundary conditions at the master nodes (1 and 2 in Fig. 3)   

Translational degrees of freedom Rotational degrees of freedom  

Ux Uy Uz URx URy URz 

Node 1 Fixed Fixed Fixed Fixed Free Fixed 
Node 2 Free Fixed Fixed Fixed Free Fixed  
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mesh types, namely a four-node first-order structural element (S4R) and 
an eight-node second-order structural element (S8R). The mesh sensi-
tivity study for 1st eigenvalue for one girder (9TP3) is shown in Fig. 6a. 
Based on the results, it turns out that the S8R mesh type reaches 
convergence with a coarser mesh size, thereby reducing the computa-
tion time. Consequently, the S8R mesh type is selected, and a second 
mesh sensitivity study is carried out for the ultimate moment capacity 
obtained from the nonlinear analysis, Fig. 6b. 

Fig. 6 shows that the S8R mesh type with a mesh size equal to 
Fold length/4 produces satisfactory results for both buckling and 
nonlinear analyses. Therefore, this mesh size is selected to proceed with. 

To validate the accuracy of the constructed numerical model, a 

nonlinear analysis is first performed on the girders listed in Table 3. The 
measured geometric initial imperfection, as reported by Jager et al. [6], 
is used in this analysis, along with the first buckling mode. The ultimate 
moment capacity resulting from this analysis is denoted as 
Mult.num.geo1. This moment capacityis then compared to the compa-
rable numerical value provided by Jager et al. [5], referred to as 
Mult.num.Jager.geo1, where the authors used only the measured geo-
metric imperfection in their validated numerical model. 

Following that, a nonlinear analysis is carried out on the same 
girders, employing an equivalent initial imperfection of cf50 with the first 
eigen buckling mode. The ultimate moment capacity obtained from this 
analysis is denoted as Mult.num.geo2. This value is also compared to the 
ultimate moment capacity obtained by Jager et al. [19] in their vali-
dated model, denoted as Mult.num.Jager.geo2, where the authors 
employed an equivalent initial imperfection of cf

50. 
The results of the two mentioned comparisons 

Mult.num.geo1/Mult.num.Jager.geo1, 
Mult.num.geo2/Mult.num.Jager.geo2, are shown in Table 4, which 

demonstrates that the finite element model results are in good agree-
ment with the numerical findings from Jager et al. [5] [19] in both cases. 
The difference in results between the two sets is <3%. Additionally, 
there is good agreement between the ultimate moment capacity and the 
corresponding test findings for the girder CWNCF101, which was tested 
by Elamary et al. [21]. This girder is analysed using the equivalent initial 
imperfection ( cf

50
)

with the first eigen buckling mode. 
Finally, as the third and final step in the validation of the finite 

element model, data from the experiment on the relative flange 
displacement of girder 9TP3 is used. The effect of residual stresses was 
reported to be negligible in this specific girder [5], allowing for a 
comparison of the results obtained by employing only the measured 
geometrical imperfection with the test results. The relative displacement 
between the top and bottom flanges is calculated at CS1 and CS2, as 
reported by Jager et al. [6] in their work, see Fig. 7. Fig. 8 depicts the 
comparison between the numerical analysis results with the experi-
mental results. Both the ultimate moment and the early stiffnesses are 
well-aligned, indicating a satisfactory level of accuracy of the finite 
element model. 

The failure modes reported from the tests as well as the failure modes 
obtained from the nonlinear analysis are presented in Fig. 9. Girders 

Fig. 4. Applied material model [6].  

Fig. 5. Schematic drawing of the applied test arrangement [6].  

Table 3 
Geometry of girders considered in FE model validation  

Specimen a1 

[mm]

a3 

[mm]

α 
[ ∘]

tf 
[mm]

bf 

[mm]

tw 

[mm]

hw 

[mm]

f yf 

[MPa]
f uf 

[MPa]
f yw 

[MPa]
fuw 
[MPa]

2TP1–1 97 69 45 7.9 250 5.97 500 452 548 406 530 
7TP1 97 69 45 12.2 250 3.84 500 364 496 474 584 
9TP3 88 44 30 12.16 247 4.04 500 365 500 457 584 
3TP1–1 97 69 45 14.59 250 3.01 500 387 516 363 514 
10TP4 134 67 30 12.2 250 3.89 500 361 488 457 560 
CWNCF101 100 50 45 4 100 2.1 400 320 390 310 390  

Table 4 
Validation of FE model with tests and previous numerical results.  

Specimen 2TP1 − 1 7TP1 9TP3 3TP1 − 1 4TP10 CWNCF101 

Measured imperfection 
[mm]

1.1 1.22 1.42 1.22 1.2 Not reported 

Equivalent imperfection Cf/50 [mm] 3.19 3.19 2.91 3.19 3.17 1.5 
Mexp [kNm] 369 588 585 743 572 43 
Mult.num.geo1 408 553 558 713 544.4 – 
Mult.num.geo2 359 517.6 535 672.5 503 43.3 
Mult.num.Jager.geo1 413.3 571.5 576.2 Not reported 569.9 – 
Mult.num.Jager.geo2 360.4 521.2 541.9 681.5 515.2 – 
Mult.num.geo1/Mexp 1.11 0.94 0.95 0.96 0.95 – 
Mult.num.geo1/Mult.num.Jager.geo1 0.99 0.97 0.97 – 0.96 – 
Mult.num.geo2/Mult.num.Jager.geo2 1.00 0.99 0.99 0.99 0.98 –  
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9TP3, 10TP4 and 7TP1 displayed a combined buckling failure mode, 
however girders 2TP1–1 and CWNCF101 exhibited separate local flange 
buckling modes. Furthermore, girder 3TP1–1 demonstrated flange- 
induced web buckling. 

3.3. Material model, duplex 1.4162 

The material model suggested by EN1993–1-4 [22] is employed to 
model the material behaviour of stainless steel. The linear-elastic range 
and the onset of plasticity at the yield stress fy are easily distinguished in 
a typical stress-strain curve for carbon steel. However, stainless steel 
does not have a distinct yield point. The proof stress, instead, which 
corresponds to a 0.2% plastic strain upon unloading, is used to deter-
mine a corresponding yield strength for stainless steels [22]. True stress- 
true plastic strain, stress-strain relationship for stainless steel, is 

employed in the implementation of the stress-strain relation in the 
ABAQUS. Duplex 1.4162 stainless steel is used in the parametric analysis 
since it is the most used stainless-steel grade in bridge applications. The 
material parameters are obtained from [23] and an example of the 
depicted material model for duplex 1.4162 plates is illustrated in Fig. 10. 

3.4. Imperfection sensitivity 

Before the nonlinear parametric study, an imperfection sensitivity 
analysis is conducted to determine an appropriate amplitude for the 
equivalent initial imperfection in beams made of duplex stainless steel 
1.4162. Regarding the imperfection shape, the 1st eigenmode, which 
corresponds to flange buckling, is used. Previous studies demonstrated 
that the first eigenmode shape for flange buckling of trapezoidal 
corrugated web girders is applicable with the recommended imperfec-
tion magnitudes following the EN1993–1–5, Annex C for flange twisting 
for C–Mn steel [10]. However, there is no data available for stainless 
steel material. Therefore, a sensitivity study is conducted for the vali-
dated girders 2TP1–1, 9TP3, and 3TP1 using duplex 1.4162 material, 
followed by a comparison with the imperfection sensitivity curves pro-
vided by Jager et al. [5] for C–Mn steel. Fig. 11 shows an example of 
such a comparison. The sensitivity curves for duplex 1.4162 and C–Mn 
steel are similar, as can be observed, and therefore, the proposal to 
utilize equivalent geometric imperfection for duplex 1.4162 of a 
magnitude cf/50 is justified. 

3.5. Results of linear buckling analysis (LBA) 

The elastic critical buckling moment (i.e., the moment at which 
bifurcation buckling of the compression flange is reached) is obtained by 
multiplying the applied moment in the FE model by the load amplifier 
obtained from the linear buckling analysis. The corresponding critical 
normal stress is then calculated as follows, assuming a uniform stress 
distribution over flange width: 

σcr.num =
Ncr.num

bf ⋅tf
where Ncr.num =

Mcr.num

hw + tf
(3-1) 

The numerical elastic buckling coefficient is then determined from: 

κσ.num =
σcr.num⋅12⋅(1 − ν2)⋅

(
cf
tf

)2

π2⋅E
(3-2)  

where Young's modulus of stainless steel E = 200 GPa and Poisson's 
ratio ν = 0.3 

It's worth mentioning here that when analysing the results from LBA, 
both bf /2

tf and cf
tf are considered a measure of plate slenderness. It is found 

that the latter describes the slenderness better and results in a consid-
erably lower scatter in the evaluation of κσ . Typical flange buckling 
shapes obtained from the linear buckling analysis are illustrated in 

Fig. 6. Mesh sensitivity study for girder 9TP3. (a) Mesh sensitivity for 1st eigenvalue (b) Mesh sensitivity for ultimate moment capacity.  

Fig. 7. CS1, CS3: cross-sections at first parallel web fold, counting from the 
mid-span, CS2: cross-section at mid-span. CS1 and CS2 were used to measure 
the relative displacement of the flanges [6]. 

Fig. 8. Relative flange displacement obtained from the FE model and the 
experiment of specimen 9TP3. 
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Fig. 12. The general pattern for buckling modes shows that the buckling 
length is constrained to or within one-fold in girders with high enclosing 
areas (the factor R), and as the enclosing area gets smaller, the buckling 
length stretches across more than one-fold. This is because the corru-
gation provides less support to prevent buckling as the enclosing effect 
declines. Another mode, resembling buckling in the web is also observed 
as the 1st buckling mode in a few girders. This observation is particular 
to girders with long flat folds. Due to strain compatibility with the 
flanges, the web experiences axial stress in such girders, resulting - when 
the web is slender – in normal stress buckling in the flat fold. For these 

girders tf
tw 

ranges between 5.8 and 12.5, cf
tf ranges between 5 and 15 and 

hw
tw 

ranges between 83 and 125. For these beams, a higher buckling mode 
which resembles flange buckling is used in the nonlinear analysis. 

3.5.1. Evaluation of previously proposed expressions for κσ 
The results obtained from the linear buckling analysis in terms of the 

buckling coefficient κσ are compared to the corresponding values pro-
posed by EN1993–1-5 and Jager et al. [5]. The results are presented in 
Fig. 13. The ordinate in Fig. 13 (a) and Fig. 13 (b) represents the ratio 
between the buckling coefficient obtained from each model to that ob-
tained from the linear buckling analysis conducted in this study. The 
abscissa represents the flange slenderness expressed as cf/tf/ε. 

It can be observed in Fig. 13 (a) that Eurocode's recommended 
formulation for the buckling coefficient κσ , Eq. (2–3), produces a notable 
dispersion with both over- and some underestimated values. It is 
believed that this considerable dispersion is a result of this model dis-
regarding crucial influencing parameters such as the flange-to-web 
thickness ratio tf/tw and the enclosing effect R. The model suggested 
by Jager et al. [5], Section 2.2.2, performs somewhat better. The 
dispersion is smaller, Fig. 13 (b), and the majority of the buckling co-
efficients derived using Jager's model are lower than those obtained 
from the numerical analysis. This improvement might be a result of 
considering the flange-to-web thickness ratio (tf/tw) and the enclosing 
effect (R). Furthermore, Fig. 13 (c) and (d) show a comparison of the 
buckling coefficient obtained from both models to the numerical results 
obtained in this investigation. Both the models, Jager et al. [5] and the 
EN1993–1-5, consider upper limits for buckling coefficient of 1.3 and 
0.6 respectively. However, the buckling coefficient obtained by nu-
merical analysis ranges from 0.2 to 1.8. Consequently, neither the 
EN1993–1-5 model nor the model by Jager et al. [5] gives a good fit to 
the results obtained for girders with duplex 1.4162, and a new expres-
sion to estimate the buckling coefficient for these girders is required. 

3.5.2. The developed equation for the buckling coefficient κσ 
Towards the development of a new model for estimating the buckling 

coefficient κσ , four main parameters are expected to significantly influ-
ence the elastic buckling coefficient of corrugated web beams flanges. 
These parameters are the corrugation depth to flange width ratio a3

bf
, the 

web-to-flange thicknesses ratio tw
tf , the flange width to flange thickness 

ratio bf
tf , and finally, the folded to unfolded lengths of one-half wave 

ratio w
s . The first and fourth parameters, a3

bf 
and ws , reflect the effect of 

corrugation depth and shape on the buckling length. The rotational 

Fig. 9. Actual collapse modes versus failure modes obtained from FE analysis.  

Fig. 10. An example of the material model shown for duplex 1.4162 plates 
with thicknesses t > 10 mm.

Fig. 11. Imperfection sensitivity curves for specimen 9TP3 for C–Mn steel and 
duplex 1.4162 
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3

f

= 0.5 = 0.34 = 0.93 3

f
= 0.5 = 0.417 = 0.92

3

f

= 0.25 = 0.171 = 0.93
3

f

= 0.25 R = 0.208 = 0.92

3

f
= 0.15 = 0.1 = 0.93

3

f
= 0.15 = 0.125 = 0.92

Fig. 12. Typical flange buckling modes obtained from linear buckling analysis  

Fig. 13. A Comparison of numerical results to EN1993–1-5 and Jager et al. [5] proposals. (a) and (b) evaluate the proposals' correspondence to numerical results 
based on flange slenderness. (c) and (d) compare the proposals' buckling coefficients with those obtained from numerical analysis. 
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support provided by the web against torsion of the flange is reflected by 
the web-to-flange thicknesses ratio, tw

tf . And finally, the slenderness of 

the flange is determined by the ratio bf
tf . To fit all 410 κσ values obtained 

from the LBA to the 4 geometric parameters, a genetic algorithm opti-
mization was employed along with a regression analysis. The resulting 
model is depicted in Eq. (3–3). 

κσ.corr = 1.7 −

̅̅̅̅̅
a3

bf

√

+ 0.76⋅
tw

tf
+ 0.94*

(
bf

tf

)0.17

− 2.56
(w

s

)2
(3-3) 

Where w = a1 + a4 and s = a1 + a2, respectively, as annotated in 
Fig. 1. 

To evaluate the proposed model, a comparison of the buckling co-
efficient obtained from this proposal and the numerical results is per-
formed and presented in Fig. 14. The derived buckling coefficient 
expression and the numerical outcomes demonstrate high accuracy. 

Furthermore, a statistical analysis of the numerical results in com-
parison to the developed approximation, Eurocode approximation, and 
Jager approximation is presented in Table 5. As can be observed, the 
developed model adequately approximates the buckling coefficient in 
almost all 410 cases. The mean value for κσ.corr/κσ.num for the proposed 
mode is approximately (1,0). The coefficient of variation for the devel-
oped model decreased to (CV = 9,7%) compared to (CV = 38%) for the 
Eurocode model and (CV = 25%) for the Jager et al. [5] model. 

3.6. Results of nonlinear analysis 

To construct an appropriate buckling curve for flange buckling 
resistance, GMNIA analyses are performed on the 410 beams included in 
this study. The ultimate moment capacity is obtained from the load- 
displacement curve, and the maximum strain is checked not to exceed 
2% before the maximum moment is reached. 

Fig. 15 shows typical normalized moment versus normalized rotation 
angle curves obtained from numerical analysis of three girders with 

different flange slenderness. Girder B388 with a stocky flange 
(

cf
tf = 7ε

)

reaches its full plastic moment and afterwards the capacity continues to 
increase owing to strain hardening. Girders B74 and B69 with flanges 

having (cf
tf = 24ε

)
and 

(
cf
tf = 26ε

)
, respectively, fail due to flange 

buckling. For the three girders indicated here, the regions that approach 
yielding at Mult and at collapse in the post-failure stage are shown in 

column (b) and column (c) of Fig. 16. 
The results from the GMNIA analysis are processed in terms of ulti-

mate moment resistance Mult.num which is obtained from the numerical 
analysis by multiplying the maximum load amplification factor by the 
applied moment. The ultimate moment resistance is then transformed to 
effective flange width, or buckling reduction factor, according to Eq. (3- 
4). Herein, any contribution from the web to the beam section modulus 
is neglected and the reduction factor is applied to the whole flange width 
bf . 

ρnum =
Mult.num

bf ⋅tf ⋅
(
hw+tf

)
⋅fyf

(3-4) 

Comparing the failure modes identified by Jager et al. [6] with those 
obtained in this study, the separated local flange buckling mode which was 
observed by Jager et al. [6] at ratios of tf

tw < 2.5, see Fig. 2a, is not 
observed in any of the girders analysed in this study. Bridge girders are 
very unlikely to have tf

tw ratios <2.5 and therefore this value is taken as a 
minimum in this study. The Flange-induced web buckling mode which was 
observed by Jager et al. [6] at ratios tf

tw ≥ 5, is observed in this study for 
some girders, but only in the post-failure phase, i.e., after the girder 
attains its maximum moment capacity, see Fig. 16 (B74 and B388). 
Adding here that this post-failure mode was observed for girders with 
tf
tw ≥ 3.5. The last mode combined buckling mode, which was observed by 
Jager et al. [6] at ratios 5 >

tf
tw > 2.5, is observed as failure mode for 

ratios tf
tw = 2.5, see Fig. 16 (B69). 

It's important to note once again that the girders that showed normal 
stress buckling as 1st eigen buckling mode are assigned a higher buck-
ling mode that resembles the first flange buckling as initial imperfection 
(e.g., the 13th eigenmode for girder B388 in Fig. 16. Furthermore, when 
comparing the three different failure modes, yielding mainly occurs in 
the top flange or both flanges at ultimate capacity, proving the existence 
of the “accordion effect” for beams with corrugated web and demon-
strating that the web's contribution to moment resistance is minimal for 
the main part of the web. 

3.6.1. Evaluation of previously proposed models 
The results from all 410 GMNIA analyses are used in this section to 

examine the appropriateness of previous models proposed for 
Fig. 14. Numerical results compared to the proposed expression for the 
buckling coefficient κσ 

Table 5 
Statistical evaluation of EN1993–1-5, Jager et al., and the proposed models   

Eurocode Model Jager Model Proposed Model 

Average (κσ.corr/κσ.num) 0.81 0.63 1 
Standard deviation, SD 0.31 0.16 0.097 
Coefficient of variation, CV 38% 25% 9.7%  

Fig. 15. Typical normalized moment versus normalized rotation angle curves 
obtained from numerical analysis 
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calculating the flange buckling resistance in beams with corrugated 
webs. As mentioned before, these models were developed for beams 
made of C–Mn steel. The three models listed in Section 2 are considered 
in the comparison. The results are illustrated in Fig. 17. 

The results in Fig. 17 show that the three models overestimate the 
bending capacities for flange buckling for duplex 1.4162. The DASt- 
Richtlinie 015 model, which is described in Section 2.2.3, shows the 
greatest dispersion. This might be attributed to the fact that this model is 
rather simplistic as it doesn't consider the influence of the corrugation 
geometry. Additionally, the EN1993–1-5 model, which is discussed in 
Section 2.2.1, significantly overestimates the capacities, and most of the 
results fall on the unsafe side. Finally, the Jager et al. [5] model, which is 
presented in Section 2.2.2, exhibits more relevant results compared to 
the EN1993–1-5 and DASt-Richtlinie 015 models. As shown in Fig. 17, 
the reduction factor proposed by Jager et al. [5] is calculated and 
applied twice: once on the large outstand cf and once on the entire flange 
width bf . Yet, the model does not demonstrate relevance to stainless 
steel material and the studied parameter ranges, necessitating the 
development of a new model. 

3.6.2. Slenderness limit for cross-section class 4 
To establish the slenderness limit for flanges in cross-section class 4, 

which determines the buckling curve's plateau length, the results of all 
beam simulations are plotted in Fig. 18 in terms of the slenderness ratio 
cf/tf/ε. The reduction factor, shown on the vertical axis, is the ratio of 
the plastic moment to the moment resistance determined from the nu-
merical analysis. The relative flange slenderness, cf/tf/ε, as for a flange 
in a flat web girder, is used in the horizontal axis. Fig. 18 demonstrates 
that there is no decrease in moment capacities due to flange buckling for 
slenderness values of cf/tf/ε < 8,5. The limit for cross section class 4 

might be conservatively taken as (cf/tf > 8,5 ε). 
Given that the flat web's buckling coefficient is constant (kσ Flat =

0.43), the relative slenderness depends on the values of bf , tf , and ε. The 
buckling coefficient for a flange in a corrugated web beam, on the other 
hand, is a function of the corrugation parameters and thus is not a 
constant. Therefore, the results in Fig. 18 are reproduced in Fig. 19 with 
a definition of the slenderness limit that includes the buckling coefficient 
kσ from Eq. (3-3). The limit for cross section class 4 would then be 
cf/tf > 11.36ε*

̅̅̅̅̅
kσ

√
. Comparing Fig. 18 to Fig. 19, it is obvious that 

including kσ in the slenderness results in a more accurate estimation of 
CSC4 limit with substantially reduced scatter. 

3.6.3. Proposed buckling curve 
The evaluation of the earlier-developed models shows that these 

models are inadequate to accurately predict the ultimate moment ca-
pacity of duplex 1.4162 beams. Additionally, the plate buckling curve 
proposed by EN1993–1-5 is inappropriate for corrugated web girders 
made of duplex stainless steel and needs, thus, to be modified. A new 
model is developed in this study based on the relative slenderness ratio 
λp proposed in the EN1993–1-5 using the large flange outstand cf . The 
primary distinction is that the predicted elastic buckling coefficient 
κσ.corr was calculated based on the model developed in this work for the 
buckling coefficient, Eq. (3-3). The use of κσ.corr results in small 
dispersion and a strong correlation between the buckling reduction 
factor ρnum and the relative slenderness λp(κσ.corr). The developed flange 
buckling curve is presented in Fig. 20 and the equation that describes the 
proposed model is defined as follows: 

Fig. 16. (a) Buckling mode, (b) Top flange yielding at Mult, (c) Post failure collapse. Coloured regions indicate yielding in the beams shown in columns (b) and (c)  
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ρcorr = 1.0 for λp ≤ 0.4

ρcorr =
0.69
λp

−
0.1
λp

2 − 0.1 ≤ 1.0 for λp > 0.4
(3–5) 

Comparing the capacities obtained from the numerical analysis and 
the capacities obtained from the proposed buckling curve, Fig. 21 shows 
that the design model predicts the ultimate capacity with good 

approximation. Adding here that to get a buckling curve where all 
predicted capacities are on the safe side, some girders' capacities will be 
underestimated. 

Fig. 17. Comparison of previous models based on numerical results  

Fig. 18. Mult num/Mpl versus flange slenderness defined as cf/tf/ε  
Fig. 19. Mult num/Mplversus flange slenderness defined as cf/tf/ε/

̅̅̅̅̅
kσ

√
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4. Proposed design procedure 

The model that accounts for flange buckling in beams with trape-
zoidal corrugated webs made of duplex stainless steel is summarized in 
the following steps: 

Define the limit for cross-section class 4 as follows: 
if cf/tf > 11.36ε*

̅̅̅̅̅
kσ

√
➔ the flange is in CSC4 

where the buckling coefficient is defined as: 

κσ.corr = 1.7 −
̅̅̅̅̅a3

bf

√

+ 0.76⋅
tw

tf
+ 0.94

(
bf

tf

)0.17

− 2.56
(w

s

)2 

When the flange is in CSC4, calculate the flange's relative slenderness 
as follows: 

λp =

̅̅̅̅̅̅
fy

σcr

√

=
cf
/

tf
28.4ε ̅̅̅̅̅̅̅̅̅̅̅κσ.corr

√

Determine the buckling reduction factor from the following equa-
tion: 

ρcorr = 1.0 for λp ≤ 0.4

ρcorr =
0.69
λp

−
0.1
λp

2 − 0.1 ≤ 1.0 for λp > 0.4 

The moment capacity for flange buckling can now be obtained from: 

Mult.Corr = ρcorr.bf ⋅tf ⋅
(
hw+tf

)
⋅fyf  

5. Summary and conclusions 

This paper has reported the results of an extensive numerical study 
on the flange buckling resistance of stainless-steel corrugated web 
girders. Experimental and numerical studies on carbon steel conducted 
by Jager et al. [6] and Elamary et al. [21] provided a foundation for the 
validation of the FE model. Two types of parametric numerical analyses 
are conducted: linear buckling analysis to estimate the elastic buckling 
coefficient κσ and nonlinear buckling analysis that considered non-
linearities in both geometry and material to develop a new buckling 
curve ρ ( λp). Equivalent initial imperfections of amplitude cf

50 and a 
shape of the 1st flange buckling mode is used following an imperfection 
sensitivity study. Three previous models: EN1993–1-5, DASt-Richtlinie 
015 [18], and Jager et al. [5] are all examined in view of the pro-
duced numerical results. The following conclusions are drawn: 

a. The three available models for flange buckling resistance of corru-
gated web girders made of C–Mn steel: EN1993–1-5, DASt- 
Richtlinie 015 [18], and the model proposed by Jager et al. [5], 
are nonconservative for duplex 1.4162 trapezoidal corrugated web 
girders. Both the elastic buckling coefficient κσ and the buckling 
reduction factor ρ produced by these models is unsatisfactory. The 
model proposed in EN1993–1-5 does not consider the rigidity of the 
web-to-flange junction, which has shown to be an important influ-
ential parameter. The DASt-Richtlinie 015 model does not consider 
the corrugation geometry. The model proposed by Jager et al. shows 
enhanced results since it considers both the web-to-flange junction 
rigidity and the corrugation geometry, however, the model results in 
capacities that are on the unsafe side for many girders.  

b. The proposed formula for calculating the elastic buckling coefficient 
kσ.corr, which is proposed based on the LBA of 410 plate girders with a 
wide range of corrugation geometries and web-to-flange thickness 
ratios in a domain relevant to bridge girders, provides substantially 
better estimations than do previously proposed models for C–Mn 
girders.  

c. The results of the imperfection sensitivity study indicates that the 1st 
eigen buckling mode with imperfection amplitude of cf/50, as rec-
ommended by EN1993–1-5 for flange twisting, is appropriate for 
flange buckling in corrugated web beams made of duplex 1.4162.  

d. Three failure modes for flange buckling are observed in this study: 
flange-induced web buckling, combined buckling mode and sepa-
rated local flange buckling. 

e. The proposed buckling curve ρ ( λp), which is based on the correla-
tion between the relative slenderness ratio λp(kσ.corr) and the reduc-
tion buckling factor ρ ( λp), is found to produce good results for all 
observed failure modes. However, owing to the complexity of the 
problem and many influencing parameters, a certain underestima-
tion in the flange buckling resistance is accepted.  

f. The relative slenderness limit for duplex trapezoidal corrugated web 
beams is λp ≤ 0.4. This results in a cross-section class 4 limit of 
cf/tf > 11.36ε*

̅̅̅̅̅
kσ

√
. 

The design model proposed in this research is developed specifically 
for the duplex stainless steel 1.4162 grade and it is based on the pa-
rameters' ranges specified in Section 3.1. Further investigation on the 
model's applicability for C–Mn steel and other grades of stainless steel, 
as well as possibly broader parameter domains, is necessary. 
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