
Cheap and secure metatransactions on the blockchain using hash-based
authorisation and preferred batchers

Downloaded from: https://research.chalmers.se, 2025-07-02 16:29 UTC

Citation for the original published paper (version of record):
Hughes, W., Magnusson, T., Russo, A. et al (2023). Cheap and secure metatransactions on the
blockchain using hash-based authorisation and
preferred batchers. Blockchain: Research and Applications, 4(2).
http://dx.doi.org/10.1016/j.bcra.2022.100125

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Blockchain: Research and Applications 4 (2023) 100125
Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications
Research Article
Cheap and secure metatransactions on the blockchain using hash-based
authorisation and preferred batchers

William Hughes a,*, Tobias Magnusson b, Alejandro Russo b, Gerardo Schneider a

a Dept. of Computer Science and Engineering, University of Gothenburg, 41296, Gothenburg, Sweden
b Dept. of Computer Science and Engineering, Chalmers University, 41296, Gothenburg, Sweden
A R T I C L E I N F O

Keywords:
Ethereum
Domain-specific language
Interpreter
Gas optimisation
* Corresponding author.
E-mail addresses: hughes@chalmers.se (W. Hugh

https://doi.org/10.1016/j.bcra.2022.100125
Received 15 August 2021; Received in revised form
2096-7209/© 2023 The Authors. Published by Else
(http://creativecommons.org/licenses/by-nc-nd/4.0
A B S T R A C T

Smart contracts are self-executing programs running in the blockchain allowing for decentralised storage and
execution without a middleman. On-chain execution is expensive, with miners charging fees for distributed
execution according to a cost model defined in the protocol. In particular, transactions have a high fixed cost.

We present MultiCall, a transaction-batching interpreter for Ethereum that reduces the cost of smart contract
executions by gathering multiple users’ transactions into a batch. Our current implementation of MultiCall in-
cludes the following features: the ability to emulate Ethereum calls and create transactions, both from MultiCall
itself and using an identity unique to the user; the ability to cheaply pay Ether to other MultiCall users; and the
ability to authorise emulated transactions on behalf of multiple users in a single transaction using hash-based
authorisation rather than more expensive signatures. This improves upon a previous version of MultiCall. Our
experiments show that MultiCall provides a saving between 57% and 99% of the fixed transaction cost compared
with the standard approach of sending Ethereum transactions directly.

Besides, we also show how to prevent an economic attack exploiting the metatransaction feature, describe a
generic protocol for hash-based authorisation of metatransactions, and analyse how to minimise its off-chain
computational and storage cost.
1. Introduction

Distributed ledger technology (a type of database spread across
multiple sites or participants), and blockchain in particular, promise to
revolutionise the industry. The blockchain is the platform on top of
which programs (smart contracts) run that allow mutually distrustful
parties to transact and contract without a middleman. Such programs
interact among themselves, as well as with users, via transactions that are
transparent, traceable, and irreversible.

There are many different blockchain platforms and smart contract
languages. Although our results may be applicable to different block-
chain platforms (see Section 9), the discussion that follows and the rest of
the paper focus on Ethereum [1].

In Ethereum and similar public blockchains, users pay a transaction
fee for the execution of smart contracts to compensate for the cost
incurred to process and validate them. This cost is calculated in Ethereum
es), tobmag@chalmers.se (T. Ma

16 December 2022; Accepted 1
vier B.V. on behalf of Zhejiang U
/).
based on the computations performed by the program (the instructions
executed by the program), and it is expressed in a unit of account called
gas. Gas is charged for each transaction included in a block, each byte
uploaded and Ethereum Virtual Machine (EVM) instruction executed.
The gas used per block and the rate of block creation are limited by the
protocol —currently to around 30 million and about once every 13 s,
respectively [2]. On-chain processing capacity is valuable, expensive,
and strictly limited; miners charge users via transaction fees proportional
to the gas used. This cost is significant, several dollars for the fixed
transaction cost alone [2]. The cost of the computation of each instruc-
tion (fees) is regularly updated in Ethereum’s yellow paper [1] (see
Appendix G of Ref. [1]).

Let us consider a subset of the smart contract Token (see Fig. 1) as an
example. The smart contract implements a ledger of tokens that de-
positors can transfer to each other. While simple, the program is not
trivial: it is very close to real implementations of the popular ERC-20 [3]
gnusson), russo@chalmers.se (A. Russo), gersch@chalmers.se (G. Schneider).

8 December 2022
niversity Press. This is an open access article under the CC BY-NC-ND license

mailto:hughes@chalmers.se
mailto:tobmag@chalmers.se
mailto:russo@chalmers.se
mailto:gersch@chalmers.se
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2022.100125&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2022.100125
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.bcra.2022.100125

Fig. 1. The smart contract Token.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
interface1. Balances of the Token token are stored in the accounts object,
a mapping from Ethereum addresses to 256-bit unsigned integers. The
contract supports an xfer method, which depositors can use to pay other
recipients integral amounts of the token.

The standard way for users to interact with smart contracts today is to
send an individual transaction corresponding to a method (or function)
call. Executing the function xfer, for instance, costs approximately 34000
gas2. Every transaction has a fixed cost of 21000 gas, which is around
two-thirds of the cost of the xfer operation. To see the order of magnitude
of the cost of executing a transaction, it is useful to contrast it with other
operations. For instance, a JUMP instruction costs 8 gas, while an ADD
instruction costs 3 gas.

Consider a user that wishes to transfer many tokens to different re-
cipients, such as the operator of an exchange or mining pool. It is clear
that in such a case, the user will have to pay a fee proportional to the
number of transactions executed. Therefore, reducing their gas costs by
even a small proportion may provide significant monetary savings.

In the example above, one can see that a large part of the execution
cost comes from the fixed per-transaction cost. Our aim in this paper is to
find a practical and systematic way to reduce smart contract gas con-
sumption. We do so by proposing an architecture to do transaction
batching, and we provide a proof-of-concept implementation for the
blockchain Ethereum.

Our approach provides more than a small cost reduction. Indeed, for
the example above, it reduces the marginal cost of a token transfer by
67.7% (10912 gas), or the total cost by 59.6% when making 10 transfers
(the solution has an overhead of 27326 gas, which can be amortised by
making more transfers).

To achieve that, in Ref. [4], we have presented MultiCall, an Ether-
eum smart contract that reduces the gas cost of on-chain execution by
emulating multiple transactions using a single one (a process known as
batching). Batching is not novel; existing batchers emulate multiple calls
from a single sender using Solidity, the most popular Ethereum smart
contract programming language. MultiCall differs from prior batchers in
that it is a proper multi-instruction interpreter, and its instruction set can
emulate functionality equivalent to an arbitrary block of transactions in a
single transaction.

The interpreter presented in Ref. [4] was quite efficient: the volatile
memory accesses, arithmetic, and branching required for interpretation
are much cheaper in the Ethereum cost model than accessing the ledger
state or verifying signatures. The overhead of interpretation when
batching transactions was therefore manageable.
1 ERC-20 is a technical standard for smart contracts that record token bal-
ances, requiring that they expose certain standard methods and that the token
balances obey certain rules. Compliant token contracts can be accessed in a
uniform manner, enabling code sharing and facilitating trading between mul-
tiple tokens.
2 33817 to be exact, but it could cost less if the address of the recipient

contains zero bytes; the addresses we used did not. Note that we used Solidity
compiler version 0.5.16 (the default for Truffle v5.5.19). The private chain fork
used is Muir Glacier; Ganache does not yet (as of v7.2.0) support the London or
Berlin forks.

2

In this work, we present a revised and extended version of Ref. [4].
The main contributions of this paper are:

i) An architecture to improve gas consumption based on a middle-
ware (MultiCall and its off-chain API code) that can emulate
arbitrary sequences of transactions (Section 3).

ii) A new cryptographic protocol, HBAuth, is designed to reduce the
cost of metatransactions using hash-based authentication (Section
4).

iii) A technique to protect metatransaction batchers from an eco-
nomic attack that invalidates their transactions (Section 5).

iv) A proof-of-concept implementation of the MultiCall Ethereum
smart contract, including the new features from ii) and iii) (Sec-
tion 6).

v) An evaluation of our approach to show its feasibility and advan-
tages. Our evaluation of MultiCall’s performance relative to
unbatched transactions shows a saving of between 57% and 99%
of the fixed per-transaction cost compared to sending individual
transactions. We also compare MultiCall’s performance to two
other existing batchers (one of academic origin and the other in-
dustrial), with favourable results. Finally, we evaluate our new
hash-based metatransaction mechanism and find it reduces the
overhead of metatransactions by approximately 40% (Section 7).

vi) An analysis of the optimal off-chain caching scheme for HBAuth
based on existing work on efficient hash-chain traversals. We also
found the optimal choice of the hash-chain length under varying
conditions (Appendix A).

Contributions ii), iii), and vi) are new to the extended version.
Contribution i) has been extended with a description of the design of the
new functionality provided by ii) and iii). Contribution iv) has been
extended with a description of the code generation DSL in which Mul-
tiCall was written. Furthermore, we added detail on how the DSL was
used to implement the functionality of MultiCall, including both the
original functionality and that provided by ii) and iii). In contribution v),
the comparison with the iBatch batcher [5] and the evaluation of the new
hash-based metatransaction feature are new to the extended version.
Finally, we added a section on the security of MultiCall (Section 8) and
extended the discussion (Section 9).

In Section 2, we present some preliminaries on Ethereum, Solidity,
metatransactions, and the uses of hashes in cryptography. In Section 3,
we describe the design decisions underlying the MultiCall smart contract.
In Sections 4 and 5, we describe the new HBAuth protocol, which permits
hash-based metatransactions, and the preferred batcher feature, which
protects batchers from economic attack, respectively. In Section 6, we
explain the low-level implementation of MultiCall and its new features in
more detail. In Section 7, we evaluate the contract’s performance; se-
curity is discussed in Section 8. We discuss the overall results and future
work in Section 9. Related work and our conclusion are presented in
Sections 10 and 11. In Appendix A, we analyse how to minimise the off-
chain cost of the HBAuth protocol.

2. Background

The fundamental purpose of the Ethereum ecosystem is to enable
parties to transact: to enter into contracts, to interact with those contracts
(for example by making choices or executing clauses) and to make pay-
ments. The contracts entered into using distributed ledger technology are
computerised and self-enforcing; such contracts are termed smart

Table 1
Ethereum’s layers of abstraction.

Layer Identities Payments Contract Contract

initiation execution

Abstract Users Payment Offer to
counterparties

Choice,
complaint etc

Solidity Addresses .transfer
method

Constructor call Method call

Primitive Addresses Call txn/
instruction

Create txn/
instruction

Call txn/
instruction

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
contracts.3

Like many computer systems, the Ethereum ecosystem can be thought
of as implemented in multiple layers of abstraction (see Table 1). The
highest is what might be called the abstract layer, which consists of
payments and contracts that the parties wish to make. It is
implementation-agnostic, so it could, for instance, be implemented as a
centralised ledger or using scalable decentralised solutions such as state
channels [6].

The most popular means of implementing abstract contracts on the
Ethereum platform is using the smart contract programming language
Solidity [7]. Solidity is a statically typed object-oriented language that
lets the user write Ethereum smart contracts as objects that expose
methods and contain persistent states. Abstract arrangements, such as an
escrow agreement or a new issue of tokens, then correspond to one or
more Solidity contract objects (or states within such objects). Users offer
new arrangements to counterparties by creating Solidity contracts and
interact with those contracts using method calls. Ether payments are
treated as a special .transfer method.

The Solidity layer is in turn translated into primitive Ethereum
transactions. Transactions are an indivisible unit of interaction with the
blockchain; each block contains a sequence of transactions. There are two
Ethereum transaction types, create and call. Solidity constructor calls
(which instantiate a new contract) are translated into create transactions,
and method calls are translated into call transactions. When appended to
the blockchain, transactions modify the distributed ledger by performing
a call or create action, respectively, from the signatory key’s account.

There are two types of accounts on the Ethereum ledger: externally
owned accounts (EOAs) and smart contracts. EOAs are controlled by an
Ethereum private key, and their address is the corresponding 160-bit
public key. When transactions are added to the blockchain, they cause
calls or creates to be performed from EOAs. Calling an EOA transfers the
Ether value specified in the call from the caller to the callee account.
Smart contract accounts contain additional states: immutable bytecode
and a mutable persistent storage space. When a smart contract is called,
in addition to optionally effecting an Ether payment, the contract’s
bytecode is interpreted by the EVM. The EVM is a Turing-complete stack
machine with instructions specialised for the blockchain environment. In
particular, the EVM supports instructions for querying the bytestring
calldata sent in the call, querying the address of the caller, and per-
forming calls and creates with equivalent effect to transactions. Solidity
method identifiers and arguments are encoded as calldata, the
msg.sender expression is compiled to the EVM CALLER instruction, and
method and constructor calls in the text of a contract compile to EVM
CALL and CREATE instructions.

Payments in the native cryptocurrency Ether are a special case of call
transactions with empty calldata. Ether payments may be translated
directly from the abstract layer to transactions or may be viewed as the
special .transfer Solidity method call. Payments in user-issued tokens
3 The term refers both to the entirety of self-enforcing arrangements,
including off-chain components, and to individual on-chain program objects on
the blockchain. The relation between smart contracts in the general and narrow
sense is analogous to that between programs consisting of multiple OS processes
and each individual OS process, which is also a program.

3

such as those managed by ERC-20 contracts are translated to method
calls to that contract.

Let us see how the above works through an example. When Alice
wishes to perform the abstract action of giving Bob some Token tokens
(see Fig. 1), they specify an Ethereum public key BobAddr controlled by
Bob and instruct their Ethereum client software to make a payment of
Token to that address. The action is translated in their client software to a
Solidity method call to the token contract’s address TokenAddr and then
to an Ethereum call transaction, signed by some private key controlled by
Alice whose corresponding public key is AliceAddr. Finally, the trans-
action is broadcast to the Ethereum network and ultimately mined and
included in the blockchain. That modifies the distributed Ethereum
ledger state, effecting a call action from the EOA at address AliceAddr to
the smart contract at address TokenAddr. This process is illustrated in
Fig. 2.

We are interested in reducing the gas cost of execution on the
Ethereum blockchain. To optimise execution on the Ethereum ledger, one
must first understand its capabilities and cost model. A detailed
description of Ethereum’s cost model and semantics can be found in the
Ethereum Yellow Paper [1]. We will not present Ethereum’s cost model
in detail but rather what is relevant to understanding how MultiCall
works, namely, the following key facts:

1. Call transactions cost 21000 gas, not including the cost of contract
execution.

2. Call instructions executed by a contract (which have a practically
equivalent effect) cost significantly less.4

3. Create transactions cost 53000 gas: the fixed transaction cost and an
additional creation cost of 32000 gas.

4. Create instructions executed by a contract (which have a practically
equivalent effect) cost only 32000 gas.

5. Compared to instructions that modify the persistent ledger state (such
as calls and storage writes), the arithmetic and control flow EVM
instructions needed for interpretation are very cheap.

6. The cost of uploading data (such as scripts) is also relatively low, at 16
gas per nonzero byte and 4 per zero byte.

7. Signature verification costs 3700 gas, not counting the 65 bytes of
signature that must be uploaded. Hashing costs only 30 gas, plus 3 gas
per 256-bit EVM word hashed.
2.1. Metatransactions in brief

Metatransactions [8] are authorisations to perform some actions that
are verified and executed in smart contracts. They are analogous to native
transactions but are attractive to use instead because they allow users to
send transactions without having to first hold the blockchain’s native
cryptocurrency. They also allow more effective batching. To be secure,
transactions (meta and otherwise) must be associated with some cryp-
tographic proof that the principal has approved them. Also, when
authorising a non-idempotent action such as payment, they must be
replay-protected. Ethereum implements the former feature using the
ECDSA signature scheme and a nonce associated with each account
controlled by a private key [1]. The conventional approach to imple-
menting metatransactions in Ethereum smart contracts is to use the same
signature scheme as the Ethereum protocol (helpfully provided as a
primitive) and analogously associate users with nonces.
4 Gas costs frequently change as Ethereum protocol developers seek to defend
the network against denial of service attacks. The cost of calls has recently
changed to cost 2600 gas the first time a contract is called in a transaction and
100 gas subsequent times. Our evaluation tool does not yet support this new cost
model, but we expect it to improve MultiCall’s performance.

Fig. 2. An illustrated payment of a user-issued token.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
2.2. Hash-based cryptography

Collision-resistant hashes are a fundamental component of cryptog-
raphy in general and distributed ledger technology in particular. Beyond
being used for Bitcoin’s iconic proof-of-work protocol [9], hashes are also
used to make immutable, constant-size references to particular data. Any
hashes contained in the data can in turn serve as immutable references,
forming a graph. An extreme example of the compression provided by
hashes is that entire blockchain histories of many terabytes can be
referred to using a 256-bit hash. Hashes’ compressive property is used in
HBAuth to commit to a sequence of metatransactions to perform using its
hash.

A third use of collision-resistant hashes, highly relevant to our work,
is as a one-time password. By choosing a random number and then
making its hash or the last element of a long chain of hashes produced
from it public, a party gains the ability to send a signal that no one else
can by revealing a preimage of the published hash. That is used in atomic
swaps [10] to exchange cryptocurrency across different blockchains.

3. MultiCall design

Our solution provides value by batching transactions. To do so, we
need to modify the Ethereum transaction submission workflow in the
wallets and on the Ethereum ledger. Instead of converting an action into a
transaction and sending it immediately, it is converted to a MultiCall
Fig. 3. An illustration of the modified workflow using MultiCall. In this case, the clie
sends a transaction containing the metatransaction to MultiCall, causing the metatra

4

instruction and saved. Multiple instructions can be concatenated and
signed to create a metatransaction [8].

The MultiCall metatransactions can then be sent to a batching server,
which sends their concatenation to MultiCall in a single transaction.
MultiCall acts “under the hood”, so the user need not be aware of it. As
shown in Fig. 3, MultiCall and its associated off-chain code work as
middleware between the wallet frontend and the backend and add some
additional machinery to aggregate instructions before delivering them to
Ethereum nodes.

One of the key features of MultiCall is the ability to batch transactions
from multiple users in a single call while providing each user with a
unique identity. Consider the Token example again: each user should be
able to transfer tokens from their account and only their account. This is
done by querying the caller address in the xfer method, msg.sender (see
Fig. 1), and deducting from their account. Using the caller address to
authenticate and identify users is a common smart contract pattern.
Because smart contracts often deal with the transfer and use of assets,
method calls that require user authentication are a key part of smart
contract functionality. MultiCall would therefore not be very useful if it
did not provide each user with a unique identity; it does so through
proxies. Proxies are a well-known Ethereum development pattern: pup-
pet contracts that perform calls and create actions when commanded to
do so by their controller. That may be achieved by checking the address
of the proxy’s caller or by using metatransactions. In the case of Multi-
Call, its proxies check that MultiCall is the caller. Each proxy belongs to a
nt submits a signature-based metatransaction to their batcher. The batcher later
nsaction to be run.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
single MultiCall user (represented as an Ethereum address); MultiCall
will only command a proxy to create a contract or call an address when
executing on behalf of the address that owns it (we explain how that
works in more detail later).

The MultiCall contract is written in a low-level EVM code-generating
DSL rather than Solidity. That made it easier to achieve an efficient data
layout for instruction arguments, as we avoided the inefficient abstrac-
tions and calling convention of Solidity; the DSL is described in more
detail in Section 6.1.

3.1. Improved metatransactions

As an extension of earlier work [4], metatransaction functionality has
been improved. Alongside the conventional signature-based approach
where users simply sign the metatransactions they wish to approve,
support has been added for hash-based metatransactions. Such meta-
transactions are implemented using a novel protocol we call HBAuth,
described in detail in Section 4. The protocol is illustrated in Figs. 4–6:
first, users sign their metatransactions as normal, then the batcher (an
off-chain server that aggregates metatransactions for a fee) commits to
perform those particular metatransactions, and finally, the users reveal
preimages to hashes stored in their accounts to approve the committed
metatransactions. The process is summarised in Fig. 7. HBAuth replaces
signature verificationwith a check that a preimage corresponds to a hash,
significantly reducing the metatransaction verification cost.

To prevent an economic attack where malicious parties could use
metatransaction replay protection to invalidate batcher transactions, a
new feature called preferred batchers has been added to MultiCall. It is
described in more detail in Section 5.

3.2. Instruction set

MultiCall is a smart contract implementing a specialised interpreter
that, when called, interprets its bytestring argument as a sequence (or
script) of MultiCall instructions and executes each sequentially. Its in-
struction set is designed purely for transaction batching, emulating the
functionality of several transactions in one. Unlike interpreters such as
the JVM or EVM, MultiCall is deliberately not Turing-complete in order
to ease design and future formal verification. It has thirteen principal
instructions of interest to the user (described below), not counting
admin-only instructions to transfer ownership of MultiCall. MultiCall
executes on behalf of a single Ethereum address at a time, charging any
Ether costs incurred when executing instructions to the user’s account.

Note that the “CA” mentioned in Fig. 4 and the names of instructions
refers to committed actions. Batchers commit to performing actions
Fig. 4. The first phase of HBAuth: clients sign metatransactions and send the metatr
the metatransactions by storing their hash on-chain.

5

(batches of user metatransactions) as part of the HBAuth protocol, which
is described in more detail in Section 4.

1. call_address(gas, address, eth_value, data) performs an EVM CALL
with the given arguments directly from MultiCall; it is useful for
Ether payments to users and method calls that do not require
authentication.

2. proxy_dot_call_address(gas, address, eth_value, data) instructs the
user’s proxy to perform the call instead.

3. create(eth_value, data) creates a contract directly from MultiCall.
4. proxy_dot_create(gas, eth_value, data) creates a contract from the

user’s proxy.
5. deposit_address(address, eth_value) credits the given address’

account in MultiCall’s persistent storage; it is a cheaper way of
paying a MultiCall user Ether than making a call.

6. createProxy(eth_value) creates a new proxy with the given Ether
endowment.

7. setBatcherTo(batcherID) lets the user choose which batcher they
want to batch their metatransactions. Setting batcherID to 1 in-
dicates no batcher is desired.

8. becomeBatcher() is how new batchers are made: the instruction
converts a client account to a batcher, allocating a new ID for it.

9. setCA(hash) lets batchers commit to performing a particular script
of metatransaction instructions; it is used in the HBAuth protocol.

10. startCA(script) takes a set of MultiCall instructions as its argu-
ment. If the user is a batcher and their committed hash matches
the script, the script is run, and metatransactions in it can be
executed. Its complement endCA() disables metatransactions
again.

11. startMetatxn(client, tip, script) performs the MultiCall in-
structions in script on behalf of the client and pays the tip to the
batcher to incentivize them to run the metatransaction. Its com-
plement endMetatxn() returns MultiCall to execute on behalf of
the caller.

12. setImage(hash) is used by clients to set the hash whose preimage
they reveal as part of using hash-based metatransactions.

13. endCall() ends the call to MultiCall.

Intuitively, every Ethereum transaction conceived to create or call a
contract can be mapped into one of MultiCall’s instructions create,
proxy_dot_create (if creator authentication is required), or call_address,
proxy_dot_call_address, respectively. Furthermore, Ether payments may
either be translated to call instructions or a deposit_address instruction.
Multiple instructions may be concatenated into scripts before being
signed and sent to a batching server. The batching server, in turn, collects
ansactions and signatures to the batcher server. The batcher commits to running

Fig. 5. The second phase of HBAuth: the batcher shows the committed metatransactions to each user, receiving the preimage to the image in the user’s account if the
client is satisfied. Each HBAuth user stores a long secret chain of preimages; in A’s case, HA1 ¼ hash(HA2), then HA2 ¼ hash(HA3) and so on. The hash of HA1 (let us
call it HA) is stored on-chain in the user’s MultiCall account record and not off-chain by the user. Note C has not sent their preimage; perhaps they’re offline, or just
uncooperative.

Fig. 6. The third and final phase of HBAuth: the batcher uploads the metatransactions, using revealed preimages to authorise them when possible and signatures
otherwise. We refer to the images stored in A and B’s accounts as HA and HB, respectively. At this stage, the batcher has verified off-chain that they are the hash of
HA1 and HB1.

Fig. 7. The three phases are summarised in a sequence diagram. Blue arrows indicate off-chain messages, red on-chain transactions, and green off-chain reads of the
blockchain state. The latter require no gas. Note that the storage write and fixed transaction costs of setCA and runCA can be amortised by running the last committed
action and committing a new one in the same transaction. The preimage pre is the last element of the chain of secret hashes the client stores, having created
them earlier.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125

6

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
multiple scripts and then broadcasts a call transaction (signed by its own
key), which calls the MultiCall interpreter smart contract. The calldata of
the transaction contains the scripts and cryptographic proofs that the
senders authorised them. When mined, this transaction effects a call to
MultiCall, which then performs the actions authorised by the users, such
as making method calls and payments. Like Token, MultiCall contains a
mapping from Ethereum addresses to accounts in its persistent state;
Ether payments performed on behalf of a user are deducted from the
user’s account.

3.3. Revisited example

Suppose Alice wishes to make payments of Amount1 to Amount10,
respectively, of the token tracked in the Token contract to 10 different
recipients, Bob1 to Bob10. Each payment is translated into a MultiCall
instruction

proxy_dot_call_address(G, TokenAddr, 0, C(BobN, AmountN))

where G is some reasonable gas limit chosen by Alice or the wallet
and C(BobN, AmountN) is the calldata corresponding to the method
.xfer(BobN, AmountN). BobN and AmountN refer to one of the recipient
addresses and the number of tokens to pay them, respectively. Note that a
proxy call is appropriate because Token’s method .xfer requires
authentication to spend from the caller’s account. The wallet could at this
point wait for more instructions to be added before signing them, but let
us suppose it does not. It then selects an appropriate deadline and tip. A
reasonable choice would be the current time plus 1 h and the cost of the
given instructions at the current gas price. The wallet then appends the
instruction endMetatxn to the list of instructions and signs the resulting
script Swith their account’s nonce, deadlineD, and tip T. Alice then sends
the metatransaction startMetatxn(Alice, T, S) and signature to their
batcher. Alice can then optionally use HBAuth to reduce the cost of their
metatransaction, in return for increased latency.

Another choice would be for Alice to send the instructions to Multi-
Call herself without going through a batching server. In that case,
profiling shows it costs 136516 gas, as opposed to 338170 to send the
payments individually5. Considering the fixed cost of the transaction to
send the script, 59.6% of the fixed transaction cost was eliminated
relative to sending 10 transactions individually. Blocks may contain
several hundred transactions (and when using MultiCall you could
effectively make many more within the block gas limit), so fixed over-
heads would be negligible in practice if using a batching server.

3.4. Deployment

To use the MultiCall smart contract, an instance of it must first be
uploaded to the blockchain with a created transaction. For each indi-
vidual user to gain access to the full functionality of MultiCall, they must
allocate an account and create a proxy. Allocating an account is achieved
by depositing Ether to MultiCall with a call transaction or receiving a
deposit from another user and then setting the image used by HBAuth in
a signature-based metatransaction using the instruction setImage.
Creating the user’s proxy is done by running the createProxy instruction.
Depositing funds is necessary to be able to pay batcher tips on-chain; off-
chain payments could also be used without modification to MultiCall but
would require some engineering effort by the parties.

4. Hash-based authorisation

Hash-based authorisation (HBAuth) is a cryptographic protocol
developed by the first author for authorisation of user transactions on
distributed ledgers. It is intended to provide a lower-cost complement to
5 The cost may vary slightly due to the number of zero bytes in addresses; a
nonzero byte in calldata costs 16 gas, while a zero byte costs only 4.

7

the standard signature-based approach. Verifying the transactions of
external users is a fundamental and frequently performed task of
distributed ledgers, so we hope that reducing its cost will bring signifi-
cant benefits. The gist of the protocol is that instead of providing a
signature of the transaction they wish to approve, the user reveals the
preimage of a hash they chose earlier and associated with their account.
Verifying a preimage is a much cheaper operation than verifying a
signature (requiring only a hashing and equality check), allowing the cost
of transaction authorisation to be significantly reduced. By keeping their
preimage secret, the user can ensure that only they may approve trans-
actions from their account.

However, HBAuth comes with a downside: unlike a signature, the
preimage committed in advance of choosing what transaction to autho-
rise cannot contain any reference to the chosen transaction. Revealing or
not revealing the preimage can be viewed as communicating one bit of
information: approval or disapproval. What transaction the approval
refers to must be chosen some other way prior to preimage revelation.

Thankfully, we have a distributed ledger at our disposal to which the
transaction to be executed can be committed. HBAuth dictates that the
API for committing the transaction prevents timely modification of it
once committed. That allows the user to safely reveal their preimage,
confident that it will only be used to approve their chosen transaction.
We describe our protocol in more detail below.

4.1. On-chain state and API required

Rather than being inherently tied to MultiCall, HBAuth is imple-
mentable by any on-chain system containing the requisite state and
exposing the following API. The conventional approach for APIs on
Ethereum would be to implement each function as a Solidity method;
instead, we have implemented each as one or more MultiCall
instructions.

There are two types of users in the protocol: clients and batchers.
Batchers commit and run metatransactions on the ledger, and clients
approve them. In MultiCall, there can be multiple batchers, and each user
chooses one. However, that is not strictly part of the HBAuth protocol:
one could also choose to have a single central batcher or have users mine
for the right to batch clients using proof of stake, for example. The sig-
nificance of choosing a batcher is described in more detail in Section 5.

4.1.1. Required state
In MultiCall, all the information pertinent to each user (client or

batcher) is stored in its own storage slot in the MultiCall contract’s
persistent storage. However, the HBAuth protocol does not fix the storage
layout. For example, the state could be stored in a Merkle tree or in
separate contracts in another implementation; what matters is that it
exists. The necessary data are listed below.

� Per batcher: a mutable variable CA[batcher], either zero or contain-
ing a hash.

� Per client: a mutable variable image[client], either zero or containing
a hash; a mutable numeric variable nonce[client].

In fact, we store client images and batcher committed actions (CAs) in
the same field in their account struct, image. Its meaning is overloaded
based on a bit indicating whether the account is a batcher or a client.

4.1.2. Required API
The HBAuth protocol uses the following API. The functions setCA,

runCA and setImage must be available to users; runMetatxn is internal
and used by runCA.

� setCA(h), run by the batcher to commit the hash of an action (in other
words, a set of metatransactions).

� runCA(action, proofs), run by the batcher. The argument action is a
sequence of metatransactions; if the hash of action matches the

Fig. 8. Key instructions used by HBAuth and their behaviour.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
committed hash CA[caller], then they are executed using runMetatxn.
The proofs are used to authorise the committed metatransactions; the
metatransactions themselves do not contain the requisite proofs.

� runMetatxn(client, script, proof) performs the actions in script on
behalf of client given proof of its validity. The proof may be either a
signature and nonce or a preimage. The action argument to runCA
consists of data specifying invocations of runMetatxn; in the case of
MultiCall, it is simply a string of MultiCall instructions.

� setImage(h), run by the client (in a metatransaction or directly),
setting their image variable to a new value. This is used to upload a
new hash to their account.

Fig. 8 below sketches the behaviour of instructions. The signature
expiration check in runMetatxn and someminor details have been elided.
The runCA and runMetatxn functions are in fact implemented using two
instructions each (start- and end- CA and Metatxn), across which their
logic is split. That is because MultiCall contains no subroutine calls for
efficiency, instead performing only direct jumps.
4.2. Off-chain protocol

Because metatransactions must be committed before approval, the
off-chain protocol is more complex than with signature-based meta-
transactions, which can be sent in one step. Each batcher is intended to
communicate with many clients. One instance of the protocol between
client and batcher is outlined below.

4.2.1. Preparation
Clients start without an image in their account; when they have no

image, they must use a signed metatransaction to set it. First, they must
generate a random value X and compute a long chain of hashes ðhashðXÞ;
hashðhashðXÞÞ;…;hashNðXÞÞ. The final hash is set as the first preimage.
Let us call the sequence of hashes the client maintains images. Clients
must also acquire a batcher. In the case of MultiCall, the owner of Mul-
tiCall (initially its creator) is the default batcher.

The protocol in the normal case.

1. The client wishes to send a metatransaction. They sign it and the
nonce in their account using their Ethereum private key, sending the
signature and metatransaction to their batcher.

2. The batcher verifies the signature against the script and the client’s
nonce. They also check that the client has sufficient funds to perform
8

the transaction successfully (and to pay a tip to the batcher) and that
the tip paid is sufficient for the gas used. If satisfied, they schedule the
metatransaction for inclusion in a committed action.

3. Later, the metatransaction is included in a committed action. The
batcher runs setCA(h), where h is the hash of the committed action.
The batcher then sends the committed action to the clients whose
metatransactions were included.

4. They client checks that the committed action sent to them matches
the hash which the batcher has committed on-chain. The client then
verifies that the committed action does what they want on their
behalf and nothing more. If satisfied, they reveal the preimage of the
image in their account to the batcher. The preimage is obtained by
popping off the last element of the sequence images.

5. When receiving a preimage from a client, the batcher verifies that it
matches the image stored in the client’s accounts. Finally, the batcher
runs the committed action using runCA, using preimages when clients
have chosen to reveal them and signatures when they have not.

4.3. Edge cases

In real systems, the failure of a node and the loss of its state inmemory
is always a possibility. To protect against the possibility of batchers
forgetting their committed action and thus being deadlocked, there is a
mechanism for batchers to reset CA. There is a warning period W1
starting from when the action is committed, intended to allow clients to
respond to attempts to reset the CA. The warning period is necessary
because otherwise any revealed preimages would be a carte blanche to
drain the revealing clients’ accounts. If the client sees that the batcher is
not running the CA and the warning period for reset is coming to an end,
they must themselves escape and end the client-batcher relationship
before the batcher can reset the CA. That in turn has a warning periodW2
to prevent clients from being able to invalidate transactions, so they must
initiate the process in time (within W1–W2 of the last CA commit).

When clients have only one preimage left, they must also set a new
image alongside uploading their last preimage. How long a chain of
hashes to use to minimise gas, storage and compute cost is explored in
Appendix A.

4.4. Design considerations

The protocol has been designed to prevent misbehaviour by either the
client or the batcher. One may ask, for example, why a signature of the
metatransaction is required in Step 1 of the off-chain protocol when it is

6 The source code can be made available via the PC chairs.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
not used in the ideal case. That is because the batcher may not run a
committed action that attempts to do something on a client’s behalf
without a cryptographic proof of the client’s approval. If a signature were
not requested in advance, the batcher would be subject to a denial of
service attack where a client requests the batcher add a metatransaction
but then does not approve it, preventing the batcher from running their
committed action for the warning period W1.

The batcher is able to commit metatransactions from multiple clients
at once. That is for performance reasons, as storage writes are very
expensive. Even if storage were optimised by using a Merkle tree, the cost
of uploading a separate committed action hash per user would be
significant.

By default, the preimage used to authorise the metatransaction be-
comes the next image. That halves the number of images that need to be
uploaded.

5. Preferred batchers

Each client in MultiCall has a particular “preferred batcher” user that
may batch their metatransactions. In the earlier version of MultiCall [4],
anyone could run anyone’s metatransactions. On the face of it, that seems
a desirable property: users would not need to spend gas choosing a
batcher, and there would not be a need for a separate class of users that
might attempt to censor transactions or misbehave. However, replay
protection in combination with free execution of metatransactions en-
ables an economic attack, as explained below.

5.1. The attack

MultiCall relies on metatransactions to enable transactions from
multiple users to be emulated in one, saving users a significant propor-
tion of the gas cost. However, that is all for naught if malicious parties can
invalidate transactions containing metatransactions. And indeed, our
earlier implementation of MultiCall [4] suffered from an attack exploit-
ing this issue. The attack is as follows:

� The victim (a transaction batcher) broadcasts an Ethereum call
transaction to MultiCall, containing a script performing multiple
metatransactions.

� The malicious third party sniffs the transaction out of the mempool.
They then create their own call transaction to MultiCall, which runs
one of the metatransactions M. To preempt the victim, they set a
higher gas price before broadcasting the transaction.

� The malicious party’s transaction is run before the victim’s. The
nonce in the account of M’s signatory is incremented, preventing M
from being replayed.

� When the victim’s transaction is mined, M has already been run,
causing the attempt to rerun it to revert the transaction. The victim’s
transaction will have no effect, except to cost them Ether for gas used.

Since MultiCall’s design encourages batchers to emulate a full block’s
worth of transactions in one, such an attack could be very costly for the
victim. Since the batcher cannot progress if their transactions revert, the
attack could be performed repeatedly and totally halt batching of
metatransactions.

5.2. The solution

The problem arises from multiple parties being able to modify the
same account in a way that causes legitimate transactions to fail. One
mitigation would be to skip metatransactions with failing verification
rather than revert the entire transaction, but that is only a mitigation: gas
is still wasted uploading the metatransaction and performing the verifi-
cation. We opted instead to associate each account with a single batcher
user that has privileged access to it. In particular, the preferred batcher
has the exclusive right to perform metatransactions on behalf of their
9

client. Actions by other users that would invalidate the metatransactions
of the batcher’s clients are prevented by MultiCall. That includes clients
spending Ether from their accounts (whichmay render an account unable
to pay for a metatransaction) and setting the image to a new value. The
feature is optional; clients may also become independent, in which case
they can access their account directly but cannot benefit from meta-
transactions until they choose another batcher.

In MultiCall, the association of clients to batchers is achieved by
storing a preferred batcher ID in the client’s account. Clients can choose
their batcher using the setBatcherTo(id) instruction. Batchers instead
store their own ID; new IDs are allocated when clients register as batchers
using the becomeBatcher() instruction. When running metatransactions,
a check is performed to ensure that the caller is a batcher and that they
are the preferred batcher of the clients on whose behalf they are running
metatransactions.

5.3. Design considerations

On-chain space is limited and very expensive. Even if one uses a
Merkle tree to store the state off-chain, it must be re-uploadedwhen used,
which is costly. As such, it is desirable to minimise the state used by smart
contracts.

The preferred batcher feature requires an additional state to be added
to client accounts: the identity of their preferred batcher. That corre-
sponds to a 160-bit Ethereum address, but that would be costly to store
directly—for one thing, it would not fit into a 32-byte storage slot
alongside the client’s 160-bit image field. Instead, a 23-bit shorthand is
used, with new batcher IDs allocated when users register as batchers. As
an aside, we propose shorthands as a generally useful technique for
programming smart contracts, as they can be much smaller than Ether-
eum’s 20-byte incompressible addresses. Direct use of addresses is in fact
extravagant, as they cost several USD cents to upload at typical gas prices
[2].

A practical and decentralised crypto protocol must consider the pos-
sibility of misbehaviour by all parties. In the case of preferred batchers,
that means refusing to run a client’s metatransactions. To prevent the
client’s funds from being locked forever if their preferred batcher mis-
behaves, the setBatcherTo instruction allows them to leave their current
batcher without the batcher’s approval. However, immediately ending
the client-batcher relationship could be used to attack the batcher by
invalidating their attempt to run a metatransaction by the client.
Consequently, there must be a warning period after the instruction is run
before it takes effect. That is implemented using a field in the client’s
account which records when the preferred batcher relationship will end
if nonzero. When it does, the client can access their account indepen-
dently but must choose another batcher if they wish to use meta-
transactions instead (which is more efficient).

6. Implementation

The implementation of the interpreter consists of five main
components6:

� A volatile state;
� An account array mapping from user addresses to account structs,
containing all information relevant to a user;

� A jump table of MultiCall instructions;
� interpreter initialization code which sets the volatile state on entry,
and

� an instruction set which defines the available instructions.

We discuss each of these below. Each of the features has been
implemented using our EVM code-generating DSL, the C monad. To

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
provide context to low-level details of the implementation, we first
provide a description of it.
6.1. The C monad

MultiCall is defined in Haskell using a datatype which can be inter-
preted to generate EVM code. The datatype, called C (for code generator;
it has no relation to the C language) encodes actions which modify an
environment tracking the evolving state of the program. For example,
one can output a byte of EVM code using the operator byte. The datatype
is a monad, meaning it supports a pair of operators (return and (≫¼),
known as bind), which allow one to return values from the action and
bind actions together. The result of binding the C action (a :: C a) to the
function (f :: a –> C b) is a compound action (a ≫¼ f) :: C b. When
interpreted, it first performs the state updates of a, passes its return value
(let us call it x) to f, and then performs f x, returning its return value.
Haskell provides a syntactic sugar for monadic operations called do no-
tation, which allows one to write such actions in an imperative style. For
example, the following C monad expression

generates EVM code for a smart contract which loads a value from
persistent storage, saves it to a stack variable, loads the first word of
calldata and overwrites the old value in storage, and finally returns the
old value to the caller.

The functions newVar, sload et cetera are defined in terms of basic
operations such as byte. This allows very low-level control of EVM code
generated, in contrast to Solidity where the inefficient ABI calling
convention (with its single method per EVM call and loose packing of
arguments) is built in. In addition, the compositional approach (where
more advanced constructs are defined as functions in terms of more basic
ones) allows one to program at a higher level using reusable combinators.
An example of this is whilenot:

The whilenot combinator generates EVM code which repeatedly ex-
ecutes body while cond is false. Such combinators allow one to program
in a structured style. Once a combinator is defined, it can be freely
reused; for example, one could write

to define a factorial function (given two stack variables n and accum).
Combinators which implement code generation patterns turned out to

be very useful for generating efficient low-level code, in particular when
attempting to implement the pattern manually would be tedious and
error-prone. For example, MultiCall’s jump table, instruction argument
parsing and dispatch code was automatically generated using C
combinators.

The C DSL is a so-called state monad, which tracks the code as its
being generated; C actions can read and update the state. This is the
10
definition of its state type:

Expressions of type (C a) modify a state of type Env and return a value
of type a when they are interpreted using the function interp of type Env
–> C a –> (a, Env). The function interpret :: C –> (a, Env) passes in an
initial Env state and uses a lazy functional programming technique called
circular programming (“tying the knot” [11]) to let the monad observe
the value of labels before it defines them. The field label_ctr is used to
track the next anonymous label index; it is incremented for each anon-
ymous label allocated. The text_offset field tracks the number of bytes of
program text generated, and is used to place labels. The field syms is
prepended to during interpretation to add new label-integer mappings; a
lazy value which will eventually become the final value of syms is passed
into the initial environment’s future_syms field by interpret. The field
prog_text is the accumulated program text, stored in reverse so that bytes
can be appended to the program text in constant time using the cons
operator. The stackOffset field tracks the stack effect of EVM instructions,
and is used to implement stack variables.

The primitive API of the C monad is:

alongside the monad interface of bind and return. From these, more
complex C expressions can be defined. For example,

places a label at the current text offset. EVM instruction generation is
defined by executing the code generation for their argument expressions
(which push values to the stack), outputting the instruction’s opcode
using byte, and adjusting the stack offset using incSO. A combinator has
been defined for each EVM instruction. EVM generation code for arith-
metic operations and numeric constants is given syntactic sugar using
Haskell’s Num typeclass.

The power of DSLs lies in their extensibility; from the base operators
shown above, more complex code patterns can be defined as functional
combinators, allowing easy reuse of custom patterns. That provides the
programmer with the ergonomics of a high-level language, while
retaining the option of low-level control of code generated. For instance,
we have created combinators for structured programming, stack and
global variables, structs and arrays.

6.2. Volatile state

When called, MultiCall uses 15 one-word global variables as its vol-
atile state; we describe 4 key ones now. The remainder will be introduced

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
as needed, when describing the features which they are used to
implement.

� The program counter pc is used to track the next MultiCall instruction
to be executed from the calldata; pc is stored on the stack, the rest in
memory.

� Because MultiCall may batch transactions frommany users in a single
call, a mutable variable is required to track on whose behalf it is
executing: signatory tracks the Ethereum public key of that user.

� The variable balance caches the credit of the current user, deducted
for instructions which spend Ether such as calls, creates and deposits.

� The variable stashedBalance is used to remember the balance of the
caller when they execute a metatransaction on behalf of a client.

The program counter is accessed using the SVar datatype:

In each instruction, the program counter is declared to be already on
the stack using declareVars. Values of type SVar contain enough infor-
mation to locate a stack variable, even as the code pushes and pops
values; the functions dupVar and swapVar perform an EVM DUP and
SWAP of it respectively. The function newVar takes an expression and
allocates a new stack variable containing it. This feature is made possible
by the C monad’s static stack offset tracking.

The in-memory global variables are implemented using the GVar
datatype:

An example use in the Haskell definition of MultiCall is the definition
balance ¼ Memory 32, which defines the in-memory location of the
balance global. The balance is then modified using the load and store
functions, and using combinators which use them (such as (þ ¼), which
has the obvious meaning).

6.3. Account array

Each user (identified by an Ethereum address) has an entry in the
array accounts in persistent storage, which contains Account structs.
Since struct access code is error-prone to write using manual bit twid-
dling, this required the DSL be extended with typed expressions:

The type Expr wraps an untyped C monad code block, tagging it with
the type of value it pushes. The types TVar and TGVar are typed equiv-
alents of stack and global variables respectively. The parameter t sym-
bolizes an EVM type, not a typical Haskell type. The type Uint (n :: Nat) is
commonly used in our code. We also defined a type of structs (parame-
terized by the types of its contents), struct fields and various accessor
combinators. A typical use of structs found in the code is: (acc, accTime)
.¼ 0. The (.¼) combinator takes a pair of a typed stack variable con-
taining a struct and a named field of that struct type, as well as an
untyped expression (in this case zero) and assigns the expression to the
given field of the struct.

Readers familiar with Solidity may wonder what the difference is
11
between an account array and a mapping. Arrays are contiguous areas of
storage slots, whereas Solidity mappings are hash maps. Arrays are
cheaper to access, but in contrast to mappings support only keys smaller
than an EVMword. Since addresses fit within a word, an array is the more
efficient choice. The array accounts is a sequence of 2160 storage slots;
since only nonzero slots are stored by Ethereum nodes, such vast but
mostly empty data structures are viable.

To implement it in the DSL, we defined a type of static arrays with
typed content:

And then we defined the accounts array as

That means the array starts at storage index 2, permits the entire range of
addresses as indices, and contains values of type Account.

Limiting accounts to a single word is vital for performance, since
persistent storage loads are very expensive and only load a single one-
word storage slot at a time. In the previous version of MultiCall [4], ac-
count structs were simple: just a 48-bit balance and a 16-bit nonce. The
implementation of HBAuth and the preferred batcher features has made
them more complex.

In particular, the image field rendered design of the struct nontrivial
due to its size: EVM storage slots consist of 32 bytes, of which 20 are used
for the image. Fitting the other fields in the remaining 12 bytes was a
challenge. It was achieved in two ways: by overloading the meaning of
fields based on whether the user is a client or batcher, and shaving a byte
each off the balance, time, and batcher fields.

Shaving bytes off fields has a cost in the accuracy and range of
representable values; an alternative approach would be to store some or
all of the fields in a hash. That would increase the cost of accessing the
account by at least 320 gas (the cost of uploading 20 bytes) and
complicate the off-chain logic required, but would be an interesting
avenue to explore. Storing all accounts in a single Merkle tree would also
be of interest for future work, but is beyond the scope of this paper.

6.3.1. Balance
The balance variable records the user’s Ether balance in terms of the

monetary unit, a number of wei (the minimum unit of Ether). The
monetary unit determines the precision of the Ether values accounts can
store and payment instructions can transfer, as well as the maximum
representable balance size. Originally having a precision of 1 gwei (a
billionth of an Ether) andmaximum value of 281474 Ether, balances now
have a precision of 10000 gwei and maximum value of only 42949 Ether.
That corresponds to a precision of 3 USD cents and a maximum of 128
million dollars at current prices. It is possible that the precision should be
improved at the expense of the maximum value; that is trivial, just a
question of adjusting a constant.

How much accuracy is required is an open question, but we believe

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
that the significant cost of paying calls (on the order of dollars even if
using MultiCall [2]) renders small on-chain payments inefficient. Mul-
tiCall can provide significant savings, but there is no question of it
providing micropayment functionality—for micropayments layer 2 so-
lutions are more appropriate, with on-chain payments best used for set-
tlement. As such, a large granularity of payment and balance values
imposes a relatively small proportional granularity to efficient payments
(i.e., those with a low gas cost relative to value transferred).

6.3.2. Nonce
The nonce field is used for replay protection in metatransactions. It

remains unchanged from the original MultiCall. While it currently does
not permit overflow (preventing any account from ever sending more
than 65535 metatransactions), modifying it to overflowwould not pose a
security problem since the signatures used for HBAuth have been
enhanced with an expiry time chosen by the user after which the
signature will not be accepted. By choosing a reasonable expiry time
(such as 24 h after the signature is created), users can ensure that old
signatures for low nonce values do not remain valid after nonce overflow.

6.3.3. Time
The variable time is used to record the end of the warning period W1

(when the batcher can reset their CA) or W2 (when the client ends the
client-batcher relationship) for batchers and clients, respectively. The
EVM provides a TIMESTAMP instruction which allows smart contracts to
query the “current time” (i.e., the timestamp of the block in which the
transaction calling them is included). The timestamp is the 32-bit UNIX
epoch time in seconds; since time is only 24 bits, it records times with a
granularity of 256 s. Precision could be improved by taking into account
that only times until January 19, 2038 (when the UNIX time overflows)
need be represented, but that would have an additional gas overhead. By
transferring a byte from time to balance, one could increase the latter’s
accuracy to a hundredth of a cent at the cost of reducing time’s accuracy
to about 18 h.

6.3.4. Batcher
The batcher field contains a 23-bit batcher ID in its most significant

bits and a bit indicating whether the user is a client (0) or batcher (1)
respectively. If the user is a client, the batcher ID refers to their preferred
batcher; if the user is a batcher, it refers to the user’s own batcher ID.
Eight million IDs is expected to be sufficient, as most users do not need to
be batchers. However, it renders the contract more vulnerable to a denial
of service attack where a malicious party deliberately exhausts the space.
Adding a small fee paid to the contract’s creator to register as a batcher
could serve as a mitigation; if an attacker paid a dollar per ID to exhaust
the space, we would be rather pleased.

6.3.5. Image
If the user is a batcher, the image field contains their committed ac-

tion (CA). If the user is a client, it contains the image which the user
reveals the preimage of when using HBAuth to send a hash-based
metatransaction.

6.3.6. Design considerations
A consequence of the limited space available is that a desirable field

was dropped: the desiredBatcher field would have allowed clients to
specify which batcher they wanted to switch to when they announce they
are leaving their current batcher without that batcher’s approval. That
way, they could transition directly from one batcher to another; instead,
they must become independent and then choose the next batcher via a
direct call, which is more expensive.

6.4. Jump table

MultiCall’s jump table consists of an array of EVM code entries, each
of which is a JUMPDEST instruction marking a valid jump destination
12
followed by a jump to a constant address (the address of the instruction
code). The interpreter’s one-byte opcodes are used as byte offsets into the
table; the dispatch code simply jumps into the table using the opcode as a
byte offset. The jump table is therefore only 256 bytes long, and because
each entry is 5 bytes (one byte for JUMPDEST, 4 for a constant jump), it
can fit at most 52 instructions. Thankfully that is sufficient for MultiCall’s
functionality, but future interpreters may require a different dispatch
scheme. MultiCall’s dispatching mechanism is efficient enough for our
purposes, costing only 41 gas compared to 3 gas for an add or push EVM
instruction. Its cost is negligible compared to the cost of executing
transaction-emulating instructions, as shown in Section 7.

Manually constructing the jump table from the set of instruction
definitions would be tedious and error-prone; instead, we defined a
combinator jumptable_mc:

The combinator places each instruction from the list of C () code
blocks it receives, tracking their offset in the code. It then constructs a
jump table to those offsets, and binds a named label “JUMPTABLE_MC”
to the start offset of the table. The code of MultiCall as a whole is defined
as.
6.5. Initialization code

When MultiCall is invoked, MultiCall sets the in-memory variables
signatory (the address on whose behalf MultiCall is executing) to the
caller, balance to the number of monetary units (10,000 gwei) deposited
by the caller, and the program counter to 2. It also parses the 2 first bytes
off the calldata and sets the hint pointer to that value. The hint is
described in more detail in Section 6.7. MultiCall then dispatches,
entering the first instruction.
6.6. Instruction set

For efficiency, there is no separate interpreter loop; each instruction
dispatches to the next using the C expression dispatch_mc, which func-
tions as a macro.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
The dispatch code duplicates the program counter, which is on the top
of the stack, uses it to load a word of calldata, selects the first byte of it
and uses that as an index into the jump table.

Each MultiCall instruction consists of a contiguous block of EVM
bytecode. MultiCall instructions modify the state of the interpreter and
perform some side effects (such as internal state changes or EVM calls)
until an instruction throws an exception or the endCall instruction exits
the interpreter. We describe the implementation of a subset of key
MultiCall instructions below.

6.6.1. Making payments
Paying instructions such as calls, creates and deposits perform a side

effect which may cost Ether: performing an EVM call, creating a contract,
and crediting another user’s account, respectively. Such instructions
deduct the payment from the volatile balance variable, rather than
directly from the account of the signatory on whose behalf MultiCall is
executing. That saves gas since persistent storage writes are significantly
more expensive than memory writes.

6.6.2. Stopping execution
There are two points at which execution of instructions on behalf of

the current principal (identified by the signatory variable) is stopped and
the volatile balance is settled against their account: in endMetatxn and
endCall. In both endMetatxn and endCall, checks are performed that are
deferred until the principal’s account is loaded into memory. That is
achieved by storing the details of the checks to perform in global vari-
ables such as nonce. Checks and modifications of the user’s account (such
as modifying the balance) are deferred in order to reduce the storage
accesses required to one read and write per user.

The endMetatxn instruction ends a metatransaction and performs
some checks relevant to authorisation. If the nonce global variable is
nonzero, then a signature was used, and the nonce is compared to the
nonce field in the client’s account. If it is zero, then a 20-byte preimage is
parsed off the hint pointer from calldata, hashed and compared to the
image field of the client’s account. The endCall instruction checks that
MultiCall is not executing a committed action or metatransaction and
then checks that the caller was authorised to batch on behalf of any users
whose metatransactions were run. In both cases, the volatile balance
variable is settled against the balance field stored in the user’s account; if
there is an overflow or underflow, the transaction fails and has no effect.

The endCall instruction is the only means of ending a call to MultiCall;
if the script passed in the calldata does not contain an endCall, then the
interpreter will loop until it runs out of gas and throws an exception,
reverting any desirable side effects.

6.6.3. Proxies
Each user controls a proxy contract, whose address can be computed

from the user’s address. Proxies are allocated with the createProxy in-
struction, which creates a proxy using the EVM instruction CREATE2.
The instruction behaves like CREATE, except that the address of the
created contract is deterministically computed from the creator address
(in this case, the address of MultiCall), the initialization code and a salt.
The salt used is the address of the signatory. That eliminates the need to
store the proxy’s address in the user’s account, as the address can be
recomputed when needed by the proxy_dot_create and prox-
y_dot_call_address MultiCall instructions.

All proxies created by the same instance of MultiCall have the same
bytecode, which checks whether the caller is its creator (MultiCall) and
the calldata are ended by the magic 32-bit number indicating a proxy call
or create command. If that is the case, the proxy performs the com-
manded call or create. The trivial way for a proxy to store its creator’s
address would be to place it in persistent storage and read it on each call,
but that would be inefficient as storage reads are expensive. Instead,
during contract creation, the creator’s address (which can then be
compared to the CALLER) is written into a push instruction in the in-
memory bytestring, which is returned as the final code of the proxy.
13
The end result is that fetchingMultiCall’s address in order to compare the
caller’s to it costs only 3 gas.

6.6.4. Metatransactions
MultiCall metatransactions consist of a startMetatxn instruction,

containing a number of MultiCall instructions terminated by an endMe-
tatxn instruction. As stated in Section 4, there are twoways of authorising
a metatransaction: signatures and preimages. Signature verification is
achieved by calling the primitive contract ECRECOVER, which recovers
the public key to the signatory given a hash and an Ethereum signature of
the hash. The metatransaction, the tip, a nonce and deadline field are
included in the hash. The nonce and a deadline chosen by the user are
uploaded alongside the signature and are used for replay protection and
to ensure that signatures eventually expire. Preimage verification is
achieved by comparing the submitted preimage’s hash to the image
stored in the user’s account. Metatransactions execute on behalf of their
creator if authorisation succeeds. What executing ”on behalf of” a user
means that the signatory variable is set to that user’s public key. The
value of signatory is restored to the caller upon the next stop instruction.
The balance of the caller is also saved to the stashedBalance variable, and
the signatory executes with a new balance. The tip is deducted from the
new balance and credited to the stashed balance. When signed execution
stops (at the next endMetatxn instruction), then the signatory’s balance is
settled, the stashed balance is restored, andMultiCall reverts to executing
on behalf of the caller. Since there is only one stashedBalance variable
rather than a stack of balances and addresses, nested metatransactions
are disallowed. Note that if the metatransaction is terminated with an
endMetatxn prematurely, it is the caller that pays for subsequent in-
structions. If it is not terminated at all, the batcher is free to append their
own instructions when running the signed script, enabling the theft of
any Ether in the account and any ERC-20 tokens controlled by the ac-
count’s proxy contract.

An attractive feature of MultiCall metatransactions is that they allow
the authorisation cost to be shared across multiple authorised actions.

6.6.5. Batcher-specific instructions
The becomeBatcher instruction is the means by which new batcher

accounts are created; all users start as clients. When a user runs beco-
meBatcher, the wantToBecomeBatcher volatile variable is set, which
triggers a deferred conversion to batcher when their account is settled.
That amounts to allocating a new batcher ID from the persistent counter
variable batcherIDCounter, setting the most significant 23 bits of the user
account’s batcher field to that value, and setting the least significant bit
to 1.

The setCA(h) instruction sets the user’s image field to the given 160-
bit hash h if they are a batcher. The write is deferred by storing the hash
in the desiredCA volatile variable. It also sets the time field to the current
time plus a warning period; the committed action may not be changed
until then. If there is already a committed action in the variable and the
time field is greater than the current time, setCA fails.

The startCA(script) instruction runs the given script if the hash of the
script matches the committed action in the batcher’s image field. The
script immediate argument is merely a 16-bit length field and a bytestring
ofMultiCall instructions of that length. If the script matches the committed
action, then startCA sets the inCA flag and sets the program counter to the
start of the bytestring. Metatransactions require inCA is set to run.

6.6.6. Client-specific instructions
The setImage(h) instruction performs a deferred write to the client’s

image field. It is performed after the preimage comparison used by
HBAuth; otherwise, an attacker could authorise any metatransaction.

The setBatcherTo(id) instruction performs a deferred write to the
most significant 23 bits of the client’s batcher field, assuming it is run in a
metatransaction. If run directly in a call, the time field in the user’s ac-
count is set to the end of the warning period. When the current time
exceeds the time field, the client becomes independent. The next time

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
their account is accessed, its batcher ID will then be written to 1, indi-
cating no batcher. The client will then be able to spend from their account
directly but not use metatransactions.

6.7. Hinting

In MultiCall, the proofs of approval passed to runMetatxn instructions
are not in fact in their immediate arguments. Instead, there is a separate
pointer global variable hint from which they are parsed. That is useful,
since the runMetatxn instructions must be committed by the batcher
before the preimage they use is revealed. The preimage can therefore not
be an immediate argument included in the commitment. One can think of
the script as not being complete by itself but rather being parameterisable
or dependent on help from the batcher. The batcher serves as an
untrusted ”kernel”, providing untrusted data in response to user requests,
allowing the user to only verify rather than compute hinted data. The
batcher in turn must predict the hints required in the course of trans-
action execution and upload them as part of the transaction calldata. We
call this technique hinting and consider it of interest for future study.

7. Performance evaluation

Note: gas cost evaluation was performed using the popular Ethereum
tools Truffle [12] and Ganache [13], which allow smart contract testing
in a private blockchain but do not yet support the rule changes in the
recent Berlin hardfork of Ethereum. One change relevant to MultiCall
was made in the Berlin fork: EIP-2929 [14], which increases the cost of
accessing contracts and storage indices for the first time in a transaction
(“cold load”) but makes them much cheaper to access subsequent times
(“hot load”). We expect this to enhance the cost savings provided by
MultiCall and batchers in general since batching many transactions
together should allow more of their calls and storage accesses to pay the
lower hot load cost.

We will showcase the cost savings provided by MultiCall with micro-
benchmarks as well as by revisiting the example Token from Section 1,
where MultiCall saves 59.6% of the gas required for token-transfer costs.
We also compare the performance of MultiCall with a preexisting
batcher, MultiSend. Finally, we compare MultiCall to iBatch, a batcher
described in the academic literature [5].

7.1. Micro-benchmarks

To evaluate the gas cost savings provided by MultiCall, we ran a
number of MultiCall instructions in sequence and measured their mar-
ginal cost. We uploaded MultiCall to a private test chain run using
Ganache version 7.2.0 [13] and tested it using truffle version 5.5.19 [12],
a development framework for Ethereum that can provide an interactive
JavaScript console to the private chain. The savings provided by using
transaction-emulating instructions relative to transactions as a propor-
tion of the fixed transaction are shown in Table 2. To clarify, if an in-
struction which emulates a call transaction has a cost of X, its savings are
reported as (21000�X)/21000, rounded to the nearest tenth of a per-
centage point. To calculate the savings of instructions that emulate create
transactions, we first deduct the 32000 gas cost that is paid either way
and then perform the above calculation.
Table 2
MultiCall gas costs and savings vs. unbatched transactions.

MultiCall action Gas cost Savings

Ether-paying call 8060 61.6%
Non-paying call 1348 93.6%
Ether-paying proxy call 8968 57.3%
Non-paying proxy call 2256 89.3%
Create 32206 99.0%
Proxy create 33233 94.1%
Deposit 6405 69.5%

14
The calldata used for calls and creates were empty; the contracts
called were dummies which returned immediately upon being called, in
order to eliminate any gas cost confounding from contract execution.
There is a negligible overhead of approximately 3 gas per word for
copying calldata into memory when batching, rather than sending
transactions directly. The fact that MultiCall creates instructions cost
more than the fixed transaction cost of 21000 gas and yet still provides
savings may be surprising; note that the 32000 contract creation cost is
paid by create transactions as well. Create transactions have a minimum
gas cost of 53000, which includes both the 32000 gas cost of creation and
the 21000 fixed transaction cost. The proportional cost saving of batch-
ing is computed as a fraction of the 21000 gas fixed transaction cost
saved, not the 53000 gas cost, which includes the create. We conclude
that batching via MultiCall provides significant cost savings.

7.2. Metatransactions

The version of MultiCall described in this paper provides two forms of
metatransaction: signature and hash-based. Both use the runMetatxn
instruction, which takes a script of MultiCall instructions and executes it
on the client’s behalf. The difference lies in whether the batcher provides
a signature or a preimage as proof of authorisation. The instruction can
be used to allowmultiple clients to share a single call transaction for their
batching. However, runMetatxn has some overhead—modifying the
user’s nonce and image requires a storage write, and both signature
verification or hashing cost some gas. If runMetatxn cost more than
21000 gas, it would of course not be of any use—then users might as well
send transactions separately.

To evaluate the runMetatxn instruction, it was profiled by sending
varying numbers of metatransactions with empty scripts (containing only
an endMetatxn instruction). Profiling is somewhat more complicated
than for other instructions. Different clients must be used for each met-
atransaction in the call to avoid amortisation of the write to the client’s
account; repeated writes to the same storage slot cost less in the gas cost
model. Also, HBAuth requires some additional off-chain logic to use
which the normal instructions do not. For that reason, runMetatxn was
profiled separately from the other instructions.

In short, the gas cost of each runMetatxn varies slightly due to vari-
ation in the number of zero bytes in the signature (which cost 12 gas less
to upload in transaction calldata than nonzero bytes), but signature-
based metatransactions appear not to cost on average 12472 gas. Hash-
based metatransactions appear to cost on average 7489 gas, for a
saving relative to signature-based of 4983 gas. The end user may assume
they save approximately 13500 gas using a hash-based metatransaction
to share a call compared to calling MultiCall themselves. A noteworthy
implication is that it is cheaper to send a MultiCall metatransaction that
contains only a single Ether transfer than to use an unbatched
transaction.

Signature-based metatransactions now cost approximately 500 gas
more than they did in the earlier version of MultiCall [4]. That is because
this version has not been optimised for the signature-based case; they are
the “failure case” of hash-based transactions, intended to be used only
when the peer-to-peer protocol fails or when the user must submit their
first hash. However, hash-based metatransactions are significantly
cheaper regardless.

Hash-based metatransactions require the batcher to commit the
metatransactions to be run in advance. That requires a storage write,
which costs around 5000 gas; perhaps that is a threat to their usefulness?
Thankfully, the batcher can run a set of metatransactions, commit a new
set and add client tips to their balance in the same storage write. The
fixed cost of the batcher making a call transaction which runs a set of
metatransactions and committing a new set is below 27900. A user
sending a hash-based metatransaction performing only a single paying
call saves over 5000 gas; it would take only 6 such metatransactions in a
call to overcome MultiCall’s fixed cost. Since blocks may contain hun-
dreds of transactions and individual users may make many payments in a

Fig. 9. Batching contract calls using MultiCall.

Fig. 10. The gas cost of 1–10.xfer method calls to the contract Token shown in
Section 1, compared to the cost of unbatched EVM method calls.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
single metatransaction, MultiCall’s fixed cost is not expected to be a
significant problem.
7.3. Token transfers

Consider once more the example of Alice making one token payment
each to N recipients, using the method .xfer(address, uint) of the Solidity
contract Token—recall Section 1. The gas cost of doing so in one trans-
action via MultiCall compared to sending N transactions individually is
shown in Fig. 10 for N ranging from 1 to 10. We can see in the figure that
the savings are significant, i.e., up to 59.6% for 10 payments, and the
proportional savings improve as the fixed overhead of MultiCall is
amortised.

On the one hand, we launch N transfers with truffle by simply making
N standalone JavaScript method calls T .xfer(to, amt). Such calls are then
translated into call transactions to the address T.address, with calldata
containing the 32-bit method identifier for xfer followed by the 160-bit
address argument to (left-padded to 32 bytes) and 256-bit token
amount amt. When making N unbatched Solidity method calls, each
transaction executes independently and costs the same amount of gas:
33817. The total cost is therefore N ⋅ 33817.

In contrast, when making N payments using MultiCall, only a single
call transaction to MultiCall is sent; the calldata consists of the concate-
nation of N proxy_dot_call_address instructions. Each proxy call instruc-
tion calls the user’s proxy, which in turn calls the Token contract instance
T.address, with the same calldata as used in a standalone .xfer trans-
action. The JavaScript code for making the call to MultiCall from truffle is
shown in Fig. 9. The cost of making a single payment via MultiCall is
38238. After that, the marginal cost of making an additional payment is
always the same: 10912 gas. That is, a 67.7% saving compared to sending
token payment transactions individually. The shared fixed cost for the
sequence of payments is 27326 gas, corresponding approximately to the
fixed transaction cost and the cost of a storage write. Since batched Token
payments are implemented using a proxy call which does not make an
Ether payment, one would expect from the micro-benchmarking that
approximately 2256 of the 10912 gas cost is the overhead of MultiCall,
and the remaining 8656 is the .xfer method’s execution cost. That is
surprisingly low, since the method performs two storage writes, which
typically cost 5800 gas each. However, repeated writes to the same
storage slot are cheaper in the cost model. We believe that since the
proxy’s balance is deducted repeatedly, the marginal cost of updating it is
reduced. The ability to amortise the cost of storage writes made during
contract execution makes batching transactions even more attractive
than the micro-benchmarks would indicate.
7 https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc
708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol.

15
7.4. MultiCall vs. MultiSend

In this section, we will show that MultiCall is more performant than
MultiSend7, a batcher implemented in Solidity assembly with the pur-
pose of reducing gas costs. Before going into the details of our compar-
ison, we summarise the main result.

For the only comparable feature (call batching), MultiSend costs 200
more gas per batched call. Since the upload cost of each MultiCall call
instruction is about 200 gas lower than its MultiSend equivalent, we
speculate that the difference lies in MultiCall’s highly optimised in-
struction argument packing and parsing, generated by a DSL combinator.
Specifically, MultiSend stores each immediate argument in a separate
word, while MultiCall packs them densely and then uses shifting to
efficiently unpack them into separate stack slots. Such shifting is tedious
and error-prone to perform manually, so it is ideal for automatic gener-
ation. We do so using a combinator unpackLeft :: [ArgType] –> C [SVar].
The ArgType values indicate the types (and thus byte sizes) of values to
unpack; the monad returns a list of stack variables containing the
unpacked values. Access to combinators that can be reused to generate
efficient bytecode is an advantage of the DSL over Solidity assembly.

7.4.1. Profiling details
The cost of paying and non-paying MultiSend calls was evaluated the

same way as MultiCall calls were, using calls with the same calldata (the
empty bytestring) to the same contract (a dummy which stops immedi-
ately). Batches of 1–20 calls of each type were made, and the marginal
cost of a call inferred by calculating the gas cost delta. Marginal gas costs
varied in a range of 1464–1610 for non-paying calls and 8176 to 8311 for
paying calls, without a clear downwards trend. On average, non-paying
calls cost 1557 gas and paying calls 8268. Both are approximately 200
gas more expensive than their MultiCall equivalent, approximately 1% of
the fixed transaction cost (see Table 3). As MultiSend is a popular batcher
written in assembly with the purpose of reducing gas costs compared to
plain Solidity, that is an encouraging result.

7.4.2. Comparison discussion
It bears noting that comparing the cost of calls does not factor in the

additional features required to use MultiSend that are built into Multi-
Call. Because MultiSend does not support metatransactions or have
multiple account records for different users, each user is expected to
separately delegate to it from a different contract. Payments between
users of MultiSend also require at least one call, while multiple users

https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol
https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol

Table 3
MultiCall gas cost vs. MultiSend.

Action MultiCall cost MultiSend cost (average)

Ether-paying call 8060 8268
Non-paying call 1348 1557

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
could make deposits to other users without performing a call in MultiCall.
Baking many features into the same contract reduces the overhead of
context switching; interpreters like MultiCall are a promising avenue for
doing so.

In summary, the results of the evaluation are promising and suggest
that greater adoption of batching would be advisable. MultiCall’s inter-
preter design does not appear to impose unacceptable overhead and
could be reused in future smart contracts.
7.5. MultiCall vs. iBatch

We also evaluated iBatch, a batcher smart contract described in the
academic literature [5]8. Like MultiSend, iBatch is written in Solidity and
supports batching of calls but not creates; however, it also uses signatures
to allow multiple principals to share a transaction. By using a shared
nonce, iBatch cleverly avoids the need for each user to update a separate
one. As with MultiCall, the off-chain batching server collects calls from
multiple users. Once enough have been collected, the server concatenates
them and sends them to each user, who then signs the combined calls and
shared nonce. The calls are then submitted alongside the nonce and
signatures; the script is hashed and for each call the user’s signature is
checked against it when making a call.

The authors claim this allows iBatch to offer replay protection
without any in-contract state accesses; sadly, an implementation error
means that is not the case. The submitted nonce is not checked in the
code, meaning batched calls can be trivially replayed by amalicious party
making another call with the same calldata. There is also another error:
when signing the script, the arguments to the batched calls are not
included in the hash. That means they’re malleable, which is unaccept-
able from a security perspective: the recipient of an ERC transfer method
could be changed, for example. Fortunately, the two errors would be
simple to solve: to prevent a replay attack, one could keep a nonce var-
iable in storage for a fixed cost of around 5000 gas per invocation of
iBatch, and call argument malleability could be prevented by also
hashing the arguments for a slight increase in gas cost. All in all, the two
errors mean that the comparison to MultiCall is biased slightly in favour
of iBatch.

Instead of providing a proxy contract for each user, iBatch passes their
address as the first argument of any call.9 Calls made from iBatch may
take 1-4 additional whole-word arguments; to make the profiling of
iBatch as similar as possible to that of MultiCall and MultiSend, we sent
1–20 calls from it with a zero-valued one-word argument to a dummy
contract that stops immediately.

The difference in gas costs between batching N and Nþ1 calls is the
marginal cost of batching a call; it averages 10200. When averaging the
marginal costs of 21–100 calls, we found a slightly higher average:
10234. That is not surprising, since hashing of the calls is done by
copying all of them into memory at once, and the cost of memory allo-
cation in the EVM has a quadratic component. It appears that the over-
head of batching a call in iBatch is significantly higher than that for either
MultiCall (1348) or MultiSend (1557). Note that iBatch does not support
Ether-paying calls, so the cost for non-paying calls is compared.

It should be noted that signature verification is integrated with each
batched call in iBatch. That is inefficient if users wish to make several
calls, but let us assume they do not. Then, a fair cost comparison for an
iBatch call is not to a MultiCall call instruction but to a metatransaction
containing only a single call. We profiled single-call metatransactions in
8 Retrieved June 21, 2022 from https://github.com/syracuse-fullstacksec
urity/iBatch-offchain-sim. iBatch does not compile with the latest the latest
Solidity compiler; we had to downgrade the compiler version to 0.4.25 and
make two trivial changes to the program, but they do not affect the semantics or
results.
9 The authors propose to reengineer smart contracts to treat iBatch as acting

on behalf of the first argument for the purpose of authorization.

16
MultiCall and found they cost 8803 gas, about 1400 less than calls in
iBatch.

We were surprised that the reduction in per-call overhead in iBatch
compared to the fixed transaction cost (51%) was lower than the 61%
saving as a proportion of the total transaction cost advertised in the
iBatch paper. However, the mystery was resolved when we profiled
iBatch for calls to a contract which made a storage write. Repeatedly
accessing a storage slot within a single transaction is significantly
cheaper than accessing it for the first time, so all batchers provide
additional savings above elimination of the fixed transaction cost when
making calls that perform such accesses.

A significant part of iBatch’s per-call overhead is signature verifica-
tion (costing around 4740 gas for signature upload and the verification
computation); by sharing that across multiple calls like MultiCall does the
overhead could be reduced.

The origin of the around 3000 gas cost that remains unaccounted for
after considering the calldata upload cost and contract cost remains
mysterious; we suspect that using Solidity assembly to optimise memory
accesses could reduce it significantly. While iBatch is not optimally
efficient, we believe the nonce-sharing approach used is a sound and
interesting idea.

In fact, it is such a good idea that it is a potential threat to the validity
of HBAuth. Hash-based authorisation requires a hash in storage to be
updated for each user that uses it; in MultiCall that costs 7489 gas,
whereas a signature verification without a state write costs only around
4740 gas. Does that render HBAuth obsolete? We believe the answer is
no: while iBatch touts its lack of storage use as an advantage, contracts
have state for a reason. The user account in MultiCall contains a nonce
and hash for HBAuth but also an Ether balance. That enables users to
make Ether payments directly from MultiCall and deposit Ether in other
users’ accounts without making a call; with iBatch a proxy contract
would have to be used. Most of the cost of HBAuth (around 5000 gas) is
the update to the user’s storage, which can be amortised if the user also
spends Ether, requiring their balance be deducted. One might object that
with the proliferation of ERC tokens, Ether payments could in the future
become infrequent enough that such amortisation would be rare. In our
view, that is a valid point, and the answer is to make the in-batcher state
richer (for example, by adding ERC balances). Doing more within the
batcher itself should in general be cheaper than accessing the external
state. One could also use Merkle trees to store user balances, thus
requiring only one storage slot access to update the accounts of many
users. We believe that HBAuth remains most efficient when there is cause
to update the state in the batcher contract (allowing the storage write
required by HBAuth to be amortised), but shared-nonce signature veri-
fication would be a useful complement when there is not. Integrating the
two approaches in a single batcher contract which also uses Merkle trees
would be an interesting subject for future work.

8. Security

We provide a simple demonstration of a security feature and an
outline of our reasoning used when designing MultiCall to be secure.
Rigorous testing and formal verification of MultiCall using a proof as-
sistant would be interesting future work.

8.1. Demonstration of preferred batcher feature

We have written Javacript API code, which runs in the truffle console,
meant to automate the process of running the HBAuth protocol when

https://github.com/syracuse-fullstacksecurity/iBatch-offchain-sim
https://github.com/syracuse-fullstacksecurity/iBatch-offchain-sim

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
sending hash-based metatransactions. It does not implement the full
protocol in the sense of allowing a client to communicate with a remote
batcher, but rather performs the computations both parties would have
performed. Nonetheless, it is enough to test MultiCall. We show in-
teractions in the console (saved in the course of testing) to demonstrate
that only the client’s chosen batcher (in this case, MultiCall’s creator)
may batch their metatransactions.

First, we check the account of the address acc1, a variable which was
bound earlier. MultiCall has been created, and its address is bound to MC.
The function api.account2 fetches and parses MultiCall account structs.
As we can see, 19 metatransactions have already been run for this user,
and they have an image set.

Then, we run a function which performs a metatransaction on behalf
of acc1. The value c1 is a client object which contains acc1’s hashes. The
output of this command is verbose (consisting of an Ethereum transaction
receipt object) and not shown.

As we can see, a hash-based metatransaction has run; the nonce has
been incremented, and the hash is the preimage of the old hash (using the
hash function api.hbaHash). Now, we will simulate the attack from
Section 5 and attempt to batch a metatransaction made by acc1 from accs
[4], a user we converted to a batcher earlier.

The output has been truncated (and our own debugging messages
elided) to show the relevant part: when unauthorised batchers attempt to
run metatransactions, they are prevented from doing so.
10 The astute reader may observe that predicting computational resource usage
in a Turing complete system with unpredictable state is far from trivial. Fortu-
nately, the EVM allows the gas usage of the CALL instruction to be bounded by
passing a parameter to it. Direct call, proxy call and proxy create instructions are
implemented using a CALL instruction. They take a gas limit parameter set by
the client and pass it to the CALL, bounding the gas they can use. That makes
them safe for the batcher: by setting a transaction gas limit higher than the total
gas bounds plus the cost of executing instructions in MultiCall, the batcher can
guarantee their transaction will succeed. Note that safety means only that the
submitted metatransactions will complete without reverting the committed ac-
tion; if clients set the gas bounds of their instructions too low the instructions
will fail but the batcher will still get paid! Native Ethereum transactions have
the same problem; it’s inherent to making calls to Turing-complete smart con-
tracts. Consequently, we don’t consider it a fatal design flaw for MultiCall. For
direct creates there is no native means of limiting the gas usage of the initiali-
zation EVM code; there static analysis by the batcher to establish an upper
bound would be required. MultiCall instructions themselves are executed in
sequence and consist of non-looping code; establishing a gas bound for them
should be feasible.

17
8.2. Informal security argument

To be secure, HBAuth in combination with the preferred batcher
feature must ensure that batchers can run their committed meta-
transactions. It must also protect clients from metatransaction forgery. In
what follows, we present an informal argument on why our solution
prevents the attack presented in Section 5, (protecting batchers from
transaction invalidation) and protects clients from theft or indefinite
lockup of funds.

8.2.1. HBAuth security
Because the first step of the off-chain protocol is to give the batcher a

signature of the client’s desired metatransaction, the batcher will always
have the requisite cryptographic proof to run metatransactions they
commit, regardless of whether the client subsequently refuses to reveal
their preimage. The batcher must also ensure that the metatransaction
can be run successfully—that the client does not spend more Ether than
they have, or use too much gas10—before committing it. The client can
therefore not attack the batcher by causing them to commit to running
invalid metatransactions.

To authorise a metatransaction on behalf of a particular client, one
requires a cryptographic proof of authorisation in the form of either the
preimage to the hash in their account or a signature from their private
key. As long as the client keeps their chain of hashes secret until it is time
to reveal one and keeps their secret key secret and does not provide
signatures to malicious parties, forging such an authorisation is intrac-
table as long as the underlying cryptographic primitives (SHA3 and
Ethereum’s signature scheme) remain secure against collision and forg-
ery, respectively.

8.2.2. Preferred batcher security
There are four ways to modify a client account which could invalidate

a metatransaction: ending the client-batcher relationship, incrementing
the nonce, modifying the image, and decrementing the balance. Of the
four, the first can only be done with a delay allowing the batcher to run
their committed action first; the other three can only be done within a
metatransaction (that is, with the batcher’s approval) unless the client
has no batcher. Therefore, malicious parties cannot invalidate meta-
transactions once a batcher has committed them.

At any point in time, each client has at most one user that is their
preferred batcher. That is because their account specifies a particular
batcher ID that is their preferred batcher, and each batcher has a unique
batcher ID. Batcher IDs are unique because they’re allocated from a 23-
bit counter which may only increment, and which disallows further al-
locations when it would overflow. The special batcher ID 0 (which in-
dicates the default batcher all accounts start with) can only be held by
one account at a time, since MultiCall starts with only the creator holding
the special ID, and granting it to another batcher account requires allo-
cating a new non-special ID for the sender. Transferring the special ID
cannot be used to invalidate a batcher’s committed action by changing
their batcher ID, since the recipient must collect the ID themselves; the
act of granting the ID only gives them the right to collect it, it does not
forcibly modify the recipient’s account.

Clients can end a client-batcher relationship within a limited period
of time W2, becoming independent and capable of spending from their
own account via a direct call to MultiCall. Therefore, a malicious batcher
cannot lock up user funds indefinitely. There is a gas overhead to
escaping from a batcher, but it is a constant cost on the order of the fixed
transaction cost and can be managed through off-chain contracts or
batcher reputation. The interest cost of user funds being locked up forW2
can be mitigated by selecting a W2 less than a day. We recommend ar-
bitrageurs absolutely dependent on access to their funds within a
blocktime to not use a batcher at all.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
8.3. Security assumptions

As MultiCall is an application built to run on Ethereum, it naturally
relies on the security of the underlying system. However, it also places
additional requirements on the capabilities of MultiCall users. To deter-
mine the degree of exposure to cryptographic vulnerability risk and
whether the usage of MultiCall is suitable for a particular client, it is
useful to make those assumptions and requirements explicit. They are as
follows:

1. We assume Ethereum’s signature scheme (which is used to sign
metatransactions) is secure against forgery.

2. We assume the EVM’s SHA3 hash, truncated to 160 bits, is sufficiently
collision resistant to render finding any collision intractable.

3. We assume both clients and batchers can detect on-chain events on
Ethereum, send a transaction in response to it, and have it accepted
within some period W1–W2 and W2, respectively.

Assumption 1 is trivial; if it did not hold, the Ethereum protocol itself
would be broken.

Hash-based authorisation depends on the difficulty of finding a pre-
image to the image stored in the client’s account to prevent meta-
transaction forgeries and on the difficulty for batchers of finding a new
malicious action whose hash matches their committed action. In other
words, the hash function used must be collision resistant to be secure-
—that is assumption 2. In both cases, the same hash function is used: the
native SHA3 function provided by the EVM [1], truncated to the most
significant 160 bits out of 256 returned. While truncation is necessary to
fit the image into 256-bit user accounts alongside other fields, a hash size
of precisely 160 bits was chosen because it coincides with the length of an
Ethereum address. We assume that the hash is sufficiently long to prevent
adversaries from finding collisions. Ethereum addresses are themselves
the result of truncating the output of the EVM’s native SHA3 function,
using the ECDSA public key as input for externally owned accounts. In-
dividual EOAs may hold billions of USD worth of Ether11; our reasoning
is that if 160-bit SHA3 hashes were insufficiently collision resistant, the
Ethereum protocol itself would be vulnerable. A difference from the
Ethereum address hashing function is that our hash uses the leftmost
rather than rightmost 160 bits, but we know of no result indicating they
are more predictable for SHA3.

Both the hash-based authorisation and preferred batcher features
require users to respond in a timely manner to actions taken by another
user in order to avoid losing funds - that users are capable of doing so is
assumption 3. Batchers may reset their committed action within W1
seconds of setting it, which requires that any of their clients that had
revealed their preimages end the client-batcher relationship within
W1–W2 seconds. Clients may end the client-batcher relationship by
calling MultiCall directly; that has a delay of W2 seconds to give the
batcher time to respond. If a batcher has committed an action which
includes a metatransaction from that client, they must run the committed
action within W2 or be forced to reset their committed action (forcing
clients to end the client-batcher relationship in turn, costing themmoney
in transaction fees). Both cases require the users (client and batcher) to be
able to observe events on the Ethereum blockchain and send a trans-
action that gets accepted within W1–W2 and W2, respectively.

We assume that is possible; as such HBAuth is inappropriate for cli-
ents which will be offline for the entirety of the W1–W2 period after
revealing a preimage. However, the task of freeing the client if the
batcher misbehaves could be delegated to a watchdog node by sending it
an Ethereum transaction which does that. That batchers must be
responsive is less of a problem, as they must be to aggregate meta-
transactions. Currently, W1 and W2 are set to small numbers to aid
11 https://etherscan.io/address/0x9BF4001d307dFd62B26A2F1307ee0C0307
632d59.

18
testing, but in a deployed version of MultiCall appropriate values will
need to be selected to ensure that the assumption is correct. W1 could be
set to a large value such as 1 month and W2 to a small value such as 1 h;
since the batcher is intended to be a sophisticated party and its capacity
for malfeasance is more serious, it is reasonable to place a higher burden
on it.

9. Discussion

This work has focused primarily on introducing the concept of a
batching interpreter, a prototype on-chain implementation, and
improving that prototype’s performance and security. Verification of the
security of MultiCall with the help of existing tools such as Ref. [15] is a
subject for future work. While the gas usage of the prototype has been
profiled with good results, a number of challenges stand between Mul-
tiCall and real-world adoption.

9.1. Adoption

First of all, the question arises why batching has not yet achieved
mass adoption, despite preexisting batchers that could also provide sig-
nificant gas savings. We speculate that for individual users who do not
frequently send many transactions at once, the effort of learning the user
interface of an existing batching tool is not worth the money saved.
MultiCall’s ability to share calls between multiple users via meta-
transactions may ease the adoption of batching, as it makes even single
calls from one signatory cheaper to batch than send directly. However,
changes to wallet user interface software would be required to make
batcher use effortless for the end user. The problem of aligning incentives
of wallet client providers and batcher developers is beyond the scope of
this paper.

9.2. HBAuth performance

The performance improvement of hash-based metatransactions rela-
tive to conventional signed ones is exciting. While a 40% cost reduction is
impressive by itself, it bears noting that 5800 gas or 77% of the remaining
cost is due to the account update rather than metatransaction verifica-
tion. Excluding the account update cost for both hashed and signed
metatransactions shows that the verification cost has been reduced by
75%! The obvious next step is to use Merkle trees rather than an array for
account storage. Doing so could replace the storage write per user with a
single shared write to the Merkle root, potentially bringing the overhead
of a metatransaction below 2000 gas. That would be of great interest for
future work. It bears noting that if signature-based transactions used a
shared nonce as iBatch does (for example, the nonce in the batcher’s
account) rather than a separate one for each client, then signature-based
transactions could be cheaper than hash-based as long as the client does
not spend Ether from their account or otherwise modify it. However, that
would be rendered moot by using Merkle tree storage, as long as accesses
to it are dense enough to reduce the cost per element below 4740 gas (the
cost of uploading and verifying a signature).

9.3. HBAuth limitations

While hash-based metatransactions provide a significant cost
improvement, they have some disadvantages. Before they can be run,
hash-based metatransactions must first be committed by the batcher. For
optimal efficiency, that commitment should be done alongside the
execution of the previous committed metatransactions in order to
amortise the storage write. That means that if it takes a batcher T to
collect enough metatransactions to send in a transaction, a client that
sends a metatransaction at a random time must wait 1.5T beyond
Ethereum’s transaction acceptance latency (first 0.5T waiting for the
metatransactions it will be sent alongside, then they are committed, then
they are executed only when another set of metatransactions is ready to

https://etherscan.io/address/0x9BF4001d307dFd62B26A2F1307ee0C0307632d59
https://etherscan.io/address/0x9BF4001d307dFd62B26A2F1307ee0C0307632d59

12 https://cardano.org/.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
be committed). Signature-based metatransactions need only wait 0.5T,
because they do not need to be committed. That is due to unintended but
beneficial behaviour: while each time a batcher runs metatransactions,
they must reveal a committed set of them, they do not need to terminate
them with an endCA() instruction. Then, the revealed metatransactions
can be followed with signature-based ones chosen after commitment. In
future versions, the endCA() instruction will be removed, as it serves no
purpose. Another, more significant challenge to hash-based meta-
transactions is that in the event of a chain reorganisation the client’s
revealed preimage will be a carte blanche for the batcher to steal the
client’s entire account contents. Mitigating that requires waiting enough
blocks after commitment to render a reorganisation very unlikely before
revealing the preimage. However, it is our understanding that the plan-
ned transition from proof of work to proof of stake for Ethereum will
make reorganisations very costly for stakers, so they will be improbable
after a small number of blocks.

9.4. Use of watchdogs

An external watchdog server could be used to allow the client to fire
and forget hash-based metatransactions by sending the watchdog a
transaction which ends the user’s client-batcher relationship. The
watchdog would then be tasked with monitoring the blockchain and
sending that transaction if and only if the batcher does not run the
committed action withinW1 �W2 less some buffer. There are two forms
of malfeasance available to the watchdog: sending the transaction when
they should not, and not sending the transaction when they should.

The first imposes a limited expense on the client but cannot be used to
attack the batcher if it runs its committed action within W2 of commit-
ting it. Giving the watchdog a transaction signed by the client is simple
from an engineering viewpoint, but has a problem: since the client can
also send the transaction, the watchdog cannot be held accountable for
sending it when it should not - after all, the client might have sent it
themselves. Attribution could be enabled by extending MultiCall’s in-
struction set with an “exit with attribution” instruction, which takes a
signed request to end the client-batcher relationship from the client, ends
it and records that the caller served the request.

Ideally, watchdogs would be incentivised via a smart contract to
behave in the correct manner - that is, that they send or do not send
certain transactions based on the state of the blockchain. A smart contract
would then store locked funds and burn them or assign them to the
parties based on proofs of contractual compliance or violation submitted
by the parties. In theory, it would be possible for smart contracts to
inspect Ethereum transactions sent by receiving a Merkle path from one
of the last 256 block hashes (available via the EVM blockhash instruc-
tion). However, that would both require a significant engineering effort
and might in the end be more costly than just using on-chain state to
record actions (since one would need to explore a Merkle list full of
unrelated data). A simpler solution would be to record contractually
relevant actions such as “watchdog W sent an exit request for client C at
T” directly in MultiCall’s storage.

The second form of malfeasance (not sending an exit transaction
when the watchdog should) is more serious than the first since it can lead
to the user’s entire balance and identity being stolen. One could increase
redundancy by using multiple watchdogs, incentivising each to send an
exit transaction by giving each an exclusive time window in which to do
so (giving a bounty to the first watchdog that does so when required).
Watchdogs could also have significant stake that is burned if they fail to
perform.

However, if a significant amount of value is stored in MultiCall ac-
counts (either directly in the balance or via token contracts that credit the
user’s proxy), it might be worth it for a malicious batcher to bribe the
watchdogs in question. By selecting one or more high-value targets,
preparing to perform denial of service (DoS) attacks on them and using
DoS or bribes to silence their watchdogs, such an attack might be viable.
Further work to investigate watchdog mechanisms and protocols as well
19
as on-chain measurement of performance would be of interest.
It is possible that the catastrophic risk of an attack by a malicious

batcher is not worth leaving to watchdogs to prevent; if so, it may be
prudent to simply prevent batchers from resetting the committed action
without running it (effectively setting W1 to infinity). Being unable to
run the committed action due to its invalidity or losing the data would
then require the batcher to allocate another account and could cause an
exodus of clients. While expensive, that is not in the same order of
magnitude as a major blockchain theft.

9.5. Generalisability

One might ask what general applicability HBAuth and the preferred
batcher pattern have. After all, if they’re dependent on some idiosyncrasy
of MultiCall for viability then they would not be of theoretical value. The
attack described in Section 5 should be present in any system where
metatransactions are replay-protected, failing transactions cause fees to
be wasted, and multiple users can batch the same metatransaction. We
argue that both solutions could be ported to other smart contracts
without much difficulty, as the state and code they use have been
described and are independent of MultiCall’s design. A mapping from
users to account data is a common pattern, and extending accounts with
the state used for HBauth or preferred batchers is trivial. While we have
not tested this, we expect the features could also be implemented on
other blockchains that support smart contracts such as the UTXO-based
blockchain Cardano12. However, preferred batchers would not be as
useful on UTXO-based blockchains since transactions cannot be invali-
dated the same way as in account-based blockchains: if any of the inputs
to the transaction are used, the transaction will not be mined at all and
will not cost the sender transaction fees. We expect HBAuth will be more
widely applicable, and could serve as a generic replacement for signa-
tures in both native and metatransactions.

9.6. Decentralisation

One potential objection to the approach of using an off-chain batching
server would be that it imposes centralisation on a system designed to be
decentralised, which might compromise censorship resistance. However,
we argue that allowing multiple competing batching servers would
render them analogous to mining pools. While it is true that a system
without more entral nodes such as mining pools or exchanges would be
more decentralised, in practice, the current arrangement is “decentral-
ised enough” because all or most of them would have to collude to suc-
cessfully impose transaction censorship. However, a drawback of the
preferred batcher feature is that clients can only use one batcher at a time
and must spend transaction fees and wait to switch. While a series of
uncooperative batchers would be unable to indefinitely prevent the user
from sending transactions, they could cause them delay and expense. We
have considered two possible countermeasures to this: performance
contracts using verifiable message delivery and randomisation of
batchers. In the former solution, the batcher would agree in return for
payment to batch the user’s metatransactions within some maximum
latency. An off-chain protocol and intermediaries would then be used to
force the batcher to confirm a timestamped receipt of the client’s meta-
transactions. That receipt could then be submitted alongside proof of
non-performance of the batcher’s obligation to send a metatransaction
for the user (attainable by inspecting the user’s nonce and seeing it is too
low) to a smart contract which penalizes the batcher for non-compliance.
While a protocol for verifiable message delivery could be of general use
in peer-to-peer protocols (for example, to deter Lightning nodes [6] from
censoring), designing it would be a significant effort.

The second approach is simpler but has a higher gas overhead. Ran-
domisation of batchers would let users choose a pool of batchers rather

https://cardano.org/

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
than a single batcher. Each round (some fixed period), a random batcher
from the pool would be selected to be the preferred batcher for the clients
of the pool. If the number of clients grows large, it may be appropriate to
appoint multiple batchers at once, assigning each to a subset of users.
Through this method, clients would cycle through different batchers
without having to spend gas themselves, protecting them from denial of
service by batchers. The gas cost of randomly appointing batchers each
round could be amortised over many clients.
9.7. Hinting

The technique we used to pass proofs of authorisation to runMetatxn,
which we call hinting, has the potential to simplify user scripts by leaving
the details of how to implement them to the batcher.

For example, consider an upgraded MultiCall-like batching inter-
preter smart contract where multiple user balances can be cached in
memory. The instruction set would need to allow the batcher to load and
store user accounts, but ideally user metatransactions need not be aware
of that, analogous to the cache and virtual memory being transparent in
off-chain systems. Consider a new user instruction pay(recipientAddress,
amount): by receiving an index to the recipient’s cached balance as a
hint, the pay instruction can use caching while being oblivious to it.

Hinting can also be used to accelerate on-chain computation by
shifting everything but verification of the result off-chain. For example, a
lookup in an array of key-value pairs ordered by key can be reduced to
O(1) from O(log(N)) by hinting the index of the relevant key. NP-
complete problems are of course even more amenable to hinting, being
reduced from exponential to polynomial on-chain work. We suspect that
it may also be useful for accelerating memory management and garbage
collection in a higher-level interpreter smart contract.
13 https://funfair.io/a-reference-implementation-of-state-channel-contracts/.
14 https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221
233526992813.pdf.
9.8. Hash-chain optimisation

In Appendix A, we made use of earlier work on efficient hash-chain
traversals [16–20] to analyse how to minimise the cost of HBAuth’s
off-chain work.

If the storage cost per block-time for one hash U and computational
cost for computing a single hash H are equal, then the existing algorithms
for hash-chain traversal provide almost optimal caching schemes.

However, for U 6¼ H, we showed that one can in certain cases use
Kim’s scalable hash-chain traversal algorithm [19] to find a total cost less
than that provided by Yum-Seo-Eom-Lee’s algorithm [20] (representing
the state-of-the-art when H ¼ U).

Given a choice of caching scheme, we also computed the optimal
choice of chain length under the assumption that the client uses MultiCall
for a long period of time. This turned out to be approximated well by a
convex optimisation problem, which was straightforward to solve.

In conclusion, we found that for a number of typical real-life esti-
mations of the storage and computational cost (sourced from AWS EC2
for computation and AWS S3 for storage), it is optimal for the client to use
a single chain until they reach around 109 hashes. That is enough for at
least 422 years of maximal use, and hence clients should in practice plan
to use one hash chain for all of their interactions with MultiCall.

10. Related work

MultiCall is a technology intended to reduce the cost of payment and
contracting in the Ethereum ecosystem. Distributed ledger cost reduction
techniques may broadly be categorised into two types: layer 1 optimi-
sations and layer 2 scaling solutions. The former reduce the cost of
blockchain (layer 1) execution, while the latter use off-chain distributed
data structures secured by the layer 1 parent chain (layer 2) to move
computation off the chain entirely. MultiCall is a layer 1 optimisation; to
gain an overview of the general cost reduction problem, it is useful to first
compare it with layer 2 solutions.
20
10.1. Layer 2 scaling solutions

Layer 2 scaling solutions move transaction processing and storage to
another distributed ledger. That ledger does not need to independently
guarantee consistency or availability, as it is secured by a layer 1 parent
chain. Reliance on the parent chain for security allows the number of
redundant nodes that maintain the child ledger to be drastically reduced,
enabling simpler and cheaper consensus protocols to be used safely.
Consequently, the cost of layer 2 computation, storage and consensus can
be significantly lower than on layer 1.

The prototypical scaling solution is the state channel [6]. By locking
on-chain assets in a contract controlled by a closed set of parties, those
assets can be transferred between them off-chain. Off-chain transfers are
effected by the parties all signing a ledger state, distributing ownership of
the locked assets across them. Later ledger states invalidate earlier ones.
By full consensus among the parties, the assets may be withdrawn from
the state channel immediately. To prevent assets from being locked
indefinitely if some parties refuse to cooperate, one may also submit a
signed ledger state to the on-chain state channel contract. If no party
submits a later ledger state within a certain warning period, that state
becomes the definitive one, and the state channel is finalised. On-chain
intervention invalidating the attempted action is only required if the
attempt is fraudulent; that pattern may be termed counterfactual or
optimistic verification, and is a fundamental tool of scaling solution
design. State channels were first deployed on the Bitcoin blockchain in
the form of payment channels; on Turing complete blockchains, more
complex contracts may be entered into the off-chain ledger.13

While state channels render the computational cost of off-chain
payments negligible, they have a significant disadvantage: only the
parties to the channel can safely receive off-chain payments from it. That
imposes a capital cost, as funds must be locked up and thus rendered
unavailable for payments to arbitrary recipients. Plasma is a scaling so-
lution designed by Poon and Buterin to address this issue [21]. Like state
channels, Plasma provides an off-chain ledger. However, any number of
users may have deposits in and receive payments through it. Instead of
being performed fully off-chain, ledger updates require the hash of the
ledger to be uploaded. By verifying the ledger, users may be assured that
the hashed state is valid. After a certain time has elapsed, the uploaded
state becomes final. Prior to that, users are able to appeal fraudulent state
transitions. If the maintainer or maintainers are unwilling to make the
off-chain state available, users can request the withdrawal of their bal-
ances; to block the withdrawal, it must be proven that the withdrawals
are fraudulent.

Plasma ledgers may be considered an intermediate payment solution
between state channels and on-chain payments: they may be used to pay
an open set of recipients but have a latency of at least a blocktime. Plasma
may have a significantly lower transaction cost than the main chain, but
final withdrawal incurs a delay. Ledger updates require an on-chain ac-
cess, but that can be amortised over many users’ transactions. Conse-
quently, Plasma may be used as a complement to state channels, for
larger and less frequent payments and intermediate settlement to defer
final on-chain settlement.

Layer 2 scaling is a field of active research; other scaling technologies
include zero knowledge rollups14, optimistic rollups [22] and TrueBit
[23]. What layer 2 solutions have in common is that they rely on their
parent chain for security: to ensure the consistency and availability of the
layer 2 data structure and to ultimately enforce off-chain payments be-
tween users in terms of on-chain assets. Establishment, state commitment
and ultimate settlement of the layer 2 state therefore requires interaction
with the main chain. Such interaction can be optimised using layer 1
solutions. Consequently, layer 2 scaling solutions are complements rather

https://funfair.io/a-reference-implementation-of-state-channel-contracts/
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf

15 https://multisender.app/.
16 https://eth
erscan.io/address/0x2f6321db2461f68676f42f396330a4dc4a8f49df#code.
17 https://github.com/authereum/contracts/blob/master/contracts/account/
AuthKeyMetaTxAccount.sol.
18 https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc
708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol.

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
than competitors to layer 1 optimisations. More concretely, any layer 2
interactions with the Ethereum blockchain require transactions to be
sent, and those transactions can be batched. As such, they are not a threat
to the validity of MultiCall or any other batcher.

10.2. Layer 1 gas optimisation

MultiCall is a layer 1 optimisation intended to reduce the execution
cost of on-chain contract calls and creation. Layer 1 optimisation solu-
tions can be divided into two groups: micro-level and macro-level opti-
misation. Micro-level optimisations optimise individual contracts to
reduce their creation and execution costs without changing their exter-
nally observable behaviour. Macro-level optimisations save gas by
restructuring smart contracts, changing their API and potentially the
transaction workflow. Essentially, they optimise systems of contracts.
MultiCall and other batchers are of the latter sort. The approaches are
complementary: micro-level optimisations can be applied to contracts
after their structure and API have been designed. However, there is
reason to think macro-optimisation can provide larger savings: making a
particular contract use less gas with the same behaviour will not enable it
to use fewer transactions, for example. Other expensive operations, such
as storage writes, may also be easier to eliminate by varying the design of
multi-contract systems than optimising single contracts.

10.2.1. Micro-optimisation
Chen et al. [24] developed GASPER, a tool which searches for inef-

ficient patterns in EVM bytecode. Applied to all contracts on the block-
chain as of 2016, it showed a significant proportion of contracts were
under-optimised. One example inefficient pattern was fetching a stor-
age word in a loop, which is optimised by fetching it once and caching it.

In a spiritual sequel to Ref. [24], Chen et al. introduced GasReducer
[25], a tool which finds more inefficient patterns and performs
bytecode-to-bytecode optimisation. GasReducer is evaluated by tracing
the EVM code execution of all transactions as of 2017. The evaluation
showed that 9 billion gas was wasted on inefficient code patterns
detected by GasReducer, vindicating the approach.

That Chen et al. scanned existing contracts and showed there are
significant savings (in monetary terms) to be made is interesting; not only
does it show the value of gas optimisation, it is an inspiring approach to
evaluating on-chain artefacts. Since the cost model is formalised and the
actual transaction history is publicly available, obtaining real and accu-
rate performance data is much easier than on physical machines. Aug-
menting evaluation of MultiCall with real transaction history could be a
subject for future work.

Albert et al. created a super-optimising tool for the EVM, which finds
the optimal code for straight-line segments containing arithmetic and
bitwise instructions by exhaustive search [26]. Using a data set of
transactions to the 128 most-called smart contracts, they obtain a po-
tential gas optimisation of 0.59%. We suspect that the dominance of the
cost of instructions that access the ledger state compared to arithmetic is
responsible for the small saving relative to that provided by batchers.
Nonetheless, any gas cost reduction is welcome.

MultiCall consists of manually optimised EVM assembly and already
uses techniques such as caching storage words, but it would be inter-
esting to apply automatic optimisation to it. Optimising MultiCall was
already a significant effort; manually optimising more complex in-
terpreters with additional functionality may quickly become infeasible as
they grow.

10.2.2. Macro-optimisation
The patterns used in MultiCall’s design (batching, proxies and met-

atransactions) are well established, but the manner in which they have
been combined is novel.

MultiCall is, to our knowledge, unique in being expressly designed to
batch a full block of any type of transactions in one and is the first
application of an interpreter smart contract to batching. Aside from its
21
interpreter design and programming language used, the features pro-
vided by MultiCall differ in two main ways. First, it combines account
structs in the batcher with metatransactions to allow multiple signatories
to control a single batcher smart contract (MultiCall) in a single call.
Secondly, MultiCall and the proxies it controls allow the batching of
create transactions as well as calls (both directly fromMultiCall and via a
proxy).

10.2.2.1. Transaction batching, metatransactions and proxies. Transaction
batching is a method of reducing on-chain transaction execution costs by
emulating a number of transactions with a smaller number that have an
equivalent effect. The concept is well-known to Ethereum developers.
Different batching techniques used for airdrops (mass transfers of a token
intended to boost adoption of it) were studied and compared in Ref. [27].
Several payment batching contracts on the blockchain15, 16, allow the
caller to make payments in a single currency to a number of recipients.
The company Autherium also provides wallet proxy contracts written in
Solidity, which can batch calls on behalf of their owner17. Such contracts
can receive an array of metatransactions (specifying a call to make)
signed by the contract’s owner, verify the signature of each and then
execute them. MultiCall allows signature verification to be shared across
a sequence of actions, which is more efficient. Storing batching logic in
individual users’ wallet contracts is also expensive because code storage
costs gas.

The batcher MultiSend18 (mentioned in Section 7) solves the code
size issue by allowing user wallet contracts to delegate to a shared library
using the EVM instruction DELEGATECALL, which executes the code of
the callee in the storage context of the caller.

Existing batchers could be retrofitted with most of MultiCall’s func-
tionality by combining them: one batcher such as MultiSend can be used
to send metatransactions to wallet contracts such as Authereum’s, which
accept them. Wallets that can only perform calls can be retrofitted with
the ability to create contracts by calling a simple contract which just
creates a contract using the given calldata as its creation code. We do not
consider this a threat to MultiCall’s validity: as calls are costly, a
monolithic approach is efficient. MultiCall is a prototype of that
approach.

Transaction batching is also used in Bitcoin: transactions natively
support sending to multiple outputs, which can be used to reduce
transaction costs by up to 80% [28].

In June 2021 (shortly after the publication of our first paper on
MultiCall), Wang et al. described their transaction batching solution
iBatch [5], which uses signed metatransactions to make calls on behalf of
multiple users in one transaction. Unlike MultiCall, iBatch does not
support batched creation of contracts nor hash-based metatransactions. It
also lacks support for proxies (preventing it from granting a unique
identity to each user); instead, the authors propose that the Ethereum
protocol be forked to retrofit existing smart contracts with support for
iBatch’s own authentication scheme. Compared to our work with Mul-
tiCall, more focus has been placed on the off-chain component of
batching: Wang et al. empirically analyse the interaction between latency
(caused by waiting for more transactions to batch) and gas cost using
historical transaction data from the Ethereum blockchain. For a 2-min
delay, they find gas cost savings between 14.6% and 59.1%. That
would appear to be worse than MultiCall’s savings numbers for calls, but
it is an apples-to-oranges comparison: Wang et al. measured the total cost
reduction including fixed costs, whereas we measured the reduction in

https://multisender.app/
https://etherscan.io/address/0x2f6321db2461f68676f42f396330a4dc4a8f49df#code
https://etherscan.io/address/0x2f6321db2461f68676f42f396330a4dc4a8f49df#code
https://github.com/authereum/contracts/blob/master/contracts/account/AuthKeyMetaTxAccount.sol
https://github.com/authereum/contracts/blob/master/contracts/account/AuthKeyMetaTxAccount.sol
https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol
https://github.com/gnosis/safe-contracts/blob/8443cfaa410bfb197cc708b1c5e06ffa0c49c217/contracts/libraries/MultiSend.sol

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
marginal cost. We profiled iBatch and MultiCall’s and found that Multi-
Call has a lower gas cost per batched call; evaluation of MultiCall on the
same workloads as those used in the iBatch paper (or other realistic
workloads) would be an interesting avenue for future work.

10.3. On-chain interpreters

Other smart contracts that implement interpreters have been devel-
oped for Ethereum in order to scale contract execution. The Optimistic
Virtual Machine (OVM) is an interesting example, used by the Optimistic
Ethereum scaling solution19, an optimistic rollup chain. Optimistic rollup
allows users to perform verification of transaction data off-chain,
reducing the transaction cost. The rollup chain is secured by enabling
users to verify its execution and prove fraud via a verifier contract on the
Ethereum chain. To enable Ethereum smart contract execution on the
rollup chain, the verifier contract implements an EVM code interpreter
called OVM. Its purpose is quite different: where MultiCall instructions
are run to perform actions on the blockchain, OVM is used to verify off-
chain computations in the event of dispute. To be useful, MultiCall must
be run, whereas the OVM need only be available to be run in the opti-
mistic case. Moving computation off-chain can yield significant savings,
but because off-chain scaling still requires transactions on the main chain
to be secure, on-chain gas optimisation is not obsolete. An interpreter for
a simple virtual machine called Lanai is also used to verify off-chain
computations20 as part of the TrueBit scaling solution [23].

10.4. Hash-based cryptography

Collision-resistant hashes have long been used as a fundamental
building block of cryptographic protocols. Ironically, while we use
hashing to avoid the use of digital signatures, the world’s first digital
signature scheme, invented by Leslie Lamport in 1975, relies on a one-
way function (for which a hash function suffices) [29]. The Lamport
signature scheme functions by creating pairs of committed hashes and
revealing a preimage of one to communicate a bit of the content to be
signed (or its hash).

Lamport later developed a protocol for authenticating computer users
using one-time passwords [30] – that is, a chain of preimages. HBAuth
closely resembles it, with a few key differences. Like HBAuth, Lamport’s
one-time password scheme uses a chain of hashes to authenticate the
user. However, the protocols differ in their application domain and ca-
pabilities. Lamport’s protocol contains no on-chain components (having
been invented decades before the emergence of blockchains) and can be
used by a computer user to authenticate themselves with a remote server.
However, the server cannot prove to other parties that the user author-
ised a particular action. HBAuth, on the other hand, is intimately tied to
distributed ledgers: it depends on actions committed on the blockchain to
allow anyone to confirm that the client approved a particular action.

Hash commitment and revelation are also used to implement atomic
swaps of cryptocurrency between different blockchains. Originally part
of informal crypto developer knowhow, atomic swaps were studied more
rigorously by Herlihy [10].

10.5. Hash-chain optimisation

We see in Appendix A that optimising the caching scheme for the
usage of HBAuth is equivalent to finding efficient hash chain traversals.
Efficient hash chain traversal has been studied extensively by Jakobsson
19 https://optimism.io.
20 https://github.com/TrueBitProject/lanai.

22
[16], Coppersmith-Jakobsson [17], Sella [18], Kim [19], and
Yum-Seo-Eom-Lee [20]. The algorithm by Yum-Seo-Eom-Lee is as far as
we can tell the current state-of-the-art, assuming that the storage and
computational costs are equal.

Kim’s algorithm, building upon Sella’s algorithm, has the particular
strength of letting the client select the maximum number of hashes to
perform per step. It can therefore be optimised accordingly. The total cost
provided by Kim’s algorithm coincides with the total cost provided by
Jakobsson’s algorithm when the computational budget is maximal. In
certain cases, Kim’s algorithm can provide a lower total cost than Yum-
Seo-Eom-Lee’s algorithm. Kim’s algorithm, however, depends on having
a certain lower bound on the computational cost in terms of the hash
chain length, which made it impossible to use in our AWS-based
examples.

Given a caching scheme, the problem of choosing an optimal chain
length turned out to be approximated well by minimising a certain
convex function (representing the sum of the costs per chain). This is a
very a mature area of research (as demonstrated by the abundance of
textbooks on the subject), and nothing novel was involved in the
computation of the result.

11. Conclusions

We have implemented MultiCall, an interpreter for the Ethereum
blockchain whose instruction set is designed for batching transactions.
We demonstrated significant savings for both micro-benchmarks as well
as a typical token-transfer smart contract, and MultiCall’s performance is
compared favourably to two preexisting batchers, one of which was also
written at a low level of abstraction in order to maximise performance.

Our idea of deploying batching interpreter smart contracts with rich
instruction sets has been shown to be an effective and systematic
mechanism to substantially save gas.

MultiCall’s metatransaction and deposit features allow multiple users
to operate the batcher in a single call and to interact with other users. It is
an example of how allowing safe resource sharing between mutually
distrustful parties (the signatories) can help reduce costs.

Hash-based metatransactions have been implemented and evaluated
for efficiency; they are significantly cheaper than their signature-based
equivalents.

An economic attack on metatransaction batching has been conceived
of and prevented; the prevention method has been systematically
described to allow reuse by other systems.

As future work, we plan to upgradeMultiCall withMerkle tree storage
to reduce costs further. We also wish to investigate whether it is possible
to amend Kim’s algorithm in such a way that its total cost coincides with
the total cost of Yum-Seo-Eom-Lee’s algorithm when the budget is
maximal.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Funding

Partially supported by the Swedish Research Council (Vetenskapsrå-
det) under grant No. 2019-04951 (X-LEGAL: Smart Legal Contracts).

https://optimism.io
https://github.com/TrueBitProject/lanai

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
Appendix A. Optimising the off-chain caching scheme for HBAuth

To use HBAuth, the client must generate and then use a chain of hashes. In the implementation of their wallet code, one could choose to only store
the seed k, and compute (k, h(k), …, hi(k)) when hi(k) as needed, or one could compute the entire chain (k, h(k), …, hn(k)), and then store it for the
duration of its use (requiring no re-computations).

Neither of these options are necessarily optimal. Indeed, they can be seen as being on opposite ends of a spectrum – the former using as little storage
as possible, and the latter performing as little computation as possible.

If the client instead wants to minimise the sum of the computational costs and storage costs, they can choose to store (cache) only a subset of the
hashes, say

fhi1 ðkÞ;…; hij ðkÞg;
and compute ðhi1þ1ðkÞ;…; hiðkÞÞ when hi(k) is needed. The question then arises:

How to pick the subsets so that the sum of the computational costs and the storage costs ðtotal costÞ is minimal; and how long should the chain be? (A.1)

In this section, we answer this question by relating it to hash-chain traversals. This has been studied extensively by Jakobsson [16],
Coppersmith-Jakobsson [17], Sella [18], Kim [19], and Yum-Seo-Eom-Lee [20], among others. The cited works all provide algorithms that select the
subsets so that the total cost is O(N log(N)), where N is the length of the hash chain21. Coppersmith-Jakobsson have in particular proven that any
algorithm which solves the problem gives a total cost that is Ω(N log(N)).

Appendix A.1. The model

We assume that a hash is used for authorisation every T 2 R>0 seconds, that it costs H 2 R>0 dollars to compute a hash, and that it costs S 2 R>0

dollars per second to store a hash. We further assume that the time required to compute a hash is negligible.
Suppose now that we want to use N 2 Z�1 hashes (that is, one initialization, and N�1 authorisations), following the below procedure.

Algorithm 1. Computing hashes and caching some of them.
With the same notation as above, we let

σðNÞðC1;…;CN ; S1;…; SNÞ ¼
X
1�i�N

ðHjCij þ STjSijÞ:

In what follows, we will use the shorthand notation C¼ (C1,…, CN) and S¼ (S1,…, SN) and refer to a choice of (C, S) as an N-configuration. We will
also use the shorthand notation U ¼ S ⋅ T and α ¼ U/H.

Appendix A.2. Cheap N-configurations

Let N be a fixed positive integer. The question (A.1) then translates to finding

minðC;SÞσðNÞðC;SÞ: (A.2)

Using the terminology of Refs. [16–20], we refer to the memory slots where the hashes in Si are stored as pebbles, and the number maxi |Ci| as the
budget.

The hash-chain traversal algorithms that yield the lowest total cost are Kim’s algorithm and Yum-Seo-Eom-Lee’s algorithm. They differ in that Kim’s
algorithm allows for a flexible budget, whereas Yum-Seo-Eom-Lee’s algorithm has a fixed budget. However, if the computational and storage costs are
equal, Yum-Seo-Eom-Lee’s algorithm provides (at the time of writing) the lowest total cost.

The total cost provided by Kim’s algorithm can be optimised with respect to the budget. One obtains an optimumm0 that can be explicitly expressed
in terms N, α, and Lambert’s W0-function. The derivation is provided at [31].
21 Where the constant is approximately equal to the sum of the storage cost for one memory unit and one second, and the cost for one computational unit.

23

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
Wewant to determine when Kim’s algorithm yields a lower total cost than Yum-Seo-Eom-Lee’s algorithm. This requires solving a two inequalities for
the optimum m0.

Due to the presence ofW0, this is not feasible to approach analytically, and therefore we opted for a numerical approach. Using SciPy (the code can
be found at [31]), we computed ranges of α where Kim’s algorithm provides a lower total cost than Yum-Seo-Eom-Lee’s algorithm, for ⌈N⌉ where

N 2 30:4375 � 24 � 3600
T

� 106f1;…; 12; 24; 36g;

where T is the average block-time. This corresponds to the amount of hashes used in 1 month, 2 months, and so on up to a year, and then for two and
three years22. At the time of writing, Twas approximately 13.32 s [2]. The result is presented in Table A.4. We remark that αmin → 0, and αmax→ 0.1265
as N → ∞.
Table A.4
22 Note that sett
such as financial
Fortunately, incre
MultiCall.
Ranges of α for which Kim’s algorithm provides a total cost lower than Yum-Seo-Eom-Lee’s algorithm. The time is in months.

Time αmin αmax Time αmin αmax
in
i
a

g T equal to the block-t
nstitutions, exchanges
sing T does not threate
ime implies metatransac
or miners. Sending tran
n our conclusion - that
tion authorization once p
sactions less frequently
it is optimal to use a ch

24
er block. That is very f
increases T and conse
ain so long that it wou
requent but may be reali
quently the storage cos
ld not feasibly run out
1
 0.1805
 0.1821
 8
 0.1468
 0.1731

2
 0.1678
 0.1787
 9
 0.1452
 0.1727

3
 0.1611
 0.1769
 10
 0.1439
 0.1723

4
 0.1567
 0.1758
 11
 0.1427
 0.1720

5
 0.1533
 0.1749
 12
 0.1416
 0.1717

6
 0.1507
 0.1742
 24
 0.1334
 0.1694

7
 0.1486
 0.1736
 36
 0.1290
 0.1682
Appendix A.3. Optimal chain lengths

Let us now suppose that we need to useM hashes, for a total duration ofM ⋅ T seconds. We then ask: how do we choose the amount of chains nc and
the chain lengths Ni so that

Pnc
i¼1NiT ¼ MT and such that

Xnc
i¼1

ðσðNiÞðCi; SiÞþRsetÞ;

is minimal? Here (Ci, Si) denotes an Ni-configuration, and Rset is the cost of starting a new chain (that is, running setImage). We ignore the cost of
uploading the very first hash, since this only occurs once per client. Furthermore, we will assume that the same algorithm is used for all computations.

In practice, we use either Kim’s algorithm or Yum-Seo-Eom-Lee’s algorithm, which means that we want to minimise

Xnc
i¼1

ðf ðm*
i ÞðNiÞþRsetÞ or

Xnc
i¼1

ðgðNiÞþRsetÞ; (A.3)

where f(m)(N) is the total cost for Kim’s algorithmwith budgetm and g(N) is the total cost for Yum-Seo-Eom-Lee’s algorithm, and wherem*
i is a minimal

point for f(m)(Ni).
The expressions (A.3) can be minimised using essentially the same techniques. For the computations, we refer to our appendix [31].
One finds that the global minimum is attained when Ni ¼ M/nc for all i, and when

M
nc

¼ ð1þΔÞRset

β
;

where β ¼ log(2)�1(H/2 þ U) if Yum-Seo-Eom-Lee’s algorithm is used, and

β ¼ ðHþUðexpðs0 þ 1Þ� 1ÞÞ
�

ðs0 þ 1Þ; s0 ¼ W0

�
α�1 � 1

e

�

if Kim’s algorithm is used, and where Δ → 0 as M → ∞.
We may assume that M is very large and thus we may approximate the optimal chain length with ⌈Rset/β⌉.

Appendix A.4. Real-life estimations of optimal chain lengths and costs

We will now compute a few real-life approximations of α and the corresponding optimal chain lengths. We source our costs from AWS and will
stic for sophisticated actors
t relative to computation.
in the probable lifetime of

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
assume that the hashes are stored on an S3 instance [32], and that they are computed on an EC2 instance [33].
For an EC2 instance with a computational price per hour of pc $/h, a hash rate of r H/s (hashes per second), we use the approximation

H ¼ pc
3600 � r$=H:

Similarly, for an S3 instance with a monthly storage price of ps for 1 GiB, we use the approximation

U ¼ 20 � ps �T
30:4375 � 24 � 3600 � 10243$

�
ðhash stored for T secondsÞ:

Hence, with a monthly storage price of ps, and computational price of pc $/h, we obtain

α ¼ 20
30:4375 � 24 � 10243 �

T � ps � r
pc

:

We collected data from four EC2 instances, g3s.xlarge, g4dn.xlarge, p2.xlarge, and p3.2xlarge, all located in the region US East (Ohio) [34].
Furthermore, we used the S3 storage price of 0.023 $ for one month and 1 GiB of storage [35].

In Table A.5, we present our corresponding approximations. We remark that the optimal chain lengths for Kim’s algorithm in conjunction with the
estimated αs violate the conditions required by Kim’s algorithm. Hence, in all of the computed cases, Yum-Seo-Eom-Lee’s algorithm should be used
instead.23

In particular, we notice that in the cases we have considered, the optimal chain length is on the order of 109, which corresponds to at least 422 years.
Therefore, the client should plan to use a single chain of hashes, allocating as many as they will ever use from the beginning.
Table A.5
23 We r
Yum-Seo
Approximated values of α for four different EC2 instances. Here Yocl means optimal

EC2 pc r ⋅ 10�6 α ⋅ 105 Yocl ⋅ 10�9 $/chain
em
-E
ark that if the storage price w
om-Lee’s algorithm. See also
ould be considerably hig
the functions alpha_lowe
her (say 2.3 $/month), th
r_bound_check and alpha

25
is is no longer true. In this c
_upper_bound_check in the
ase, Kim’s algorithm provide
online appendix [31].
g3s.xlarge
 0.225
 2.64
 9.1657
 5.6469
 2.2731

g4dn.xlarge
 0.1578
 22.72
 112.4717
 69.1501
 2.5403

p2.xlarge
 0.27
 1.83
 5.2946
 3.2622
 2.1393

p3.2xlarge
 0.918
 78.01
 66.3819
 40.8507
 2.4068
Chain length with Yum-Seo-Eom-Lee’s algorithm, T ¼ 13.32 s and ps ¼ 0.023 $/month for 1 GiB.
References

[1] G. Wood, ETHEREUM: A Secure Decentralised Generalised Transaction Ledger,
Istanbul Version 80085f7 – 2021-07-11, 2021. URL, https://ethereum.github.io/ye
llowpaper/paper.pdf.

[2] Etherscanio, Ethereum (ETH) blockchain explorer, accessed: 2021-08-12. URL htt
ps://etherscan.io/.

[3] EIP-20, ERC-20 token standard, accessed: 2021-01-29, https://eips.ethereum.org/
EIPS/eip-20, 2015. URL.

[4] W. Hughes, A. Russo, G. Schneider, Multicall: a transaction-batching interpreter for
Ethereum, in: Proceedings of the 3rd ACM International Symposium on Blockchain
and Secure Critical Infrastructure, ACM, 2021, pp. 25–35, https://doi.org/10.1145/
3457337.3457839.

[5] Y. Wang, Q. Zhang, K. Li, Y. Tang, J. Chen, X. Luo, T. Chen, ibatch: saving ethereum
fees via secure and cost-effective batching of smart-contract invocations, in:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,
2021, pp. 566–577, https://doi.org/10.1145/3468264.3468568.

[6] J. Poon, T. Dryja, The bitcoin lightning network, accessed: 2021-01-29, https://ligh
tning.network/lightning-network-paper.pdf, 2016. URL.

[7] Solidity documentation, The ethereum foundation, accessed: 2021-01-29, htt
ps://solidity.readthedocs.io/en/v0.8.1/, 2021. URL.

[8] I.A. Seres, On blockchain metatransactions, in: Proceedings of 2020 IEEE
International Conference on Blockchain (Blockchain), IEEE, 2020, pp. 178–187,
https://doi.org/10.1109/Blockchain50366.2020.00029.

[9] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, URL, http://bitcoi
n.org/bitcoin.pdf, 2009.

[10] M. Herlihy, Atomic cross-chain swaps, in: Proceedings of the 2018 ACM Symposium
on Principles of Distributed Computing, PODC ’18, ACM, 2018, pp. 245–254,
https://doi.org/10.1145/3212734.3212736.

[11] R.S. Bird, Using circular programs to eliminate multiple traversals of data, Acta Inf.
21 (3) (1984) 239–250, https://doi.org/10.1007/BF00264249.

[12] Accessed: June 2022. [link]. URL https://trufflesuite.com/truffle/.
[13] Accessed: June 2022. [link]. URL https://trufflesuite.com/ganache/.
[14] V. Buterin, M. Swende, Eip-2929: gas cost increases for state access opcodes,

accessed: 2021-08-15 (9 2020). URL https://eips.ethereum.org/EIPS/eip-2929.
[15] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,

D. Park, Y. Zhang, A. Stefanescu, G. Rosu, Kevm: a complete formal semantics of the
ethereum virtual machine, in: Proceedings of the 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), IEEE, 2018, pp. 204–217, https://doi.org/10.1109/
CSF.2018.00022.

[16] M. Jakobsson, Fractal hash sequence representation and traversal, in: Proceedings
IEEE International Symposium on Information Theory, IEEE, 2002, p. 437, https://
doi.org/10.1109/ISIT.2002.1023709.

[17] D. Coppersmith, M. Jakobsson, Almost optimal hash sequence traversal, in:
M. Blaze (Ed.), Financial Cryptography. FC 2002, Springer, Berlin, Heidelberg,
2003, pp. 102–119, https://doi.org/10.1007/3-540-36504-4_8.

[18] Y. Sella, On the computation-storage trade-offs of hash chain traversal, in: Financial
Cryptography. FC 2003, Springer, Berlin, Heidelberg, 2003, pp. 270–285, https://
doi.org/10.1007/978-3-540-45126-6_20.

[19] S.-R. Kim, Improved scalable hash chain traversal, in: J. Zhou, M. Yung, Y. Han
(Eds.), Applied Cryptography and Network Security, Springer, Berlin, Heidelberg,
2003, pp. 86–95, https://doi.org/10.1007/978-3-540-45203-4_7.

[20] D.H. Yum, J.W. Seo, S. Eom, P.J. Lee, Single-layer fractal hash chain traversal with
almost optimal complexity, in: M. Fischlin (Ed.), Topics in Cryptology – CT-RSA
2009, Springer, Berlin, Heidelberg, 2009, pp. 325–339, https://doi.org/10.1007/
978-3-642-00862-7_22.

[21] J. Poon, V. Buterin, Plasma: scalable autonomous smart contracts, White paper
(2017) 1–47. URL, https://www.plasma.io/plasma-deprecated.pdf.

[22] J. Adler, M. Quintyne-Collins, Building Scalable Decentralized Payment Systems,
2019 arXiv preprint arXiv:1904.06441.

[23] J. Teutsch, C. Reitwießner, A Scalable Verification Solution for Blockchains, 2019,
04756 arXiv preprint arXiv:1908.

[24] T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour your
money, in: Proceedings of the 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, 2017, pp. 442–446, https://
doi.org/10.1109/SANER.2017.7884650.

[25] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, X. Zhang, Towards saving money in
using smart contracts, in: Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results, ACM, 2018,
pp. 81–84, https://doi.org/10.1145/3183399.3183420.

[26] E. Albert, P. Gordillo, A. Rubio, M.A. Schett, Synthesis of super-optimized smart
contracts using max-smt, in: S.K. Lahiri, C. Wang (Eds.), Computer Aided
Verification, Springer, Cham, 2020, pp. 177–200, https://doi.org/10.1007/978-3-
030-53288-8_10.

[27] M. Fr€owis, R. B€ohme, The operational cost of ethereum airdrops, in: C. P�erez-Sol�a,
G. Navarro-Arribas, A. Biryukov, J. Garcia-Alfaro (Eds.), Data Privacy Management,
Cryptocurrencies and Blockchain Technology, Springer, Cham, 2019, pp. 255–270,
https://doi.org/10.1007/978-3-030-31500-9_17.
s a lower cost than

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://etherscan.io/
https://etherscan.io/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://doi.org/10.1145/3457337.3457839
https://doi.org/10.1145/3457337.3457839
https://doi.org/10.1145/3468264.3468568
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://solidity.readthedocs.io/en/v0.8.1/
https://solidity.readthedocs.io/en/v0.8.1/
https://doi.org/10.1109/Blockchain50366.2020.00029
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1007/BF00264249
https://trufflesuite.com/truffle/
https://trufflesuite.com/ganache/
https://eips.ethereum.org/EIPS/eip-2929
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/ISIT.2002.1023709
https://doi.org/10.1109/ISIT.2002.1023709
https://doi.org/10.1007/3-540-36504-4_8
https://doi.org/10.1007/978-3-540-45126-6_20
https://doi.org/10.1007/978-3-540-45126-6_20
https://doi.org/10.1007/978-3-540-45203-4_7
https://doi.org/10.1007/978-3-642-00862-7_22
https://doi.org/10.1007/978-3-642-00862-7_22
https://www.plasma.io/plasma-deprecated.pdf
http://refhub.elsevier.com/S2096-7209(22)00066-5/sref22
http://refhub.elsevier.com/S2096-7209(22)00066-5/sref22
http://refhub.elsevier.com/S2096-7209(22)00066-5/sref23
http://refhub.elsevier.com/S2096-7209(22)00066-5/sref23
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1109/SANER.2017.7884650
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/978-3-030-31500-9_17

W. Hughes et al. Blockchain: Research and Applications 4 (2023) 100125
[28] D.A. Harding, Saving up to 80% on bitcoin transaction fees by batching payments,
URL, https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-b
y-batching-payments-4147ab7009fb, 2017.

[29] L. Lamport, Constructing digital signatures from a one way function, Tech. rep.
(October 1979). URL, https://www.microsoft.com/en-us/research/publication/c
onstructing-digital-signatures-one-way-function/.

[30] L. Lamport, Password authentication with insecure communication, Commun. ACM
24 (11) (1981) 770–772, https://doi.org/10.1145/358790.358797.
26
[31] W. Hughes, T. Magnusson, Multicall, optimization appendix, URL, https://tobiasm
agnusson.com/notes/multicall/, 2021.

[32] Amazon, Amazon s3, URL, https://aws.amazon.com/s3/, 2021.
[33] Amazon, Amazon ec2, URL, https://aws.amazon.com/ec2/, 2021.
[34] Amazon, Amazon ec2 on-demand pricing, accessed: 2021-08-12. URL https:

//aws.amazon.com/ec2/pricing/on-demand/.
[35] Amazon, Aws pricing calculator, s3, accessed: 2021-08-12. URL https://calculator.a

ws/#/createCalculator/S3?nc2¼h_ql_pr_calc.

https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-by-batching-payments-4147ab7009fb
https://bitcointechtalk.com/saving-up-to-80-on-bitcoin-transaction-fees-by-batching-payments-4147ab7009fb
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1145/358790.358797
https://tobiasmagnusson.com/notes/multicall/
https://tobiasmagnusson.com/notes/multicall/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://calculator.aws/#/createCalculator/S3?nc2=h_ql_pr_calc
https://calculator.aws/#/createCalculator/S3?nc2=h_ql_pr_calc
https://calculator.aws/#/createCalculator/S3?nc2=h_ql_pr_calc

	Cheap and secure metatransactions on the blockchain using hash-based authorisation and preferred batchers
	1. Introduction
	2. Background
	2.1. Metatransactions in brief
	2.2. Hash-based cryptography

	3. MultiCall design
	3.1. Improved metatransactions
	3.2. Instruction set
	3.3. Revisited example
	3.4. Deployment

	4. Hash-based authorisation
	4.1. On-chain state and API required
	4.1.1. Required state
	4.1.2. Required API

	4.2. Off-chain protocol
	4.2.1. Preparation

	4.3. Edge cases
	4.4. Design considerations

	5. Preferred batchers
	5.1. The attack
	5.2. The solution
	5.3. Design considerations

	6. Implementation
	6.1. The C monad
	6.2. Volatile state
	6.3. Account array
	6.3.1. Balance
	6.3.2. Nonce
	6.3.3. Time
	6.3.4. Batcher
	6.3.5. Image
	6.3.6. Design considerations

	6.4. Jump table
	6.5. Initialization code
	6.6. Instruction set
	6.6.1. Making payments
	6.6.2. Stopping execution
	6.6.3. Proxies
	6.6.4. Metatransactions
	6.6.5. Batcher-specific instructions
	6.6.6. Client-specific instructions

	6.7. Hinting

	7. Performance evaluation
	7.1. Micro-benchmarks
	7.2. Metatransactions
	7.3. Token transfers
	7.4. MultiCall vs. MultiSend
	7.4.1. Profiling details
	7.4.2. Comparison discussion

	7.5. MultiCall vs. iBatch

	8. Security
	8.1. Demonstration of preferred batcher feature
	8.2. Informal security argument
	8.2.1. HBAuth security
	8.2.2. Preferred batcher security

	8.3. Security assumptions

	9. Discussion
	9.1. Adoption
	9.2. HBAuth performance
	9.3. HBAuth limitations
	9.4. Use of watchdogs
	9.5. Generalisability
	9.6. Decentralisation
	9.7. Hinting
	9.8. Hash-chain optimisation

	10. Related work
	10.1. Layer 2 scaling solutions
	10.2. Layer 1 gas optimisation
	10.2.1. Micro-optimisation
	10.2.2. Macro-optimisation
	10.2.2.1. Transaction batching, metatransactions and proxies

	10.3. On-chain interpreters
	10.4. Hash-based cryptography
	10.5. Hash-chain optimisation

	11. Conclusions
	Declaration of competing interest
	Funding
	Appendix A. Optimising the off-chain caching scheme for HBAuth
	Appendix A.1. The model
	Appendix A.2. Cheap N-configurations
	Appendix A.3. Optimal chain lengths
	Appendix A.4. Real-life estimations of optimal chain lengths and costs

	References

