
A classification of harmonic weak Maaß forms of half-integral weight

Downloaded from: https://research.chalmers.se, 2025-07-02 03:14 UTC

Citation for the original published paper (version of record):
Alfes-Neumann, C., Raum, M. (2023). A classification of harmonic weak Maaß forms of
half-integral weight. Research in Number Theory, 9(3).
http://dx.doi.org/10.1007/s40993-023-00455-9

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



C. Alfes-Neumann and M. Raum Res. Number Theory           (2023) 9:48 
https://doi.org/10.1007/s40993-023-00455-9

RESEARCH

A classification of harmonic weak Maaß
forms of half-integral weight
Claudia Alfes-Neumann1* and Martin Raum2

*Correspondence:
alfes@math.uni-bielefeld.de
1Fakultät für Mathematik,
Universität Bielefeld, Postfach
100 131, 33501 Bielefeld,
Germany
Full list of author information is
available at the end of the article
C. Alfes-Neumann was
supported by the Daimler and
Benz Foundation, the Klaus
Tschira Boost Fund, and the
Deutsche
Forschungsgemeinschaft (DFG,
German Research
Foundation)—SFB-TRR 358/1
2023—491392403. M. Raum was
partially supported by
Vetenskapsrådet
Grant 2015-04139
and 2019-03551

Abstract

We classify Harish-Chandra modules generated by the pullback to the metaplectic
group of harmonic weak Maaß forms with exponential growth allowed at the cusps.
This extends work by Schulze-Pillot and parallels recent work by Bringmann–Kudla,
who investigated the case of integral weights. We realize each of our cases via a
regularized theta lift of an integral weight harmonic weak Maaß form. Harish-Chandra
modules in both integral and half-integral weight that occur need not be irreducible.
Therefore, our display of the role that the theta lifting takes in this picture, we hope,
contributes to an initial understanding of a theta correspondence for extensions of
Harish-Chandra modules.
Mathematics Subject Classification: Primary: 11F12; Secondary: 11F27, 11F70

Bringmann and Kudla [7] provided a classification of the Harish-Chandra modules
generated by the pullback to SL2(R) of harmonic weak Maaß forms of integral weight
with exponential growthallowedat the cusps.They complemented their classificationwith
explicit examples for all 9 possibilities, and thus showed that these arise from harmonic
weak Maaß forms. The case of half-integral weight was partially treated by Schulze-Pillot
in earlier work [23]. He restricted himself to a subclass of functions satisfying a more
restrictive growth condition at the cusps (see Remark 2.6). However, he did not explicitly
realize the different modules that arise.
In this notewe provide a classification ofHarish-Chandramodules corresponding to the

full class of harmonic weak Maaß forms of half-integral weight. Moreover, we explicitly
realize all cases as certain theta liftings of integral weight harmonic weakMaaß forms that
occur in Bringmann and Kudla’s work. We therefore extend Schulze-Pillot’s work in two
directions. Observe that it is equally possible to realize these cases by Poincaré series or
via an abstract cohomological argument.
Our work also provides a representation theoretic perspective on local theta liftings

of harmonic weak Maaß forms. Theta liftings are an explicit realization of the theta
correspondence introduced by Howe [19] and are best understood for cusp forms. For
example, they can be used to realize the correspondence of Shimura and Shintani in
the classical setting of cusp forms [25,26], whose representation theoretic counterpart
appears inWaldspurger’s work [27]. To be able to lift forms with singularities at the cusps
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we consider lifts that are regularized using ideas of Harvey–Moore [18] and Borcherds
[6].
Much less is known on the representation theoretic side. Kudla and Rallis analyzed

invariant distributions [22], which arise from the Shintani lift of constants when viewed
through the lens of the archimedean theta correspondence. They encountered reducible
Harish-Chandra modules, as opposed to the irreducible ones that one finds when treating
cusp forms. TheHarish-Chandramodules that occurred in thework of Bringmann–Kudla
and Schulze-Pillot and that occur in our work are generally reducible, too. In this sense,
we give an initial sense of how the archimedean theta correspondence might function on
reducible Harish-Chandra modules.
We illustrate our results by an example. Harish-Chandra modules in our setting can

be visualized by their K -type support and transitions, which reflect the behaviour of
Maaß lowering and raising operators on harmonic weakMaaß forms, defined in (1.2) and
the paragraph that follows it. We have the following two Harish-Chandra modules, one
for SL2(R) and the other one for Mp1(R), whose visualization we explain in Sect. 2.

0 2

L2 F �= 0, �2 F = 0.

0
3
2

L 3
2
f �= 0, � 3

2
f = 0.

The first Harish-Chandra module corresponds to case III (b) in [7]. It can be realized by
the Eisenstein series

E∗
2 (z) = 1 − 24

∑

n≥1
σ1(n)e2π inz − 3

πy
.

The second one can be realized by taking the regularized Shintani-lift of E∗
2 (compare

Sect. 3 for the definition). Specifically, its (twisted) Shintani-lift was computed in [5]. We
let � be a negative fundamental discriminant. We have

√|�|�Sh
� (E∗

2 , τ ) = 12H (|�|)E∗
3
2
(τ ),

where

E∗
3
2
(τ ) =

∑

D≥0
H (D)e2π iDτ + 1

16π
∑

n∈Z
v− 1

2 β 3
2
(4πn2v)e−2π in2τ , v = �(τ ),

with H (0) = − 1
12 and H (D) = 0 if −D �= 0 is not a discriminant, is Zagier’s weight- 32

Eisenstein series [29]. Here, β3/2(s) = ∫ ∞
1 e−st t−3/2dt.

Our work is organised as follows: We first review some necessary background on the
metaplectic group and harmonic weak Maaß forms. In Sect. 2 we introduce the principal
series and state the classification for the (g, K ) modules corresponding to harmonic weak
Maaß forms of half-integralweight. Thenwe give a short overviewonMillson and Shintani
theta liftings of even integralweight harmonicweakMaaß forms and closewith the explicit
realization of all of the modules arising from our classification.
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1 Preliminaries
1.1 The metaplectic group

We define the real metaplectic group as

Mp1(R) :=
{
(g,ω) : g = ( a b

c d
) ∈ SL2(R),ω : H → C holomorphic, ω(τ )2 = cτ + d

}

equipped with the usual group law (g,ω)(g ′,ω′) = (gg ′, τ 
→ ω(g ′τ )ω′(τ )). Further,
we write πMp1 for the projection from Mp1(R) to SL2(R) that sends (g,ω) to g . This
turns Mp1(R) into a connected double cover of SL2(R).
We let K ,M, and N be the preimages under πMp1 of SO2(R), the subgroup of diagonal,

and the subgroup of upper triangular unipotentmatrices.Wehave aKMN -decomposition
of Mp1(R), and the subgroups K ,M, and N are uniformized by

k(θ ) :=
( (

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)
, ωk(θ )

)
, m(a, s) :=

( ( a 0
0 a−1

)
, s|a|− 1

2
)
,

n(b) :=
( ( 1 b

0 1
)
, 1

)
, and n(b)k

(π

2
)
.

In the argument of k , we have θ ∈ R and ωk(θ ) : H → C is uniquely defined by its
value ωk(θ )(i) = exp(−i 12θ ). To specify the right hand side of m(a, s), we define the sign
function sgn(ia) := isgn(a) for a ∈ iR. Given a ∈ R, a > 0, s ∈ {±1}, or a ∈ R, a < 0,
s ∈ {±i}, we let s|a|− 1

2 be the square root of a−1 with sign s. The argument of n is b ∈ R.

1.2 The Lie algebra of Mp1(R)

Since πMp1 is a covering map of Lie groups, the (complexified) Lie algebras of Mp1(R)
and SL2(R) are canonically isomorphic. We follow the notation in [7], and set

H := i
( 0 −1
1 0

)
, X+ := 1

2
( 1 i
i −1

)
, X− := 1

2
( 1 −i

−i −1
)
,

which is a basis for g = (g0)C ∼= {A ∈ Mat2(C) : trace(A) = 0}, where we let g0 =
Lie(SL2(R)). We write U(g) for the universal enveloping algebra of g.
We have the commutator relations

[
X+, X−

] = H ,
[
H,X+

] = 2X+,
[
H,X−

] = −2X−.

The Casimir operator

C := H2 + 2X+X− + 2X−X+ ∈ U
(
g
)

(1.1)

is central as required.We haveC = (H−1)2+4X+X−−1 andC = (H+1)2+4X−X+−1,
which is slightly more convenient for later purposes.
The action of X + iY ∈ g, X, Y ∈ g0, on smooth complex functions f̃ : Mp1(R) → C is

defined by
(
(X + iY )f̃

)
(g) = ∂t=0 f̃

(
g exp(tX)

) + i∂t=0 f̃
(
g exp(tY )

)
,

where we write ∂t=0 for the value at t = 0 of the derivative with respect to t and exp
denotes the exponential map for the Lie group Mp1(R).

1.3 Harmonic weak Maaß forms

The action of SL2(R) on the Poincaré upper half planeH extends to themetaplectic group
via πMp1 :

( ( a b
c d

)
, ω

)
τ := aτ + b

cτ + d
.
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We define the slash action of weight k ∈ 1
2Z on functions f : H → C by

(
f
∣∣
k (γ ,ω)

)
(τ ) := ω(τ )−2k f (γ τ ).

We let Mp1(Z) be the inverse image of SL2(Z) under the covering map Mp1(R) →
SL2(R). An arithmetic type is a finite dimensional, complex representation ρ of a finite
index subgroup  ⊆ Mp1(Z). We write V (ρ) for the representation space of ρ. Func-
tions f : H → V (ρ) admit the following slash actions for k ∈ 1

2Z:
(
f
∣∣
k,ρ(γ ,ω)

)
(τ ) := ρ((γ ,ω))−1 (

f
∣∣
k (γ ,ω)

)
(τ ).

The Weil representation is an arithmetic type that is most relevant in the context of
theta lifts. Consider a finite quadratic module D = (M, q), i.e. a finite abelian group M
together with a non-singular quadratic form q : M → Q/Z, with corresponding bilinear
form 〈 ·, · 〉q . We let e(x) := e2π ix. There is a unique representation ρD for which V (ρD) is
the free module CM with basisM and actions

ρD
(( ( 1 1

0 1
)
, 1

))
m := e

(
q(m)

)
m,

ρD
(( ( 0 −1

1 0
)
,
√

τ
))

m := 1
σ (D)

√
#M

∑

m′∈M
e
( − 〈m,m′〉q

)
m′,

where

σ (D) := 1√
#M

∑

m∈M
e
( − q(m)

)
.

Recall that τ = u + iv. We fix the normalization of the Maaß lowering and raising
operators as

Rk := 2i∂τ + kv−1 and Lk := −2iv2∂τ , k ∈ 1
2
Z. (1.2)

Then the weight-k Laplace operator equals �k := −Rk−2Lk .
A harmonic weak Maaß form of weight k ∈ 1

2Z and arithmetic type ρ for  ⊆ Mp1(Z)
is a smooth function f : H → V (ρ) with �k f = 0 such that

∀γ ∈  : f
∣∣
k,ρ γ = f

and for some norm ‖ · ‖ on V (ρ)

∃a ∈ R∀γ ∈ Mp1(Z) :
∥∥(
f
∣∣
k γ

)
(τ )

∥∥ � exp(av). (1.3)

Note that we only have non-zero harmonic weak Maaß forms if ρ((−I, i)) = i−2k .
We denote the space of such forms by Hmg

k (, ρ) as in [7]. Observe that while mg
stands for moderate growth, the condition imposed in (1.3) differs from what is called the
moderate growth condition in the context of modular forms.
If (ρ, V ) is one-dimensional, i.e., given by a character χ :  → C

×, we write Hmg
k (,χ ),

or even Hmg
k () if χ is trivial. This subspace is referred to as the space of scalar-valued

harmonic weak Maaß forms of weight k for .
Harmonic weak Maaß forms are related to classical spaces of modular forms by the ξ -

operator. Following Bruinier and Funke [12] we define it by

ξk f := 2ivk ∂τ f .

Proceeding as in [12] we see that

ξk : Hmg
k (, ρ) −→ M!

2−k (, ρ),
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and that ξk is surjective.Here,M!
2−k denotes the subspace ofweakly holomorphicmodular

forms (i.e., forms that are holomorphic on H and have poles of finite order at the cusps).
Moreover, ρ is defined by ρ(γ )v = ρ(γ )v. Herewe clearly need to assume thatV is defined
over R.
A natural subspace of Hmg

k (, ρ) consists of those functions that map to cusp forms
under the ξ -operator or alternatively for which there exists a polynomial Pf (τ ) ∈ V [q−1]
such that

f (τ ) − Pf (τ ) � e−εv

as v → ∞ for some ε > 0 (and similarly at the other cusps). We denote the subspace of
these forms by Hk (, ρ). Its image under the ξ -operator are cusp forms.
We now describe the Fourier expansion of such forms. A scalar-valued harmonic weak

Maaß form of integral weight k �= 1 has a Fourier expansion of the form

f (τ ) = f +(τ ) + f −(τ ) =
∑

n�−∞
c+f (n)q

n + c−f (0)v
1−k +

∑

n�∞
c−f (n)Wk (4πnv)qn (1.4)

at ∞, whereWk (x) is the real-valued incomplete -function

Wk (x) = �(
(1 − k,−2x)

) = (1 − k,−2x) +
⎧
⎨

⎩

(−1)1−kπ
(k−1)! x > 0,

0 x < 0,

with (s, x) = ∫ ∞
x e−t ts−1dt. If k = 1, we have to replace the term v1−k in the non-

holomorphic part by − log(v).
If f ∈ Hk (), then we have c−f (n) = 0 for all n ≥ 0, and more generally c−f |kγ (n) = 0 for

all γ ∈ Mp1(Z) and n ≥ 0.
We now let k ∈ Z≤0. A further differential operator which establishes relations between

harmonic weak Maaß forms and classical modular forms is

D := 1
2π i

∂τ .

By Bol’s identity we have D1−k = (−4π )k−1R1−k
k and D1−k : Hmg

k (, ρ) → M!
2−k (, ρ).

For scalar-valued forms we define the flipped space by

H#
k () := {f ∈ Hmg

k () : D1−k (f ) ∈ S2−k ()} = {f ∈ Hmg
k () : c+f (n) = 0 for n < 0}.

The spaces Hk () and H#
k () are “flipped” by the flipping operator

Fk := v−k

(−k)!
R−k
k .

The flipping operator satisfies

Fk ◦ Fk (f ) = f.

It acts on the Fourier expansion (1.4) of a harmonic weak Maaß form f ∈ Hmg() by

Fk (f (τ )) = −c−f (0)v
1−k − (−k)!

∑

n�−∞
n �=0

c−f (−n)qn − c+f (0)

− 1
(−k)!

∑

n�∞
n �=0

c+f (−n)(1 − k,−4πnv)qn.
(1.5)
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2 (g, K )-modules and harmonic weakMaaß forms
Recall that a (g, K )-module is a simultaneous module for a Lie algebra g and a com-
pact group K with Lie(K ) ⊆ g and suitable compatibility conditions imposed. A Harish-
Chandra module is an admissible (g, K )-module, i.e., a (g, K )-module with finite dimen-
sional K -isotypical components. The latter are referred to as K -types. As before, we
set g = Lie(Mp1(R)), and K = π−1

Mp1(SO2(R)) has already been defined.
We visualize Harshi-Chandra modules by their K -type support, i.e., the set of K -

isotypical components that are nonzero, and the vanishing of K -type transitions, i.e.,
those K -types on which X or Y in Sect. 1.2 act as zero. We label K -types by their eigen-
values under H . Note that in the setting of harmonic weak Maaß forms, K -types are at
most one-dimensional. It therefore suffice to indicate their non-vanishing. For instance,
consider following diagram.

0
3
2

This diagram represents a Harish-Chandra module whose K -types of H-eigenvalue
in 3

2 + 2Z≥0 vanish. The vertical line at 3
2 together with the arrow in positive direction

indicate that any vector of K -type 3
2 vanishes under X−, that is, it points towards the K -

types support of a subrepresentation of the Harish-Chandra module, which in the present
case is zero.

2.1 Some principal series

We start by providing a sufficient supply of (g, K )-modules by decomposing suitable
degenerate principal series. This is analogue of Sect. 4 of [7] in the case of the metaplectic
group Mp1(R).
For half-integers ε ∈ 1

2Z/2Z and ν ∈ C, we let Ism(ε, ν) be the principal series represen-
tation of Mp1(R) on the space of smooth functions with the property

φ
(
n(b)m(a, s)g

) = s2ε |a|v+1 φ(g). (2.1)

To check that this space is not empty, we only need to see that the intersection ofM andN
is trivial.
We consider the associated (g, K )-module I(ε, ν) ofK -finite functions in Ism(ε, ν). Given

an half-integer j with j ∈ ε + 2Z, we let φj ∈ I(ε, ν) be the unique function that satisfies

φj(k(θ )) = exp(ijθ ).

To see that this is well-defined it suffices to check that the defining property for I(ε, ν)
holds on K ∩ MN . For θ ∈ πZ, we have

exp(ijθ ) = φj
( (

cos(θ ) 0
0 cos(θ )

)
, exp

( − i 12θ
)) = sgn

(
exp(i 12θ )

)2ε
φj(1) = exp

(
iεθ

)
.

This calculation also shows that no other K-types but those corresponding to the func-
tions φj , j ∈ ε + 2Z can occur in I(ε, ν).
The decomposition of these principle series was determined by Waldspurger [28], and

conveniently reformulated by Schulze-Pillot [23]. We will encounter two families of irre-
ducible representations, whose K -types are spanned by
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�+(ν) = [
φν+1, φν+2, φν+3, . . .

]
and

�−(ν) = [
. . . , φ−ν−3, φ−ν−2, φ−ν−1

]
. (2.2)

They lie in the discrete series if ν > 0.

Proposition 2.1 (Lemma 6 of [23] and Proposition 6 of [28]) Let ε and ν be as in (2.1).
Consider the case that ε ∈ 1

2 + Z and ν ∈ ε + 2Z. Then we have −ν − 1 ∈ ε + 2Z,
and we have X+ φ−ν−1 = 0, which implies that φ−ν−1 spans the maximal K-type of a
subrepresentation of I(ε, ν). We have the short exact sequence

0 −→ �−(ν) −→ I(ε, ν) −→ �+(−ν) −→ 0.

Consider the case that ε ∈ 1
2 +Z and ν + 1 ∈ ε + 2Z. Then we have X− φν+1 = 0, which

implies that φν+1 spans the minimal K-type of a subrepresentation of I(ε, ν). We have the
short exact sequence

0 −→ �+(ν) −→ I(ε, ν) −→ �−(−ν) −→ 0.

Remark 2.2 The representations in Proposition 2.1 are “genuine” representations
of Mp1(R), that is, they do not arise via pullbacks along the projection from Mp1(R)
to SL2(R). Note that they have two composition factors. This differs from the situation
of integral ε, which yields non-genuine principle series with three composition factors
except for the very special case of ν = 0.

2.2 Harish-Chandra modules associated to harmonic weak Maaß forms

We let A(Mp1(R)) be the space of complex-valued, smooth functions on Mp1(R) that are
linear combinations of functions with the property that

∃j ∈ 1
2Z∀θ ∈ R, (g,ω) ∈ Mp1(R) : f̃

(
(g,ω)k(θ )

) = f̃
(
(g,ω)

)
exp(ijθ ). (2.3)

We consider an arithmetic type ρ :  → GL(V (ρ)),  ⊂ Mp1(Z). We let A(Mp1(R),
V (ρ)) := A(Mp1(R))⊗CV (ρ) be the space of smooth functions onMp1(R) that take values
in V (ρ) and are linear combinations of functions with the same property (2.3). Finally,
let A(Mp1(R), ρ) ⊆ A(Mp1(R), V (ρ)) be the subspace of functions with the additional
property that

∀γ ∈ , (g,ω) ∈ Mp1(R) : f̃ (γ (g,ω)) = ρ(γ )f̃
(
(g,ω)

)
. (2.4)

We can associate Harish-Chandra modules, in fact submodules of A(Mp1(R), ρ) to
harmonic weak Maaß forms of half-integral weight and of type ρ. We loosely follow the
description of the integral weight case in [7].
In the rest of this subsection we fix f ∈ Hmg

k (, ρ), and set

f̃k
(
(g,ω)

)
:= f̃

(
(g,ω)

)
:= ω(i)−2k f (gi) = (

f
∣∣
k (g,ω)

)
(i). (2.5)

Note that f̃ depends on k , but it is customary to suppress this dependence from the
notation. As long as f transforms like a modular form, the weight k can be recovered from
the asymptotic expansion of f ◦ γ for suitable γ ∈ Mp1(Z).
We see that f̃ is a function fromMp1(R) toV (ρ), and verify that it satisfies (2.3) for j = k .

We calculate the action of K by right shifts to find that f̃ ∈ A(Mp1(R), V (ρ)). A similar
calculation also shows that Hf̃ = kf̃ . This merely reflects the fact that f̃ = f̃k was
constructed via theweight-k slash action in (2.5). In particular, it does not use anymodular
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properties of f , let alone the fact that it is harmonic. Finally, inspecting the actionofMp1(Z)
by left shifts then shows that f̃ ∈ A(Mp1(R), ρ).
Calculations for X+ and X− are significantly more involved. They yield the same results

as in the integral weight case. The lowering and raising operators intertwine with the
construction in (2.5) provided that the weight k is adjusted:

X+ f̃k = (
R̃k f

)
k+2 and X− f̃k = (

L̃k f
)
k−2. (2.6)

Only now we employ the fact that f is harmonic, i.e., that we have Rk+2 Lk f = 0.
Recalling that C = (H − 1)2 + 4X+X− − 1, this corresponds via (2.6) to

X+ X− f̃ = 0 and C f̃ = (
(k − 1)2 − 1

)
f̃ . (2.7)

The Poincaré-Birkhoff-Witt property of the generators H,X± of U(Lie(Mp1(R))C) in
conjunction with (2.7) implies that f̃ generates a (g, K )-module � (f, k) = �∞(f, k) ⊂
A(Mp1(R), ρ), which is spanned by the functions

f̃k+2r := Xr+ f̃ and f̃k−2r := Xr− f̃ , r ∈ Z≥0.

The commutation relations of H and X± then imply that each K -type in � (f, k) occurs
with multiplicity at most once. In particular, � (f, k) is a Harish-Chandra module.
Wefinishwith the eigenvalues of f̃ underXr−Xr+ and the eigenvalues of f̃k−2 underXr+Xr−.

The next lemmawill be helpful when identifying� (f, k) in the context of our classification.
It features the Pochhammer symbols

(k)r := lim
s→0

(k + r + s)
/
(k + s) = k · (k + 1) · · · (k + r − 1).

Lemma 2.3 Fix k ∈ 1
2 + Z and let f : H → V be a smooth function with �k f = 0 for

some complex vector space V . Then for f̃ defined in (2.5), we have

Xr−Xr+ f̃k = (−1)rr! (k)r f̃k and Xr+Xr− f̃k−2 = r! (k − 1 − r)r f̃k−2. (2.8)

Proof Since the Casimir element is central it acts by scalars on the module generated
by f̃ . We have Cf̃k+2r = ((k − 1)2 − 1)f̃k+2r for all r ∈ Z. The action ofH was determined
before: H f̃k+2r = (k + 2r)f̃k+2r .
We conclude that for r ≥ 0, we have

4X−X+ f̃k+2r = (
(k − 1)2 − 1 − (k + 2r + 1)2 + 1

)
f̃k+2r = −4(r + 1)(k + r) f̃k+2r .

Similarly, if r ≥ 0, we have

4X+X− f̃k−2r = (
(k − 1)2 − 1 − (k − 2r − 1)2 + 1

)
f̃k−2r = 4r(k − 1 − r) f̃k−2r .

This yields the recursions, valid for r > 0,

2Xr−Xr+ f̃k = Xr−1− X−X+ f̃k+2r−2

= −r(k + r − 1)Xr−1− f̃k+2r−2 = −r(k + r − 1)Xr−1− Xr−1+ f̃k ,

Xr+Xr− f̃k−2 = Xr−1− X+X− f̃k−2r

= r(k − 1 − r)Xr−1+ f̃k−2r = r(k − 1 − r)Xr−1+ Xr−1− f̃k−2.

The statement follows from these recursions by induction on r. ��
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2.3 Classification

We next describe the Harish-Chandra modules � (f, k) associated with harmonic weak
Maaß forms in termsof the standardmodules�±(±ν). The theory ismuchmore stringent
than in the case of integral weights.

Proposition 2.4 Let f be a weakly holomorphic modular form of weight k ∈ 1
2 + Z.

Then � (f, k) is isomorphic to �+(k − 1).
Let f be a harmonic weakMaaß form of weight k ∈ 1

2 +Z that is not weakly holomorphic.
Then � (f, k) fits into the nonsplit exact sequence

0 −→ �−(1 − k) −→ � (f, k) −→ �+(k − 1) −→ 0.

Remark 2.5 The existence of weakly holomorphic modular forms in all half-integral
weight cases is clear. The existence of harmonic weak Maaß forms in all weights fol-
lows along the lines of Bruinier–Funke [12], when removing the condition that the image
under ξk has moderate growth.

Remark 2.6 Schulze-Pillot in Proposition 7 of [23] provided a classification of harmonic
weak Maaß forms for which ξk f is a cusp form instead of a weakly holomorphic modular
form as in our case.

Proof One can appeal to a classification that identifies irreducible Harish-Chandra mod-
ules in terms of their eigenvalues under the Casimir element and their K -types support.
Amore elementary approach was suggested by Bringmann–Kudla [7]. Since allK -types

in � (f, k) appear with multiplicity at most one, it suffices to compare the action of Xr±Xr∓
and Xr∓Xr±. We give the details in the case that f is not weakly holomorphic.
Observe that g := Lk f is annihilated by Rk−2. Using the intertwining property (2.6)

of Rk−2 and X+, we conclude that X+ g̃k−2 = 0. To show that the Harish-Chandra-
module � (g, k − 2) is isomorphic to �−(1 − k), it now suffices to calculate and compare
the eigenvalues of g̃ = f̃−1 and ofφk−2 fromSect. 2.1 underXr+Xr− for all positive integers r.
The former was given in (2.8) and the latter based on the discussion after (2.1) with ν =
k − 2 and j = k − 2.
The K -type support of the quotient module � (f, k)/� (g, k − 2) corresponds to the

k(θ )-eigenvalues e(ijθ ) for j ∈ k + 2Z≥0, which coincides with the K -types that appear
in �+(k − 1). Again because each K -type occurs with multiplicity one, it suffices to
compare the eigenvalues of f̃ and φk under Xr−Xr+. The former was also given in (2.8) and
the latter based on the discussion after (2.1) with ν = k − 2 and j = k . ��

2.4 Diagrams of K -types

Recall the visualization of Harish-Chandra modules introduced in Sect. 2. Let f be a
harmonic weak Maaß form of weight k . If we have Lk f = 0 and k ∈ 1

2 + 2Z is greater
than one, the associated Harish-Chandra module � (f, k) yields the K -type diagram

0 1 k

Lk f = 0, k > 1, k ∈ 1
2 + 2Z.

Observe that the K -types next to 0 in this diagram are labelled by − 3
2 and 1

2 . Integral
weights do not support K -types in this diagram. If we have Lk f = 0 and k ∈ 3

2 + 2Z is
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greater than one, then the positively labelled K -type next to zero is 3
2 and the negative one

is − 1
2 . This yields the diagram

0 1 k

Lk f = 0, k > 1, k ∈ 3
2 + 2Z.

If Lk f �= 0, we again have two cases. One of the following two diagrams describes
the K -types in � (f, k):

0 1 k

Lk f �= 0, k > 1, k ∈ 1
2 + 2Z.

0 1 k

Lk f �= 0, k > 1, k ∈ 3
2 + 2Z.

The situation is very similar for k less than 1. Depending on Lk f and k , one of the
following four diagrams arises from � (f, k):

k 0 1

Lk f = 0, k < 1, k ∈ 1
2 + 2Z.

k 0 1

Lk f = 0, k < 1, k ∈ 3
2 + 2Z.

k 0 1

Lk f �= 0, k < 1, k ∈ 1
2 + 2Z.

k 0 1

Lk f �= 0, k < 1, k ∈ 3
2 + 2Z.

3 Theta lifts of harmonic weakMaaß forms
In this section we review results on the extension of the classical Shintani lifting to har-
monic weakMaaß forms and the so-called Millson theta lifting of such forms obtained by
the first named author in joint work with Markus Schwagenscheidt [4,5]. These liftings
are an explicit realization of the theta correspondence given as the integral of an input
function transforming like amodular form of (even) weight k against a certain theta kernel
function. We illustrate this procedure in a bit more detail. If f transforms of weight k one
is led to consider the following integral (where the integration is carried over a suitable
fundamental domain F )

∫

F
f (z)�(ϕ, τ , z)�(z)k dxdy

y2
, z = x + iy.

Here, �(ϕ, τ , z) is an integration kernel of weight k in the variable z. In the variable τ

the complex conjugate �(ϕ, τ , z) is of half-integral weight �. Moreover, ϕ is a suitable
Schwartz function, Provided the integral converges, it transforms like an automorphic
form of weight �.
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For holomorphic modular forms such liftings have been investigated in the framework
of the Shimura–Shintani-correspondence [20,21,25,26]. Ideas of Harvey and Moore [18]
and Borcherds [6] led to the theory of regularized theta liftings allowing for inputs that are
not holomorphic at the cusps. The lifts we consider in this work serve as generating series
of traces of CM values and (regularized) geodesic cycle integrals of the input function.
We will consider twisted versions of the Shintani and Millson lift. These are obtained

via twisting the theta kernel with a certain genus character (see [2] for a description of this
procedure). This enables us to state our results for the full modular group. In particular,
we let � ∈ Z be a fundamental discriminant.
We denote the Millson theta lift by �M and the Shintani theta lift by �Sh.

Remark 3.1 We state the results in the following subsections for theta lifts of forms for
the full modular group to half-integral weight forms for the group 0(4). Note that their
results hold in greater generality (see [4,5]).

3.1 The Shintani lifting

In the past years the classical Shintani theta lift of holomorphic forms has been generalized
to weakly holomorphic modular forms by Bringmann, Guerzhoy and Kane [8,9] and
to differentials of the third kind by Bruinier, Funke, Imamoglu and Li [14]. In [5] the
first author considered the Shintani lift of harmonic weak Maaß forms together with
Schwagenscheidt.
Their results can be summarized as follows. We do not state the explicit Fourier expan-

sion (since we do not need it in the course of this paper). The Fourier coefficients of the
holomorphic part are given by the regularized traces of geodesic cycle integrals of the
integral weight form.

Theorem 3.2 (Proposition 5.2 and Theorem 6.1 in [5]) Consider k ∈ Z≥0 such that
(−1)k+1� > 0. The regularized Shintani theta lift �Sh

� (G, τ ) of a harmonic Maaß form
G ∈ H2k+2 exists and defines a harmonic Maaß form in H3/2+k . If G ∈ M!

2k+2 is a weakly
holomorphic modular form then �Sh

� (G, τ ) ∈ M3/2+k is a holomorphic modular form, and
if in addition a+

G(0) = 0 then �Sh
� (G, τ ) ∈ S3/2+k is a cusp form.

3.2 The Millson theta lifting

In [30] Zagier considered traces of the values of the modular invariant j(z) at quadratic
irrationalities. He showed that these traces are the Fourier coefficients of modular forms
of half-integral weight (both of weight 1/2 and 3/2).
Using the framework of [16] Bruinier and Funke [11] showed that such modularity

results in weight 3/2 for generating series of traces of modular functions can be obtained
via the Kudla-Millson theta lift. Their work was generalized in various directions: to
twisted traces in [2], to higher weight in [10] and [1]. In [3] and [4] a different theta lift, the
so-called Millson theta lift, was considered which then fully recovered Zagier’s results.
We now briefly review the results of [4]. We remark that the Fourier coefficients of the

holomorphic part are given by the traces of CM values of a suitable derivative of the input.

Theorem 3.3 (Theorem 1.1 in [4] and Proposition 5.5 in [5]) Let k ∈ Z≥0 such that
(−1)k� < 0 and let F ∈ Hmg

−2k .
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1. Let k �= 0. The Millson theta lift �M
� (F, τ ) ∈ Hmg

1/2−k is a harmonic weak Maaß form
of weight 1/2 − k for 0(4) satisfying the Kohnen plus space condition. Further, if F is
weakly holomorphic, then so is �M

� (F, τ ).
2. Let k = 0 and let F be such that the constant term of its non-holomorphic part

vanishes. Then the Millson theta lift�M
� (F, τ ) ∈ Hmg

1/2 is a harmonic weakMaaß form
of weight 1/2 for 0(4) satisfying the Kohnen plus space condition.

Remark 3.4 TheMillson andShintani lifting are related via a differential equation satisfied
by the two theta kernels:

ξ1/2−k,τ�
M
� (F, τ ) = −4k

√|�|�Sh
� (ξ−2k,zF, τ )

ξ3/2+k,τ�
Sh
� (G, τ ) = − 1

4k+1√|�|�
M
� (ξ2k+2,zG, τ ).

4 Examples
In this section we give explicit examples for each of the cases occurring in Sect. 2.4. These
are given as the Millson theta lifts of forms of weight −2k ≤ 0 and Shintani theta lifts of
forms of weight 2k ≥ 2. We denote the integral weights by 2k ∈ 2Z and the half-integral
weights by � ∈ 1

2Z\Z.

Remark 4.1 To realize the cases associated to half-integral weight it suffices to consider
lifts of the scalar-valued examples that occur in [7]. Nonetheless, it would be interesting
to extend the theory of theta liftings to symmetric power types along the lines of Funke
and Millson’s work [17].

4.1 Weight � ≤ 1
2

We first let � ≤ 1
2 and need to provide functions f ∈ Hmg

�=1/2−k that satisfy L�f = 0 and
L�f �= 0.

4.1.1 Weight � ≤ 1
2 and L�f = 0

First note that the Millson lift of the constant function, that gives an example for case I
(a) in [7] (i.e., it satisfies L0f = 0 and R0f = 0), is a weakly holomorphic modular form of
weight � = 1/2 as can easily be deduced from Proposition 3.4.8 in [24].
If � ≤ −1/2, we can take the Millson lift of a weakly holomorphic modular form of

weight−2k < 0 (compare case I (b) in [7]). We see from Theorem 3.3 that theMillson lift
of a weakly holomorphic modular form F ∈ M!

−2k is again weakly holomorphic of weight
� = 1/2 − k if −2k < 0.

4.1.2 Weight � ≤ 1
2 and L�f �= 0

If k = 0, the lift lies in the space of harmonic weakMaaß formsHmg
1/2. This already realizes

the case of weight � = 1/2 whenwe require L�f �= 0. For � ≤ −1/2 we consider a function
f satisfying L−2k f �= 0 and R1+2k

−2k f = 0 (corresponding to case I (c) in [7]). We lift the
realization of [7]: We let F ∈ M!

−2k \ {0} and take G := F−2kF . Note that if

F (z) =
∑

n�−∞
c+F (n)q

n ∈ M!
−2k ,
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then, compare (1.5), we have

F−2k (F (z)) = −c+F (0) − 1
(2k)!

∑

n�∞
n �=0

c+F (−n)(1 + 2k,−4πnv)qn.

From Theorem 3.3 we easily deduce that the lift of G is in Hmg
1/2−k .

Remark 4.2 For the sake of completeness we explain the Millson lift of the remaining
cases that Bringmann and Kudla consider. Their case IV (d) L−2k f �= 0 and R1+2k

−2k f �= 0 is
realized by letting F ∈ M!

−2k \ {0} and taking G := F + F−2kF . Lifting this we obviously
obtain a combination of the previous two cases.
Moreover, we note that the lift of the Eisenstein series is again an Eisenstein series of

weight 1/2 − k . This can be shown by standard arguments (for example using work of
Crawford and Funke [15]).

Remark 4.3 We remark that the weight k = 0 (� = 1/2) case can also be realized by the
Siegel lift investigated in [13].

4.2 Weight � ≥ 3
2

4.2.1 Weight � ≥ 3
2 and L�f = 0

Considering the Shintani lift of cusp forms of integral weight 2k ≥ 2 we see that these
give us examples of harmonic weak Maaß forms of weight � = 3/2 + k ≥ 3/2 satisfying
L�f = 0. Cusp forms of integral weight correspond to case III (a) in the classification of
Bringmann and Kudla.

4.2.2 Weight � ≥ 3
2 and L�f �= 0

We can realize the case of L�f �= 0 by taking the Shintani lift of the weight 2 Eisenstein
series (case III (b) in [7]) and sesquiharmonic Poincaré series (case III (c) in [7]).
To give an example for a function f with L3/2f �= 0, we consider the lift of the weight 2

Eisenstein series

E∗
2 (z) = 1 − 24

∑

n≥1
σ1(n)e2π inz − 3

πy
.

It was computed in [5]. We have
√|�|�Sh

� (E∗
2 , τ ) = 12H (|�|)E∗

3/2(τ ),

where

E∗
3/2(τ ) =

∑

D≥0
H (D)e2π iDτ + 1

16π
∑

n∈Z
v−1/2β3/2(4πn2v)e−2π in2τ ,

with H (0) = − 1
12 and H (D) = 0 if −D �= 0 is not a discriminant, is Zagier’s weight 3/2

Eisenstein series (see [29]). Moreover, β3/2(s) is defined as in the introduction.
The third case in [7] is characterized by L2kF �= 0 and L2k2kF �= 0. An example is

constructed via certain sesquiharmonic Poincaré series that are in fact harmonic (this
relies on the vanishing of the dual space of cusp forms). We do not explicitly compute
the lift of such series but note that according to Theorem 3.2 the lift is a harmonic weak
Maaß form of moderate growth of weight � = 3/2 + k . In analogy with the visualization
presented in the introduction, this case yields
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0 4

L4 F �= 0, L44 F �= 0, �4 F = 0.

0
7
2

L 7
2
f �= 0, � 7

2
f = 0.

Remark 4.4 We remark that the weight 3/2 case can also be realized as the Kudla-Millson
lift of a harmonic weak Maaß form of weight 0 as in [11].
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