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intersections? Modeling cyclists’ yielding behavior using naturalistic data 
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A B S T R A C T   

When a cyclist’s path intersects with that of a motorized vehicle at an unsignalized intersection, serious conflicts 
may happen. In recent years, the number of cyclist fatalities in this conflict scenario has held steady, while the 
number in many other traffic scenarios has been decreasing. There is, therefore, a need to further study this 
conflict scenario in order to make it safer. With the advent of automated vehicles, threat assessment algorithms 
able to predict cyclists’ (other road users’) behavior will be increasingly important to ensure safety. 

To date, the handful of studies that have modeled the vehicle-cyclist interaction at unsignalized intersections 
have used kinematics (speed and location) alone without using cyclists’ behavioral cues, such as pedaling or 
gesturing. As a result, we do not know whether non-verbal communication (e.g., from behavioral cues) could 
improve model predictions. 

In this paper, we propose a quantitative model based on naturalistic data, which uses additional non-verbal 
information to predict cyclists’ crossing intentions at unsignalized intersections. Interaction events were 
extracted from a trajectory dataset and enriched by adding cyclists’ behavioral cues obtained from sensors. Both 
kinematics and cyclists’ behavioral cues (e.g., pedaling and head movement), were found to be statistically 
significant for predicting the cyclist’s yielding behavior. This research shows that adding information about the 
cyclists’ behavioral cues to the threat assessment algorithms of active safety systems and automated vehicles will 
improve safety.   

1. Introduction 

Public agencies promote cycling as an active mode of transport 
because of numerous direct and indirect benefits for both the cyclist and 
society (Edwards and Mason, 2014; Pucher and Buehler, 2017). In 
recent years, cycling has grown in popularity as a mode of transport 
(Pucher and Buehler, 2017). Unfortunately, with the higher exposure 
rate of cyclists in mixed traffic, more conflicts take place. European 
crash data shows that the cyclists’ share of road traffic fatalities is 
increasing year by year (European Road Safety Observatory, 2018). 
Since they do not have a metal shield around them for protection, cy
clists are considered vulnerable road users, so their safety is a priority for 
all transport system stakeholders. Most of the conflicts between cyclists 
and motorized vehicles happen at crossings when the two road users 
share the road, and their trajectories intersect (Bjorklund, 2005). These 
scenarios are particularly critical at unsignalized intersections, which 
operate based on priority rules for road users and require communica
tion and agreement between the cyclist and the driver. In these 

intersections, the driver usually allows the cyclist to pass first (Bjor
klund, 2005); however, Svensson and Pauna show that in 42 % of the 
cases in Sweden, drivers do not yield to cyclists (Svensson and Pauna, 
2010). The way that the involved road users interact and communicate 
intent in these scenarios must be understood and modeled before it can 
be employed by automated vehicles (AVs) and safety systems. 

Few studies so far have focused on how automated vehicles should 
behave and interact when encountering cyclists [5, 6]. Although simu
lations show that with a 100 % penetration rate of AVs, conflicts be
tween AVs and cyclists decrease, AVs should still be trained to behave 
safely when interacting with cyclists in mixed traffic (Tafidis et al., 
2019). The AVs should be able to process explicit and implicit 
communication from the cyclist and respond appropriately. Road users 
use explicit communication to convey a message deliberately, while 
implicit communication is always present even if the road user does not 
notice it (Miller et al., 2022). Further, AVs move forward based on 
continuous sensing, prediction, and action. Hence, AVs need to accu
rately predict other road users’ behavior to plan their path safely, which 
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can be accomplished with prediction models. At the same time, devel
oping active safety systems for conventional vehicles is also essential to 
have safer traffic for vulnerable road users. In recent years some active 
safety systems like automated emergency braking (AEB), forward 
collision warning (FCW), and automated emergency steering (AES) have 
been developed to deal with the conflicts between motorized vehicles 
and cyclists at intersections. The performance of these safety systems is 
assessed by the European new car assessment program (Euro NCAP). 
The safety systems activate based on an algorithm to predict a threat. 
However, there are few studies addressing the development of behav
ioral models for predicting cyclists’ intention at crossing scenarios. 
Developing predictive models for AVs and safety systems of the inter
action between cyclists and motorized vehicles would require describing 
cyclists’ behavior and how they communicate their intent (to yield or 
not). 

Silvano et al. (2016) developed a logistical model to predict who will 
yield at the intersection based on kinematic (speed and location) in
formation. Theirs was the first study to model the vehicle-cyclist inter
action; unfortunately, they lacked accurate kinematic information. The 
second work is from Bella and Silvestri (2018), who performed a 
descriptive analysis of the effect of different infrastructure designs on 
driver control. Using a driving simulator, they assessed the efficacy of 
different safety countermeasures (like pavement color and raised 
islands) at reducing drivers’ speed when drivers interacted with a cyclist 
at the crossing. They did not model the cyclist-vehicle interaction. Boda 
et al. (2020) proposed a computational model to predict driver behavior. 
As input for their model, they used two visual cues: optical looming 
control and projected post-encroachment time. The model mainly pre
dicts when drivers initiate braking and how long they brake. They used 
test track data to fit the model, and for its validation, they used simulator 
data. On the test track, the cyclist was a dummy moving in front of the 
vehicle, so the dynamic of the interaction might not be very realistic. 
The study’s focus was exclusively on how the driver responded to an 
oncoming cyclist. In another study, Velasco et al. (2021) used virtual 
reality headsets. They showed videos of oncoming vehicles to partici
pants (who were cycling) and observed which factors were relevant for 
them as they crossed the intersection. They concluded that the distance 
between the car and the bicycle and which vehicle had the right of way 
were the primary factors affecting the cyclist’s intention to cross the 
intersection. These studies indicate that kinematics play an important 
role in cyclist-vehicle interaction. In this study, we aimed to overcome 
the limitations of these works by collecting naturalistic data and 
investigating the role of additional visual information on cyclist-vehicle 
interactions at unsignalized intersections. 

There is growing evidence that by incorporating visual information 
about interacting road users in computational models, we can predict 
their behavior more accurately and rapidly. Road users use visual in
formation about each other’s behavior as cues, to interact with other 
road users. Informal communication between road users, including eye 
contact, hand gestures, and body movement, can effectively indicate 
intent, informing others about imminent actions. These cues can be 
helpful for predicting road users’ intent. In fact, many of the efforts in 
this area are related to pedestrian-vehicle interactions, and very few 
studies observe the role of cyclists’ behavioral cues in cyclist-vehicle 
interactions (Mahadevan et al., 2018). In one such study in 2014, 
Hemeren et al. (2014) observed whether participants could predict cy
clists’ behavior at crossing scenarios using non-verbal information. They 
showed participants videos of bikes crossing an intersection and asked 
them about the visual cues they used to predict cyclists’ future paths. 
They concluded that speed, head turn, and position (cyclist is leaning or 
sitting up straight) are the most critical cues for predicting cyclists’ 
paths. Other researchers have also tried to find the connection between 
visual cues and cyclists’ intentions; Abadi and Goncharenko (2022) used 
neural networks to try to find the relation between cyclists’ head 
orientation and crossing intention. Westerhuis and De Waard (2017) 
tried to link the direction of maneuvers at an intersection to cyclists’ 

visual cues. They showed videos of moving cyclists to participants and 
paused the videos at a certain moment, and asked the participants which 
direction the cyclist would go. Head movement and cyclist speed were 
found to be important in predicting cyclists’ future paths. The afore
mentioned studies emphasize the importance of visual cues for pre
dicting cyclists’ intent in the urban environment; however, they do not 
quantify the relation between visual cues and intent. This study focuses 
on predicting cyclists’ intention to cross at an unsignalized intersection 
using naturalistic data. Previous works just considered kinematic in
formation to model cyclist-vehicle interaction. In this paper, we 
combine both kinematic information and cyclists’ visual cues in order to 
determine how important the visual cues are to improving the prediction 
of cyclists’ intentions. 

To investigate interactions between cyclists and motorized vehicles, 
we extracted conflicts between road users from naturalistic field data. To 
measure the safety level of observed interactions, we used surrogate 
measures of safety (SMoS), which are widely used in the traffic safety 
domain. These proactive safety measures are used for conflict in
teractions (Wang et al., 2021), which are more frequent than crashes. 
The SMoSs’ post-encroachment time (PET) and projected PET were 
chosen to measure the safety level of the interaction events in this study. 
PET refers to the actual time lapse between the first road user leaving the 
conflict zone and the second road user entering the conflict zone (Allen 
et al., 1978). The projected PET is an estimation or projection of PET 
(Boda et al., 2020). Its value is calculated by dividing the distance be
tween the two road users when the first road user exits the conflict zone 
by the speed of the second road user. The projected value thus assumes 
that the speed of the second road user is constant from that point in time. 

This study aims to propose a quantitative model to predict cyclists’ 
intention to cross an intersection using naturalistic data. Our main ob
jectives were to determine 1) what visual cues are used by cyclists to 
communicate to drivers their intent to cross and 2) the extent to which 
these cues may help predict whether a cyclist approaching an intersec
tion will yield or pass through. 

2. Methodology 

In this study, we examined how cyclists negotiate an unsignalized 
intersection with motorized vehicle drivers and identified which factors 
help predict who is going to yield. For reference, note that Swedish 
traffic rules state that motorized vehicles must give way to cyclists at 
unsignalized intersections, and cyclists should pay attention to the sur
rounding vehicles and cross the intersection carefully. 

2.1. Data collection 

The data for this study come from an unsignalized urban intersection 
in Gothenburg, Sweden (GPS coordinates: 57◦42′31.1′′N, 11◦56′22.9′′E). 
Stereovision and an AI-based sensor from Viscando (VISCANDO) 
mounted at the corner of the intersection recorded video of trajectories 
of all road users for 14 days in June 2019. The data for each day were 
collected from 6:00 to 18:00. The defined road user categories were 
pedestrians, cyclists, vehicles, and heavy vehicles; trajectory data 
comprised positions, speeds, and headings (recorded at a frequency of 
20 Hz). We searched for the objects labeled ‘cyclists’ and ‘vehicles’ in the 
trajectory dataset and only used events which included a single car and a 
single bicycle approaching the intersection (and no other road user 
present). An interaction event can be defined as occurring when two 
road users share the road; they may try to communicate with each other 
and probe the other’s intent to follow a safe and comfortable path 
(Thalya et al., 2020). We used this definition to observe whether there 
was a possible communication or negotiation of intent between the two 
road users in the correspondent videos. The average lengths of the tra
jectories for bicycles and vehicles were about 23 m and 16 m, respec
tively, working backwards from the trajectories’ intersection point. 
Fig. 1.a shows an example of the cyclist and vehicle trajectories. 
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2.2. Interaction events 

The procedure to find and select interaction events (i.e., occurrences 
when a cyclist and a motorized vehicle approach the intersection at the 
same time) from the anonymized videos was based on the difference in 
time to arrival (DTA) at the intersection for the involved road users 
(Fig. 1b). DTA is a measurement to assess which road user arrived sooner 
at the intersection and by how much. We defined equal distances of 15 m 
to the intersection point of trajectories both in the cyclist’s and vehicle’s 
path, from the point where the cyclist enters the intersection (edge of the 
curb). The time difference between the interacting road users reaching 
this 15 m distance is calculated as the DTA. DTA is positive when the car 
arrives first at the intersection and negative when the bicycle arrives 
first. Fig. 1b shows the observed intersection and the distances for 
calculating DTA from the mounted Viscando sensor’s perspective. 

We defined a threshold for the DTA of ± 7 s based on a preliminary 
visual assessment of the video events. An algorithm was written to find 
the interaction events in the trajectory dataset that were below this 
threshold and then the corresponding videos were manually checked to 
ensure that the selection of events was correct. We extracted the kine
matic information for the involved road users from the trajectory dataset 
and annotated the correspondent videos to record additional informa
tion. Fig. 2 shows the process of finding and registering interaction 
events. In total, there were 105 confirmed interaction events between 
passenger cars and cyclists. We defined all the variables extracted for 
each interaction event, which are reported in Table 1; the first part of the 
table contains the variables extracted from the trajectory data set, and 
the second part describes the variables acquired from the video 
annotation. 

An ID was assigned to each interaction event (Table 1), and each 
involved cyclist and motorized vehicle. The involved road users’ kine
matic information includes their speeds. Because visual information 

about the cyclists could be relevant to understanding their behavior 
during the interaction, we chose to code three variables that could 
indicate implicit communication between the cyclist and the motorized 
vehicle: whether they were pedaling, looking toward the approaching 
vehicle, and making any hand gestures (e.g., as a sign to let the vehicle 
cross first or to thank the driver). We registered these variables as time 
series, meaning that the variables were continuously annotated (cate
gorically for each time stamp) during the whole trajectory of each cyclist 
(Table 1). 

For each interaction event, the PET and projected PET were calcu
lated, and the DTA was recorded. The decision to yield was recorded as a 
binary variable: 0 if the car driver yielded and 1 if the cyclist yielded. 
Cyclist gender was categorized as either male or female. A categorical 
variable was defined with three age categories: adults, elderly, and 
children (Table 1). Weather condition was a binary variable that indi
cated whether it was rainy during the event. A variable was coded for 
lighting conditions: day or night (Table 1). The interactions were 
assigned a severity level from 0 (low severity) to 4 (crash), using 
Hyden’s “safety pyramid” as inspiration (Hyden, 1987). We coded cy
clists wearing a helmet or not as a variable. We also coded a variable to 
describe whether the bike was an e-bike or a normal bike (Table 1). 

2.3. Decision point 

Visual observation of the interaction events and cyclists’ speed 
profiles indicates that cyclists started to either accelerate or brake about 
8 m before the trajectories’ intersection point. Therefore, we used this 
distance as the decision point for the cyclists and sought to determine 
the occurrence of cyclists’ visual cues (pedaling, looking at the motor
ized vehicle, and hand gesture) before this point. The model also aims to 
predict the decision to yield (based on these cues) before the cyclist 
arrives at the decision point. The area for determining the cyclist’s visual 

Fig. 1. Studied intersection: (a) layout of the intersection and the trajectories of the car and bicycle, (b) intersection view from the mounted Viscando sensor 
illustrating the defined areas for determining the variables affecting the car driver’s decision to pass. The green box represents the area for determining the visual 
parameters, the black line shows the approximate area for decision making, and the red box delineates the conflict zone. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Process of finding and coding interaction events.  
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information is shown in Fig. 1b. These visual parameters are determined 
as dummy variables when they occur before the decision point (between 
8 and 12 m before the intersection point). We extracted the cyclist’s and 
vehicle’s speeds from the first moment that they were visible to each 
other (19 and 15 m from the intersection point for the bike and vehicle, 
respectively). We held these speeds constant in the model since the road 
users’ first impression of the other’s speed would affect their behavior. 

2.4. Inter- and intra-rater reliability for annotations 

We assessed inter-rater reliability, to measure the agreement be
tween the different analysts coding the videos, and intra-rater reliability, 
to measure the extent to which the annotations were consistent when a 
single analyst repeated the procedure. Two analysts annotated the 
videos for the chosen interactions. Cohen’s kappa method was used as an 
indicator to express the level of agreement for the intra- and inter-rater 
reliability measures (Gisev et al., 2013). The range of this indicator is 
between 0 and 1; 0 means no agreement, and 1 indicates a perfect 
agreement between raters. Previous research has pointed out that dif
ferences in raters’ codes for 10–25 % of the data is typical for inter-rater 
reliability (O’Connor and Joffe, 2020). A value of 0.81–1 is considered 
an almost perfect agreement between raters in the literature. The for
mula for Cohen’s kappa is calculated as: 

K =
(P0 − Pe)

(1 − Pe)
(1) 

Where: 
P0 = relative observed agreement among raters 
Pe = hypothetical probability of chance agreement 

2.5. Modeling framework 

In order to develop a model that could predict which road user will 
yield at the intersection given the defined parameters, we used gener
alized linear models (GLMs) to relate the independent variables to the 
outcome. GLMs generalize linear regression by relating the linear model 
to the response variable with a link function. These models allow the 
magnitude of the variance of each measurement to be a function of its 
predicted value (Myers and Montgomery, 1997). This modeling frame
work unifies different types of statistical models like binomial regres
sion, Poisson regression, and classical linear regression models. 

We chose a logit model to predict which road user will yield at the 
intersection. A binary logit model gives the probability of yielding or not 
for the involved road users. 

P =
exp(a + b1x1 + b2x2 + b3x3 + ⋯)

1 + exp(a + b1x1 + b2x2 + b3x3 + ⋯)
(2) 

Where, 
P = the probability that a case is in one category 
b1, b2, b3 = vector of parameters to be estimated 
x1, x2, x3 = independent variables affecting the decision to yield 
a = intercept 

2.6. Oversampling 

The SMOTE (Synthetic Minority Oversampling Technique) was used 
to balance the response variable in the model (Chawla et al., 2002). This 
method avoids the model’s poor performance on the minority class of 
the response variable, which in our model is the yielding decision. In 
imbalanced datasets, the classification models ignore the minority class 
and thus are not very effective at predicting it. The SMOTE method 
creates as many synthetic cases for the minority class as required to 
balance the dataset. 

2.7. Validation 

The leave-one-out cross-validation method (LOOCV) determined the 
model performance. This method is often used when the sample size is 
small, and it is not efficient to divide the dataset into train and test parts. 
For a sample size n, LOOCV creates n-1 models; in each model, one of the 
observations is left out to be used for validation, and the n-1 observa
tions train the model (Arlot and Celisse, 2010). This process repeats n 
times, and in each iteration one of the observations is left out for the 
validation. The average accuracy of all created models is reported as the 
model performance. 

3. Results 

3.1. Data description 

In total, 105 interaction events were extracted for analysis and 
modeling; among them, 35 % of the cyclists were women, and 65 % were 
men. In 65 % of the events, the bike passed through the intersection first, 
and in 35 % of cases, the vehicle passed through the intersection first. In 
66 % of cases, cyclists had a helmet. Cyclists were pedaling before the 
decision point in 65 % of cases. In 30 % of cases, cyclists were looking at 
the approaching vehicle before the decision point. There were two e- 
bikes among the observed cases, and seven elderly cyclists. Cyclists 
waved a hand at the approaching vehicle in three cases. Descriptive 
statistics of numeric variables that were tested in the model are shown in 
Table 2. 

3.2. Safety measures 

Fig. 3. a–d show the distributions of PET, projected PET, DTA, and 
severity levels. The average projected PET values are higher than their 

Table 1 
Variable extracted for each interaction event.   

Variable Unit Data type Description 

Information acquired from the trajectory dataset 
1 Event ID  Numeric Unique identification for the 

event 
2 Cyclist ID  Numeric Unique identification for the 

cyclist 
3 Cyclist speed m/s Time series Cyclist speed 
4 Vehicle ID  Numeric Unique identification for the 

vehicle 
5 Vehicle speed m/s time series Vehicle speed 
Information acquired from the video annotation 
6 Cyclist 

pedaling 
dummy time series 0 for the pedaling time stamps 

and 1 for not pedaling time 
stamps 

7 Cyclist’s head 
movement 

dummy time series 0 for the looking ahead 
timestamps and 1 for looking 
to the vehicle time stamps 

8 Cyclist’s 
hand gesture 

dummy time series 0 for not having hand gesture 
timestamps and 1 for having 
hand gesture time stamps 

9 PET sec Numeric Post encroachment time 
10 Projected 

PET 
sec Numeric Projected post encroachment 

time 
11 DTA sec Numeric Difference in time to arrival to 

the intersection 
12 Yielding 

Decision 
dummy Categorical 0 for cyclists pass first, and 1 

for vehicles pass first 
13 Gender dummy Categorical 0 male, 1 female 
14 Age categorical Categorical 0 adult, 1 child, 2 elderly 
15 Weather 

condition 
dummy Categorical 0 without rain, 1 rainy 

16 Lighting 
condition 

dummy Categorical 0 day, 1 night 

17 Conflict 
severity 

categorical Categorical 0 encounters, 1 potential 
conflicts, 2 slight conflicts, 3 
serious conflicts 

18 Wearing 
helmet 

dummy Categorical 0 wearing helmet, 1 not 
wearing helmet 

19 Bike type dummy Categorical 0 normal bike, 1 e-bike  
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respective PET values. In projected PET, we kept the speed of the second 
road user constant for the calculation, although the second road user 
actually slowed down in the intersection. Based on Table 2 and the PET 
distribution in Fig. 3.a, the average PET is 2.6 s. 

Most of the DTA values are positive, which shows that most in
teractions happened when the car arrived first at the intersection. When 
the cyclists arrived first at the intersection, they usually passed through 
the intersection without being influenced by the vehicle. Fig. 3d shows 
the distribution of the interaction’s severity levels. 

Table 3 shows the variables that were tested in the model. Among the 
variables that we recorded (Table 1), weather and light conditions were 
not considered because all events happened during the day and without 
rain. It is worth noticing that PET, interaction severity level, and pro
jected PET were also coded for each event. However, we did not include 
them in the model because they cannot be used to predict the yielding 
decision; in fact, these variables are processed once the yielding decision 
has already been made. 

3.3. Modeling output 

Table 4 shows the estimation results for yielding probability for the 
variables that were statistically significant in the model. As noted, since 
the number of cyclists’ yielding cases were less than half that of the 
vehicles’ yielding cases, we used SMOTE to balance the response vari
able by oversampling. The number of observations increased to 136, 
with an equal number of yielding cases for cyclists and drivers. 

As shown in Table 4, the variables significantly affecting the decision 
to yield are the cyclist’s initial speed, vehicle’s initial speed, DTA, 
pedaling (or not), and looking towards the motorized vehicle (or not). 
With every unit increase in cyclist’s speed, the log odds of the cyclist 

Table 2 
Descriptive statistics of numeric variables (DTA: the difference in time to arrival 
at the intersection, PET: post-encroachment time).  

Numeric 
variables 

Bike initial 
speed (m/s) 

Vehicle initial 
speed (m/s) 

DTA* 
(s) 

PET* 
(s) 

Projected 
PET (s) 

Mean  3.98  3.28  1.94  2.6  4.31 
STD  1.06  1.15  2.27  0.93  2.77 
Min  0.42  0.26  − 2.56  0.95  0.86 
Max  7.58  6.11  8.83  5.87  12.5  

Fig. 3. Distribution of PET, projected PET, and DTA, and severity levels.  

Table 3 
Factors chosen for the model.   

Variable Unit Type Description 

1 Cyclist speed m/s numeric Cyclist’s initial speed 
2 Vehicle speed m/s numeric Vehicle’s initial speed 
3 DTA sec numeric Time difference to arrival to the 

intersection 
4 Gender dummy Categorical 0 men, 1 woman, 
5 Age dummy Categorical 0 for adult, 1 child, 2 elderly 
6 Bike type dummy Categorical 0 normal bike, 1 e-bike 
7 Wearing a 

helmet 
dummy Categorical 0 wearing helmet, 1 not wearing 

helmet 
8 Looking or not dummy Categorical Looking to the vehicle before 

the decision point 
9 Pedaling or not dummy Categorical Pedaling or not before the 

decision point 
10 Hand gesture 

or not 
dummy Categorical Hand gesture before the 

decision point  
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crossing the intersection first increases by 4.78. Correspondingly, as the 
vehicle’s speed increases, it becomes more likely that the vehicle will 
pass first through the intersection. 

DTA has a positive coefficient, meaning that the road user who is 
expected to arrive first at the intersection (expectation calculated 15 m 
from the intersection) is more likely to pass through first. If the cyclist 
continues pedaling before the decision point, it is 3.12 times more likely 
that the cyclist will cross the intersection first. The other statistically 
significant visual parameter is looking at the approaching vehicle before 
the decision point; if the cyclist is looking at the approaching vehicle, it 
is 0.25 times more likely that the cyclist will cross the intersection first. 

The other variables (gender, wearing helmet, age, bike type, and 
hand waving) were not found to be statistically significant, so we 
excluded them from the model. It is worth mentioning that wearing a 
helmet was significant at p = 0.095 in the model: the trend was that 
those cyclists with no helmet were more likely to pass through the 
intersection first. 

3.4. Validation 

The LOOCV result showed an average accuracy of 83 % for the 
proposed model (with 113 correct and 23 false predictions). Given the 
fact that the data are naturalistic field data, and the sample size is small, 
this score is acceptable. 

3.5. Inter- and intra-rater reliability results 

Table 5 shows the inter- and intra-rater reliability scores, measured 
through the Cohen’s kappa score. 

The average Cohen’s kappa score for intra-rater reliability is 97 %, 
and for inter-rater reliability it is 93 %; these values are considered 
almost perfect agreement. 

4. Discussion  

• General model performance 

We found that the kinematic information about interacting road 
users, along with cyclists’ visual cues, were significant predictors of the 
cyclists’ decision to yield to a car at the intersection. The variables that 
were effective for predicting whether cyclists would yield at the crossing 
are consistent with those reported in previous studies (Merat et al., 
2018; Tafidis et al., 2019; Velasco et al., 2021). Despite much research 
investigating the effect of implicit communication in pedestrian-vehicle 
interactions, we found very few studies investigating its effect in pre
dicting cyclists’ intent in cyclist-vehicle interactions. Previous studies 
that attempted to predict cyclist’s crossing decision at intersections 
relied on kinematic information alone; none of them involved cyclists’ 
visual cues in their predictive models (Pucher and Buehler, 2017; 

Svensson and Pauna, 2010). In this study, two visual parameters (cy
clists’ pedaling behavior and looking at the approaching vehicle) were 
found to be effective in predicting whether cyclists intended to cross the 
intersection ahead of the car. 

The presented model in this paper can predict which road user will 
yield at the intersection when the vehicle still has enough time to react 
and safely avoid the cyclist (by yielding if the cyclist does not). The 
outcome of this research can be helpful for automated vehicles to predict 
cyclist’s decision at unsignalized intersections and react safely to the 
encounters with cyclists. The average vehicle’s initial speed in the 
observed cases was around 12 km/h (3.3 m/s). For this speed, the 
stopping distance is less than 10 m (Layton and Dixon, 2012). Therefore, 
the vehicle’s active safety systems have enough time from the moment 
that the cyclist becomes visible (19 m distance to the intersection of 
trajectories) to intervene or issue a warning to interact safely with the 
cyclist. For example, in a scenario in the observed intersection with a 
DTA of 0 and the vehicle traveling at the average speed, the vehicle has 
2.1 s to avoid a crash with the bike (if the cyclist decides not to yield) by 
either intervening or issuing a warning. 

So far, threat assessment algorithms have mainly used kinematic 
information to detect dangerous situations in mixed traffic, ignoring 
other road users’ visual cues. This research shows the importance of 
implicit communication and behavioral cues in predicting cyclists’ 
intent at crossing scenarios. It should be noted that the effect sizes of the 
kinematic parameters (vehicle speed, cyclist speed, and DTA) are larger 
than those of the parameters for cyclist’s visual cues. This difference 
indicates the importance of kinematic information in threat assessment 
algorithms; acquiring kinematic information from other road users 
should be the vehicle sensors’ priority. However, mounted sensors on 
the vehicle (like LIDARs and cameras) should provide information about 
cyclists’ visual cues (like head movement and pedaling) to improve 
threat assessment algorithms even further. Pattern recognition algo
rithms have been developed to extract cyclists’ visual cues like head 
movement and pedaling from the sensors’ raw data (Hagenzieker et al., 
2020; Layton and Dixon, 2012). The detection of cyclists’ visual cues 
and the integration of this information will enhance the performance of 
active safety systems by enabling the threat assessment algorithms to 
issue a warning or initiate an intervention when the situation is deter
mined to be dangerous. Some cyclists’ visual cues, like pedaling, are 
hard for in-vehicle sensors to detect, but sensors on bikes could provide 
this information. Therefore, as an alternative to in-vehicle sensing, the 
cyclist’s visual cues, like pedaling, visual scanning, and perhaps even 
braking, could be transferred to the interacting vehicle wirelessly, 
informing the other vehicle(s) about the cyclist’s intent (Dozza and 
Gustafsson, 2013).  

• Model predictions 

Our model shows that as the vehicle’s speed increases, it becomes 

Table 4 
Summary of model estimation results.  

Variables Coefficients std err Z score p-value lower bound (0.025) Upper bound (0.975) 

Intercept  − 4.3523  1.474  − 2.953  0.003  − 7.241  − 1.464 
Bike speed  − 4.7794  2.041  − 2.342  0.019  − 8.779  − 0.780 
Vehicle speed  9.4198  1.910  4.932  p < 0.001  5.676  13.163 
DTA  5.5818  1.194  4.675  p < 0.001  3.242  7.922 
Pedaling or not  1.1403  0.551  2.068  0.039  0.060  2.221 
Looking or not  − 1.4132  0.689  − 2.050  0.040  − 2.765  − 0.062  

Table 5 
Cohen’s kappa scores for inter and intra-rater reliability scores.  

Variable Pedaling Head movement Gender Wearing helmet Age Severity Hand gesture Bike type 

Intra-rater reliability scores 96 % 94 % 100 % 100 % 100 % 92 % 100 % 100 % 
Inter-rater reliability scores 96 % 87 % 94 % 100 % 100 % 73 % 100 % 100 %  
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more likely that the vehicle will pass through the intersection first. The 
reason could be that, based on the information available to them, car 
drivers think they can clear the intersection sooner in a safe manner. The 
same tends to be true for cyclists as their speed increases. Since cyclists 
use physical force to propel the bike, they want to keep their mo
mentum, and the higher their speed, the less willing they are to yield to 
the motorized vehicle. In total, with the increase in the speed of one road 
user, the other interacting road users will adapt their behavior, which is 
an implicit communication from both sides to stay safe (Pucher and 
Buehler, 2017; Allen et al., 1978; Zernetsch et al., 2020; Dozza and 
Gustafsson, 2013) The relation of DTA to yielding probability is in line 
with the expectation that the road user who is expected to arrive sooner 
at the intersection is more likely to pass through the intersection first 
(Silvano et al., 2016). Pedaling is a visual cue expressing the cyclist’s 
intention to cross the intersection first, which makes sense because if 
they want to cross the intersection before the car, they will not stop 
pedaling. By looking toward the approaching motorized vehicle, the 
cyclist is implicitly communicating with the driver, demanding the right 
of way (Grigoropoulos et al., 2022). Visual scanning is a crucial part of 
dynamic driving, and drivers always search in their peripheral vision to 
detect possible dangers (Rasanen and Summala, 2000; Grigoropoulos 
et al., 2022). Cyclists who stop pedaling and look at the approaching 
vehicle are providing clear signs to any drivers present that they 
consider yielding at the intersection. 

Finally, to determine whether there is an effect of wearing a helmet, 
we need more observations since this factor was only close to the 
threshold of being significant. Nevertheless, we could conclude that 
those cyclists who were not wearing a helmet were more likely to pass 
through the intersection first; this behavior could be associated with the 
riskier behavior of cyclists with no helmet (Esmaeilikia et al., 2019). 

While we initially sought to investigate the predictive value of cy
clists’ hand gestures, there were few cases with gestures—which all 
occurred after the decision point. They were determined to be the cy
clist’s way of saying thanks to the interacting vehicle for letting them 
pass through the intersection. As a result, hand gestures were not a 
factor in predicting cyclists’ decisions whether to yield. 

We obtained perfect agreement from inter- and intra-rater reliability 
scores, which shows that the accuracy of annotations from anonymized 
video was quite good, and they were reasonable to code for a human. 
The only minor discrepancy between raters happened for the severity 
level of interactions. The reason for that could be that this parameter is 
highly subjective (the raters decided the severity level based on their 
own judgment). Another reason may be that this factor had four cate
gories in contrast to the other variables, that had just two, increasing the 
possible variability among raters. Nevertheless, we did not include 
severity levels in the model, so the lower inter-rater reliability scores for 
this measurement did not affect the model’s output. 

The model performance suggests that the selected parameters can 
adequately explain which road user will yield at the intersection, but 
these are probably not the only parameters indicating the decision to 
yield. For instance, in the future, researchers should also consider other 
parameters like mental states (fatigue, cognitive load) and infrastructure 
design (e.g., visibility condition, angles of intersection, lane width, etc.) 
in decision making (Bjorklund, 2005; Layton and Dixon, 2012).  

• Post-encroachment-time 

Previous literature shows that interactions with PETs less than 3 s are 
considered dangerous (Zangenehpour et al., 2016). By this measure, 
most of the observed interactions in this study were dangerous, but we 
noticed that the interactions with PETs higher than 3 s could also be 
dangerous. For example, in scenarios where the drivers approached the 
intersection at high speed, they had to brake hard to let the bike go, 
making it dangerous. The PET value for these scenarios is further 
increased because the vehicle had to increase its speed from zero after 
stopping and then crossing the conflict zone. Consequently, PET is not a 

suitable metric to estimate the severity level of interactions between 
cyclists and motorized vehicles in crossing scenarios when the vehicle 
stops (or brakes hard) before the intersection. Modifying the PET by 
involving other variables like deceleration rates, DTA, and road user 
speeds would increase the accuracy of this safety indicator.  

• Limitations and future work 

Other variables like road user state (fatigue and attention) and 
infrastructure design could also play a role in the decision making. 
However, due to the nature of the data in this study, these variables were 
not captured. It should be noted that the length of the trajectory of 
interacting road users was limited, especially for the motorized vehi
cle—because it was unclear when they started to decrease their speed as 
they approached the intersection. In addition, there was some noise in 
the speed profiles. Although we tried to filter it out, accelerations 
extracted from noisy speeds are not reliable, so we did not test variables 
like the deceleration rates of the road users. As mentioned in the 
methodology, we only considered interactions between motorized ve
hicles and cyclists when no other road user was present, in order to avoid 
other influencing factors and have a clean environment. However, re
ality can be more complex and multiple interactions may happen at the 
same time. Collecting data from different locations would add to the 
generalizability and accuracy of the model, but due to cost and time 
limitations, we only considered one location. In fact, finding a dataset 
with detailed information about both interacting road users was a 
challenge. Further, finding and coding the interaction events manually 
were time-consuming tasks. 

To improve the model performance, the first suggestion is to observe 
more interaction events and possibly collect data from different loca
tions. The second is to use the deceleration rate of road users as a pre
dictor in the model. More precise and extended sensory data from the 
interacting road users will provide the chance to observe the yielding 
phenomenon more in-depth. In addition, other types of computational 
models could address different aspects of vehicle-cyclist interactions, so 
it is suggested that future work test other predictive models (like pre
dicting cyclists’ trajectory considering the interaction, and survival 
models for risk assessment in decision making) for this scenario (Dozza 
and Gustafsson, 2013; Classen et al., 2007). 

5. Conclusions 

The model proposed in this study shows that road users’ kinematic 
information and cyclists’ visual cues are important for predicting the 
decision to yield. For the first time, the cyclists’ visual cues have been 
proven to help predict yielding at an unsignalized intersection. The 
LOOCV showed that the model performance is acceptable with the 
chosen parameters. This model can be used in automated vehicles to 
predict cyclists’ intent in crossing scenarios in order to ensure a safe 
interaction. Another application of this model could be in threat 
assessment algorithms for active safety to support FCW and AEB acti
vation when the road users’ kinematics do not conform to the model’s 
prediction. However, before it is integrated into commercial safety 
systems, this model could be improved by observing more interaction 
events at different locations. Another interesting finding from this study 
is that interaction events with high PET can also be dangerous; the 
measure is not capable of determining the severity level of the interac
tion between a vehicle and a cyclist at a crossing scenario due to the 
possibility that one of the vehicles stops. Hence, a robust safety metric 
that could involve road user’s speed and acceleration is needed for these 
scenarios. 

Finally, the proposed model in this study shows that implicit 
communication and cyclists’ behavioral cues are important for pre
dicting cyclists’ behavior in crossing scenarios. Therefore, AVs should 
consider not only the kinematics of other road users but also their 
behavior, in order to make more accurate predictions and improve their 
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safe operation. 
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