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ABSTRACT We provide a rigorous framework for characterizing and numerically evaluating the error
probability achievable in the uplink and downlink of a fully digital quantized multiuser multiple-input
multiple-output (MIMO) system.We assume that the system operates over a quasi-static channel that does not
change across the finite-length transmitted codewords, and only imperfect channel state information (CSI)
is available at the base station (BS) and at the user equipments. The need for the novel framework developed
in this paper stems from the fact that, for the quasi-static scenario, commonly used signal-to-interference-
and-distortion-ratio expressions that depend on the variance of the channel estimation error are not relatable
to any rigorous information-theoretic achievable-rate bound. We use our framework to investigate how the
performance of a fully digital massive MIMO system subject to a fronthaul rate constraint, which imposes a
limit on the number of samples per second produced by the analog-to-digital and digital-to-analog converters
(ADCs and DACs), depends on the number of BS antennas and on the precision of the ADCs and DACs.
In particular, we characterize, for a given fronthaul constraint, the trade-off between the number of antennas
and the resolution of the data converters, and discuss how this trade-off is influenced by the accuracy
of the available CSI. Our framework captures explicitly the cost, in terms of spectral efficiency, of pilot
transmission—an overhead that the outage capacity, the classic asymptotic metric used in this scenario,
cannot capture. We present extensive numerical results that validate the accuracy of the proposed framework
and allow us to characterize, for a given fronthaul constraint, the optimal number of antennas and the optimal
resolution of the converters as a function of the transmitted power and of the available CSI.

INDEX TERMS Finite blocklength, fronthaul rate constraint, low-precision converters, multi-user massive
multiple-input multiple-output (MIMO), quasi-static scenario.

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO) is a key
technology enabler of 5G. Indeed, the large number of
active antennas available at the base station (BS) in mul-
tiuser massive MIMO architectures results in significant
spectral and energy efficiency gains compared to traditional,
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small-scale MIMO architectures. Furthermore, these gains
can be achieved by means of low-complexity spatial
processing [2].

In this paper, we focus on fully-digital massive MIMO
architectures in which the radio-frequency (RF) frontend,
which we will refer to as remote radio head (RRH) and which
hosts the RF circuitry, mixers, and data converters, is not
colocated with the baseband unit (BBU), in which digital
signal processing is performed. Separating these two units is
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convenient for accessibility, maintenance, and reconfigurabil-
ity purposes. We are specifically interested in the scenario in
which the RRH is equipped with a massive antenna array.1

One challenge in such architectures is that the RRH and
BBU need to be connected via a finite-capacity fronthaul
link—a limitation that is important to take into account when
designing massive MIMO systems, especially the ones oper-
ating over the large bandwidths available in the millimeter-
wave (mm-wave) part of the spectrum. To understand the
scale of this interconnect problem, consider for example a
massive MIMO base-station (BS) equipped with 100 active
antenna branches, each connected to two 16-bit resolution
data converters, one for the real and one for the imaginary
part of the base-band signal, operating at 1GS/s. Such an
architecture produces 3.2 Tb/s of raw baseband data, which
is difficult to transfer using current fronthaul standards. One
possible, low-complexity approach to circumvent this issue
is to reduce the resolution of the data converters. We are
then left with the following natural question. How should one
choose the sampling rate, the number of antennas, and the
resolution of the data converters, given a constraint on the
product of these three quantities, which reflects the fronthaul
capacity? In this paper, we will shed light on this question by
characterizing the trade-off between the number of antennas
and the resolution of the data converters for a fixed sampling
rate.

A. PRIOR ART
The problem of designing wireless systems in the presence
of a fronthaul constraint has been studied extensively in the
context of cloud radio access networks (see, e.g., [4] and ref-
erences therein). However, the focus of this line of work is on
solutions where significant signal-processing capabilities are
available at the RRHs, which can then execute sophisticated
multiterminal vector compression techniques. In contrast, the
focus of this paper is on low-complexity solutions enabling
low-cost RRHs. Specifically, we consider a simpler, subopti-
mal approach for reducing the required fronthaul rate, which
involves lowering the precision of the converters at the RRH.

A large body of literature is concerned with the per-
formance achievable with multiuser massive MIMO sys-
tems in which the BS is equipped with low-resolution
data converters. Existing works include the derivation of
information-theoretic achievable rates in the ergodic scenario
with Gaussian codebooks [5], [6], [7], [8], [9], [10], [11],
the design of channel estimation and data-detection algo-
rithms [12], [13], [14], [15], [16], [17], of linear and non-
linear precoders [8], [18], [19], [20], and of low-complexity
equalization techniques [21]. All of these results reveal that
satisfactory performance can be achieved even when using
1-bit converters at the RRHs, and that, by using 3-to-5-bit
converters, one can approach closely the performance achiev-
able in the infinite-precision case. Extensions of these works

1We will not consider the distributed massive MIMO scenario in which
the BBU is connected to multiple spatially distributed RRHs [3].

to the case of distributed massive MIMO, with focus on
the spectral and energy efficiency achievable in the ergodic
setting, have been provided in [22], [23], [24], [25], and [26].

The focus of this paper is on the analysis of the rate
achievable in the less studied quasi-static scenario, in which,
differently from the commonly analyzed ergodic setting, the
channel remains constant for the duration of each transmitted
codeword.2 This scenario is relevant in propagation condi-
tions with limited time and frequency diversity. It is also
relevant when short codewords are transmitted, which occurs
in control channels, during the initial-access phase, and in
machine-type communications involving stringent latency
requirements and limited bandwidth.

For the case in which low-precision data converters are
used at the BS, it is crucial to assume that the BS has at
its disposal only imperfect channel-state information (CSI),
typically acquired in massive MIMO systems via uplink pilot
transmission. Indeed, the presence of low-precision convert-
ers makes acquiring perfect CSI challenging, even when the
number of transmitted pilot symbols is large. As illustrated
recently in [27] in the context of short-packet transmissions
over infinite-precision massive MIMO links, analyses for the
quasi-static case in the presence of imperfect CSI are nontriv-
ial. Indeed, one cannot simply take the ergodic-rate signal-
to-interference-and-noise ratio (SINR) expressions reported
in, e.g., [28, Thm. 4.1] for the uplink and account for the
quasi-static nature of the channel by evaluating the cumula-
tive distribution function of the SINR to determine the outage
probability as a function of the transmission rate. This is not
correct even in the asymptotic regime of large blocklength,
since the resulting expression cannot be related to any rigor-
ous notion of outage probability. Similarly, one cannot insert
these ergodic SINR expressions into normal-approximation
formulas [29, Eq. 223] to obtain approximations on the rate
achievable in the finite-blocklength regime. Unfortunately,
both approaches are commonly found in the literature. This
highlights the need for a rigorous framework—built fromfirst
principles—to analyze the quasi-static scenario.

B. CONTRIBUTIONS
In this paper, we provide such a rigorous framework,
and use it to characterize the uplink and downlink packet
error probability achievable in the quasi-static scenario, for
the case in which a BS, equipped with a large antenna
array and low-precision converters, serves in the same
time-frequency resources multiple user equipments (UEs).
Our framework leverages three fundamental ingredients:
(i) the random-coding union bound with parameter s (RCUs)
from finite-blocklength information theory [30] to capture
the finite length of the transmission packets; (ii) a scaled
nearest-neighbor mismatch decoder [31] to account for the
imperfect CSI available at the BS and at the UEs, as well

2This scenario is a special case of the so called ‘‘block-fading’’ model;
specifically, we assume that each codeword is entirely contained within a
fading block.
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as for the low-complexity, suboptimal processing performed
at both transmitters and receivers; (iii) Bussgang’s decom-
position [32] to deal with the nonlinearity introduced by the
low-resolution converters. These ingredients have been used
separately in the literature before. However, their combina-
tion, which is required to address the key design question
formulated in this paper, is novel and nontrivial.We also show
how to approximate the obtained error probability bounds
with simpler asymptotic expressions that are in terms of the
so-called generalizedmutual information (GMI).3 The result-
ing approximation is shown to be very accurate for packet
error probabilities in the range [10−3, 10−1].
We then use the packet error-probability bounds developed

in the paper to obtain engineering insights into the opti-
mal design of multiuser massive MIMO systems with low-
precision converters, operating under a fronthaul constraint.
Specifically, focusing on a realistic clustered channel model,
and considering the quantization-aware channel-estimation
algorithm proposed in [13], we determine, for a given fron-
thaul constraint, the optimal number of antennas and the reso-
lution of the quantizers that maximize the rate at which uplink
and downlink communications can be sustained with a packet
error probability not exceeding 10%. For the parameters con-
sidered in our numerical simulations, which pertain a scenario
with 8 users and a fronthaul constraint of 512 bit/s/Hz, our
analysis reveals that the highest performing BS architecture
involves a large antenna array (from 64 to 256 antenna ele-
ments, depending on the SNR) connected to low-precision
data converters (from 1 to 4 bits, depending on the SNR).
A solution involving 1-bit data converters and 256 antennas
turns out to be optimal from a bi-directional communica-
tion perspective for low transmitted-power levels, whereas,
for high transmitted-power levels, a solution involving 4-bit
data converters and 64 antennas is preferable. Increasing the
precision of the converters beyond these values, at the cost
of a reduction in the number of antennas, turns out to be
deleterious, once the impact of imperfect CSI is accounted
for. Interestingly, these conclusions are different from the
ones derived by performing a perfect-CSI analysis. Indeed,
in the perfect-CSI case, the use of architectures involving
higher-precision quantizers and fewer antennas is preferable.

C. PAPER OUTLINE
In Section II, we introduce the system model, the fron-
thaul constraint, and the linear spatial processing that will
be considered in the rest of the paper. In Section III,
we present our nonasymptotic framework for the char-
acterization of the packet error probability, as well as
asymptotic limits and approximations that will be useful to
obtain system-design guidelines. In Section IV, we describe
our numerical-simulation setup and conduct experiments
to determine (i) the impact of a fronthaul constraint
on the channel-estimation accuracy obtainable via pilot

3This quantity was previously used in performance analyses of low-
precision massive MIMO architectures in, e.g., [10].

FIGURE 1. Overview of the fully digital BS architecture considered in the
paper. A B-antenna BS serves U users over the same time-frequency
resources. Each antenna is connected to a pair of quantizers with Q-bit
resolution. The BS consists of a BBU and an RRH that are connected via a
rate-constrained fronthaul interface.

transmission, (ii) the optimal number of pilot symbols, and
(iii) the effect on performance of nonsubtractive dithering
in the 1-bit quantization case. We then shed light on the
fronthaul-induced trade-off between number of antennas at
the BS and resolution of the quantizers. Some concluding
remarks are provided in Section V.

D. NOTATION
Lower-case bold letters are used for vectors and upper-case
bold letters for matrices. We denote by CN (0N ,R), where
0N stands for the all-zero vector of size N , the distribution
of an N -dimensional circularly-symmetric complex-valued
Gaussian vector with zero mean and N × N covariance
matrix R. We use IN to denote the N × N identity matrix,
and E[·], Var[·], P[·] to denote the expectation, variance, and
probability operators, respectively. The natural logarithm is
denoted by log(·), the Gaussian Q-function by QG(·), the
indicator function by 1{·}, and the floor function by ⌊·⌋.
Finally, the notation f (n) = O(g(n)), n → ∞ means that
lim supn→∞ |f (n)/g(n)| < ∞.

II. SYSTEM MODEL
We consider a single-cell massive multiuser MIMO sce-
nario, in which a BS equipped with B antennas, serves U
single-antenna UEs in the same time-frequency resources.
As depicted in Fig. 1, the BS consists of a RRH and a BBU
that are connected via a rate-constrained fronthaul interface.
Each antenna is equipped with a pair ofQ-bit data converters,
one for the in-phase and one for the quadrature compo-
nent. We consider a time division duplexing (TDD) scenario.
In the uplink, the data-transmission phase is preceded by
a pilot-transmission phase, which allows the BS to acquire
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(imperfect) CSI. The signal transmitted by the U UEs is
quantized at the B BS antennas using the low-precision data
converters. The quantized signal is then transferred to the
BBU via the fronthaul link, where channel estimation, linear
combining, and decoding are performed. In the downlink,
the linearly precoded signal is quantized at the BBU and
transferred over the fronthaul link, where it is converted
into the analog domain and transmitted over the B antennas.
It follows that an architecturewithB active antennas andQ-bit
converters, operating at the Nyquist sampling rate, requires a
fronthaul interface able to support a rate of 2BQ bit/s/Hz.
We assume uniform, symmetric, mid-rise quantizers with

step size 1 and Q-bit resolution. Specifically, let r ∈ R be
the input of the quantizer. Then, the output Q(r) is given by

Q(r) =


1

2
(1 − L), if r < −

1

2
L

1
⌊ r

1

⌋
+

1

2
, if −

1

2
L ≤ r <

1

2
L

1

2
(L − 1), if r ≥

1

2
L.

(1)

Here, L = 2Q denotes the number of quantization levels. For
a complex-valued input z, we letQ(z) = Q(ℜ{z})+ jQ(ℑ{z}).
For a vector z, we denote byQ(z) the result of applyingQ(·)
entry-wise to its elements.

Note that we assume for simplicity that all converters have
the same resolution. However, our analysis can be readily
extended to the scenario considered in, e.g., [10], in which
the converters may have different resolution.

A. UPLINK TRANSMISSION
We consider a TDD transmission protocol in which an uplink
frame consisting of nul channel uses is followed by a down-
link frame of ndl channel uses. The fading process is assumed
to stay constant over the duration of the nul + ndl channel
uses. Furthermore, we assume that reciprocity holds, so that
the channel estimated in the uplink can be used by the BS in
downlink transmission.

In the uplink, we model the B-dimensional discrete-time,
complex-valued, base-band signal received at the BS at time
instant k as follows:

yul[k] = Hsul[k] + nul[k], k = 1, . . . , nul. (2)

Here, sul[k] =
[
sul1 [k], s

ul
2 [k], . . . , s

ul
U [k]

]T
∈ CU is the signal

transmitted by the U UEs at time instant k , the B×U matrix
H represents the fading channel, and nul[k] ∼ CN (0B,N0IB)
denotes the additive white Gaussian noise at the BS, which
we assume to be independent across k , and independent also
of the transmitted signal and the fading matrix. The first np
channel uses in the uplink are reserved for the transmission of
pilot symbols, used by the BS to estimate H. The remaining
nd = nul−np channel uses are reserved for data transmission.
Note that, so far, we have not provided any statistical model
for the fading channel H. This is because the information
theoretic bounds we shall provide in Section III hold for
arbitrary quasi-static fading models.

At the receiver, the analog signal from which yul[k] is
obtained, is passed through an automatic gain control (AGC)
circuit, which scales the analog signal so as to match the
dynamic range of the quantizer. Then, a linear combinerW ∈

CB×U , which is computed by the BS on the basis of the CSI
acquired via the np pilot symbols, is used to obtain an estimate
ŝul[k] ∈ CU of the transmitted signal sul[k] on the basis of
the quantizer output. Mathematically, we have the following
model:

ŝul[k] = WHQ
(
Ayul[k]

)
, k = np + 1, . . . , nul. (3)

Here, the diagonal matrix A models the AGC operation.
Note that we have not specified how pilot transmission is
performed or which channel estimator and linear combiner
are used. Again, this is because the information-theoretic
bounds we shall provide in Section III hold for arbitrary pilot
transmission schemes and channel estimators.

B. DOWNLINK TRANSMISSION
The acquired CSI in the uplink phase is used by the BS
to compute the linear precoder P. The resulting precoded
signal is then passed through a Q-bit quantizer to sat-
isfy the fronthaul-rate requirements. As a consequence, the
U -dimensional discrete-time received signal at the UEs can
be modeled as follows:

ydl[k] = HTαQ
(
Psdl[k]

)
+ ndl[k] (4)

for k = nul + 1, . . . , nul + ndl. Here, sdl[k] =[
sdl1 [k], . . . , s

dl
U [k]

]T contains the signal intended to each of
the U UEs, and the vector ndl[k] ∼ CN (0U ,N0IU ) is the
AWGN at the UEs’ side. This vector is independent across k
and does not depend on the transmitted signal or the fading
matrix. In (4), the parameter α is a normalization factor used
to enforce the power constraint E

[
∥αQ

(
Psdl[k]

)
∥
2
]

= ρdl.
Note that when the resolution of the quantizer is very low
(e.g., for a 1-bit quantizer), significant throughput gains can
be achieved by adopting more sophisticated nonlinear pre-
coders, which depend on the transmitted data (see, e.g., [8],
[19], [20]). In this paper, we focus on linear precoders because
they are the de-facto standard in commercial massive MIMO
BS. Similarly to the uplink, the information-theoretic bounds
we shall provide in Section III hold for an arbitrary linear
precoder P. We shall assume that the UEs are equipped with
high-resolution converters. Hence, we will not model the
quantization distortion at the UEs in uplink and downlink.

III. ANALYSIS OF THE ACHIEVABLE ERROR PROBABILITY
We will now provide a nonasymptotic, i.e., finite-
blocklength, upper bound on the error probability achievable
for a given transmission rate in both the uplink and the down-
link for the system model described in Section II. From this
result, one can directly obtain a lower bound on the achievable
rates for a given target error probability. Indeed, in the finite
blocklength regime, there is a fundamental trade-off between
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packet error probability and rate: reducing the error proba-
bility comes at the cost of a reduction in the transmission
rate, which is made explicit by our bounds. Our derivation is
based on an information-theoretic random-coding argument.
Specifically, we will provide a characterization of the average
error probability, averaged over the so-called i.i.d. Gaussian
codebook ensemble, in which each symbol of the transmit-
ted codewords is generated independently from the same
zero-mean Gaussian distribution. The main components of
our analysis are the mismatch-decoding framework [33] and
the RCUs from finite-blocklength information theory [30].
Both tools will be described in the following sections.

A. PRELIMINARY RESULT
As a preliminary result, we shall state the desired bound
on the error probability for the following simpler infinite-
precision, single-antenna, single-UE nonfading channel
model:

v[k] = gq[k] + z[k], k = 1, . . . , n. (5)

Here, g is a deterministic complex-valued coefficient and
{z[k]}nk=1 is a sequence of i.i.d. CN (0, σ 2) random variables.
Note that we allow σ 2 to depend on g. This will turn out to be
important to apply the bound on the error probability obtained
when analyzing (5) to the input-output relations of interest in
this paper, i.e., (3) and (4). The bound reported in this section
is derived under the following crucial assumptions:
(i) The receiver has access to a noisy estimate ĝ of g,

which the receiver treats as perfect. Specifically, since
the additive noise is Gaussian, the receiver operates
according to the so-called scaled-nearest neighbor prin-
ciple [31], i.e., it seeks the n-dimensional transmit-
ted codeword [q̂[1], . . . , q̂[n]]T that, after scaling by
ĝ, is closest to the receiver vector [v[1], . . . , v[n]]T in
Euclidean norm.

(ii) The average packet error probability is averaged over
the ensemble of Gaussian i.i.d. codebooks. Specifically,
the input signals q[k] in (5) are drawn independently
from a CN (0, ρ) distribution. Here, ρ denotes the trans-
mit power.

Under these assumptions, as proven for example in [27,
Thm. 1], one can establish the existence of a coding
scheme with rate R and packet error probability ϵ =

P
[[
q̂[1], . . . , q̂[n]

]T
̸=

[
q[1], . . . , q[n]

]T ] that is upper-
bounded by

ϵ ≤ inf
s>0

P

[
log(f )
n

+
1
n

n∑
k=1

ıs(q[k], v[k]) ≤ R

]
. (6)

Here, f is a random variable that is uniformly distributed on
the interval [0, 1] and

ıs(q[k], v[k]) = −s
∣∣v[k] − ĝq[k]

∣∣2 +
s |v[k]|2

1 + sρ
∣∣ĝ∣∣2

+ log
(
1 + sρ

∣∣ĝ∣∣2) (7)

is the so-called generalized information density [30]. The
bound in (6) is an instantiation (for a given channel model and
a given mismatch-decoding rule) of a more general bound,
commonly referred to as RCUs [30]. This bound is, in turn,
a relaxation and generalization to mismatch decoding of the
random-coding union bound proposed in [29, Thm. 16]. The
bound in (6) is optimized over the parameter s > 0, which
originates from the Chernoff-bound step used to relax the
random-coding union bound. Note, though, that any choice of
s > 0 results in a valid (although potentially looser) bound.

B. LINEARIZATION VIA BUSSGANG’S THEOREM
One obstacle in the direct application of the bound (7) to
the uplink and downlink channel input-output-relations (3)
and (4) is the presence of the nonlinear operator Q(·), which
prevents the direct use of the mismatch-decoding frame-
work. Indeed, the mismatch-decoding operation that results
in the information density (7) relies on the linearity of (5).
Bussgang’s theorem [32], which has been used extensively
in the massive MIMO literature to analyze the impact of
hardware impairments [6], [11], [34], [35], provides a simple
approach to overcome this issue. Specifically, Bussgang’s
theorem yields a simple way to compute the correlation
between two Gaussian vectors, after one of the two vectors
is passed through a nonlinearity (in our case, the quantization
operation (1)). This theorem, combined with a standard lin-
ear minimum mean square error (LMMSE) decomposition,
allows us to obtain the desired linearization.

1) UPLINK
Let us start by considering the uplink input-output relation
after spatial combining given in (3). Throughout, we shall
assume, in agreement with what stated in Section III-A,
that the input signals sulu [k], u = 1, . . . ,U , k = np +

1, . . . , nul, are drawn independently from a CN (0, ρul) dis-
tribution, where ρul denotes the uplink transmit power, which
we assume being the same for all UEs. Assume that the
channel matrix H is fixed. It is convenient to write the out-
put rul[k] = Q

(
Ayul[k]

)
of the quantizer as the sum of

the LMMSE estimate of rul[k] given the input Ayul[k] of
the quantizer, plus the uncorrelated, non-Gaussian estimation
error dul[k] as follows:

rul[k] = Gulyul[k] + dul[k] k = np + 1, . . . , nul. (8)

Here,Gul is the LMMSE-filtermatrix. Since the inputAyul[k]
of the quantizer is conditionally Gaussian given the channel
matrix H, this filter takes on a particularly simple form.
Specifically, it follows from Bussgang’s theorem that Gul is
diagonal and given by [18]

Gul
=

1
√

π
diag

(
ACyulA

)−1/2

×

L−1∑
i=1

exp
(
−12(i− L/2)2 diag

(
ACyulA

)−1) (9)
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where Cyul = E
[
yul(yul)H

]
. Substituting (9) into (8) and

then (8) into (3), we obtain the desired linearized input-
output relation, to which we can apply the error-probability
bound (6).

2) DOWNLINK
We shall assume that the downlink input signals sdl[k]
are drawn independently from a CN (0U , IU ) distribution.
Assume that the precoding matrix P is fixed. Since Psdl[k] is
conditionally Gaussian given P, it follows from Bussgang’s
theorem that (4) can be equivalently expressed as

ydl[k] = HTα
(
GdlPsdl[k] + ddl[k]

)
+ ndl[k] (10)

for k = nul + 1, . . . , nul + ndl, where ddl[k] is the
non-Gaussian quantization noise, which is uncorrelated with
sdl[k], and where the LMMSE-filter matrix Gdl has the same
form as Gul in (9), with ACyulA replaced by PPH .

C. THE ACTUAL ERROR-PROBABILITY BOUND
1) UPLINK
We let ŝulu [k] denote the uth entry of the vector ŝul[k] in (3),
and the vectors wu and hu denote the uth columns of the
B × U combining matrix W and channel matrix H. Substi-
tuting (8) into (3), we can write the estimate ŝulu [k] of the kth
data symbol from user u as

ŝulu [k] = wH
u G

ulAhusulu [k] +

U∑
v=1
v̸=u

wH
u G

ulAhvsulv [k]

+wH
u G

ulAnul[k] + wH
u d

ul[k] (11)

for k = np + 1, . . . , nul and u = 1, . . . ,U . The first
term in (11) denotes the useful signal. The remaining terms
comprise the residual multiuser interference, the additive
noise, and the quantization noise. The BS is not aware of the
effective channel gain gulu = wH

u G
ulAhu. However, it can use

the np pilot symbols to obtain the estimate ĝul = wH
u G

ulAĥu,
where ĥu denotes the uth column of the channel estimate
matrix Ĥ.
Since H, and, hence Ĥ, are assumed to stay constant over

the entire transmission duration, which involves nul + ndl
channel uses, we can obtain a mismatch-decoding upper
bound on the per-user error probability ϵulu , u = 1, . . . ,U ,
by applying (6) to the linearized input-output relation (11)
for each realization ofH and Ĥ and then by averaging overH
and Ĥ. Specifically, by setting q[k] = sulu [k], v[k] = ŝulu [k],
g = gulu , ĝ = ĝulu , and ρ = ρul in (6) and (7), and by
accounting for the pilot-transmission overhead, we can upper-
bound the uplink per-user error probability as

ϵulu ≤ EH,Ĥ

[
inf
s>0

P
[
log(f )
nul

+
1
nul

nul∑
k=np+1

ıs(sulu [k], ŝ
ul
u [k]) ≤ R

∣∣∣∣H, Ĥ
]]

. (12)

In (12), the probability inside the expectation is computed
with respect to the transmitted symbols, the additive noise,
and the uniform random variable f .

2) DOWNLINK
We let sdlu [k], n

dl
u [k], and y

dl
u [k] denote the uth entry of the

symbol vector sdl[k], noise vector ndl[k], and received vector
ydl[k], respectively. Furthermore, let pu denote the uth col-
umn of the precoding matrix P. It then follows from (10) that

ydlu [k] = αhTuG
dlpusdlu [k] +

U∑
v=1
v̸=u

αhTuG
dlpvsdlv [k]

+ αhTu d
dl[k] + ndlu [k] (13)

for k = nul +1, . . . , nul +ndl, and u = 1, . . . ,U . We assume
that the uth UE is not aware of the effective channel gdlu =

αhTuG
dlpu but it is aware of its mean ĝdlu = α E

[
hTuG

dlpu
]
.

This setup is often considered in themassiveMIMO literature
and yields, in the asymptotic ergodic setting, the so-called
hardening bound [28, Thm. 4.6]. In our quasi-static setup,
we will treat ĝdlu simply as the imperfect CSI used by the
scaled-nearest neighbor decoder at the uth UE, hence pro-
viding an operational interpretation to the hardening bound.
By setting q[k] = sdlu [k], v[k] = ydlu [k], g = gdlu , ĝ = ĝdlu ,
and ρ = 1 in (6) and (7), we can upper-bound the downlink
per-user error probability as

ϵdlu ≤ EH,Ĥ

[
inf
s>0

P
[
log(f )
ndl

+
1
ndl

nul+ndl∑
k=nul+1

ıs(sdlu [k], y
dl
u [k]) ≤ R

∣∣∣∣H, Ĥ
]]

. (14)

The probability in (14) is computed with respect to the sym-
bols transmitted by the BS and the additive noise. This prob-
ability depends on the channel estimate Ĥ indirectly through
the precoding matrix P.

D. ASYMPTOTIC LIMITS AND USEFUL APPROXIMATIONS
The error-probability bounds provided in (12) and (14) are
difficult to evaluate. Indeed not only the expectations, but
also the conditional probability terms within the bounds can
in general not be obtained in closed form, and need to be
evaluated numerically, which is especially challenging if one
targets low error probabilities. Furthermore, the minimization
over s, which is required to tighten the bounds, needs also to
be performed numerically for each realization of H and Ĥ.4

As we shall discuss next, it turns out that, when one
operates in the moderate error-probability regime (i.e., packet
error probability in the range [10−3, 10−1]), one can obtain
asymptotic approximations on the error-probability bounds
in (12) and (14) that aremuch simpler to evaluate numerically.

4In practice, one can loosen the bounds by moving the minimization
outside the expectation, which alleviates somewhat the numerical complexity
of this optimization step.
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After demonstrating their accuracy, we will use these approx-
imations in Section IV to provide insights on the optimal
system design.

1) A NORMAL APPROXIMATION
To introduce the first approximation, we start with the uplink
bound (12). Note that, given H and Ĥ, the conditional
probability term in (12) involves the linear combination of
nul − np + 1 independent random variables (the nul − np
information-density terms, which are actually also identically
distributed, and the log(f ) term). Fix an arbitrary integer k ∈

[np + 1, nul]. It will turn out convenient to let

Iuls,u = E
[
ıs(sulu [k], ŝ

ul
u [k])

]
(15)

= −s
(∣∣∣gulu − ĝulu

∣∣∣2 ρul
+ σ 2

u,ul

)
+ s

ρul
∣∣gulu ∣∣2 + σ 2

u,ul

1 + sρul
∣∣ĝulu ∣∣2

+ log
(
1 + sρul

∣∣∣ĝulu ∣∣∣2) (16)

where the expectation in (15) is computed only with respect
to the transmitted symbols and the additive noise (i.e., H and
Ĥ are fixed). In (16), we let σ 2

u,ul denote the conditional vari-
ance, givenH and Ĥ, of the total additive noise in (11), which
includes also residual multiuser interference and quantization
noise. Specifically, we have that

σ 2
u,ul =

U∑
v=1
v̸=u

∣∣∣wH
u G

ulAhv
∣∣∣2 + N0∥wH

u G
ulA∥

2

+wH
u Cdulwu (17)

where Cdul = E
[
dul
(
dul
)H] denotes the correlation matrix

of the uplink quantization distortion. To obtain (17) we have
used that the transmitted symbols are independent across
users and that the quantization noise and the transmitted
symbols are uncorrelated as a consequence of the LMMSE
decomposition. The random variable Iuls,u in (16) is usually
referred to as the GMI.

Let us also set V ul
s,u = Var

[
ıs(sulu [k], ŝ

ul
u [k])

]
. This quantity

is a generalization to the mismatch-decoding setup of the so-
called channel dispersion in finite-blocklength information
theory (see, e.g., [29, Def. 1]).

Let us now assume that nul − np ≫ 1. Since the random
variable log(f ) has finite moments, we can approximate the
error probability in (12) using the Berry-Essen central-limit
theorem [36, Ch. XVI.5] and conclude that

P

 log(f )
nul

+
1
nul

nul∑
k=np+1

ıs(sulu [k], ŝ
ul
u [k]) ≤ R

∣∣∣∣H, Ĥ



= QG


(
1 −

np
nul

)
Iulu,s − R√(

1 −
np
nul

)V ul
u,s
nul

+O
(

1√
nul − np

)
. (18)

We shall refer to the approximation on the conditional error
probability on the left-hand side of (18) obtained by neglect-
ing the O

(
1/
√
nul − np

)
term on the right-hand side of (18)

as normal approximation.
A similar approximation can be derived for the conditional

probability term in the downlink error probability bound
provided in (14). Specifically, let5 for an arbitrary integer
k ∈ [nul + 1, nul + ndl]

Idls,u = E
[
ıs(sdlu [k], y

dl
u [k])

]
(19)

= −s
(∣∣∣gdlu − ĝdlu

∣∣∣2 + σ 2
u,dl

)
+ s

∣∣gdlu ∣∣2 + σ 2
u,dl

1 + s
∣∣ĝdlu ∣∣2

+ log
(
1 + s

∣∣∣ĝdlu ∣∣∣2) (20)

where

σ 2
u,dl =

∑
v̸=u

α2
∣∣∣hTuGdlpv

∣∣∣+ α2hTuCddlh
∗
u + N0 (21)

with Cddl = E
[
ddl
(
ddl
)H]. Let V dl

s,u = Var
[
ıs(sdlu [k], y

dl
u [k])

]
.

Then,

P

 log(f )
ndl

+
1
ndl

nul+ndl∑
k=nul+1

ıs(sdlu [k], y
dl
u [k]) ≤ R

∣∣∣∣H, Ĥ



= QG

 Idlu,s − R√
V dl
u,s
ndl

+O
(

1
√
ndl

)
. (22)

2) THE OUTAGE-PROBABILITY LIMIT
Neglecting the O(·) terms in (18) and (22) and then substi-
tuting (18) into (12) and (22) into (14), one obtains approx-
imations on the uplink and downlink error probabilities that
are accurate when nul − np ≫ 1 and ndl ≫ 1, and easier to
evaluate, since the probability term is given in closed form.

However, the resulting expressions are still challenging to
evaluate numerically. Indeed, the first issue is that both V ul

u,s
andV dl

u,s depend on the expectation of the product of powers of
the input signal and the quantization distortion in the LMMSE
decomposition of the quantized signal. These terms do not
admit, in general, an analytical characterization. The second
issue is that, even after the above-mentioned substitutions, the
optimization over s, which is needed to tighten the bounds,
cannot be performed analytically.

To avoid both of these issues, we next present an alter-
native, looser, asymptotic approximation in terms of outage
probability. Starting from the uplink, we assume that nul →

∞ and that limnul→∞ np/nul = p ∈ [0, 1], where p is the rate

5Note that (20) depends on the transmit power ρdl indirectly, through
the normalization parameter α, which appears in the definitions of gdlu , ĝ

dl
u ,

and σ 2
u,dl.
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penalty due to pilot transmission. It follows from (18) that

lim
nul→∞

P

log(f )
nul

+
1
nul

nul∑
k=np+1

ıs(sulu [k], ŝ
ul
u [k]) ≤ R

∣∣∣∣H, Ĥ


=

{
1, if (1 − p)Iulu,s < R
0, otherwise

(23)

= 1{(1 − p)Iulu,s < R}. (24)

Using (24) in (12), we conclude that

lim
nul→∞

EH,Ĥ

[
inf
s>0

P
[
log(f )
nul

+
1
nul

nul∑
k=np+1

ıs(sulu [k], ŝ
ul
u [k]) ≤ R

∣∣∣∣H, Ĥ
]]

= E
[
inf
s>0

1{(1 − p)Iulu,s < R}

]
(25)

= P
[
(1 − p)

(
sup
s>0

Iulu,s

)
< R

]
. (26)

We shall refer to (26) as uplink GMI-based outage bound.
It turns out that the maximization over s > 0 in (26) can
be performed analytically. Specifically, let sopt the value of
s that maximizes the GMI Iulu,s. Then, proceeding similar
to [31, App. A], one can show that

sopt =
−2c+ b+

√
b2 + 4ac

2bc
(27)

where a = ρul
∣∣gulu ∣∣2 + σ 2

u,ul, b = ρul
∣∣ĝulu ∣∣2, and c =

ρul
∣∣gulu − ĝulu

∣∣2 + σ 2
u,ul.

It is worth noting that in the perfect CSI case, in which
ĝulu = gulu , we have that a = b+ c. Using this equality in (27),
we obtain that

sopt =
1
c

=
1

σ 2
u,ul

. (28)

This implies that, in the perfect CSI case,

sup
s>0

Iulu,s = log

(
1 +

ρul
∣∣gulu ∣∣2

σ 2
u,ul

)
(29)

and (26) reduces to the familiar outage-probability formula

P

[
log

(
1 +

ρul
∣∣gulu ∣∣2

σ 2
u,ul

)
< R

]
. (30)

This provides further evidence that (26) is the natural exten-
sion of (30) to the case of imperfect CSI. It is worth stressing
that, in the imperfect CSI case, the expression for the outage
probability obtained by substituting in (26) the optimal value
of s given in (28), does not take the form given in (30), with
the SINR in (30) replaced by a SINR term including also the
variance of the channel estimation error. This means that the
ergodic SINR expression for the imperfect CSI case reported
in, e.g., [28, Thm. 4.1] should not be used in the quasi-static
setting considered in this paper.

With steps similar to the ones leading to (26), one can show
that, in the downlink,

lim
ndl→∞

EH,Ĥ

[
inf
s>0

P
[
log(f )
ndl

+
1
ndl

nul+ndl∑
k=nul+1

ıs(sdlu [k], y
dl
u [k]) ≤ R

∣∣∣∣H, Ĥ
]]

= P
[(

sup
s>0

Idlu,s

)
< R

]
(31)

where the value of s maximizing Idlu,s is given by (27), with

a =
∣∣gdlu ∣∣ + σ 2

u,dl, b =
∣∣ĝdlu ∣∣2, and c =

∣∣gdlu − ĝdlu
∣∣2 + σ 2

u,dl.
We shall refer to (31) as downlink GMI-based outage bound.
Similar to the uplink, if we assume that the UEs have perfect
knowledge of the effective channel gdlu , then

sup
s>0

Idlu,s = log

(
1 +

∣∣gdlu ∣∣2
σ 2
u,dl

)
(32)

and (31) reduces to the familiar outage formula

P

[
log

(
1 +

∣∣gdlu ∣∣2
σ 2
u,dl

)
< R

]
. (33)

IV. NUMERICAL RESULTS
We present numerical simulations to demonstrate the
accuracy of the approximations on the error-probability
bounds presented in Section III. We will then use these
approximations—more specifically (26) for the uplink
and (31) for the downlink—to investigate the trade-off
between the number of antennas and the resolution of the
converters in the fully digital massive MIMO architecture
described in Section II. We will also study how this trade-off
is influenced by the quality of the available CSI. Before pre-
senting our numerical experiments, we detail in the next sec-
tion the scenario that will be considered throughout, as well
as the system parameters and the algorithm used for channel
estimation.

A. SIMULATION SETUP
1) PROPAGATION SCENARIO
We consider a small-cell scenario where a BS, which is
equipped with a uniform linear array of B equispaced anten-
nas, serves U = 8 users, uniformly distributed within a disc
centered around the BS, with inner radius of 5 meters and
outer radius of 150 meters. The propagation channel between
each UE and the BS is modeled according to a standard
clustered channel model (previously considered within the
context of massive MIMO architectures with low precision
quantizers in, e.g., in [37], [38], and [39]). This channelmodel
involves Ncl clusters, with each cluster contributing to Nrmc
resolvable multipath components. According to this model,
each column hu, u = 1, . . . ,U , of the channel matrix H can
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be written as

hu =

√
1

NclNrmc

Ncl∑
n=1

Nrmc∑
m=1

αun,ma(θ
u
n,m). (34)

Here, the fading coefficients αun,m are i.i.d. CN (0, σ 2
u ) com-

plex random variables, with σ 2
u modeling the path loss expe-

rienced by the uth UE. Furthermore, a(θun,m) is the array
response vector of the uniform linear array at the BS in far
field

a(θun,m) =

[
1, e−j2πθun,m , . . . , e−j2π(B−1)θun,m

]T
(35)

where θun,m = d sin(φun,m)/λ, with d being the antenna
spacing, φun,m the angle of arrival or spatial angle measured
from the boresight of the uniform linear array, and λ is the
wavelength.

In our simulations, we assume Ncl = 2 and Nrmc = 4,
and fix the antenna spacing to λ/2. As pathloss model,
we assume that 10 log10 σ 2

u = −72 − 29.2 log10(du/d0),
where du denotes the distance in meters between the uth UE
and the BS and d0 = 1m. The angle of arrivalφun,m is modeled
as φun,m = φun + φoffset, where φun ∼ U[−π/3, π/3] and
φoffset ∼ U[−π/24, π/24].

2) SYSTEM PARAMETERS
The noise spectral densityN0 is assumed to be−174 dBm/Hz,
the carrier frequency is 30GHz, and the transmitted signal
has a bandwidth equal to 50MHz. In the channel estima-
tion phase, we assume that each user transmits concurrently
orthogonal pilot sequences, obtained by cyclically shifting a
Zadoff-Chu sequence [13] of length np. Let T ∈ CU×np with
TTH = npρulIU be the matrix containing the pilot symbols
transmitted by all UEs. Let the B × np received signal at the
BS during the pilot phase be

Yp
= HT + Np (36)

where Np
∈ CB×np denotes the additive noise. We use the

signal received in the pilot phase to determine the AGC
diagonal matrix A when computing ĝulu . Specifically, we set

A = diag
(
Ĉyul

)−1/2
(37)

where

Ĉyul =
1
np

Yp(Yp)H . (38)

We also use Ĉyul as an estimate of Cyul when evaluating the
Bussgang filter Gul in the computation of ĝulu .
To set the parameter 1 in (1), we treat the input of the

quantizer as a complex Gaussian random variable of zero
mean and unit variance and we require that the clipping
probability does not exceed 10−4. This yields

1 =

√
2
L
Q−1
G

(
10−4

2

)
. (39)

Let now, τi = 1(i−L/2) for i = 1, . . . ,L−1 and τ0 = −∞,
τL = ∞ denote the quantization thresholds. Furthermore,

let ℓi = 1(i − L/2 + 1/2) for i = 0, . . . ,L − 1 be the
quantization labels. Treating again the input of the quantizer
as a complex Gaussian random variable, we set the downlink
power-normalization parameter α in (4) to

α =

√
ρdl/(2B)√∑L−1

i=0 ℓ2i

(
QG
(√

2τi
)
− QG

(√
2τi+1

)) . (40)

With this choice of α, we ensure that the average power
constraint E

[
∥αQ(Psdl[k])∥2

]
= ρdl is satisfied for the case

in which the entries of Psdl are modeled as CN (0, 1) random
variables. For the 1-bit case, we compute the correlation of
the uplink and downlink quantization distortionCdul andCddl

using the so called arc-sine law [40] (see [18, Eqs. (34)
and (43)]). When Q > 1, since no closed-form expressions
for Cdul and Cddl are available, we use the diagonal approxi-
mation proposed in [18, Sec. IV.C].

Throughout this section, we set nul = ndl = 500 and
assume that the fronthaul interface can support a rate no
larger than 512 bit/s/Hz. For a 50MHz transmitted-signal
bandwidth, this implies a fronthaul rate of about 25.6Gbit/s,
which is in the range of what can be supported with cur-
rent technologies. This constraint implies that 2BQ ≤

512 bit/s/Hz. As a consequence, the largest number of
BS antennas that is compatible with the use of quantizers
with Q = 1, 2, 3, 4, 5, 6, 7, 8 bits of resolution is B =

256, 128, 85, 64, 51, 42, 36, 32, respectively.

3) CHANNEL ESTIMATION
To estimate the channel, we use the CSI-acquisition algo-
rithm proposed in [13]. In this algorithm, the clustered chan-
nel generated according to (34) is estimated in the angle
domain. Since in this representation the channel is approxi-
mately sparse, the channel estimation problem can be reduced
to a quantized compressive-sensing reconstruction problem.
The approach followed in [13] is to solve this problem
using a method that combines expectation maximization with
approximate message passing.

4) LINEAR COMBINER AND PRECODER
The available CSI at the BS is used to construct a linear
combiner and a linear precoder. Throughout this section,
we will consider the distortion-aware MMSE combiner pro-
posed in [7, Eq. 13] for which

wu =

(
ρul

∑
v̸=u

GulAĥv
(
GulAĥv

)H
+N0GulA(GulA)H + Cdul

)−1 (
ρulGulAĥu

)
(41)

and a MMSE precoder (which ignores quantization effects)

P = βĤ∗

(
ĤTĤ∗

+
UN0

ρdl IU

)−1

(42)
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where the normalization factor β is chosen so that
E
[
∥Psdl[k]∥2

]
= B. Some remarks on the performance

achievable with the simpler maximum ratio combiner in the
uplink and maximum ratio precoder in the downlink are
provided in Section IV-F.

B. CHANNEL-ESTIMATION PERFORMANCE
Before analyzing the trade-off between the number of anten-
nas and the resolution of the converters for a given fronthaul
constraint in Section IV-F, we start by providing in this
section some insights on the choice of the pilot-sequence
length for the clustered channel model (34) and the channel-
estimation algorithm described in Section IV-A3. We will
then discuss in Section IV-C the accuracy of the simple-to-
evaluate error-probability approximations provided in (26)
and (31), and analyze in Section IV-D the impact of dithering
in both uplink and downlink for the case Q = 1. We start by
investigating the normalized MSE of the channel estimate6

obtained at the BS as a function of the resolution Q of the
data converters for the case in which U = 8 users trans-
mit simultaneously pilot sequences of length np = 48 as
described in Section IV-A2. Aswe shall discuss in Section IV-
E, for the error-probability values considered therein, this
choice for np strikes a good balance between accuracy of the
channel estimate and pilot overhead. Note that, because of the
fronthaul constraint, the number of BS antennas decreases as
Q is increased, as described in Section IV-A2. To investigate
the impact of quantization on the accuracy of the channel
estimates obtainable at the BS, we consider two values of
transmit power: a low transmit-power value of 16 dBm, and
a high transmit-power value of 24 dBm.7 The grey lines
in Fig 2 illustrate the channel-estimation normalized MSE
as a function of Q, for a fixed number of transmit anten-
nas B ∈ {32, 36, 42, 51, 64, 85, 128, 256}. The MSE values
marked in blue are the ones corresponding to the largest
number of antennas that is compatible with the fronthaul
constraint, for the corresponding value of Q. We note that for
the low transmit-power value, the lowest MSE value among
the (Q,B) pairs satisfying the fronthaul constraint is obtained
when Q = 2 and B = 128, whereas, for the high transmit-
power value, Q = 4 and, hence, B = 64 result in the lowest
MSE. Increasing the transmit power turns out beneficial in
terms of MSE for all Q values except Q = 1, for which
the MSE deteriorates as the transmit power is increased. This
behavior is common in the 1-bit case and has been noticed
before for a variety of channel models and channel-estimation
algorithms [1], [12], [41], [42], [43]. To shed further light on
this phenomenon, we plot in Fig. 3 the channel-estimation
normalized MSE for (Q,B) ∈ {(1, 256), (2, 128), (3, 85)}.
Note that the MSE curve decreases monotonically with ρul

whenQ = 2, 3. On the contrary, whenQ = 1, the MSE curve
achieves a global minimum at ρul

≈ 20 dBm. The reason is

6This quantity is defined as the average of the ratio between the square of
the channel estimation error and the square of the norm of the channel.

7Aswe shall clarify shortly, these two values allow us to analyze the impact
of dithering for the 1-bit quantization case.

as follows: although a single-bit quantizer preserves only the
sign of the input signal, with a sufficient amount of noise,
amplitude information about the input signal can be recovered
via multiple measurements. This well-known phenomenon,
usually referred to as stochastic resonance, can be enforced
also in the high-SNR regime via the use of nonsubtractive
dithering at the receiver, prior to quantization [44]. We will
investigate the beneficial effects of dithering in the high-SNR
regime for the case Q = 1 in Section IV-D. Note that the
two transmit-power values chosen in Fig. 2 are to the left
and to the right of the transmit-power value minimizing the
normalized MSE in Fig. 3, i.e., ρul

= 20 dBm.

C. ACCURACY OF THE PROPOSED LARGE-BLOCKLENGTH
APPROXIMATIONS
In Section III-D, we proposed two large-blocklength approx-
imations to the RCUs bounds (12) and (14). Focusing on the
uplink, we shall now discuss the accuracy of these approxi-
mations. Specifically, we compare the error probability bound
given by (i) the RCUs bound (12), (ii) the normal approx-
imation (18), (iii) the GMI-based outage probability (26)
(computed for p = np/nul), and (iv) the perfect-CSI outage
probability (30). In Fig. 4, we present this comparison for
the case Q = 1, nul = 500, and U = 8. Specifically,
we report the error probability as predicted by the different
bounds/approximations, versus the number of transmit anten-
nas B when each user transmits at a rate R of 0.5 bit/s/Hz.
As in Section IV-B, we consider two values for the transmit
power. The reported error probability bounds are optimized
over the number of transmitted pilots np. Furthermore, the
bound (12) and the normal approximation (18) are optimized
over the parameter s. The optimization over the parameter
s and the number of pilot symbols is performed via a grid
search.

As shown in the figure, for the range of error probabilities
considered here, the predictions obtained using the RCUs
bound (12) and the normal approximation (18) match the
ones obtained using the GMI-based outage probability (16).
On the contrary, the predictions based on the perfect-CSI
outage-probability approximation provided in (30) turn out
to highly underestimate the error probability. The optimal
number of pilot symbols in Fig. 4 is around 48 for higher
values of the error probability, and increases to around 56 for
error probability values around 10−2 and below. A similar
result holds for the other values of quantizer resolution Q
considered in this section as well as for the downlink.

Based on these results, we shall use the GMI-based outage
bounds (26) and (31) as performance metrics when conduct-
ing the system-optimization investigations reported in the
following two sections.

D. IMPACT OF DITHERING
We now focus on the caseQ = 1 and investigate the impact of
dithering on both uplink and downlink performance. Specif-
ically, we set B = 256, np = 48, and investigate the
impact of dithering on the GMI-based outage bounds (26)
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FIGURE 2. Channel estimation normalized MSE as a function of the resolution of the quantizers and the number of BS antennas.
The points marked in blue are obtained by considering the largest number of BS antennas that is compatible with a fronthaul
constraint of 512 bit/s/Hz.

FIGURE 3. Channel-estimation normalized MSE as a function of ρul for
the (Q, B) pairs {(1, 256), (2, 128), (3, 85)} satisfying the fronthaul
constraint of 512 bit/s/Hz.

and (31). The other system parameters are as in the previous
sections. Dithering is only used in the channel-estimation
phase. Indeed, for the parameters considered in this section,
dithering in the data-transmission phase does not yield any
benefits. The reason is that the residual multiuser interference
after linear spatial processing acts as dithering and is suffi-
cient to induce stochastic resonance. We model dithering by
assuming that the smallest channel-estimation MSE achiev-
able for the case Q = 1, which is achieved by transmitting
pilot symbols at a power of around 20 dBm (see Fig. 3) can
bemaintained for all values of ρul

≥ 20 dBm.We also assume
that the uplink operates at a much lower power than the
downlink. Specifically, the channel estimate used to generate
the downlink precoder is obtained via a pilot-transmission
uplink phase in which the pilot symbols are transmitted at
a power level that is 26 dB less than the downlink power ρdl.

In Fig. 5, we depict the maximum achievable rate compat-
ible with a GMI-based outage probability not exceeding 0.1.
As shown in the figure, dithering in the channel estimation
phase is beneficial in the uplink. Indeed, without dithering the

rate drops rapidly as the transmit power is increased beyond
20 dBm, whereas, with dithering, the achievable rate does
not decrease with the transmit power, apart from a small
rate reduction at 21 dBm, which is the power level at which
dithering is first introduced. Interestingly, using dithering in
the channel-estimation phase has no benefits in the downlink,
for the range of transmitted-power values considered in the
figure. The reason is as follows: although, both in the uplink
and in the downlink, the decoder operates according to the
scaled nearest-neighbor principle, the scaling parameter in
the two setups is different. In the uplink, we use the scaling
parameter ĝulu = wH

u G
ulAĥu whereas in the downlink we

use the hardening-bound-inspired scaling parameter ĝdlu =

α E
[
hTuG

dlpu
]
. It turns out that the explicit dependence of

ĝul on ĥu makes this bound sensitive to the lack of stochastic
resonance occurring when ρul exceeds 20 dBm.

E. OPTIMAL NUMBER OF PILOT SYMBOLS
We consider again as performance metric the maximum rate
that is compatible with a GMI-based uplink outage proba-
bility not exceeding 0.1, and investigate the optimal number
of pilot symbols for different values of Q and B chosen
so as to satisfy the fronthaul constraint. In Table 1 and 2,
we report, for both ρul

= 16 dBm and ρul
= 24 dBm, the

optimal number of pilots as well as the rate penalty incurred
when setting np = 48, which is the value we considered in
Figs. 2, 3, and 5. As shown in the tables, this rate penalty is
negligible for ρul

= 24 dBm. Indeed, for this transmit-power
value the rate curve as a function of the number of pilot
symbols is flat around its maximum. The rate penalty is also
small for ρul

= 16 dBm for small Q values, but it increases
for larger Q values.

F. NUMBER OF ANTENNAS VS. DATA-CONVERTER
RESOLUTION
Finally, we investigate how one should select the number of
antennas and the resolution of the quantizers to maximize
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FIGURE 4. Comparison between the proposed bounds and approximations on the uplink packet-error probability achievable for
the case Q = 1, U = 8, nul = 500, and R = 0.5 bit/s/Hz. The error probability curves are optimized over the number of transmitted
pilots.

FIGURE 5. Impact of dithering during the channel-estimation phase on the uplink and downlink performance.

TABLE 1. Optimal value of np and rate penalty when np is set to 48: ρul = 16 dBm.

the uplink and downlink rates given a GMI-based outage
constraint of 0.1, hence addressing the central question that
motivated our investigation. In Fig. 6, we report the uplink
and the downlink rates for the pair ρul

= 16 dBm, ρdl
=

42 dBm, as well as for the pair ρul
= 24 dBm, ρdl

= 50 dBm,
as a function of the resolution Q of the quantizers, for a
fronthaul rate of 512 bit/s/Hz. Motivated by machine-type
communications where an uplink data-collection phase is
followed by the transmission of a control command on the
downlink, we also report the bi-directional rate, which we
define as the largest rate R for which the bi-directional

outage probability

P
[
min

{
(1 − p)

(
sup
s>0

Iulu,s

)
,

(
sup
s>0

Idlu,s

)}
< R

]
(43)

does not exceed 0.1. The uplink rates are optimized over the
choice of np; the channel estimates obtained using the result-
ing number of pilots is used to determine the downlink pre-
coder. For the caseQ = 1, dithering in the channel-estimation
phase is introduced whenever beneficial. We see from the
figure that, in the perfect-CSI case (Figs. 6a and 6b), the
system is uplink-limited and the bi-directional rate curve
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TABLE 2. Optimal value of np and rate penalty when np is set to 48: ρul = 24 dBm; dithering is used for the pair (1, 256).

FIGURE 6. Achievable rate at 10% GMI-based outage probability as a function of the quantizer resolution Q, for a fronthaul
constraint of 512 bit/s/Hz.

follows closely the uplink-rate curve. In the uplink, for both
transmit power values considered in the figure, the rate is
maximized when Q = 1, which yields a BS with B = 256
antennas. Indeed, since the system is power-limited in the
uplink, the array gain resulting from the deployment of
additional antennas, offsets the increased quantization noise
resulting from the choice of 1-bit converters. On the contrary,
the choice Q = 1 is suboptimal in the downlink, where,
instead, the rate is maximized when Q = 5 and Q = 6,
respectively. Here, the reduction in quantization noise and,
hence, also in multiuser interference (recall that we use a
quantization-unaware linear precoder) resulting from these
choices of Q, which yield B = 51 and B = 42, respectively,
offsets the reduction in array gain.

The picture changes when one considers the case of
pilot-assisted transmission and accounts for the inaccurate

channel estimate available at the BS. Indeed, as shown in
Fig. 6c and 6d, imperfect CSI yields a significant reduction in
the downlink rates, although the system still remains uplink
limited. Similarly to the perfect-CSI case, for both values of
transmitted power considered in the figures, the downlink rate
is maximized when Q = 5. In the uplink, however, the value
Q = 1 is optimal only for the pair ρul

= 16 dBm and
ρdl

= 42 dBm, whereas for the pair ρul
= 24 dBm and

ρdl
= 50 dBm, the uplink rate is maximizes when Q = 3 and

the bi-directional rate when Q = 4.
Finally, we report in Fig. 7 the performance achiev-

able using maximum-ratio combiner in the uplink and
maximum-ratio beamformer in the downlink. As shown in
the figure, the downlink performance reduces significantly
so that no positive rate can be achieve in the bidirectional-
transmission case, for the acquired-CSI scenario.
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FIGURE 7. Achievable rate at 10% GMI-based outage probability as a function of the quantizer resolution Q, for a fronthaul
constraint of 512 bit/s/Hz; Maximum ratio combiner and maximum ratio precoder.

V. CONCLUSION
We have considered the problem of designing a multiuser
massive MIMO architecture where the BS is equipped with
low-precision converters and a fronthaul constraint limits the
amount of data that can be exchanged between the RRH
and the BBU. Furthermore, we have assumed that the com-
munication link is used to exchange short packets over a
quasi-static fading channels that is not known a priori to
the BS and the UEs and is estimated via uplink pilots. Our
main contribution is a general framework for the characteri-
zation of the error probability in this setup, which relies on
the RCUs bound from finite-blocklength information theory,
a scaled nearest-neighbor decoder, and the use of Bussgang
decomposition. We present both finite-blocklength bounds,
and asymptotic approximations based on the GMI, which
turn out to be accurate for moderate error-probability targets
(see Fig. 4).

Using our bounds, we have conducted a number of experi-
ments that shed light on the optimal design of the considered
system. In particular, we have shown that when the lack of
accuracy in the acquired CSI is accounted for, architectural
solutions involving large antenna arrays connected to 1-bit to

4-bit converters, depending on the transmit-power values, are
preferable.

Although presented for the quasi-static setup, our analysis
can be extended to account for variations of the fading process
within each codeword. When the fading evolves according
to a block-memoryless model, such a generalization can be
performed following the steps detailed for the unquantized
case in [45].
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