
Unbounded Predicate Inner Product Functional Encryption from Pairings

Downloaded from: https://research.chalmers.se, 2024-04-09 10:27 UTC

Citation for the original published paper (version of record):
Dowerah, U., Dutta, S., Mitrokotsa, A. et al (2023). Unbounded Predicate Inner Product Functional
Encryption from Pairings. Journal of Cryptology, 36(3).
http://dx.doi.org/10.1007/s00145-023-09458-2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

https://doi.org/10.1007/s00145-023-09458-2
J Cryptol (2023) 36:29

Research Article

Unbounded Predicate Inner Product Functional
Encryption from Pairings

Uddipana Dowerah
Chalmers University of Technology, Gothenburg, Sweden

uddipana@chalmers.se

Subhranil Dutta
Indian Institute of Technology Kharagpur, Kharagpur, India

subhranildutta@iitkgp.ac.in

Aikaterini Mitrokotsa · Sayantan Mukherjee
University of St Gallen, St. Gallen, Switzerland

katerina.mitrokotsa@unisg.ch
csayantan.mukherjee@gmail.com

Tapas Pal
NTT Social Informatics Laboratories, Tokyo, Japan

tapas.pal.wh@hco.ntt.co.jp

Communicated by David Pointcheval and Nigel Smart

Received 28 September 2022 / Revised 29 March 2023 / Accepted 10 April 2023

Abstract. Predicate inner product functional encryption (P-IPFE) is essentially attribute-
based IPFE (AB-IPFE) which additionally hides attributes associated to ciphertexts. In
a P-IPFE, a message x is encrypted under an attribute w and a secret key is generated
for a pair (y, v) such that recovery of 〈x, y〉 requires the vectors w, v to satisfy a linear
relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes
and message vectors. • zero predicate IPFE. We construct the first unbounded zero
predicate IPFE (UZP-IPFE) which recovers 〈x, y〉 if 〈w, v〉 = 0. This construction is
inspired by the unbounded IPFE of Tomida and Takashima (ASIACRYPT 2018) and the
unbounded zero inner product encryption of Okamoto and Takashima (ASIACRYPT
2012). The UZP-IPFE stands secure against general attackers capable of decrypting
the challenge ciphertext. Concretely, it provides full attribute-hiding security in the
indistinguishability-based semi-adaptive model under the standard symmetric external
Diffie–Hellman assumption. • non-zero predicate IPFE. We present the first unbounded
non-zero predicate IPFE (UNP-IPFE) that successfully recovers 〈x, y〉 if 〈w, v〉 �= 0. We
generically transform an unbounded quadratic FE (UQFE) scheme to weak attribute-
hiding UNP-IPFE in both public and secret key setting. Interestingly, our secret key
simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel
succinct UQFE that we build in the random oracle model. We leave the problem of
constructing a succinct public key UNP-IPFE or UQFE in the standard model as an
important open problem.

© The Author(s) 2023

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09458-2&domain=pdf

 29 Page 2 of 73 U. Dowerah et al.

Keywords. Inner product functional encryption, Unbounded, Inner product predicate,
Fully attribute-hiding, Weak attribute-hiding, Semi-adaptive security.

1. Introduction

Functional encryption (FE) is an advanced cryptographic primitive that enables elegant
access control over encrypted data. The motivation behind introducing FE is to devi-
ate from the classical “all-or-nothing”-type encryption schemes that entirely unveil the
plaintext to the secret key owner. On the contrary, specific functions are embedded into
the secret keys of an FE scheme which reveal no information about the plaintext but
only its functional values. More formally, an FE scheme that supports a function class
F , allows the authority to issue secret keys SK f corresponding to any function f ∈ F .
Using the public parameters of the scheme, a message m is encrypted to the ciphertext
CTm which reveals f (m) on decrypting it with the secret key SK f . The security of an
FE scheme ensures that no information about the message m can be extracted from the
pair (SK f ,CTm) apart from the functional value f (m).

A significant amount of effort [32,33] has been put forth in realizing FE schemes sup-
porting the class of all polynomial-size functions. Although such powerful FE schemes
are being developed through a long sequence of works [12,19,35] based on standard
assumptions, these are relatively complex to understand and far away from practical
deployment. On the positive side, FE schemes for specific function classes, e.g., linear
or quadratic functions [1–6,8–10,14,17,18,23–25,31,41,51], can be constructed with
much more efficient parameters. This work is devoted to realizing practical FE schemes
primarily for linear functions in a setting suitable for various applications that deal with
variable lengthened data.
FE for Attribute-Based Linear Functions. Inner Product Functional Encryption (IPFE)
refers to a practical class of FE, introduced by Abdalla et al. [2], that supports inner prod-
uct functionality. The secret keys and ciphertexts are computed for vectors y, x ∈ Z

n
p,

respectively, and the decryption obtains an inner product value 〈x, y〉. Due to its simple
and linear functionality, IPFE possesses an inherent security issue. More precisely, re-
leasing a set of n secret keys corresponding to a basis of Zn

p entirely breaks the security
of the IPFE system. This necessitates the key generation algorithm of stateful IPFE to
prevent the risk of releasing n secret keys of particular nature. To make the IPFE sys-
tem resilient from such information leakage even when many secret keys are issued,
the scheme must allow to embed access policies, while also being able to compute the
weighted sums on the data. This can be achieved for instance by combining attribute-
based encryption (ABE) [34] with IPFE. Abdalla et al. [5] addressed this problem by
proposing a primitive called attribute-based IPFE (AB-IPFE) that provides the access
control functionality of ABE along with the inner product functionality of IPFE. More
precisely, the secret keys of IPFE are now additionally associated with some policies P
and message vectors are encrypted under some attributes att. At the time of the decryp-
tion, computing the inner product value 〈x, y〉 requires the secret key to satisfy an extra
condition P(att) = 1, i.e., the attribute att must satisfy the policy P .

Various constructions of AB-IPFE were proposed in previous works [5,38,47] depend-
ing on group-based and lattice-based assumptions. These AB-IPFEs focus on hiding the

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 3 of 73 29

message vectors, not the associated attributes. However, hiding attributes in ABE [44–
46] has its own popularity in applications where attributes contain user-specific sensitive
information. Another drawback is that existing AB-IPFEs can only process attributes or
messages of bounded length. As a result, the size of system parameters depends on the
upper bounds set for the lengths of attributes/messages at the beginning. Furthermore,
the ciphertexts always scale with the upper bounds even when the original lengths of the
corresponding attributes and messages are much shorter. In the literature, the primitives
ABE [11,13,21,28,40,45] and IPFE [27,49] are individually constructed to handle un-
bounded length attributes and messages, respectively. However, no AB-IPFE scheme is
designed to process data of arbitrary length. Additionally, these salient features, namely
attribute-hiding and unboundedness of an AB-IPFE scheme, make the parameters cost-
effective and amplify the importance and wide applicability of AB-IPFE. Specific appli-
cation scenarios include weighted sum of body temperature or blood pressure of patients
in a hospital, average salary of a minority group in a private/government office or even
counting votes of political leaders in a presidential election. In all these examples, the
size of the data set may vary from time-to-time, for instance, the number of patients in
the hospital or employees in the minority group. Concurrently, the associated attributes
contain sensitive information such as the patients’ social security numbers or the em-
ployee codes of the minority group members. This motivates us to ask the following
question:
Is it possible to design anAB-IPFE scheme that can embed unbounded size (policy, key

vector) to a secret key and unbounded length (attribute, message vector) to a ciphertext,
so that only authorized persons can recover the inner product between the key and
message vectors, without revealing any information about the attributes apart from
whether they are satisfied or not by the embedded policy?

1.1. Our Contributions

This work proposes a solution to the above open problem for inner-product. We define
the notion of attribute-hiding unbounded AB-IPFE where access to the inner product
values is controlled via linear predicates. More fundamentally, we explore the primitive
AB-IPFE from the lens of FE. This means the entities associated with a ciphertext CT
of AB-IPFE, i.e., the attribute att and the message vector x are both hidden during the
decryption. A secret key associated with a tuple (P, y) reveals at most the information
about P(att) and the inner product 〈x, y〉 fromCT. We propose the name predicate inner-
product functional encryption (P-IPFE) to separate this primitive from usual AB-IPFE
of [5,9,38,47] and predicated inner product functional encryption of [8]. Before we
note down the difference between predicated inner product functional encryption of [8]
and our primitive, we state that the name is inspired by the attribute-hiding feature that
differentiates predicate encryption [37] from the attribute-based encryption [34]. The
definition of predicated inner product functional encryption of [8], although captured
inner-product computation conditioned on a linear predicate, did not capture the essence
of predicate encryption [37] thoroughly. Indeed, the partially function-hiding security
in [8] did not consider the attribute-hiding feature. On the other hand, our definition
captures both the message vector hiding and the full attribute-hiding [45]. Therefore, we
propose a new name for the primitive we consider.

 29 Page 4 of 73 U. Dowerah et al.

We further enhance the primitive P-IPFE by adding the property of unboundedness
that makes it more efficient in terms of system keys and ciphertext sizes. This means
the master keys of the P-IPFE only depend on the security parameter and hence there is
no bound on the sizes of P,att, x and y. This work deals with unbounded inner product
predicates [28,45] where P = v is a linear function of att = w having unbounded
lengths. In particular, we construct unbounded inner product predicate IPFE (UP-IPFE)
schemes which recover 〈x, y〉 if a linear relation R(w, v) holds. We emphasize that
our UP-IPFE is the first primitive to simultaneously capture unbounded inner product
predicate encryption scheme [45] and unbounded inner product functional encryption
schemes [27,49].
UP-IPFE with zero relation. First, we consider UP-IPFE with zero relation (UZP-IPFE)
meaning that the decryption recovers 〈x, y〉 if the inner product between the predicate and
attribute vectors is zero. We present a construction of semi-adaptively secure UZP-IPFE
in the standard model under the symmetric external Diffie–Hellman (SXDH) assumption
in an asymmetric pairing group, where the unbounded length vectors (both x, y andw, v)
satisfy a permissive relation. A pair of unbounded length vectors is said to satisfy the
permissive relation if the index set of one is contained in the index set of the other [27,49].
The ciphertexts and secret keys of our UZP-IPFE grow linearly with the lengths of the
associated vectors.

We achieve full attribute-hiding indistinguishability-based security with semi-adaptive
attributes. In our security model, only the challenge attributes are submitted before an
adversary asks for a secret key whereas the challenge message vectors are adaptively
chosen after observing a set of secret key queries. Note that the notion of full attribute-
hiding approves secret key queries capable of decrypting the challenge ciphertext. Hence,
it provides more power to the adversary than the usual payload hiding model where it is
prohibited to query a secret key that decodes the challenge ciphertext.

Technically, we combine the full attribute-hiding unbounded zero-predicate encryp-
tion (UZIPE) of Okamoto and Takashima [45] with the UIPFE of Tomida and Takashima
[49] to achieve our result. We show that it may not be possible to generically construct
UZP-IPFE from UZIPE and UIPFE with our desired security notion. The previous works
have also noted this [5,9,38,47] in the context of AB-IPFE. Our main technical insight
is that it is possible to semi-generically combine the existing UZIPE [45] and UIPFE
[49] by implicitly employing a joint secret sharing protocol. This enables us to design a
framework for UZP-IPFE which hides the arbitrary length attributes into the ciphertexts.
We believe our technique could be useful to combine primitives such as ABE/PE with
linear/quadratic FE in a semi-generic manner for achieving more expressive classes of
functional encryption.
UP-IPFE with non-zero relation. Next, we consider UP-IPFE with non-zero relation
(UNP-IPFE) meaning that the decryption recovers 〈x, y〉 if the inner product between the
predicate and attribute vectors is non-zero. We present a generic construction of weak
attribute-hiding UNP-IPFE where the unbounded length vectors (both x, y and w, v)
satisfy either the permissive relation or a strict relation. We say a pair of unbounded
length vectors satisfies the strict relation if the index sets of the vectors are identical.
We instantiate our generic construction in the public key setting with permissive relation
and in the secret key setting with strict relation, enjoying variable efficiency parameters
and security levels.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 5 of 73 29

Table 1. Summary of our results.

Scheme |MPK| |CT| |SK| Assumption

UZP-IPFE 56 |G1| 7(m1 + m2) |G1| 7(n1 + n2) |G2| SXDH
UNP-IPFE 10 |G1| (2m1 + 4m2 + 6) |G1| + 2m2 |G2| 4 |G2| bi-2-Lin

− m1,m2: the lengths of the vectors associated with the ciphertext
− n1, n2: the lengths of the vectors associated with the secret key
− |MPK|: the size of the master public key
− |CT| , |SK|: the size of the ciphertext and the secret key, respectively
− SXDH, bi-k-Lin: symmetric external Diffie–Hellman (or 1-Lin), bilateral k-Lin
The computations for UNP-IPFE are for the specific case of (k′ = 1)-Lin (SXDH) and k = 2 (bi-2-Lin)

• The public key UNP-IPFE achieves the permissive relation for vectors and is
indistinguishability-based secure in the standard model. The sizes of secret keys
and ciphertexts scale linearly with the associated vectors. We obtain the public key
UNP-IPFE by plugging in the existing unbounded linear and quadratic FE schemes
[48,49] to our generic construction.

• The secret key UNP-IPFE is instantiated with strict relation for vectors and it is
simulation-secure in the random oracle model (ROM). The ciphertext size is linear in
the length of associated vectors as in the case of our UZP-IPFE and public key UNP-
IPFE. Moreover, the secret key achieves succinctness, meaning that the secret keys’
size are independent of the length of the predicate and key vectors. To instantiate the
secret key UNP-IPFE, we construct a succinct secret key unbounded quadratic FE
(UQFE) scheme, which is simulation secure under the bilateral k-Lin assumption
in the ROM. In literature, such a succinct UQFE scheme does not exist to the best
of our knowledge. The only existing (public key) UQFE scheme by Tomida [48] is
semi-adaptively indistinguishability-based secure in the ROM. It generates secret
keys that grow linearly with the size of key vectors; hence they are not succinct.
As illustrated in Table 1, our secret key UNP-IPFE delivers significant efficiency
improvements in all departments compared to the other UP-IPFE schemes.

Lastly, both of these UNP-IPFEs are semi-adaptively secure with respect to the attribute
and message vectors. The adversary submits challenge attributes and message vectors
before it receives any secret key. In Table 2, we provide a comparison of existing (par-
tially/weak/full) attribute-hiding FE schemes with our proposed UP-IPFEs with respect
to the functionality and security model.

Application Scenarios Similar to IPFE, the primitive AB-IPFE finds application on var-
ious fronts. We believe AB-IPFE can be useful in Hamming distance-based biometric
authentication [39], cloud-assisted computing, etc., while providing strong privacy guar-
antees. Nevertheless, we discuss a concrete and simple application scenario relevant to
the modern-day use cases of cloud computing in medical science. In Fig. 1, we illustrate
one such application scenario that our UP-IPFE schemes can efficiently realize. The data
owners are hospitals that encrypt patients’ health records under their attributes and up-
load the ciphertexts into a cloud server. At the same time, the data users are distinguished
scientists from various research centers who study health records. Suppose the Ministry
of Healthcare (MoH) department wants to perform statistical analysis over the encrypted

 29 Page 6 of 73 U. Dowerah et al.

Ta
bl
e
2.

C
om

pa
ri

so
n

of
ou

r
re

su
lts

w
ith

ex
is

tin
g

at
tr

ib
ut

e-
ba

se
d

FE
sc

he
m

es
.

Sc
he

m
e

Fu
nc

tio
na

lit
y

(|a
tt|,

|m
sg

|)
A

ttr
ib

ut
e-

hi
di

ng
Se

cu
ri

ty
A

ss
um

pt
io

n

[4
9]

φ
y∈

Z
|I y

|
p

:Z
| I x

|
p

→
Z
p
,
φ
y(
x)

=
x�

y
(×

,u
nb

d)
×

A
D
-I
N
D

S
X
D
H

[2
7]

φ
y∈

Z
|I y

|
p

:Z
| I x

|
p

→
Z
p
,
φ
y(
x)

=
x�

y
(×

,u
nb

d)
×

S
el
-I
N
D

D
B
D
H

[5
]

φ
(
f∈

(N
C

1
)(
n)

,y
∈Z

n′ p
)
:Z

n′ p
×

Z
n p

→
Z
p
,
φ
f,
y(
x,
w

)
=

(
f(
w

)
? =

0)
·x

� y
(b

nd
,b

nd
)

×
A
D
-I
N
D

S
X
D
H

[7
]

φ
f∈

A
B
P

(n
′ ,n

)
:Z

n′ p
×

Z
n p

→
Z
p
,
φ
f
(x
,w

)
=

f(
w

)�
x

(b
nd

,b
nd

)
Pa

rt
ia

lly
S
A
-S

IM
k-
Li
n

[5
1]

φ
f∈

A
B
P

(n
1
′ n 2

′ ,n
)

:Z
n′ 1

+n
′ 2

p
×

Z
n p

→
Z
p
,
φ
f
((
x 1

,
x 2

),
w

)
=

(x
1

⊗
x 2

)
f(
w

)�
(b

nd
,b

nd
)

Pa
rt

ia
lly

S
A
-S

IM
bi

-k
-L
in

[3
8]

φ
(
f∈

(G
C

)(
n)

,y
∈Z

n′ p
)
:Z

n′ p
×

Z
n p

→
Z
p
,
φ
f,
y(
x,
w

)
=

(
f(
w

)
? =

0)
·x

� y
(b

nd
,b

nd
)

×
S
A
-I
N
D

LW
E

[8
]

φ
(y

∈Z
m

1
p

,v
∈Z

m
2

p
)
:Z

m
1

p
×

Z
m

2
p

→
Z
p
,
φ

(y
,v

)(
x,
w

)
=

(w
� v

? =
0)

·x
� y

(b
nd

,b
nd

)
×

S
el
-I
N
D

M
D
D
H

[9
]

φ
(
f∈

(N
C

1
)n

,y
∈Z

n′ p
)
:Z

n′ p
×

Z
n p

→
Z
p
,
φ
f,
y(
x,
w

)
=

(
f(
w

)
? =

0)
·x

� y
(b

nd
,b

nd
)

W
ea

k
S
el
-I
N
D

k-
Li
n

[2
6]

φ
f∈

A
B
P

(n
′ ,n

)
:Z

n′ p
×

Z
n p

→
Z
p
,
φ
f
(x
,w

)
=

f(
w

)�
x

(b
nd

,b
nd

)
Pa

rt
ia

lly
A
D
-S

IM
k-
Li
n

[4
8]

φ
f∈

A
B
P

(n
′ ·n

′ ,n
)

:Z
n′ p

×
Z
n p

→
Z
p
,
φ
f
(x
,w

)
=

(x
⊗

x)
f(
w

)�
(b

nd
,u

nb
d)

pa
rt

ia
lly

S
A
-I
N
D

M
D
D
H

T
hi

s
w

or
k

φ
(y

∈Z
|I y

|
p

,v
∈Z

| I v
|

p
)
:Z

| I x
|

p
×

Z
| I w

|
p

→
Z
p
,
φ

(y
,v

)(
x,
w

)
=

(w
� v

? =
0)

·x
� y

(u
nb

d,
un

bd
)

Fu
ll

S
A
-I
N
D

S
X
D
H

T
hi

s
w

or
k

φ
(y

∈Z
|I y

|
p

,v
∈Z

| I v
|

p
)
:Z

| I x
|

p
×

Z
| I w

|
p

→
Z
p
,
φ

(y
,v

)(
x,
w

)
=

(w
� v

? �=
0)

·x
� y

(u
nb

d,
un

bd
)

W
ea

k
S
A
-S

IM
bi

-k
-L
in

−
A
B
P,

G
C

:a
ri

th
m

et
ic

br
an

ch
in

g
pr

og
ra

m
s,

ge
ne

ra
lc

ir
cu

its
,r

es
pe

ct
iv

el
y

−
A
D

,S
A

,S
el

:a
da

pt
iv

e,
se

m
i-

ad
ap

tiv
e

an
d

se
le

ct
iv

e
se

cu
ri

ty
,r

es
pe

ct
iv

el
y

−
IN
D

,S
IM

:i
nd

is
tin

gu
is

ha
bi

lit
y

an
d

si
m

ul
at

io
n

ba
se

d
se

cu
ri

ty
−

|at
t|,

|m
sg

|:l
en

gt
hs

of
at

tr
ib

ut
e

an
d

m
es

sa
ge

,r
es

pe
ct

iv
el

y
−

| I x
| :s

iz
e

of
th

e
in

de
x

se
to

f
x

−
bn

d,
un

bd
:b

ou
nd

ed
,u

nb
ou

nd
ed

,r
es

pe
ct

iv
el

y
−

D
B
D
H
,L

W
E

,M
D
D
H

:d
ec

is
io

na
lb

ili
ne

ar
D

if
fie

–H
el

lm
an

,l
ea

rn
in

g
w

ith
er

ro
rs

,m
at

ri
x

de
ci

si
on

al
D

if
fie

–H
el

lm
an

,r
es

pe
ct

iv
el

y

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 7 of 73 29

data of patients to determine the state of some emerging diseases such as lung infections,
influenza, dengue, etc., in a certain region of the country so that necessary steps could
be taken in advance to prevent escalation of the diseases. The MoH provisions certain
research centers for this purpose and provides secret keys generated for specific policies
and functions to the centers. The secret keys enable a specific group of scientists in the
research centers to compute patient data functions if they are authorized or satisfy the
embedded policies. For example, the hospitals are requested to encrypt the patients’
dataset x including body temperature, heart rate, blood pressure, etc., under attributes
w including social security number (SSN), race, age, sex, past significant diseases, ra-
diological accession number and possible designations of scientists that are allowed to
study such data. The MoH employs an AB-IPFE scheme to compute the average body
temperature or blood pressure of the patients recently treated for influenza. The MoH
provides a secret key SKP,y to the research center, where P is the policy defined by
5000 < SSN < 8000, a specified range of social security numbers (of patients) and
Infectious Disease Specialist (scientists), and y is a chosen weight vector.

In this example, data users search patients’ health records with respect to some specific
attributes and then perform statistical computations on the encrypted data. Since inner
product predicates enable evaluation of disjunctions, polynomials, and CNF/DNF for-
mulae [37], we can consider any such predicates with IPFE for computing the average.
Therefore, P-IPFE, a particular case of AB-IPFE, serves the purpose of the MoH. How-
ever, if the MoH employs an existing AB-IPFE [5,38,47] that supports only bounded
size data/attribute sets, it faces two major problems. Firstly, it is almost impossible to
guess the size of data/attribute sets (or the number of patients/characteristics) at the time
of the system setup. Eventually, the MoH is forced to choose an upper bound on the
size of those sets; hence, the size of system parameters (especially the master public
key) grows with the upper bound. Moreover, the ciphertexts that are ever generated by
the hospitals scale with the upper bound although the associated message/attribute size
is much smaller than the bound. Secondly, existing AB-IPFEs [5,38,47] completely
disclose the attributes associated with ciphertexts. This leads to the leakage of patients’
personal information (age, social security number, etc.) to the data users, which could be
against the privacy policy of the hospitals. On the other hand, if the MoH employs our
attribute-hiding UP-IPFE schemes, then it circumvents these two essential drawbacks.
More specifically, the ciphertext hides the associated attributes and grows linearly with
the data size and attribute sets available at the time of the encryption.

1.2. Related Work

The first unbounded IPFE schemes were concurrently and independently proposed by
Tomida and Takashima [49] and Dufour-Sans and Pointcheval [27]. In [49], Tomida
and Takashima presented two constructions for unbounded IPFE (UIPFE): a private key
UIPFE with full function-hiding and a public key UIPFE with adaptive indistinguisha-
bility security based on the standard SXDH assumption. Concurrently, in [27], Dufour-
Sans and Pointcheval presented public key UIPFE constructions with succinct public
key, master secret key as well as succinct functional decryption keys. They also consid-
ered identity-based access control in their constructions. However, their constructions
achieve only selective security in the random oracle model. Abdalla et al. combined the

 29 Page 8 of 73 U. Dowerah et al.

Data Owner
(Hospital)

Data Users
(Infectious disease

Specialists at
RC)1 n

Central
authority

(MoH)

Cloud Server

PP SKP,y

 = {Temp, BP, x

P : (5000 < SSN < 8000) ∧ (Infectious Disease Specialists)

 = {SSN,Race,
 Scientist ID,
w

RC1

RCn

RC : Research centre i i

Embedded Policy

y : Chosen weight vector

⋮

Fig. 1. Application of UP-IPFE .

access control properties of ABE with IPFE in [5] and presented the first constructions of
attribute-based IPFE (AB-IPFE) using state-of-the-art ABE schemes from prime order
pairing groups. Agrawal et al. extended the construction of [5] to the multi-authority
setting in [9]. However, the constructions of [5] do not achieve the attribute-hiding prop-
erty, whereas the multi-authority construction in [9] only achieves weak attribute-hiding
property. Further, in [7], Abdalla et al. proposed an FE scheme for a new functionality
called attribute-weighted sums with semi-adaptive security and subsequently, Datta and
Pal [26] presented the first adaptively secure FE schemes for attribute-weighted sums.
However, these constructions are only partially attribute-hiding and not to mention that
all of these attribute-based FE schemes [5,7,9,26] are in the bounded setting. Recently,
the first unbounded FE scheme for quadratic functions has been proposed by Tomida
in [48]. The scheme achieves semi-adaptive indistinguishability-based security under
the MDDH assumption in the random oracle model. The same work provides attribute-
based access control over the UQFE via arithmetic branching programs (ABP) [7]. Since
ABPs are a type of a non-uniform model of computation, the length of attributes in [48]
is essentially bounded. Nevertheless, the attributes associated with the ABPs are public,
yielding a partially attribute-hiding FE scheme.

Organization of the paper
In Sect. 2, we briefly overview our techniques. In Sect. 3, we define some standard

notations and recall the definition of bilinear groups, our complexity assumptions, DPVS
and the syntax with the security definitions of UP-IPFE scheme. In Sect. 4, we propose
the construction of UZP-IPFE along with a security proof. Section 5 presents the defini-
tion of UQFE and a candidate construction along with simulation-based security proof.
Section 6 describes our generic construction of UNP-IPFE along with simulation-based
security analysis. Further, we give instantiations of our UNP-IPFE scheme in both public
key and private key settings. Finally, in Appendix A, we provide the IND-based security
analysis of our proposed UNP-IPFE construction.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 9 of 73 29

2. Technical Overview

This section gives an overview of how to achieve UP-IPFE schemes with semi-generic
and generic approaches. Before going into the technical details, we discuss the notion
of UP-IPFE in a bit more detail.
UP-IPFE and its Variants. The setup algorithm generates a pair of master public–
private keys. A secret key SKy,v is generated using the master secret key where y =
(yi)i∈Iy,v = (v j) j∈Iv are denoted as key and predicate vectors, respectively. A ciphertext
CTx,w is computed using the master public key wherex = (xi)i∈[m1] andw = (w j) j∈[m2]
represents the message and attribute vectors, respectively. The decryption recovers 〈x, y〉
depending upon the value of R(w, v) and a relation between the index sets. Note that
the inner product computation is defined based on the relation between the index sets of
the vectors involved:

– Permissive relationRp: (a = (ai)i∈Ia ,b = (b j) j∈Ib) ∈ Rp if and only if Ib ⊆ Ia.
In this case, we define 〈a,b〉 =∑i∈Ib aibi .

– Strict relation Rs : (a = (ai)i∈Ia ,b = (b j) j∈Ib) ∈ Rs if and only if Ia = Ib = I .
In this case, we define 〈a,b〉 =∑i∈I ai bi .

An UP-IPFE scheme is permissive if (x, y), (w, v) ∈ Rp. On the other hand, if (x, y), (w, v)
∈ Rs then the UP-IPFE is said to be strict. Next, the permissive/strict UP-IPFE is further
classified according to R(w, v):

– Zero predicate or UZP-IPFE: R(w, v) = 1 if and only if 〈w, v〉 = 0.
– Non-zero predicate or UNP-IPFE: R(w, v) = 1 if and only if 〈w, v〉 �= 0.

We call a secret key accepting (resp. non-accepting) if it can decrypt (resp. fails to
decrypt) a given ciphertext. The goal of full attribute-hiding security is to restrict any
adversary from extracting information other than 〈x, y〉 when R(w, v) = 1 even given
many accepting and non-accepting secret keys with respect to the challenge ciphertext. In
contrast, the weak attribute-hiding notion allows an adversary to query any polynomial
number of non-accepting and accepting keys with certain restriction on the predicate
vectors associated with the accepting keys. The adversary is allowed to learn a set of
the inner product values between the predicate and attribute vectors, so it is impossible
to recover the challenge attribute vector from the set. Such restriction on the predicate
vectors has also been considered in the weak attribute-hiding (bounded) P-IPFE of
Agrawal et al. [9].

Our first construction is a permissive UZP-IPFE scheme that achieves semi-adaptive
full attribute-hiding indistinguishability-based (SA-FAH-IND) security in the standard
model under the SXDH assumption. Our second contribution is a strict UNP-IPFE
scheme in the secret key setting, i.e., the encryption is performed in the presence of the
master secret key. The strict UNP-IPFE achieves semi-adaptive weak attribute-hiding
simulation-based (SA-WAH-SIM) security under the standard bilateral k-Lin assump-
tion. Our UZP-IPFE is more technical and semi-generic, whereas the UNP-IPFE is
simple and generic, as discussed next.

 29 Page 10 of 73 U. Dowerah et al.

2.1. Public Key UP-IPFE: UZP-IPFE

Our first contribution is a full attribute-hiding UZP-IPFE that on a high level utilizes
pairing-based dual system encryption techniques [50]. The starting point of the construc-
tion is the public key UIPFE scheme of Tomida and Takashima [49], hereafter denoted
by TT18. Since UZP-IPFE is a particular class of AB-IPFE in the sense that one gets the
inner product value if the attribute is satisfying, while the adversary is allowed to query
both accepting and non-accepting keys. Consequently, such an adversary is more pow-
erful than the UIPFE [27,49] or UZIPE [28,45] adversary. Existing works [5,9,38,47]
already have noted this fact with a conclusion that it is highly unlikely to obtain AB-
IPFE, even in the bounded setting, by combining an IPFE with an ABE generically.
Therefore, the possible path of building the full attribute-hiding UZP-IPFE from TT18
and the UZIPE of Okamoto and Takashima [45] is uncertain and might be unrealizable.

To achieve the unbounded property with permissive relation, TT18 indeed employed
the index encoding technique of Okamoto and Takashima [45]. The purpose of encoding
indices into the secret keys and ciphertexts is to generate additional entropy which
prevents an adversary to learn extra information about the message vector via a key
vector that does not belong to the permissive relation. In this work, we extend such an
encoding technique in the context of UZP-IPFE and devise a novel procedure to combine
TT18 and [45] in a semi-generic way to achieve our goal.

Main Intuition. We start by discussing our core idea for the construction of UZP-IPFE.
Recall that, a ciphertext CTx,w encodes two vectors x = (xi)i∈[m1],w = (wi)i∈[m2] and
a secret key SKy,v encodes two vectors y = (yi)i∈Iy,v = (vi)i∈Iv such that the scheme
outputs 〈x, y〉 if (x,y), (w,v) ∈ Rp and R(w,v) = 1, i.e., 〈w, v〉 = 0. As a starting
point, we set concatenated vectors (x,w) and (y,v) as the message and key vector into the
UIPFE of TT18. Observe that, this naturally satisfy the required functionality, i.e., by the
correctness of UIPFE one obtains 〈w, v〉+〈x, y〉. Thus, the sum leads to 〈x, y〉 if 〈w, v〉 =
0. However, in the case of 〈w, v〉 �= 0, the sum is easily distinguishable to an adversary
from a random entity. In the next step, we avoid such a trivial attack by randomizing
the predicate and attribute vectors. In particular, w and v are replaced with δw and ωv,
respectively, for uniformly random δ, ω. Now, the sum becomes δω〈w, v〉 + 〈x, y〉 and
we might hope to hide 〈x, y〉 whenever 〈w, v〉 �= 0. Our construction is based on this
basic intuition, although many challenges await to be overcome.

At a first glance, the basic scheme described above follows the correctness of a UZP-
IPFE. However, it is easy to see that the scheme already fails to satisfy the desired permis-
siveness since Iy ∪ Iv ⊆ [m1 + m2] does not guarantee that Iy ⊆ [m1] and Iv ⊆ [m2].
Another concern arises regarding the full attribute-hiding security. In particular, the
SA-FAH-IND security enables an adversary to make both accepting and non-accepting
queries, meaning that for the challenge message pair (w(0), x(0)), (w(1), x(1)), the adver-
sary can query secret keys with (v, y, Iv, Iy) where either 〈w(0), v〉 �= 0, 〈w(1), v〉 �= 0
or 〈w(0), v〉 = 〈w(1), v〉 = 0 and 〈x(0), y〉 = 〈x(1), y〉. Simply applying the proof tech-
nique of TT18 does not work for us in simulating the non-accepting keys as the equality
δω〈w(0), v〉+〈x(0), y〉 = δω〈w(1), v〉+〈x(1), y〉 would not hold for such keys with high
probability. Hence, encrypting the vectors x,w together using TT18 seems problematic
in realizing UZP-IPFE.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 11 of 73 29

We therefore take a different route here. Our next approach is to encrypt w and x using
two encryption calls of TT18 and the secret key consists of two TT18 keys corresponding
to (v, Iv) and (y, Iy). This allows us to achieve the desired correctness property (i.e.,
permissiveness) and put security restrictions separately on (w, (v, Iv)) and (x, (y, Iy)).
However, two independent TT18 keys in the modified construction actually opens door
to a mix-n-match attack. In particular, given secret keys SKv,y = (skv, sky) for (v, Iv),
(y, Iy) and SKv′,y′ = (skv′ , sky′) for (v′, Iv′), (y′, Iy′), one can create a new legitimate
secret key SKv,y′ = (skv, sky′) which may lead to an attack to the UZP-IPFE.
AMiddleRoute.From the above discussion, it is evident that neither the idea of encrypt-
ing the concatenated vector nor the independent encryption method serves our purpose.
Instead, we consider a middle route, a hybrid of these two ideas. The UZP-IPFE secret
key or ciphertext is computed using two parallel TT18 key generations or encryptions,
but these are not completely independent of each other. As per the construction of TT18,
the secret key and ciphertext for the vectors y,x are encoded by the components1

sky : [[ki = (ρi (−i, 1), yi , γi)B∗]]2 s.t.
∑

i γi = 0; ctx : [[ci = (πi (1, i), xi , z)B]]1

where the bases B,B∗ are sampled from GL4(Zp) according to a dual pairing vector
space (DPVS) structure [43] and [[·]]ι represents encoding vectors or matrices in the
group Gι. The first two entries of ki or ci encode the indices, the third entry encodes the
vector and the randomness placed in the last entry ensures that no partial information is
leaked. While calling the TT18 key generation or encryption twice for the UZP-IPFE, our
idea is to jointly sample the randomnesses residing in the last entry. More precisely, for
the pair of vectors (y,v), we employ a joint secret sharing protocol. A set S = {γi , γ̃ j }i, j
of joint secret shares of zero binds the secret key parts sky and skv which prevents the
aforementioned mix-n-match attack. On the other hand, the ciphertext parts ctx and ctw
share a common randomness z to ensure that a secret key holder successfully combines
the secret shares from S at the time of the decryption. Applying these ideas we now
present a simplified UZP-IPFE scheme as follows.

SKy,v : [[ki = (ρi (−i, 1), yi , γi)B∗]]2
[[k j = (ρ̃ j (− j, 1), ωv j , γ̃ j)B∗]]2 s.t.

∑
i γi +∑ j γ̃ j = 0;

CTx,w : [[ci = (πi (1, i), xi , z)B]]1
[[c j = (π̃ j (1, j), δw j , z)B]]1.

The hybrid approach makes sure that the UZP-IPFE satisfies the desired permissive
property individually for the pair of vectors (x,y) and (w,v). At the same time, it restricts
an adversary to combine different secret keys and eventually mount an attack to the
system. However, the scheme allows an adversary to perform a different kind of mix-n-
match attack. Suppose the index sets corresponding to the vectors satisfy the condition
Iy ⊆ Iw and Iv ⊆ Ix then it is possible to pair ki with c j and k j with ci and obtain the
sum δ〈w, y〉 + ω〈x, v〉. Now, if the vectors are chosen such that 〈w, y〉 = 0 and 〈x, v〉
comes from a polynomial range then it is possible to extract unwanted information about
the message vector x. To prevent such an attack by cross pairing, we use different pair of

1We exclude the additional subspaces that are only necessary for security analysis.

 29 Page 12 of 73 U. Dowerah et al.

bases (B,B∗) for encoding x, y and (B̃, B̃
∗
) for encoding w, v. Next, we briefly describe

the security of our UZP-IPFE.
Remaining Challenges. It remains to discuss the full attribute-hiding security of the
scheme. Although our secret keys and ciphertexts are closely distributed to the TT18
framework, several technical challenges remain to be addressed due to the strong security
requirement. As discussed earlier, an adversary of UZP-IPFE is more powerful than the
UIPFE or TT18 in the sense that we need to additionally restrict the adversary to gain any
information about the message/attribute vector from a non-accepting key that satisfies
the permissive relation Rp, but the zero-predicate relation R does not hold. On the other
hand, no security can be guaranteed for the encrypted message if an adversary of UZIPE
[45] gets to see an accepting key. In contrast, our UZP-IPFE must ensure security for the
message and attribute vectors against an adversary that holds the power of UIPFE and
(full attribute-hiding) UZIPE. We acquire such a strong notion of security by extending
the framework of TT18 from UIPFE to UZP-IPFE, i.e., from unbounded length message
hiding to unbounded length message-attribute hiding in the context of FE.

We now briefly discuss the IND security outline of the UZP-IPFE scheme. Suppose
(x(0),w(0)) and (x(1),w(1)) are the challenge message-attribute vector pairs. The adver-
sary can ask mainly the following three types of secret keys for the key–predicate pair
(y,v):

1. (x(0), y) �∈ Rp or (w(0), v) �∈ Rp.
2. (x(0), y), (w(0), v) ∈ Rp, but R(w(0), v) �= 1 and R(w(1), v) �= 1.
3. (x(0), y), (w(0), v) ∈ Rp and R(w(0), v) = R(w(1), v) = 1 and 〈x(0), y〉 =

〈x(1), y〉.
To handle the secret key queries of type 1, we use techniques from previous works
[45,49]. In particular, we add one additional subspace to the encoded secret key vectors
and fill it with one copy of S, say Scopy = {γ copy

i , γ̃
copy
j }i, j and we use zcopy into

the corresponding entry of the encoded ciphertext vectors. Next, we replace Scopy with
uniform sharesSrand = {γ rand

i , γ̃ rand
j }i, j using the amplified entropy generated from the

encoded indices for non-permissive keys. This prevents decryption by type 1 secret keys.
We apply a similar strategy for simulating the type 2 keys. However, we fail to replace
Scopy by Srand using the entropy amplification technique used by [49] as the vectors
satisfy the permissive relation. One hope is to procreate the required entropy using the
condition that 〈w(b), v〉 �= 0, which is exactly the direction we follow. To execute this
step, the simulator requires the information of R(w(b), v). Thus, the pair of attributes
(w(0),w(1)) should be available while simulating the type 2 secret keys. Hence, the
simulator needs to know the challenge attributes before replying to the adversary’s key
queries. Finally, we are left with the accepting or type 3 key queries. In this case, we utilize
two linear transformations using the facts 〈w(0) − w(1), v〉 = 0 and 〈x(0) − x(1), y〉 = 0
to ensure that the adversary gains no information about the challenge bit b using the
type 3 secret keys. Although the core technical idea discussed above provides a very
high level intuition on how we achieve the full attribute-hiding security of UZP-IPFE,
there are several subtle challenges faced while adapting the framework of TT18 into our
setting. We present a complete and formal security analysis in Sect. 4.2.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 13 of 73 29

2.2. Secret Key UP-IPFE: UNP-IPFE

We construct an UP-IPFE with non-zero inner product predicate having succinct secret
keys and compact ciphertexts. In particular, we provide a generic construction of a weak
attribute-hiding simulation secure UNP-IPFE. Although our UNP-IPFE is built in the
secret key setting, it has the nice advantage over the proposed UZP-IPFE of having
constant size secret keys, that is the secret key size does not depend on the (unbounded)
length of predicate or key vectors. The ciphertext must depend on the length of the
message as well as the attribute vectors since we aim to achieve attribute-hiding security.
However, a compact ciphertext should only grow linearly with those lengths. Recall that,
the secret key and ciphertext both grow linearly with the length of vectors in case of our
IND-based secure UZP-IPFE. Further, we provide security of UNP-IPFE in the SIM-
based model which is known to be stronger than the IND-based model [20]. To the best
of our knowledge, no unbounded AB-IPFE features properties such as attribute-hiding
in the simulation setting and succinctness of secret keys.
Main Idea. The starting point is the generic transformation of a NIPE scheme from an
IPFE in the bounded-vector setting by [36,47]. The generic construction encrypts two
vectors independently: the attribute vector w and payload multiplied with the attribute
vector Mw using the IPFE scheme. If a IPFE secret key skv is given then we first
recover 〈w, v〉, M〈w, v〉 and ultimately the payload M if 〈w, v〉 �= 0. We need to recover
an inner product value instead of a payload in our setting. Our idea is to replace the
IPFE with an existing UIPFE scheme and encrypt the vector (x ⊗ w). This yields a
UNP-IPFE scheme as follows. Suppose UIPFE = (iSetup, iKeyGen, iEnc, iDec) be
a pairing-based UIPFE scheme [27,49].

SKy,v : isky⊗v ← iKeyGen(y ⊗ v)
iskv ← iKeyGen(v)

CTx,w : ictx⊗w ← iEnc(x ⊗ w)

ictw ← iEnc(w).

At the time of the decryption, we recover2 〈x, y〉 from the outcomes 〈x ⊗ w, y ⊗ v〉 =
〈x, y〉 · 〈w, v〉 and 〈w, v〉 of iDec, if 〈w, v〉 �= 0. We seem to be on the verge of the
desired solution, but the ciphertext size is unacceptable since it swallows a quadratic
factor with the lengths of x and w. Our next idea is to employ a UQFE scheme [48]
to compute the quadratic term 〈x ⊗ w, y ⊗ v〉. A UQFE scheme generates secret keys
for unbounded length vectors f and encrypts two message vectors z1, z2 of arbitrary
length such that the decryption only recovers 〈z1 ⊗ z2, f〉 if the index sets satisfy a given
relation. We say that the UQFE has compact ciphertexts if the size of the ciphertexts
scales linearly with the lengths of z1 and z2. This readily yields an UNP-IPFE that enjoys
compact ciphertexts given that the UQFE has linear size ciphertexts. More precisely, let
us consider a UQFE = (qSetup,qKeyGen,qEnc,qDec) scheme. Then, our UNP-
IPFE works as follows.

SKy,v : qsky⊗v ← qKeyGen(y ⊗ v)
iskv ← iKeyGen(v)

CTx,w : qctx⊗w ← qEnc(x,w)

ictw ← iEnc(w).

Observe that the correctness follows similarly as discussed above. The succinctness
of the UNP-IPFE depends on the succinctness of the UQFE and UIPFE. It is not difficult
to prove the weak attribute-hiding (semi-adaptive) simulation security of the UNP-IPFE.

2The inner product values are first recovered in the exponent of the target group then we extract the value
〈x, y〉 which comes from a polynomial range, if 〈w, v〉 �= 0.

 29 Page 14 of 73 U. Dowerah et al.

In the ideal world, the functional values of the challenge message vectors are used while
generating secret keys and the challenge ciphertext is computed using the simulated
encryption algorithms of UIPFE and UQFE.

The UIPFE of Dufour-Sans and Pointcheval [27] has succinct keys, but it is IND-based
secure in the ROM. Moreover, no simulation secure succinct QFE/IPFE in the unbounded
setting exists. The only UQFE scheme, proposed very recently by Tomida [48], is secure
in the IND-based model and both the secret key and ciphertext sizes grow linearly with
the vector lengths. Further, the UQFE has much larger ciphertext than existing (bounded)
QFE schemes [9,14,31,51]. Hence, our next target is to design a simulation-secure UQFE
scheme that has constant size secret keys and compact ciphertexts.

UQFE from Pairing. We start with the recent QFE scheme by Hoeteck Wee [51]. The
QFE utilizes the techniques of linear function evaluations [31,42] to compute quadratic
terms. An important property of the QFE is that the secret keys are succinct which
is what we require for our UNP-IPFE. We exploit properties of the tensor product to
transform the QFE of [51] into UQFE that preserves the succinctness. We first revisit
the QFE of [51]. Let us consider the class of quadratic functions over Zn

p ×Z
n
p given by

(z1, z2) �→ (z1 ⊗ z2)f� where f ∈ Z
n2

p .

qSetup′ :
A1 ← Z

k×n
p ,A2 ← Z

k′×n
p

qpp′ =
([[A0,A0W,A1]]1,

[[A1,A2]]2
)

A0 ← Z
k′×(k′+1)
p ,

W ← Z
(k′+1)×(k+k′)n
p

qmsk′ = W

qsk′
f : [[sk = W̃f]]2, f̃ =

(
(A1 ⊗ In)f�
(In ⊗ A2)f�

)

qct′z1,z2
: [[c0 = s0A0]]1, [[c1 = s1A1 + z1]]1,

[[c2 = s2A2 + z2]]2,

s1 ← Z
k
p, , s0, s2 ← Z

k′
p

[[c3 = s0A0W + (s1 ⊗ z2 ‖ c1 ⊗ s2)]]1.

The decryption algorithm extracts [[(z1 ⊗ z2)f�]]T from the product [[(c1 ⊗ c2)f�]]T
by getting rid of the extra term with the help of [[sk]]2, [[c0]]1 and [[c3]]1. To upgrade
the scheme into UQFE, we need to run the setup independent of the vector lengths. If
we allow using hash functions (to be modeled as ROM in the security proof), then one
would have generated the matrices A1 and A2 on the fly depending on the indices of
the vectors. However, it is not so trivial to compute W on the fly by hashing the indices
directly. This is because W depends on the indices of both z1 and z2 as well as it must
scale with the row-numbers of A1 and A2. Our idea is to split W using the properties of
tensor product. In particular, we write it as

W =
[

(W1 ⊗ w1)︸ ︷︷ ︸
(k′+1)×kn

‖ (W2 ⊗ w2)︸ ︷︷ ︸
(k′+1)×k′n

]

where W1 ∈ Z
(k′+1)×k
p and W2 ∈ Z

(k′+1)×k′
p are chosen at the system setup and the

vectors w1,w2 ∈ Z
n
p are generated using a hash function. The reader might wonder

whether we are done with constructing UQFE (in the public key setting), but W is the
master secret key and hence the security of the system is at stake if we make some parts
of W publicly computable. We surpass the vulnerability by replacing the hash function
with a pseudorandom function, which eventually leads to a secret key UQFE with the
desired properties. More precisely, our UQFE works as follows:

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 15 of 73 29

qSetup :
K ← K
qpp =

([[A0W1,A0W2]]1,

[[A0]]1
) A0 ← Z

k′×(k′+1)
p ,

W1 ← Z
(k′+1)×k′
p ,W2 ← Z

(k′+1)×k
p

qmsk = W1,W2, K

qskf :
W̃1 = W1 ⊗ PRF(K , If1),H1(If1) = ([[A1]]1, [[A1]]2)

W̃2 = W2 ⊗ PRF(K , If2),H2(If2) = [[A2]]2
[[sk = Wf1,f2 f̃]]2

Wf1,f2 = (W̃1 ‖ W̃2)

f̃ =
(

(A1 ⊗ In)f�
(In ⊗ A2)f�

)

qctz1,z2
: [[c0 = s0A0]]1, [[c1 = s1A1 + z1]]1,

[[c2 = s2A2 + z2]]2,

s1 ← Z
k
p, , s0, s2 ← Z

k′
p

[[c3 = s0A0Wz1,z2 + (s1 ⊗ z2 ‖ c1 ⊗ s2)]]1

where we assume that the secret key vector f is associated with the index set of the form
If = If1 ⊗ If2 such that If1 and If2 corresponds to the weights of z1 and z2, respectively.
Note that, the correctness of the scheme follows similarly as in the above QFE ifWz1,z2 =
Wf1,f2 = W, i.e., the decryption recovers (z1 ⊗ z2)f� if (f1, z1), (f2, z2) ∈ Rs where
f = f1 ⊗ f2 (according to If1 , If2). Thus, we are able to upgrade Wee’s QFE to a strict
UQFE scheme in the secret key setting based on the ROM. On the positive side, our
UQFE achieves efficiency identical to [51] regarding the secret key and ciphertext sizes,
that is the UQFE preserves succinctness of the secret keys and compactness of the
ciphertexts. Although the UQFE of Tomida [48] is built in the public key setting and
satisfy permissiveness based on the ROM, the scheme does not satisfy succinctness and
is proven secure in the IND-based model. Moreover, our UQFE is simple to understand
whereas the UQFE of [48] is much more complicated and requires a newly tailored
building block, namely partially hiding unbounded slot IPFE [48]. Lastly, we note that
UIPFE is a particular case of UQFE and hence we achieve a strict (secret key) UNP-IPFE
by plugging our strict UQFE into the generic transformation described above. Moreover,
a permissive (public key) UNP-IPFE scheme can be obtained by plugging the permissive
UQFE of [48] and the UIPFE of [49] into our generic UNP-IPFE construction that
achieves IND-based security in the ROM.

3. Preliminaries

Notations. For a, b ∈ N where a < b, we denote by [a, b] the set {a, . . . , b} and
[a] = [1, a] = {1, . . . , a}. For some prime p, Zp denotes a finite field of order p.
For some n ∈ N, GLn(Zp) denotes the set of all n × n invertible matrices with entries
from Zp. We indicate by a ← S the process of random sampling of an element a from
the finite set S. For a distribution X , we write x ← X to denote that x is sampled at
random according to distribution X . We consider a bold uppercase letter to represent a
matrix, e.g., A, a bold lowercase letter to indicate a vector, e.g., x and Ix denotes the
index set of the vector x. For example, if x = (x1, x3, x8) then we write Ix = {1, 3, 8}.
We denote by A ⊗ B the tensor product between the matrices A and B. Consider gι

is a generator of the cyclic group Gι. If x = (x1, x2, . . . , xn) is an n-tuple vector then

 29 Page 16 of 73 U. Dowerah et al.

[[x]]ι = (gx1
ι , gx2

ι , . . . , gxnι). For a matrix A = (ai j) ∈ GLn(Zp), we define [[A]]ι as

[[A]]ι =

⎡

⎢
⎢
⎢
⎣

ga11
ι ga12

ι · · · ga1n
ι

ga21
ι ga22

ι · · · ga2n
ι

...
...

. . .
...

gan1
ι gan2

ι · · · gannι

⎤

⎥
⎥
⎥
⎦

.

Let In denote an n × n identity matrix and A� signifies the transpose of the matrix
A. We use ‘≈s’ to denote two distributions being statistically indistinguishable, ‘≈c’
to denote two distributions being computationally indistinguishable, and ‘≡’ to denote
two distributions being identically distributed. Concatenation between two matrices or
vectors is denoted by the symbol ‘ ‖ ’. For R[0,1] = {x ∈ R : 0 ≤ x ≤ 1}, a function
negl : N → R[0,1] is said to be negligible if for every c ∈ N there exists a λc ∈ N such
that negl(λ) ≤ 1

λc
for all λ > λc.

3.1. Bilinear Group

A bilinear group G = (p,G1,G2,GT , g1, g2, e) consists of a prime p, two multiplica-
tive source groupsG1,G2 and a target groupGT with the order |G1| = |G2| = |GT | = p
where g1, g2 are the generators of the group G1 and G2, respectively. Let us consider a
bilinear map e : G1 × G2 → GT . It satisfies the following:

– bilinearity: e(ga1 , gb2) = e(g1, g2)
ab for all g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp and

– non-degeneracy: e(g1, g2) is a generator of GT .

A bilinear group generator GBG.Gen(1λ) takes the security parameter λ and outputs a
bilinear group G = (p,G1,G2,GT , g1, g2, e) with a λ-bit prime integer p.

3.2. Complexity Assumptions

Assumption 1. (Symmetric External Diffie–Hellman (SXDH)) For ι ∈ {1, 2}, we
define the distribution (D, [[tβ]]ι) on a bilinear groupG = (p,G1,G2,GT , g1, g2, e) ←
GBG.Gen(1λ) as

D = (G, [[a]]ι, [[u]]ι) for a, u ← Zp

[[tβ]]ι = [[au + β f]]ι f orβ ∈ {0, 1} and f ← Zp.

We say that the SXDH assumption holds in G if for all PPT adversaries A, if there exists
a negligible function negl(·) satisfying the following:

AdvSXDHA (λ):= |Pr[A(D, [[t0]]ι) = 1] − Pr[A(D, [[t1]]ι) = 1]| ≤ negl(λ).

Assumption 2. (Matrix Decisional Diffie–Hellman (MDDHd
k,�)) Consider a bilinear

groupG = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ) with k, �, d ∈ N. We say that the
MDDHd

k,� assumption holds in G if for all PPT adversaries A, there exists a negligible

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 17 of 73 29

function negl(·) satisfying the following

Adv
MDDHd

k,�
A (λ) := |Pr[A(G, [[A]]1, [[AB]]1) = 1] − Pr[A(G, [[A]]1, [[R]]1) = 1]| ≤ negl(λ)

where A ← Z
�×k
p ,B ← Z

k×d
p with R ← Z

�×d
p .

Remark 1. The MDDH assumption on G2 can be defined in an analogous way. Escala
et al. [29] showed that

k-Lin �⇒ MDDH1
k,k+1 �⇒ MDDHd

k,� ∀k, d ≥ 1, � > k

with a tight security reduction. For � ≤ k, the MDDHd
k,� assumption also holds uncon-

ditionally.

Assumption 3. (Bilateral Matrix Decisional Diffie–Hellman (bi-MDDHd
k,�)) Consider

a bilinear group G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ) with k, �, d ∈ N. We
say that the bi-MDDHd

k,� assumption holds inG if for all PPT adversariesA, there exists
a negligible function negl(·) satisfying the following

Adv
bi-MDDHd

k,�
A (λ):= |Pr[A(G, [[A]]1, [[A]]2, [[AB]]1, [[AB]]2) = 1]

− Pr[A(G, [[A]]1, [[A]]2, [[R]]1, [[R]]2) = 1]| ≤ negl(λ)

where A ← Z
�×k
p ,B ← Z

k×d
p with R ← Z

�×d
p .

3.3. Dual Pairing Vector Space (DPVS) [43]

Let G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ). For a natural number n ∈
N, we generate a random dual orthonormal bases (B,B∗) ← GOB.Gen(Z

n
p) and a

DPVS as paramsV = (p, V, V ∗,GT , A1, A2, E) ← GDPVS.Gen(n,G) where B ←
GLn(Zp) and B∗ = (B−1)� are dual orthonormal bases of the vector spaces V = G

n
1

and V ∗ = G
n
2, respectively. Let Aκ = (ge1

κ , ge2
κ . . . , genκ) for κ = 1, 2 where ei =

(

i−1
︷ ︸︸ ︷
0, ..., 0, 1,

n−i
︷ ︸︸ ︷
0, ..., 0). Then A1 and A2 are the canonical basis of V and V ∗, respectively.

Let us extend the bilinear pairing e : G1 ×G2 → GT to a mapping E : V × V ∗ → GT

as E([[xB]]1, [[yB∗]]2) = e(g1, g2)
〈x,y〉 for any two vectors x, y ∈ Z

n
p. Then for arbi-

trary vectors x1, x2, . . . , xk, y1, y2, . . . , y� ∈ Z
n
p, and any matrix M ∈ GLn(Zp), the

distributions
({xiB}i∈[k], {yiB∗}i∈[�]

)
and

({xiMB}i∈[k], {yiM∗B∗}i∈[�]
)

are identically
distributed where M∗ = (M−1)� is the orthonormal dual corresponding to the matrix
M. More generally, for any set S ⊆ [n] such that ∀i ∈ S,di = M−1bi , the distribu-
tions ({bi }i∈S, {xibi }i∈[k], {yib∗

i }i∈[�]) and ({di }i∈S, {xiMdi }i∈[k], {yiM∗d∗
i }i∈[�]) are

also identical. Therefore, (D,D∗) = (M−1B,MTB∗) are also random dual orthonormal
bases such that

({bi }i∈S, {xiB}i∈[k], {yiB∗}i∈[�]) ≡ ({di }i∈S, {xiMD}i∈[k], {yiM∗D∗}i∈[�]).

 29 Page 18 of 73 U. Dowerah et al.

Fig. 2. Dual orthonormal basis generator GOB.Gen(Zn
p) .

In Fig. 2, we describe a random dual orthonormal basis generator GOB.Gen(Z
n
p) for some

prime p and positive integer n.

3.4. Pseudo Random Function

Definition 1. A pseudo-random function (PRF) familyF = {FK }K∈Kλ
with a keyspace

Kλ, a domain Xλ and a range Yλ is a function family that consists of functions FK :
Xλ → Yλ. Let Randλ be the set of random functions with domain Xλ and co-domain
Yλ. Then for all PPT adversaries A, the following holds:

AdvPRF
A (1λ):=

∣
∣
∣Pr[AFK (·)(λ) = 1] − Pr[ARand(·)(λ) = 1]

∣
∣
∣ ≤ negl(λ)

with K ← Kλ and Rand(·) ← Randλ.

3.5. Unbounded Predicate Inner Product Functional Encryption

In the following, we define the notion of unbounded predicate inner product functional
encryption (UP-IPFE) for the message space {Xλ}λ, an attribute space {Wλ}λ, a predicate
class {Pλ}λ and a key space {Yλ}λ for any λ ∈ N where λ denotes the security parameter.
For any two vectors a = (ai)i∈Ia ,b = (bi)i∈Ib associated with the index sets Ia and Ib,
we define a permissive relation Rp such that (a,b) ∈ Rp if and only if Ib ⊆ Ia and the
inner product is defined as 〈a,b〉 = ∑i∈Ib aibi . Similarly, a strict relation Rs between
the vectors a, b is defined as (a,b) ∈ Rs if and only if Ib = Ia = I (say) and the inner
product is given by 〈a,b〉 = ∑

i∈I ai bi . It can be observed that if (a,b) ∈ Rp then
(a,b) ∈ Rs . Now, we describe the UP-IPFE scheme with the permissive relation. Our
UP-IPFE = (Setup,Enc,KeyGen,Dec) for a predicate relation R : Pλ × Wλ →
{0, 1} consists of four PPT algorithms satisfying the following requirements.
Setup(1λ) → (MPK,MSK) The setup algorithm takes as input the security parameter
1λ, and outputs a master public key and master secret key pair (MPK,MSK).
Enc(MPK, x,w) → CTx,w The encryption algorithm takes as input the master public
key MPK, a message vector x ∈ Xλ and an attribute w ∈ Wλ with the associated index
sets Ix, Iw, respectively, and outputs a ciphertext CTx,w.
KeyGen(MPK,MSK, y, v) → SKy,v The key generation algorithm takes as input the
master public key MPK, the master secret key MSK, a key vector y ∈ Yλ and a predicate

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 19 of 73 29

vector v ∈ Vλ with the associated index sets Iy and Iv, respectively, and outputs a secret
key SKy,v.
Dec(MPK,SKy,v,CTx,w) → d/⊥ The decryption algorithm takes as input the mas-
ter public key MPK, the ciphertext CTx,w, the secret key SKy,v, and outputs either a
decrypted value d or the special symbol ⊥ indicating failure.
Correctness For any λ ∈ N, any pair of message-attribute vectors (x,w) with associated
index sets Ix, Iw, any pair of key–predicate vectors (y, v)with associated index sets Iy, Iv,
if (x, y), (w, v) ∈ Rp with R(v,w) = 1 holds, then we have

Pr

⎡

⎢
⎣Dec(MPK,SKy,v,CTx,w) = 〈x, y〉 :

(MPK,MSK) ← Setup(1λ)

CTx,w ← Enc(MPK, x,w)

SKy,v ← KeyGen(MSK, y, v)

⎤

⎥
⎦ = 1.

Depending on the inner product value 〈w, v〉, we classify UP-IPFE as follows:

– unbounded zero predicate IPFE (UZP-IPFE): decryption recovers 〈x, y〉 whenever
(x, y), (w, v) ∈ Rp (or Rs) and R(w, v) = 1 holds if and only if 〈w, v〉 = 0.

– unboundednon-zero predicate IPFE (UNP-IPFE): decryption recovers 〈x, y〉when-
ever (x, y), (w, v) ∈ Rp (or Rs) and R(w, v) = 1 holds if and only if 〈w, v〉 �= 0.

Definition 2. (Semi-adaptive full attribute-hiding indistinguishability) TheUP-IPFE =
(Setup,Enc,KeyGen,Dec) is said to be semi-adaptive full attribute-hiding indistin-
guishability (SA-FAH-IND) secure if for any security parameter λ, any PPT adversary
A, there exists a negligible function negl such that the following holds

AdvUP-IPFEA,SA-FAH-IND(λ) :=
∣
∣
∣Pr
[
ExptUP-IPFE0,A,SA-FAH-IND(λ) = 1

]
− Pr

[
ExptUP-IPFE1,A,SA-FAH-IND(λ) = 1

]∣
∣
∣

≤ negl(λ)

where the experiment ExptUP-IPFEβ,A,SA-FAH-IND(λ) is defined for β ∈ {0, 1} as follows:

ExptUP-IPFEβ,A,SA-FAH-IND(λ)

1: (MPK,MSK) ← Setup(1λ).
2: (w(0),w(1)) ← A(1λ,MPK) where |Iw(0) | = |Iw(1) |.
3: (x(0), x(1)) ← AKeyGen(MPK,MSK,·,·)(MPK) where |Ix(0) | = |Ix(1) |.
4: CT(β)

x,w ← Enc(MPK, x(β),w(β)).

5: β ′ ← AKeyGen(MPK,MSK,·,·)(MPK,CT(β)
x,w).

6: Outputs: β ′.

In this experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes as input the key–
predicate vector pair (y,v) associated with the index sets Iy, Iv and outputs the secret
key SKy,v ← KeyGen(MPK,MSK, y, v). If (x(b), y), (w(b), v) ∈ Rp for all b ∈
{0, 1} then either R(w(0), v) = R(w(1), v) = 0, or R(w(0), v) = R(w(1), v) = 1 and
〈x(0), y〉 = 〈x(1), y〉.

 29 Page 20 of 73 U. Dowerah et al.

In this work, we consider a weaker security notion for UP-IPFE in the simulation-
based model with strict relation between the unbounded length vectors. We emphasize
that our weak attribute-hiding security notion also allows the adversary to query secret
keys that are capable of decrypting the challenge ciphertext, however, there is a restriction
on such queries.

Definition 3. (Semi-adaptiveweakattribute-hiding simulation security) TheUP-IPFE
= (Setup,Enc,KeyGen,Dec) is said to be semi-adaptive weak attribute-hiding sim-
ulation (SA-WAH-SIM) secure if for any security parameter λ, any PPT adversary A,
there exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗) such that the following
holds

AdvUP-IPFEA,SA-WAH-SIM(λ):=
∣
∣
∣Pr[ExpRealUP-IPFE,A(λ) = 1] − Pr[ExpIdealUP-IPFE,A,S (λ) = 1]

∣
∣
∣ ≤ negl(λ)

where the experimentsExpRealUP-IPFE,A(λ) andExpIdealUP-IPFE,A,S(λ) are defined as follows:

ExpRealUP-IPFE,A(λ)

1: (MPK,MSK) ← Setup(1λ)

2: (x∗,w∗) ← A(MPK)

3: CT∗ ← Enc(MPK, x∗,w∗)

4: b ← AKeyGen(MPK,MSK,·,·)(CT∗)

ExpIdealUP-IPFE,A,S (λ)

1: (MPK∗,MSK∗) ← Setup∗(1λ)

2: (x∗,w∗) ← A(MPK∗)

3: CT∗ ← Enc∗(MPK∗, Ix∗ , Iw∗)

4: b ← AKeyGen∗(MPK∗,MSK∗,·,·,·)(CT∗)

In the Real security experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes
input the key–predicate vector pair (y, v) with associated index sets Iy, Iv and out-
puts SKy,v ← KeyGen(MPK,MSK, y, v). In the Ideal security experiment, KeyGen∗
(MPK∗,MSK∗, ·, ·, ·) oracle returns the simulated secret key SK∗

y,v on input a pair of
key–predicate vectors y, vwith the associated index sets Iy, Iv and a pair of values (σ, μ)

where

(σ, μ) =
{

(〈w∗, v〉, 〈x∗, y〉), if (x∗, y), (w∗, v) ∈ Rs, R(w∗, v) = 1

(⊥,⊥), elsewhere.

Additionally, the secret key queries must satisfy the condition that dim{v : (w∗, v) ∈
Rs} ≤ |Iw∗ | − 1.

4. Our Full Attribute-Hiding UZP-IPFE

In this section, we construct a public key UZP-IPFE scheme in the permissive setting.
Our scheme is based on the DPVS framework introduced by Okamoto and Takashima
in [43].

4.1. Construction

Our UZP-IPFE = (Setup,Enc,KeyGen,Dec) scheme can be described in terms of
the following algorithms. As all pairing based IPFE in the literature, our required inner

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 21 of 73 29

product values come from a polynomial range so that at the end of the decryption phase,
we can efficiently perform an exhaustive search to obtain the value.
Setup(1λ) → (MPK,MSK) The setup algorithm takes as input the security parameter
λ and executes the following steps:

1. Sample a bilinear group G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ).
2. Set gT = e(g1, g2).
3. Generate a DPVS asparamsV = (p, V, V ∗,GT , A1, A1, E) ← GDPVS.Gen(7,G).

4. Sample B, B̃ ← GL7(Zp).

5. Set PP = (p, g1, g2, gT , V, V ∗, E).

6. Output MPK = (PP, {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}
)
,MSK = ({b∗

i , b̃
∗
i }i∈{1,2,...,4}).

Enc(MPK, x,w) → CTx,w The encryption algorithm takes as input the master public
key MPK, a message vector x = (xi)i∈[m1] ∈ Z

m1 , an attribute vector w = (wi)i∈[m2] ∈
Z
m2 and executes the following steps:

1. Parse MPK = (
PP, {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}

)
where PP = (p, g1, g2, gT , V

, V ∗, E).

2. Sample δ, α ← Zp and πi , π̃ j ← Zp for all i ∈ [m1], j ∈ [m2].
3. Compute

[[c1
i]]1 = [[(πi (1, i), xi , α, 0, 0, 0)B]]1 ∀i ∈ [m1].

[[c2
j]]1 = [[(π̃ j (1, j), δw j , α, 0, 0, 0)B̃]]1 ∀ j ∈ [m2].

4. Output CTx,w = ({[[c1
i]]1}i∈[m1], {[[c2

j]]1} j∈[m2]).
KeyGen(MPK,MSK, y, v) → SKy,v The key generation algorithm takes as input the
master public key MPK, the master secret key MSK, the key vector y = (yi)i∈Iy ∈ Z

|Iy|
and the predicate vector v = (vi)i∈Iv ∈ Z

|Iv| associated with the index sets Iy, Iv,
respectively. It performs the following steps:

1. Parse MPK = (
PP, {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}

)
where PP = (p, g1, g2, gT , V

, V ∗, E).

2. Parse MSK = ({b∗
i , b̃

∗
i }i∈{1,2,...,4}).

3. Sample ω ← Zp, ρi , ρ̃ j ← Zp and γi , γ̃ j ← Zp for all i ∈ Iy, j ∈ Iv such that∑
i∈Iy γi +∑ j∈Iv γ̃ j = 0.

4. Compute

k1
i = (ρi (−i, 1), yi , γi , 0, 0, 0)B∗ ∈ Z

7
p ∀i ∈ Iy.

k2
j = (ρ̃ j (− j, 1), ωv j , γ̃ j , 0, 0, 0)B̃

∗ ∈ Z
7
p ∀ j ∈ Iv.

5. Output SKy,v = ({[[k1
i]]2}i∈Iy , {[[k2

j]]2} j∈Iv, Iy, Iv).
Dec(MPK,SKy,v,CTx,w) → d/⊥ The decryptor takes as input the master public key
MPK, a ciphertext CTx,w associated with the message, an attribute vector pair x,w of
length m1, m2, respectively, and a secret key SKy,v corresponding to the key, predicate
vector pair y,vwith the index sets Iy, Iv. Then, the decryption algorithm works as follows:

 29 Page 22 of 73 U. Dowerah et al.

1. Parse MPK = (PP, {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}
)

where PP = (p, g1, g2, gT , V
, V ∗, E).

2. Parse SKy,v = ({[[k1
i]]2}i∈Iy , {[[k2

j]]2} j∈Iv, Iy, Iv) and CTx,w = ({[[c1
i]]1}i∈[m1],

{[[c2
j]]1} j∈[m2])

3. If (x, y) /∈ Rp or (w, v) /∈ Rp, output ⊥ .

4. Else, compute

h =
∏

i∈Iy

∏

j∈Iv
E
(
[[c1

i]]1, [[k1
i]]2

)
· E
(
[[c2

j]]1, [[k2
j]]2

)
.

5. Output loggT h.

Correctness For our aboveUZP-IPFE = (Setup,Enc,KeyGen,Dec) scheme, let the
master public key, and the master secret key pair be (MPK,MSK) ←UZP-IPFE.Setup(1λ),
the ciphertext beCTx,w = ({[[c1

i]]1}i∈[m1], {[[c2
j]]1} j∈[m2]) ← UZP-IPFE.Enc(MPK,x,w)

for a pair of vectors x = (xi)i∈[m1] ∈ Z
m1,w = (w j) j∈[m2] ∈ Z

m2 and the secret key be
SKy,v = ({[[k1

i]]2}i∈Iy , {[[k2
j]]2} j∈Iv, Iy, Iv) ← UZP-IPFE.KeyGen(MPK,MSK, y, v)

corresponding to a pair of vectors y = (yi)i∈Iy ∈ Z
|Iy|, v = (v j) j∈Iv ∈ Z

|Iv|. Since∑
i∈Iy γi +∑ j∈Iv γ̃ j = 0, the decryption succeeds if (x, y), (w, v) ∈ Rp and 〈w, v〉 = 0

as shown below

A =
∏

i∈Iy
E
(
[[c1

i]]1, [[k1
i]]2
)

= e(g1, g2)

∑
i∈Iy xi yi+α

∑
i∈Iy γi = [[〈x, y〉 + α

∑

i∈Iy
γi]]T .

B =
∏

j∈Iv
E
(
[[c2

j]]1, [[k2
j]]2
)

= e(g1, g2)

∑
j∈Iv ωδv jw j+α

∑
j∈Iv γ̃ j = [[ωδ(〈w, v〉) + α

∑

j∈Iv
γ̃ j]]T .

h = A · B = [[〈x, y〉 + ωδ〈w, v〉 + α(
∑

i∈Iy
γi +

∑

j∈Iv
γ̃ j)]]T = [[〈x, y〉 + ωδ〈w, v〉]]T . (4.1)

Using 〈w, v〉 = 0, it can be seen that the correctness follows from Eq. (4.1).

4.2. Security

Theorem 1. Assuming the SXDH assumption holds in the pairing groups, our
UZP-IPFE = (Setup,Enc,KeyGen,Dec) scheme is SA-FAH-IND secure as per
the security model described in Definition 2. More precisely, if there exists a PPT ad-
versaryA that breaks the SA-FAH-IND security of our UZP-IPFE scheme then we can
construct a PPT machine B against the SXDH assumption such that for any security
parameter λ, the advantage

AdvUZP-IPFEA,SA-FAH-IND(λ) ≤ m1,max[16(m1,max + m2,max)

+ 8m2,max(tmax − 1) + 8(smax − 1) + 5]AdvSXDHB (λ) + 2−�(λ)

where m1,max,m2,max be the maximum length of the challenge message and attribute
vectors (i.e., x and w), respectively, and smax, tmax be the maximum indices of key and

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 23 of 73 29

predicate vectors (i.e., y and v), respectively, with which A queries the key generation
oracle.

Proof. To prove the above Theorem 1, we use the following lemmas. �

Lemma 1. [49] Let m = m(λ), n = n(λ) be two integers. The problem 1-SXDH
(P1-SXDH) is to guess the bit β, given the following distributions:

G ← GBG.Gen(1
λ),paramsV ← GDPVS.Gen(7,G),B ← GL7(Zp).

ui = (π ′
i (1, i), 0, 0, 0, α′, 0, 0)B ∀i ∈ [m] with α′, {π ′

i }i∈[m] ← Zp.

D = (G,paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗
1]]2, [[b∗

2]]2, . . . , [[b∗
5]]2, {[[ui]]1}i∈[m]).

Choose ρ′
m+1, ρ

′
m+2, . . . , ρ

′
n, r

′
m+1, r

′
m+2, . . . , r

′
n ← Zp.

u∗
i,β = (ρ′

i (−i, 1), 0, 0, βr ′
i , 0, 0)B∗ ∀i ∈ [m + 1, n].

Uβ = {[[̂u∗
i,β]]2}i∈[m+1,n].

For any PPT adversary A, ∃ a PPT adversary B1 for the SXDH assumption such that

AdvP1-SXDHA (λ) = |Pr[A(D,U0) → 1] − Pr[A(D,U1) → 1]|
≤ 4(n − m)AdvSXDHB1

(λ) + 2−�(λ).

We refer to [49, Section 4] for a detailed proof of Lemma 1.

Lemma 2. [49]Letm = m(λ), n = n(λ)be two integers.Problem2-SXDH (P2-SXDH)

is to guess the bit β, given the following distributions:

G ← GBG.Gen(1λ), paramsV ← GDPVS.Gen(7,G),B ← GL7(Zp).

v∗i = (ρ′
i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m + 1, n] with {ρ′

i }i∈[m+1,n] ← Zp .

D = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗
1]]2, [[b∗

2]]2, [[b4]]∗2, [[b∗
5]]2, {[[v∗i]]2}i∈[m+1,n]).

Choose {π ′
i , ξi , ρ

′
i }i∈[m] ← Zp .

ui,β = (π ′
i (1, i), βξi , 0, 1, 0, 0)B ∀i ∈ [m].

u∗
i,β = (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ ∀i ∈ [m].
U = {[[ui,β]]1, [[u∗

i,β]]2}i∈[m].

For any PPT adversary A, ∃ a PPT adversary B3 for the SXDH assumption such that

AdvP2-SXDHA (λ) = |Pr[A(D,U0) → 1] − Pr[A(D,U1) → 1]|
≤ 8mAdvSXDHB3

(λ) + 2−�(λ).

We refer to [49, Section 4] for a detailed proof of Lemma 2.

 29 Page 24 of 73 U. Dowerah et al.

Lemma 3. Let m1 = m1(λ),m2 = m2(λ), n = n(λ) be three integers. Problem 3-
SXDH (P3-SXDH) is to guess the bit β, given the following distributions:

G ← GBG.Gen(1
λ),paramsV ← GDPVS.Gen(7,G),B, B̃ ← GL7(Zp).

D = (G,paramsV ,DB,DB̃)

where DB = ([[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗
1]]2, [[b∗

2]]2, [[b4]]∗2, [[b∗
5]]2, {[[v∗

i]]2}i∈[m1+1,n]).
v∗
i = (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n] with {ρ′
i }i∈[m1+1,n] ← Zp

and DB̃ = ([[̃b1]]1, [[̃b2]]1, . . . , [[̃b4]]1, [[̃b∗
1]]2, [[̃b∗

2]]2, [[̃b∗
4]]2, [[̃b∗

5]]2, {[[̃v∗
i]]2}i∈[m2+1,n]).

ṽ∗
j = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃
∗ ∀ j ∈ [m2 + 1, n] with {ρ̃′

j } j∈[m2+1,n] ← Zp.

ui,β = (π ′
i (1, i), βξi , 0, 1, 0, 0)B ∀i ∈ [m1] with {π ′

i , ξi }i∈[m1] ← Zp.

ũ j,β = (π̃ ′
j (1, j), βξ̃ j , 0, 1, 0, 0)B̃ ∀ j ∈ [m2] with {π̃ ′

j , ξ̃ j } j∈[m2] ← Zp.

u∗
i,β = (ρ′

i (−i, 1), 1, 0,−βξi , 0, 0)B∗ ∀i ∈ [m1] with {ξi , ρ′
i }i∈[m1] ← Zp.

ũ∗
j,β = (ρ̃′

j (− j, 1), 1, 0,−βξ̃ j , 0, 0)B̃
∗ ∀ j ∈ [m∗

2] with {̃ξ j , ρ̃′
j } j∈[m2] ← Zp.

Uβ = {[[ui,β]]1, [[u∗
i,β]]2}i∈[m1].

Vβ = {[[̃u j,β]]1, [[̃u∗
j,β]]2} j∈[m2].

Wβ = {Uβ,Vβ}.

For any PPT adversary A, ∃ a PPT adversary B4 for the SXDH assumption such that

AdvP3-SXDHA (λ) = |Pr[A(D,W0) → 1] − Pr[A(D,W1) → 1]| ≤ 8(m1 + m2)AdvSXDHB3
(λ) + 2−�(λ).

Proof of Lemma 3. Let us consider the following Games to prove Lemma 3. For each
game transition, we show that the difference of probabilities that A outputs 1 in both
games is negligible.

Game 0: This game is the same as for the case β = 0 i.e., A is given an instance
(D,W0).

v∗
i = (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n]
ui,0 = (π ′

i (1, i), 0, 0, 1, 0, 0)B ∀i ∈ [m1]
u∗
i,0 = (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1]
ṽ∗
j = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃
∗ ∀ j ∈ [m2 + 1, n]

ũ j,0 = (π̃ ′
j (1, j), 0, 0, 1, 0, 0)B̃ ∀ j ∈ [m2]

ũ∗
j,0 = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃
∗ ∀ j ∈ [m2]

where π ′
i , ξi ← Zp for all i ∈ [m1]; π̃ ′

j , ξ̃ j ← Zp for all j ∈ [m2] and ρ′
i , ρ̃

′
j ← Zp

for all i, j ∈ [n].
Game 1: This game is the same as Game 0 except of the following changes:

v∗
i = (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n]

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 25 of 73 29

ui,1 = (π ′
i (1, i), ξi , 0, 1, 0, 0)B ∀i ∈ [m1]

u∗
i,1 = (ρ′

i (−i, 1), 1, 0,−ξi , 0, 0)B∗ ∀i ∈ [m1]

where ξi ← Zp for all i ∈ [m1].
Game 2: This game is the same as Game 1 except of the following changes:

ṽ∗
j = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃
∗ ∀ j ∈ [m2 + 1, n]

ũ j,1 = (π̃ ′
j (1, j), ξ̃ j , 0, 1, 0, 0)B̃ ∀ j ∈ [m2]

ũ′
j,1 = (ρ̃′

j (− j, 1), 1, 0,−ξ̃ j , 0, 0)B̃
∗ ∀ j ∈ [m2]

where ξ̃ j ← Zp for all j ∈ [m2]. Observe that Game 2 is the same as the case of β = 1,
i.e., A is given an instance (D,W1). In the following, we denote the event that A outputs
1 in Game ι by E′

ι.

Claim 1.
∣
∣Pr(E′

0) − Pr(E′
1)
∣
∣ ≤ 8m1 · AdvSXDHB (λ) + 2−�(λ).

Proof. Let us consider a PPT adversaryA against the P3-SXDH assumption. We useA
as a subroutine to construct an adversary B against the underlying P2-SXDH scheme. In
particular, we show that ifA can break the P3-SXDH assumption, then there exists a PPT
adversary B that can break the P2-SXDH assumption. The adversary B(1λ) simulates
A as follows.

Let B gets the challenge instances (G,paramsV ,DB,Uβ) from A. Then, B chooses
a matrix B̃ ← GL7(Zp). Using the matrix B̃, B samples

ṽ∗
i = (ρ̃′

i (−i, 1), 1, 0, 0, 0, 0)B̃
∗ ∀i ∈ [m2 + 1, n]

where ρ̃′
j ← Zp. Now B samples π ′

j ← Zp for j ∈ [m2] as

ũ j,0 = (π̃ ′
j (1, j), 0, 0, 1, 0, 0)B̃ ∀ j ∈ [m2],

ũ∗
j,0 = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃
∗ ∀ j ∈ [m2].

Therefore, B generates the instances (DB̃,V0 = {[[̃u j,0]]1, [[̃u∗
j,0]]2} j∈[m2]) using the

basis B̃ where DB̃ = (G,paramsV , {[[̃bi]]1}4
i=1, {[[̃b∗

i]]2}5
i=1, {[[̃v j]]2}m2

j=1). According
to P2-SXDH, B can interpolate between Game 1 and Game 0 with the advantage 8m1 ·
AdvSXDHB′ (λ). Therefore, A’s view is the same as Game 0 for β = 0 and for β = 1 the
adversarial view is identical with Game 1. �

Claim 2.
∣
∣Pr(E′

1) − Pr(E′
2)
∣
∣ ≤ 8m2 · AdvSXDHB (λ) + 2−�(λ).

Proof. Let us consider a PPT adversary A against the P3-SXDH assumption. We use
A as a subroutine to construct an adversary B against the underlying P2-SXDH scheme.
In particular, we show that if A can break the P3-SXDH assumption, then there is a PPT
adversary B which breaks the P2-SXDH assumption. The adversary B(1λ) simulates A
as follows.

 29 Page 26 of 73 U. Dowerah et al.

Let B gets the challenge instances (G,paramsV ,DB̃,Vβ) from A. Then B chooses
a matrix B ← GL7(Zp). Using the matrix B, B samples

v∗
i = (ρ′

i (−i, 1), 1, 0, 0, 0, 0
)
B∗ ∀i ∈ [m1 + 1, n]

where ρ′
i ← Zp. Now B samples π ′

i , ξi ← Zp for i ∈ [m1] as

ui,1 = (π ′
i (1, i), ξi , 0, 1, 0, 0)B ∀i ∈ [m1],

u∗
i,1 = (ρ′

i (−i, 1), 1, 0, ξi , 0, 0)B∗ ∀i ∈ [m1].

Therefore, B generates the instances (DB,U1 = {[[̃u j,1]]1, [[̃u∗
j,1]]2} j∈[m1]) using the

basis B where DB = (G,paramsV , {[[bi]]1}4
i=1, {[[b∗

i]]2}5
i=1, {[[v j]]2}m1

j=1). According
the P2-SXDH, B can interpolate between Game 1 and Game 2 with the advantage
8m2 ·AdvSXDHB′ (λ). Therefore, A’s view is the same as Game 1 for β = 0 and for β = 1
the adversarial view is identical with Game 2. �

Proof of Theorem 1. Suppose A be a PPT adversary against the semi-adaptive full
attribute-hiding indistinguishability (SA-FAH-IND) security of our UZP-IPFE scheme.
We construct an algorithm B for breaking the SXDH assumption that uses A as a
subroutine. We prove Theorem 1 by a series of games. For each game transition, we
calculate the difference of probabilities that A outputs 1 in the corresponding games. In
every game, the challenger chooses a random element m′

1 ← [m1,max], as a guess of
m∗

1 at the beginning of the games. As we consider the semi-adaptive model here, we set
m∗

2 = m2,max. We represent Eι as the event that A outputs 1 in Game ι.

Game0:This game is the same as the real security game where the challenge ciphertext is
the encryption of x(0) as described in Definition 2 i.e., the challenge ciphertext CT(0)

x,w =
({[[c1

i]]1}i∈[m∗
1], {[[c2

j]]1} j∈[m∗
2]) for a pair of vectors (x(0), x(1)), (w(0),w(1)) is replied as

[[c1
i]]1 = [[(πi (1, i), x (0)

i , α, 0, 0, 0
)
B]]1 ∀i ∈ [m∗

1]
[[c2

j]]1 = [[(π̃ j (1, j), δw(0)
j , α, 0, 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2]

with πi , π̃ j ← Zp for all i ∈ [m∗
1], j ∈ [m∗

2] and δ, α ← Zp. Here B, B̃ ←
GL7(Zp) and bi , b̃i are their i-th row, respectively. The �-th secret keys SKy(�),v(�) =
({[[k1

i]]2}i∈Iy(�) , {[[k2
j]]2} j∈Iv(�) , Iy(�) , Iv(�)) for the vectors y(�), v(�) are replied as

k1
i = (ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , 0, 0, 0)B∗ ∈ Z

7
p ∀i ∈ Iy(�)

k2
j = (ρ̃

(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , 0, 0, 0)B̃

∗ ∈ Z
7
p ∀ j ∈ Iv(�)

with ρ
(�)
i , ρ̃

(�)
j , γ

(�)
i , γ̃

(�)
j , ω(�) ← Zp such that

∑
i∈Iy(�) γ

(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 27 of 73 29

Game 1: This game is similar to Game 0 except that [[c1
i]]1 in the challenge ciphertext

set by B is CT(0)
x,w = ({[[c1

i]]1}i∈[m∗
1], {[[c2

j]]1} j∈[m∗
2]) where

[[c1
i]]1 = [[(πi (1, i), x (0)

i , α, σ , 0, 0
)
B]]1 ∀i ∈ [m∗

1]
[[c2

j]]1 = [[(π̃ j (1, j), δw(0)
j , α, σ , 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2]

where σ ← Zp. Others variables πi , α and π̃ j , δ are generated similarly by B as in
Game 0.
Game 2:For � ∈ [QSK], Game 2 is equivalent to Game 1 except that the reply toB for the
�-th secret key query for associated pair of vectorsy(�) = (y(�)

i)i∈Iy(�) , v
(�) = (v

(�)
j) j∈Iv(�)

is SKy(�),v(�) = ({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) where

k1
i = (ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗ ∀i ∈ Iy(�)

k2
j = (ρ̃

(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗ ∀ j ∈ Iv(�)

with s(�)
i , t (�)j ← Zp and

∑
i∈Iy(�) s

(�)
i + ∑

j∈Iv(�) t
(�)
j = 0. All other variables

ω(�), ρ
(�)
i , ρ̃

(�)
j , γ

(�)
i , γ̃

(�)
j are generated exactly as in Game 1.

Game 3. Game 3 is identical to Game 2 except that the �-th secret key component
[[k j]]2 satisfying the condition max(Iv(�)) > m∗

2 ∧ min(Iv(�)) ≤ m∗
2 is SKy(�),v(�) =

({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) where

k2
j = (ρ̃

(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂ (�)j , 0, 0)B̃

∗ ∀ j ∈ Iv(�)

with t̂ (�)j ← Zp. Other components are generated similarly by B as in Game 2.
Game 4: This game is the same as Game 3 except that the challenger aborts the game
immediately if m′

1 �= m∗
1, i.e., the vector length associated with the challenge ciphertext

is not equal to the guess m′
1. The adversary A will output ⊥ if the game aborts.

Game 5: Game 5 is equivalent to Game 4 except that the reply to B of the �-th secret
key query for the pair of vectors y(�) = (y(�)

i)i∈Iy(�) , v
(�) = (v

(�)
j) j∈Iv(�) satisfying the

condition max(Iy(�)) > m′
1 ∧min(Iy(�)) ≤ m′

1 isSKy(�),v(�) = (Iy(�) , Iv(�) , {[[k1
i]]2}i∈Iy(�)

, {[[k2
j]]2} j∈Iv(�)) where

k1
i = (ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i , 0, 0)B∗ ∀i ∈ Iy(�)

with ŝ(�)
i ← Zp for all � ∈ [QSK]. All other variables are similarly generated by B as in

Game 4.

 29 Page 28 of 73 U. Dowerah et al.

Game 6: This game is similar to Game 5 except that the challenge ciphertext CT(0)
x,w =

({[[c1
i]]1}i∈[m∗

1], {[[c2
j]]1} j∈[m∗

2]) is generated as

[[c1
i]]1 = [[(πi (1, i), x (0)

i + ξiσ , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗

1]

[[c2
j]]1 = [[(π̃ j (1, j), δw

(0)
j + ξ̃ jσ , α, σ, 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2]

where ξi ← Zp for all i ∈ [m′
1] and the �-th secret key SKy(�),v(�) = ({[[k1

i]]2}i∈Iy(�) ,
{[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) corresponding to the pair of vectors y(�) = (y(�)
i)i∈Iy(�) , v

(�) =
(v

(�)
j) j∈Iv(�) for all � ∈ [QSK] such that min(Iy(�)) ≤ m′

1 and min(Iv(�)) ≤ m∗
2 are

generated as follows

k1
i =

⎧
⎪⎨

⎪⎩

(ρ
(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i − ξi y
(�)
i , 0, 0)B∗ if max(Iy(�)) ≤ m′

1

(ρ
(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − ξi y
(�)
i , 0, 0)B∗ if max(Iy(�)) > m′

1

k2
j =

⎧
⎪⎨

⎪⎩

(ρ̃
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃

∗
if max(Iv(�)) ≤ m∗

2

(ρ̃
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂ (�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃

∗
if max(Iv(�)) > m∗

2

where ξi , ξ̃ j , s
(�)
i , t (�)j , ŝ(�)

i , t̂ (�)j ← Zp such that
∑

i∈Iy(�) s
(�)
i +∑i∈Iv(�) t

(�)
j = 0. All

other random values are similarly generated as Game 5.
Game 7: Game 7 is the same as Game 6 except that the �-th secret key SKy(�),v(�) =
({[[k1

i]]2}i∈Iy(�) , {[[k2
j]]2} j∈Iv(�) , Iy(�) , Iv(�)) corresponding to the vectors y(�), v(�) are gen-

erated as follows. If 〈w(0), v(�)〉 �= 0, 〈w(1), v(�)〉 �= 0, withmax(Iy(�)) ≤ m′
1,max(Iv(�)) ≤

m∗
2,

k2
j =

(

ρ̃
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , r̃

(�)
j , 0, 0

)

B̃
∗

where r̃
(�)
j ← Zp for all j ∈ Iv(�) .

Game 8:Game 8 is exactly identical to Game 7 except that [[c1
i]]1, [[c2

j]]1 in the challenge
ciphertext are generated as follows

[[c1
i]]1 = [[(πi (1, i), x (1)

i + ξiσ , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗

1]

[[c2
j]]1 = [[(π̃ j (1, j), δw

(1)
j + ξ̃ jσ , α, σ, 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2].

The remaining values are generated identically by B as in Game 8.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 29 of 73 29

Game 9:Game 9 is the same as Game 8 except that the challenge ciphertext components
[[c1

i]]1, [[c2
j]]1 and ∀� ∈ [QSK], the �-th secret key components k1

i ,k
2
j are set as

[[c1
i]]1 = [[(πi (1, i), x (1)

i , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗

1]

[[c2
j]]1 = [[(π̃ j (1, j), δw

(1)
j , α, σ, 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2]

k1
i = (ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗ ∀i ∈ Iy(�)

k2
j =

(

ρ̃
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j , 0, 0

)

B̃
∗ ∀ j ∈ Iv(�)

where σ, s(�)
i , t (�)j ← Zp such that

∑
i∈Iy(�) s

(�)
i +∑ j∈Iy(�) t

(�)
j = 0. All other variables

are similarly generated by B as in Game 8.
Game 10: This game is similar to Game 9 except that the abort condition defined in
Game 4 is removed.
Game 11: Game 11 is similar to Game 10 except that the �-th secret key components
k1
i and k2

j of SKy(�),v(�) = ({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) are generated as
follows:

k1
i = (ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , 0 , 0, 0)B∗ ∀i ∈ Iy(�)

k2
j = (ρ̃

(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , 0 , 0, 0)B̃

∗ ∀ j ∈ Iv(�) .

All random values πi , π̃ j , ρ
(�)
i , ρ̃

(�)
j , α, δ, γ

(�)
i , γ̃

(�)
j are chosen from Zp such that

∑
i∈Iy(�) γ

(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0.

Game 12. Game 12 is identical to Game 11 except that the challenge ciphertext com-
ponents [[c1

i]]1, and [[c2
j]]1 of CT(1)

x,w = ({[[c1
i]]1}i∈[m∗

1], {[[c2
j]]1} j∈[m∗

2]) are generated as
follows:

[[c1
i]]1 = [[(πi (1, i), x (1)

i , α, 0 , 0, 0
)
B]]1 ∀i ∈ [m∗

1]
[[c2

j]]1 = [[(π̃ j (1, j), δw(1)
j , α, 0 , 0, 0

)
B̃]]1 ∀ j ∈ [m∗

2].

We now prove the indistinguishability of the above games by the following claims.
Combining the following claims, the above Theorem follows.

Claim 3. |Pr(E1) − Pr(E0)| ≤ AdvSXDHB (λ) + 2−�(λ).

Proof. We will show that the challenger B can solve the SXDH assumption using A
as a subroutine. Let B obtain an instance (G = (p,G1,G2,GT , g1, g2, e), [[a]]1 =
ga1 , [[u]]1 = gu1 , [[tβ]]1 = [[au+β f]]1 = gau+β f

1) of SXDH assumption for ι = 1 where
a, u, f ← Zp, β ← {0, 1} and setsPP = (p, g1, g2, gT , V, V ∗, E) as in Game 0. Now,
B uses the SXDH instances to interpolate between Game 0 and Game 1. The algorithm

 29 Page 30 of 73 U. Dowerah et al.

B implicitly defines random orthonormal dual (B,B∗) by choosing D ← GL7(Zp) and
setting

B =

⎡

⎢
⎢
⎣

I3
1 −a
0 1

I2

⎤

⎥
⎥
⎦D,B∗ =

⎡

⎢
⎢
⎣

I3
1 0
a 1

I2

⎤

⎥
⎥
⎦D∗; B̃ =

⎡

⎢
⎢
⎣

I3
1 −a
0 1

I2

⎤

⎥
⎥
⎦ D̃, B̃∗ =

⎡

⎢
⎢
⎣

I3
1 0
a 1

I2

⎤

⎥
⎥
⎦ D̃∗

where D∗ = (D−1)� and a is implicitly set from the SXDH instance. Note that,
[[a]]1 = ga1 and the algorithm B can compute [[B]]1 using the given SXDH instances.

Now, B simulates the �-th secret key queries for the key vector y(�) = (y(�)
i)i∈Iy(�)

along with the predicate vector v(�) = (v
(�)
i)i∈Iv(�) by responding with SKy(�),v(�) =

({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) where

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , 0, 0, 0)B∗]]2 ∀i ∈ Iy(�)

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , 0, 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�)

with ρ
(�)
i , ω(�), γ

(�)
i , γ̃

(�)
j ← Zp such that

∑
i∈Iy(�) γ

(�)
i +∑i∈Iy(�) γ̃

(�)
j = 0 and [[k2

j]]2 is

generated similarly as in Game 0. Now for the challenge ciphertext, CT(0)
x,w =

({[[c1
i]]1}i∈[m∗

1], {[[c2
j]]1} j∈[m∗

2]), B sets [[c1
i]]1, [[c1

j]]1 for i ∈ [m∗
1], j ∈ [m∗

2] as

[[c1
i]]1 = [[(πi (1, i), x (0)

i , α′, 0, 0, 0)B + (0, 0, 0,−u, tβ, 0, 0)D]]1

= [[(πi (1, i), x (0)
i , α′ − u, β f, 0, 0)B]]1 ∀i ∈ [m∗

1],
and [[c2

j]]1 = [[(π̃ j (1, j), δw(0)
j , α′, 0, 0, 0)B̃ + (0, 0, 0,−u, tβ, 0, 0)D̃]]1

= [[(π̃ j (1, j), δw(0)
j , α′ − u, β f, 0, 0)B̃]]1 ∀ j ∈ [m∗

2]

where x(0) = (x (0)
i)i∈[m∗

1] and α′, ζ ← Zp. Here the knowledge of {[[bi]]1}i∈{1,2,...,4} are

sufficient to compute [[c1
i]]1 and [[c2

j]]1. As B has no information about [[a]]2, B cannot
compute [[b∗

5]]2 as b∗
5 contains the unknown a. However, the above simulation does not

require any knowledge of [[a]]2 = ga2 as the 5-th, 6-th and 7-th components of k1
i is

set as 0 in both Game 0 and Game 1. Then the secret key simulated by B has the same
distribution as in Game 0 and Game 1. Let us implicitly set α = α′ − u. Then A’s view
simulated by B is the same as in Game 0 if β = 0 since the sixth component of [[c1

i]]1 is
0 and the challenge ciphertext has the same distribution as in Game 0. On the other hand,
A’s view simulated by B is identical as in Game 1 if β = 1 since the sixth components
of ci is −β f = σ unless f = 0 and the distribution of the challenge ciphertext in Game
0 is identical with the distribution in Game 1. So, B interpolates between Game 0 and
Game 1. Thus the claim follows. �

Claim 4. |Pr(E2) − Pr(E1)| ≤ AdvSXDHB (λ) + 2−�(λ).

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 31 of 73 29

Proof. LetB obtain an instance of (G = (p,G1,G2,GT , g1, g2, e), [[a]]2 = ga2 , [[u]]2 =
gu2 , [[tβ]]2 = [[au + β f]]2 = gau+β f

2) of the SXDH problem for ι = 2 where a, u, f ←
Zp, β ← {0, 1} and sets PP = (p, g1, g2, gT , V, V ∗, E). We will show that B can
utilize the instances of the SXDH assumption to interpolate between Game 1 and Game
2 using A as a subroutine. The algorithm B implicitly defines two orthonormal dual
bases (B,B∗) and (B̃, B̃

∗
) by choosing D, D̃ ← GL7(Zp) and setting

B =

⎡

⎢
⎢
⎣

I3
0 1

−1 −a
I2

⎤

⎥
⎥
⎦D,B∗ =

⎡

⎢
⎢
⎣

I3
−a 1
−1 0

I2

⎤

⎥
⎥
⎦D∗; B̃ =

⎡

⎢
⎢
⎣

I3
0 1

−1 −a
I2

⎤

⎥
⎥
⎦ D̃,

B̃
∗ =

⎡

⎢
⎢
⎣

I3
−a 1
−1 0

I2

⎤

⎥
⎥
⎦ D̃

∗

where D∗ = (D−1)� and D̃
∗ = (D̃

−1
)� and a is implicitly set from the SXDH instance.

The algorithm B simulates the �-th secret key query for the vector y(�) = (y(�)
i)i∈Iy(�)

and the predicate v(�) = (v
(�)
j) j∈Iv(�) by responding with the secret key SKy(�),v(�) =

({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) where

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , 0, 0, 0)B∗ + s(�)

i (0, 0, 0, tβ,−u, 0, 0)D∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i − us(�)

i ,−β f s(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�)

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , 0, 0, 0)B̃

∗ + t (�)j (0, 0, 0, tβ,−u, 0, 0)D̃
∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j − ut (�)j ,−β f t (�)j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�)

with ω(�), ρ
(�)
i , ρ̃

(�)
j , γ

(�)
i , γ̃

(�)
j , s(�)

i , t (�)j ← Zp such that
∑

i∈Iy(�) s
(�)
i +∑ j∈Iv(�) t

(�)
j =

0,
∑

i∈Iy(�) γ
(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0. Now the challenge ciphertextCT(0)

x,w = ({[[c1
i]]1}i∈[m∗

1],
{[[c2

j]]1} j∈[m∗
2]) is generated by B by setting

[[c1
i]]1 = [[(πi (1, i), x (0)

i , α, 0, 0, 0)B + (0, 0, 0, σ, 0, 0, 0)D]]1

= [[(πi (1, i), x (0)
i , α − aσ,−σ, 0, 0)B]]1 ∀i ∈ [m∗

1]
[[c2

j]]1 = [[(π̃ j (1, j), δw(0)
j , α, 0, 0, 0)B̃ + (0, 0, 0, σ, 0, 0, 0)D̃]]1

= [[(π̃ j (1, j), δw(0)
j , α − aσ,−σ, 0, 0)B̃]]1 ∀ j ∈ [m∗

2]

where πi , π̃ j , δ, α ← Zp. Note that {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4} are sufficient to compute

[[(πi (1, i), x (0)
i , α, 0, 0, 0)B]]1 and [[(π̃ j (1, j), δw(0)

j , α, 0, 0, 0)B̃]]1, respectively. With-

out knowledge of [[a]]1 here B cannot compute [[b5]]1, [[̃b5]]1 as the rows b5, b̃5 consist

 29 Page 32 of 73 U. Dowerah et al.

of the element a and B has no information about [[a]]1. Let us implicitly set α′ = α−aσ .
Then A’s view simulated by B is the same as in Game 1 if β = 0 since the fifth compo-
nent of [[k1

i]]2, [[k2
j]]2 are zero, so the secret keys have the same distribution as in Game

1. On the other hand, A’s view simulated by B is identical to that in Game 2 for β = 1
since −∑i∈Iy(�) f s(�)

i −∑ j∈Iv(�) f t (�)j = 0 and thus the distribution of secret keys in

Game 2 is identical with the distribution of Game 1. Hence, B interpolates between
Game 1 and Game 2 and the claim follows. �

Claim 5. |Pr(E3) − Pr(E2)| ≤ 4m2,max · (tmax − 1)AdvSXDHB (λ) + 2−�(λ).

Proof. We can make a reduction algorithm B1 that distinguishes the instances (D,Uβ)

where B̃ ← GL7(Zp). We consider the following distributions of Lemma 1.

D = (G,paramsV , [[̃b1]]1, [[̃b2]]1, . . . , [[̃b4]]1, [[̃b∗
1]]2, [[̃b∗

2]]2, . . . , [[̃b∗
5]]2, {[[̃u j]]} j∈[m∗

2]),
ũ j = (π̃ ′

j (1, j), 0, 0, θ ′, 0, 0)B̃ ∀ j ∈ [m∗
2], θ ′, {π̃ ′

j } j∈[m∗
2] ← Zp,

ũ∗
i,β = (ρ̃′

j (− j, 1), 0, 0, β s̄′
j , 0, 0)B̃

∗ ∀ j ∈ [m∗
2 + 1, n], {ρ̃′

j , s̄
′
j } j∈[m∗

2+1,n] ← Zp,

Uβ = {[[̃u∗
j,β]]2} j∈[m∗

2+1,n].

The algorithm B1 obtains the instances of Lemma 1 where n = tmax, m = m∗
2 and sets

MPK = (PP = (p, g1, g2, gT , V, V ∗, E), {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}) where bi is the
i-th row of uniformly chosen matrix B ← GL7(Zp). Recall that, tmax is the maximum
index of input vector v(�) for all � ∈ [QSK] with which A queries to the key generation
oracle. Then, the challenge ciphertext [[c2

j]]1 is generated by B1 using the instances
(D,Uβ) as below:

[[c2
j]]1 = [[χ · ũ j + δw

(0)
j · b̃3 + α · b̃4]]1 for η, δ, χ, α ← Zp

= [[χπ̃ ′
j · b̃1 + jχπ̃ ′

j · b̃2 + δw
(0)
j · b̃3 + α · b̃4 + χθ ′ · b̃5]]1

= [[(χπ̃ ′
j (1, j), δw(0)

j , α, χθ ′, 0, 0)B̃]]1 ∀ j ∈ [m∗
2]

and [[c1
i]]1 is set by choosing a matrix B ← GL7(Zp). Now for all � ∈ [QSK], B1 gen-

erates the secret key SKy(�),v(�) = ({[[k1
i]]2}i∈Iy(�) , {[[k2

j]]2} j∈Iv(�) , Iy(�) , Iv(�)) component

[[k2
j]]2 for two cases

Case 1: max(Iv(�)) ≤ m∗
2 ∨ min(Iv(�)) ≥ m∗

2

ρ
(�)
i , ρ̃

(�)
j , γ

(�)
i , γ̃

(�)
j , si

(�), t j
(�) ← Zp for all i ∈ Iy(�) , j ∈ Iv(�) and ω(�) ← Zp such

that
∑

i∈Iy(�)
s(�)
i +

∑

j∈Iv(�)
t (�)j = 0,

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
j , γ

(�)
i , s(�)

i , 0, 0)B∗]]2 ∀ j ∈ Iy(�) .

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�) .

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 33 of 73 29

By using [[̃b∗
1]]2, [[̃b∗

2]]2, [[̃b∗
3]]2, [[̃b∗

4]]2, [[̃b∗
5]]2 from the instances of Lemma 1, it is suf-

ficient to compute [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2 and [[k1
i]]2 is set as in

Game 2.
Case 2: (min(Iv(�)) ≤ m∗

2) ∧ (max(Iv(�)) > m∗
2)

For j ≤ m∗
2, [[k2

j]]2 = [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2

where ρ̃
(�)
j ← Zp for j ≤ m∗

2.

For j > m∗
2, [[k2

j]]2 = [[μ̃(�)
j ũ∗

j,β + (ρ̂
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[μ̃(�)
j (ρ̃′

j (− j, 1), 0, 0, β s̄′j , 0, 0)B̃∗ + (ρ̂
(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[((μ̃(�)
j ρ̃ j

′ + ρ̂
(�)
j)(− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j + βμ̃

(�)
j s̄′j , 0, 0)]]2

where μ̃
(�)
j , ρ̂

(�)
j ← Zp for j > m∗

2. We implicitly set ρ̃
(�)
j = μ̃

(�)
j ρ̃ j

′ + ρ̂
(�)
j with

∑
i∈Iy(�) s

(�)
i +∑ j∈Iv(�) t

(�)
j = 0,

∑
i∈Iy(�) γ

(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0. Here the key com-

ponent [[k1
i]]2 is generated as previous Case 1. We define

t̂ (�)j =
{
t (�)j if j ≤ m∗

2

t (�)j + μ̃
(�)
j s̄′

j if j > m∗
2 (i.e., setting β = 1)

unless s̄′
j = 0. Since {t (�)j } j∈[m∗

2] and {μ̃(�)
j } j∈Iv(�) , j>m∗

2
both are independently chosen

from Zp. So t̂ (�)j ’s are uniformly random for all j ∈ Iv(�) . Therefore, the adversary’s
view is the same as in Game 2 for β = 0, and if β = 1 it turns to Game 3. Now we have

|Pr(E3) − Pr(E2)| ≤
∑

i∈[m2,max]
AdvP1-SXDH

B1
(λ)

≤ 4 · m2,max · (tmax − m∗
2)Adv

SXDH
B (λ) + 2−�(λ)

≤ 4 · m2,max · (tmax − 1)AdvSXDHB (λ) + 2−�(λ).

Thus the claim follows. �

Claim 6. Pr(E4) = 1
m1,max

· Pr(E3).

Proof. Let m1,max,m2,max be the maximum length of the challenge vector and chal-
lenge attribute vector, respectively. Note that Game 4 is similar to Game 3 except that
A’s output is ⊥ if m′

1 �= m∗
1 where m′

1 is the length guess of the challenge message
vectors x(0), x(1). We have

Pr(E4) =
∑

i∈[m1,max]
Pr[m′

1 = i] · Pr[m∗
1 = i ∧ E3|m′

1 = i]

 29 Page 34 of 73 U. Dowerah et al.

= 1

m1,max
·
∑

i∈[m1,max]
Pr[m∗

1 = i ∧ E3|m′
1 = i]

= 1

m1,max
·
∑

i∈[m1,max]

Pr[m′
1 = i ∧ m∗

1 = i ∧ E3]
Pr[m′

1 = i ∧ m∗
2 = i]

= 1

m1,max
· Pr(E3).

�

Claim 7. |Pr(E5) − Pr(E4)| ≤ 4(smax − 1)AdvSXDHB (λ) + 2−�(λ).

Proof. We use the following instances of Lemma 1 to prove this claim. We can make a
reduction algorithm B1 that distinguishes the instances (D,Uβ) where B ← GL7(Zp),

D = (G,paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗
1]]2, [[b∗

2]]2, . . . , [[b∗
5]]2, {[[u j]]} j∈[m])

ui = (π ′
i (1, i), 0, 0, φ′, 0, 0)B ∀i ∈ [m′

1] with φ′, {π ′
i }i∈[m′

1] ← Zp

and u∗
i,β = (ρ′

i (−i, 1), 0, 0, βs′i , 0, 0)B∗ ∀i ∈ [m′
1 + 1, n], {ρ′

i , s
′
i }i∈[m′

1+1,n] ← Zp

Uβ = {[[u∗
i,β]]2}i∈[m′

1+1,n].

Using A as a subroutine, we construct the reduction algorithm B1 that interpolates
between Game 4 and Game 5. Before proceeding further, B1 chooses m′

1 ← [m1,max]
which is a guess of the length of the challenge vector x(0) = (x (0)

i)i∈[m∗
1]. If the guess is

incorrect i.e., m′
1 �= m∗

1, then the algorithm B1 will output 0. Otherwise B1 outputs A’s
outputs as it is. Now, B1 obtains an instance of Lemma 1 with n = smax, m = m′

1 and
set MPK = (PP = (p, g1, g2, gT , V, V ∗, E), {[[bi]]1, [[̃bi]]1}i∈{1,2,...,4}) where bi , b̃i
are i-th rows of uniformly chosen matrices B, B̃ ← GL7(Zp), respectively. Recall that,
smax is the maximum index of input vector y(�) for all � ∈ [QSK] with which A queries
to the key generation oracle. Now, the challenger B1 simulates the component [[c1

i]]1 for
all i ∈ [m∗

1] of the challenge ciphertext CT(0)
x,w = ({[[c1

i]]1}i∈[m∗
1], {[[c2

j]]1} j∈[m∗
2]) as

[[c1
i]]1 = [[ξ · ui + x (0)

i · b3 + α · b4]]1 for ξ, α ← Zp

= [[ξπ ′
i · b1 + iξπ ′

i · b2 + x (0)
i · b3 + α · b4 + ξφ′ · b5]]1

= [[(ξπ ′
i (1, i), x (0)

i , α, ξφ′, 0, 0)B]]1

and [[c2
j]]1 is set as in Game 4 using B̃. Observe that, we implicitly set πi = ξπ ′

i , σ = ξφ′
unless ξ = 0. By using the instances of Lemma 1, B1 simulates the �-th secret key
SKy(�),v(�) = ({[[k1

i]]2}i∈Iy(�) , {[[k2
j]]2} j∈Iv(�) , Iy(�) , Iv(�)) for all � ∈ [QSK] in two cases:

Case 1: ((max(Iy(�)) ≤ m′
1) ∨ (min(Iy(�)) ≥ m′

1))

ρ
(�)
i , ρ̃

(�)
j , γ

(�)
i , γ̃

(�)
j , si

(�), t j
(�) ← Zp for all i ∈ Iy(�) , j ∈ Iv(�)

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 35 of 73 29

such that
∑

i∈Iy(�)
s(�)
i +

∑

j∈Iv(�)
t (�)j = 0,

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
j , γ

(�)
i , s(�)

i , 0, 0)B∗]]2 ∀ j ∈ Iy(�) .

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�) .

From the instances of P1-SXDH problem {[[b∗
i]]2}i∈1,2,...,5 are sufficient to compute

[[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗]]2. Other key components [[k2
j]]2 are generated as

in Game 4.
Case 2: ((min(Iy(�)) ≤ m′

1) ∧ (max(Iy(�)) > m′
1))

If i ≤ m′
1, [[k1

i]]2 = [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗]]2

where ρ
(�)
i ← Zp for i ≤ m′

1.

If i > m′
1, [[k1

i]]2 = [[μ(�)
i u∗

i,β + (ρ
′(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)i , 0, 0)B∗]]2

= [[μ(�)
i (ρ′

i (−i, 1), 0, 0, βs′i , 0, 0)B∗ + (ρ
′(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)i , 0, 0)B∗]]2

= [[((ρ′
iμ

(�)
i + ρi

′(�))(−i, 1), y(�)
i , γ

(�)
i , s(�)i + βμ

(�)
i s′i , 0, 0)B∗]]2

where μ
(�)
i , ρ

′(�)
i ← Zp, ρ

(�)
i = ρ′

iμ
(�)
i + ρ

′(�)
i for i > m′

1 and the secret key com-

ponent [[k2
j]]2 is generated similarly as Case 1 with the restriction that

∑
i∈Iy(�) s

(�)
i +

∑
j∈Iv(�) t

(�)
j = 0,

∑
i∈Iy(�) γ

(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0. We can also set

ŝ(�)
i =

{
s(�)
i if i ≤ m′

1

s(�)
i + μ

(�)
i s′

i if i > m′
1 (i.e., setting β = 1)

unless s′
i = 0. Since the information of μ

(�)
i is hidden in ρ

(�)
i using ρ

′(�)
i , both collections

{s(�)
i }i≤m′

1
, {μ(�)

i s′
i }i∈Iy(�) ,i>m′

1
are randomly chosen from Zp. Therefore, {̂s(�)

i }i∈Iy(�) are

independently random elements in Zp. Therefore, A’s view is the same as in Game 4
for β = 0 and in Game 5 if β = 1. Now we have

|Pr(E5) − Pr(E4)| =
∣
∣
∣
∣
∣
∣

∑

i∈[m1,max]
Pr(m′

1 = i) Pr(G5|m′
1 = i) − Pr(m′

1 = i) Pr(G4|m′
1 = i)

∣
∣
∣
∣
∣
∣

= 1

m1,max

∣
∣
∣
∣
∣
∣

∑

i∈[m1,max]
Pr(G5|m′

1 = i) − Pr(G4|m′
1 = i)

∣
∣
∣
∣
∣
∣

≤ 1

m1,max

∑

i∈[m1,max]
AdvP1-SXDH

B1
(λ)

≤ 1

m1,max
·

∑

i∈[m1,max]
4(smax − 1)AdvSXDHB (λ) + 2−�(λ)

 29 Page 36 of 73 U. Dowerah et al.

= 4(smax − 1)AdvSXDHB (λ) + 2−�(λ).

Thus, the claim follows. �

Claim 8. |Pr(E6) − Pr(E5)| ≤ 8(m2,max + m1,max)AdvSXDHB (λ) + 2−�(λ)

Proof. To prove the above claim, we construct a reduction algorithmB′ that usesA as a
subroutine to distinguishP3-SXDH instances. Let the reduction algorithmB′ distinguish
between the instances (D = (D1,D2),Wβ = (Uβ,Vβ)).

D1 = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗
1]]2, [[b∗

2]]2, [[b∗
4]]2, [[b∗

5]]2, {[[v∗
i]]2}i∈[m′

1+1,n])

v∗
i = (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m′
1 + 1, n] with {ρ′

i }i∈[m′
1+1,n] ← Zp

ui,β = (π ′
i (1, i), βξi , 0, 1, 0, 0)B ∀i ∈ [m′

1] with {π ′
i , ξi }i∈[m′

1] ← Zp

u∗
i,β = (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ ∀i ∈ [m′
1] with {ξi , ρ′

i }i∈[m′
1] ← Zp

Uβ = {[[ui,β]]1, [[u∗
i,β]]2}i∈[m′

1]
D2 = (G, paramsV , [[̃b1]]1, [[̃b2]]1, . . . , [[̃b4]]1, [[̃b∗

1]]1, , [[̃b∗
2]]1, , [[̃b∗

4]]1, [[̃b∗
5]]1, {[[̃v∗

j]]2} j∈[m∗
2+1,n])

ṽ∗
j = (ρ̃′

j (− j, 1), 1, 0, 0, 0, 0)B̃∗ ∀ j ∈ [m∗
2 + 1, n] with {ρ̃′

j } j∈[m∗
2+1,n] ← Zp

ũ j,β = (π̃ ′
j (1, j), βξ̃ j , 0, 1, 0, 0)B̃ ∀ j ∈ [m∗

2] with {π̃ ′
j , ξ̃ j } j∈[m∗

2] ← Zp

ũ∗
j,β = (ρ̃′

j (− j, 1), 1, 0, −βξ̃ j , 0, 0)B̃∗ ∀ j ∈ [m∗
2] with {̃ξ j , ρ̃′

j } j∈[m∗
2] ← Zp

Vβ = {[[̃u j,β]]1, [[̃u∗
j,β]]2} j∈[m∗

2]

Before starting the game, B′ first chooses m′
1 ← m1,max as a guess of the length m∗

1

of the challenge vector x(0) = (x (0)
i)i∈[m∗

1]. For the incorrect guess i.e., m∗
1 �= m′

1, B′
outputs 0. Otherwise, B′ outputs A’s output as it is. On receiving the instance (D,Wβ)
of P3-SXDH problem as described in Lemma 3 with n = smax, m = m′

1 and n = tmax,
m = m∗

2, the challenger B′ sets MPK = (PP = (p, g1, g2, gT , V, V ∗, E), {[[bi]]1,

[[̃bi]]1}i∈{1,2,...,4}). Now, B′ simulates the challenge ciphertext components [[c1
i]]1 and

[[c2
j]]1 as follows:

[[c1
i]]1 = [[σui,β + (0, 0, x (0)

i , α, 0, 0, 0)B]]1

= [[σ(π ′
i (1, i), βξi , 0, 1, 0, 0)B + (0, 0, x (0)

i , α, 0, 0, 0)B]]1

= [[(σπ ′
i (1, i), βσξi , 0, σ, 0, 0)B + (0, 0, x (0)

i , α, 0, 0, 0)B]]1

= [[(σπ ′
i (1, i), βσξi + x (0)

i , α, σ, 0, 0)B]]1 ∀i ∈ [m′
1]

[[c2
j]]1 = [[σ ũ j,β + (0, 0, δw

(0)
j , α, 0, 0, 0)B̃]]1

= [[σ(π̃ ′
j (1, j), βξ̃ j , 0, 1, 0, 0)B̃ + (0, 0, δw

(0)
j , α, 0, 0, 0)B̃]]1

= [[(σ π̃ ′
j (1, j), βσ ξ̃ j , 0, σ, 0, 0)B̃ + (0, 0, δw

(0)
j , α, 0, 0, 0)B̃]]1

= [[(σ π̃ ′
j (1, j), βσ ξ̃ j + δw

(0)
j , α, σ, 0, 0)B̃]]1 ∀ j ∈ [m∗

2]

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 37 of 73 29

where σ, δ, α ← Zp. We set πi = σπ ′
i , π̃ j = σ π̃ ′

j unless σ = 0. Now for all � ∈ [QSK],
B′ replies toA, the�-th secret key querySKy(�),v(�) = ({[[k1

i]]2}i∈Iy(�) , {[[k2
j]]2} j∈Iv(�) , Iy(�)

, Iv(�)) for the vector y(�) = (y(�)
i)i∈Iy(�) which is categorized into the following cases:

Case 1: max(Iy(�)) ≤ m′
1 ∧ max(Iv(�)) ≤ m∗

2
For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0,−βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)

i − βy(�)
i ξi , 0, 0)B∗]]2 ∀i ∈ Iy(�) .

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0,−βξ̃ j , 0, 0)B̂
∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t (�)j , 0, 0)B̃

∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0,−βω(�)v

(�)
j ξ̃ j , 0, 0)B̃

∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t (�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�) .

Here ρ
′′(�)
i , ρ̃

′′(�)
j , s(�)

i , t (�)j , γ
(�)
i , γ̃

(�)
j ← Zp such that

∑
i∈Iy(�) s

(�)
i +∑ j∈Iv(�) t

(�)
i = 0

with
∑

i∈Iy(�) γ
(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0.

Case 2: ((max(Iy(�)) > m′
1)∧(min(Iy(�)) ≤ m′

1))∧((max(Iv(�)) > m∗
2)∧(min(Iv(�)) ≤

m∗
2))

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , ŝ(�)i , t̂(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For i ≤ m′
1,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)i − βy(�)

i ξi , 0, 0)B∗]]2.

For i > m′
1,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

 29 Page 38 of 73 U. Dowerah et al.

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i , 0, 0)B∗]]2.

For j ≤ m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂ (�)j , 0, 0)B̃

∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0,−βξ̃ j , 0, 0)B̂
∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂ (�)j , 0, 0)B̃

∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0,−βω(�)v

(�)
j ξ̃ j , 0, 0)B̃

∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂ (�)j , 0, 0)B̃

∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂ (�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃

∗]]2.

For j > m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2.

We implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 3: (min(Iy(�)) > m′

1) ∧ (min(Iv(�)) > m∗
2)

For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗]]2.

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂
∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t (�)j , 0, 0)B̃

∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃

∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t (�)j , 0, 0)B̃

∗]]2.

Here ω(�), γ
(�)
i , γ̃

(�)
j , s(�)

i , t (�)j ← Zp such that
∑

i∈Iy(�) γ
(�)
i + ∑

j∈Iv(�) γ̃
(�)
j = 0,

∑
i∈Iy(�) s(�)

i + ∑
j∈Iv(�) t

(�)
j = 0. Let ρ

(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) +
ω(�)v

(�)
j ρ̃ j

′. Then ρ
(�)
i and ρ̃

(�)
j ’s are uniformly random since ρ

′′(�)
i , ρ′

i , ρ̃
′′(�)
j and ρ̃′

j
all are uniformly random in Zp.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 39 of 73 29

Case 4: (max(Iy(�)) ≤ m′
1) ∧ ((max(Iv(�)) > m∗

2) ∧ (min(Iv(�)) ≤ m∗
2))

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , s(�)i , t̂(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)i − βy(�)

i ξi , 0, 0)B∗]]2.

For j ≤ m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, −βξ̃ j , 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, −βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗]]2.

For j > m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 5: ((max(Iy(�)) > m′

1) ∧ (min(Iy(�)) ≤ m′
1)) ∧ (max(Iv(�)) ≤ m∗

2)

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , ŝ(�)i , t(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For i ≤ m′
1,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)i − βy(�)

i ξi , 0, 0)B∗]]2.

 29 Page 40 of 73 U. Dowerah et al.

For i > m′
1,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i , 0, 0)B∗]]2.

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, −βξ̃ j , 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, −βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 6: ((max(Iy(�)) > m′

1) ∧ (min(Iy(�)) ≤ m′
1)) ∧ (min(Iv(�)) > m∗

2)

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , ŝ(�)i , t(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For i ≤ m′
1,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)i − βy(�)

i ξi , 0, 0)B∗]]2.

For i > m′
1,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i , 0, 0)B∗]]2.

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]1

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 41 of 73 29

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 7: (min(Iy(�)) > m′

1) ∧ ((max(Iv(�)) > m∗
2) ∧ (min(Iv(�)) ≤ m∗

2))

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , s(�)i , t̂(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗]]2.

For j ≤ m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, −βξ̃ j , 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, −βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗]]2.

For j > m∗
2,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t̂(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 8: (min(Iy(�)) > m′

1) ∧ (max(Iv(�)) ≤ m∗
2)

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , s(�)i , t(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i v∗
i + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

 29 Page 42 of 73 U. Dowerah et al.

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0, 0, 0, 0)B∗ + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)

i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)

i , 0, 0)B∗]]2.

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ũ∗

j,β + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, −βξ̃ j , 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, −βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j − βω(�)v

(�)
j ξ̃ j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Case 9: (max(Iy(�)) ≤ m′

1) ∧ (min(Iv(�)) > m∗
2)

Choose ω(�), ρ
′′(�)
i , ρ̃

′′(�)
j , s(�)i , t(�)j , γ

(�)
i , γ̃

(�)
j ← Zp such that

∑

i∈Iy(�)
γ

(�)
i +

∑

j∈Iv(�)
γ̃

(�)
j = 0.

For all i ∈ Iy(�) ,

[[k1
i]]2 = [[y(�)

i u∗
i,β + (ρ

′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]2

= [[y(�)
i (ρ′

i (−i, 1), 1, 0, −βξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]1

= [[(y(�)
i ρ′

i (−i, 1), y(�)
i , 0,−βy(�)

i ξi , 0, 0)B∗ + (ρ
′′(�)
i (−i, 1), 0, γ

(�)
i , s(�)i , 0, 0)B∗]]2

= [[((ρ′′(�)
i + y(�)

i ρ′
i)(−i, 1), y(�)

i , γ
(�)
i , s(�)i − βy(�)

i ξi , 0, 0)B∗]]2.

For all j ∈ Iv(�) ,

[[k2
j]]2 = [[ω(�)v

(�)
j ṽ∗

j + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[ω(�)v
(�)
j (ρ̃ j

′(− j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃ j
′′(�)(− j, 1), 0, γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]1

= [[(ω(�)v
(�)
j ρ̃ j

′(− j, 1), ω(�)v
(�)
j , 0, 0, 0, 0)B̃∗ + (ρ̃ j

′′(�)(− j, 1), 0, γ̃
(�)
j , t(�)j , 0, 0)B̃∗]]2

= [[((ρ̃ j
′′(�) + ω(�)v

(�)
j ρ̃ j

′)(− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j , 0, 0)B̃∗]]2.

We have implicitly set ρ
(�)
i = ρ

′′(�)
i + y(�)

i ρ′
i and ρ̃

(�)
j = ρ̃ j

′′(�) + ω(�)v
(�)
j ρ̃ j

′.
Thus A’s view is the same as in Game 5 if β = 0 and in Game 6 if β = 1. Therefore,

we have

|Pr(E5) − Pr(E6)| ≤ 8(m2,max + m1,max) · AdvSXDHB (λ) + 2−�(λ)

due to Lemma 3. �

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 43 of 73 29

Claim 9. | Pr(E7) − Pr(E6)| ≤ AdvSXDHB (λ) + 2−�(λ).

Proof. LetB obtain an instance of (G = (p,G1,G2,GT , g1, g2, e), [[a]]2 = ga2 , [[u]]2 =
gu2 , [[tβ]]2 = [[au + β f]]2 = gau+β f

2) of the SXDH assumption for ι = 2 where
a, u, f ← Zp, β ← {0, 1} and sets PP = (p, g1, g2, gT , V, V ∗, E). We will show
that B can utilize the instances of the SXDH assumption to interpolate between Game 6
and Game 7 usingA as a subroutine. The algorithmB implicitly defines two orthonormal
dual bases (B̃, B̃

∗
) by choosing D, D̃ ← GL7(Zp) and setting

B̂ =

⎡

⎢
⎢
⎢
⎢
⎣

I2
0 0 −1
0 1 0
1 0 a

I2

⎤

⎥
⎥
⎥
⎥
⎦
D̃, B̃

∗ =

⎡

⎢
⎢
⎢
⎢
⎣

I2
a 0 −1
0 1 0
1 0 0

I2

⎤

⎥
⎥
⎥
⎥
⎦
D̃

∗

where D̃
∗ = (D̃

−1
)� and a is implicitly provided through the SXDH instance. Note

that, by using [[a]]2 = ga2 , the algorithm B can compute the first four rows {[[bi]]∗1,
[[̃b∗

i]]1}i∈{1,2,...,4} of B̃
∗
. Note that, (0, 0, tβ, 0,−u, 0, 0)D̃

∗ = (0, 0, u, 0, β f, 0, 0)B̃
∗
.

For 〈w(0), v(�)〉 �= 0, 〈w(1), v(�)〉 �= 0, the algorithm B simulates the �-th secret
key SKy(�),v(�) = ({[[k1

i]]2}i∈Iy(�) , {[[k2
j]]2} j∈Iv(�) , Iy(�) , Iv(�)) corresponding to the vectors

y(�) = (y(�)
i)i∈Iy(�) , v

(�) = (v
(�)
j) j∈Iv(�) as follows:

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t (�)j − ξ̃ j (ω

(�) + u〈w(0), v(�)〉)v(�)
j , 0, 0)B̃

∗

+ v
(�)
j 〈w(0), v(�)〉(0, 0, tβ, 0,−u, 0, 0)D̃

∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t (�)j − ξ̃ j (ω

(�) + u〈w(0), v(�)〉)v(�)
j , 0, 0)B̃

∗

+ v
(�)
j 〈w, v(�)〉(0, 0, u, 0, β f, 0, 0)B̃

∗]]2

= [[(ρ̃(�)
j (− j, 1), (ω(�) + u〈w, v(�)〉)v(�)

j , γ̃
(�)
j , t (�)j − ξ̃ j (ω

(�) + u〈w(0), v(�)〉)v(�)
j

+ β f v(�)
j 〈w(0), v(�)〉, 0, 0)B̃

∗]]2

with ρ̃
(�)
j , γ̃

(�)
j , t (�)j ← Zp such that

∑
i∈Iy(�) γ

(�)
i +∑ j∈Iv(�) γ̃

(�)
j = 0 and

∑
i∈Iy(�) s

(�)
j +

∑
j∈Iv(�) t

(�)
j = 0 where both γ

(�)
i , s(�)

i are uniformly chosen from Zp. As 〈w(0), v(�)〉 �=
0, we can implicitly set ω(�)′ = ω(�)+u〈w(0), v(�)〉, r(�)j = t (�)j − ξ̃ j (ω

(�)+u〈w(0), v(�)〉)
v

(�)
j + f v(�)

j 〈w(0), v(�)〉 which are random elements in Zp for f �= 0. Therefore, the

fifth component of [[k2
j]]2 is random element for β = 1. Here, we use a fact that

r̃
(�)
j + s(�)

i + ξi y
(�)
i �= 0 with high probability. Hence, the adversarial view is the

same as in Game 7 for β = 1, otherwise, the view is similar as in Game 6 if β = 0.

Let choose σ ← Zp and computes (0, 0, σ, 0, 0, 0, 0)D̃ = (0, 0, aσ, 0, σ, 0, 0)B̃ and
(0, 0, σ, 0, 0, 0, 0)D = (0, 0, aσ, 0, σ, 0, 0)B. Now, the challenge ciphertext CT(0)

x,w =

 29 Page 44 of 73 U. Dowerah et al.

({[[c1
i]]1}i∈[m∗

1], {[[c2
j]]1} j∈[m∗

2]) components [[c2
j]]1, [[c1

i]]1 are generated by B as follows:

[[c2
j]]1 = [[(π̃ j (1, j), δw(0)

j + σ ξ̃ ′
j , α, 0, 0, 0)B̃ + (0, 0, σ, 0, 0, 0, 0)D̃]]1.

= [[(π̃ j (1, j), δw(0)
j + σ ξ̃ ′

j , α, 0, 0, 0)B̃ + (0, 0, aσ, 0, σ, 0, 0)B̃]]1

= [[(π̃ j (1, j), δw(0)
j + σ ξ̃ j , α, σ, 0, 0)B̃]]1 ∀ j ∈ [m∗

2]

where π̃ j , δ, ξ̃
′
j , α ← Zp for all j ∈ Iv(�) . Note that, {[[bi]]1, [[̃bi]]1}i∈{1,2,...,5} are suf-

ficient to compute [[(πi (1, i), x (0)
i , α, 0, 0, 0)B]]1 and [[(π̃ j (1, j), δw(0)

j , α, 0, 0, 0)B̃]]1,

respectively. Without knowledge of [[a]]1 here B cannot compute [[b5]]1, [[̃b5]]1 as the
rows b5, b̃5 consist of the element a and B has no information about [[a]]1. Thus the
distribution of the challenge ciphertext components in Game 6 is identical with the dis-
tribution of Game 7. Hence, B interpolates between Game 7 and Game 6 and the claim
follows. �

Claim 10. |Pr(E8) − Pr(E7)| ≤ 2−�(λ).

Proof. Let Ẽι be the event that denotesm′
1 = m∗

1 in Game ι wherem′
1 is the guess of the

length m∗
1 of message vector. Since A’s view are equivalent for all previous ciphertext

query, we have Pr(Ẽ7) = Pr(Ẽ8). Let us define for all i ∈ [m′
1], j ∈ [m∗

2] as follows:

ξ ′
i = ξi − x (1)

i − x (0)
i

σ
, ξ̃ ′

j = ξ̃ j − δ(w
(1)
j − w

(0)
j)

σ

where σ, δ ← Zp and (x(0),w(0)), (x(1),w(1)) are challenge message and attribute
pairs. Note that, ξ ′

i , ξ̃
′
j are independently random elements in Zp unless σ = 0. Then

the challenge ciphertext components [[c1
i]]1 and [[c2

j]]1 are indistinguishable in Game 7
and Game 8 as shown below,

[[c1
i]]1 = [[(πi (1, i), x (0)

i + ξiσ, α, σ, 0, 0)B]]1

= [[(πi (1, i), x (0)
i + σ(ξ ′

i + x (1)
i − x (0)

i

σ
), α, σ, 0, 0)B]]1

= [[(πi (1, i), x (1)
i + σξ ′

i , α, σ, 0, 0)B]]1 ∀i ∈ [m′
1]

[[c2
j]]1 = [[(π̃ j (1, j), δw(0)

j + ξ̃ jσ, α, σ, 0, 0)B̃]]1

= [[(π̃ j (1, j), δw(0)
j + σ (̃ξ ′

j + δ(w
(1)
j − w

(0)
j)

σ
), α, σ, 0, 0)B̃]]1

= [[(π̃ j (1, j), δw(1)
j + σ ξ̃ ′

j , α, σ, 0, 0)B̃]]1 ∀ j ∈ [m∗
2]

where πi , σ, α ← Zp and π̃ j ← Zp. For all � ∈ [QSK] we categorize adversary’s

queries to the �-th oracle secret key on y(�) = (y(�)
i)i∈Iy(�) , v

(�) = (v
(�)
j) j∈Iv(�) and show

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 45 of 73 29

that in each cases the �-th secret key components [[k1
i]]2, [[k2

j]]2 are indistinguishable in
Game 7 and Game 8.
Case I when 〈w(0), v(�)〉 �= 0, 〈w(1), v(�)〉 �= 0.

(i) If (max(Iy(�)) ≤ m′
1) ∧ (max(Iv(�)) ≤ m∗

2), then

[[k1
i]]2 = [[

(
ρ

(�)
i (−i, 1), y(�)

i , γ
(�)
i , r

(�)
i , 0, 0

)
B∗]]2

[[k2
j]]2 = [[

(
ρ̃

(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , r̃

(�)
j , 0, 0

)
B̃

∗]]2

where r̃
(�)
j , r

(�)
i ← Zp for all j ∈ Iv(�) , i ∈ Iy(�) . Since k1

i and k2
j does not

contain the value ξi and ξ̃ j , so there is no need to use the transformations as
mentioned above. So the distributions for the �-th secret key components k1

i ,k
2
j

remain unaltered as Game 8.
(i i) If (max(Iy(�)) > m′

1) ∧ (max(Iv(�)) ≤ m∗
2), then

For i ≤ m′
1,

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�) .

For i > m′
1;

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

∀ j ∈ Iv(�) .

Hence, we set ŝ(�)
i = ŝ(�)

i − x (1)
i −x (0)

i
σ

y(�)
i for i ≤ m′

1 which are independently ran-

dom elements from Zp as there are no condition on (x (0)
i − x (1)

i)y(�)
i and ŝ(�)

i are in-

dependently random elements in Zp. Also, ŝ(�)
i are random elements from i > m′

1,

so fifth component of k1
i is uniform element from Zp for all i ∈ Iy(�) . Similarly set,

t
(�)
j = t (�)j − ω(�)δ(w

(1)
j −w

(0)
j)

σ
v

(�)
j which are uniformly random in Zp.

(i i i) If max(Iy(�)) ≤ m′
1) ∧ (max(Iv(�)) > m∗

2, then

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , s(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

 29 Page 46 of 73 U. Dowerah et al.

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�) .

For j ≤ m∗
2;

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

∀ j ∈ Iv(�) .

For j > m∗
2;

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂ (�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃

∗]]2.

Hence, we set s(�)
i = s(�)

i − x (1)
i −x (0)

i
σ

y(�)
i for i ∈ Iy(�) which are independently

random elements from Zp as there are no condition on (x (0)
i − x (1)

i)y(�)
i . Similarly

take t̂
(�)
j = t̂ (�)j − ω(�)δ(w

(1)
j −w

(0)
j)

σ
v

(�)
j for j ≤ m∗

2, which are uniformly random

element in Zp and also for j > m∗
2, t̂(�)j are uniform elements in Zp. So the fifth

component of k2
j are independently random elements in Zp.

(iv) If max(Iy(�)) > m′
1) ∧ (max(Iv(�)) > m∗

2, then For i ≤ m′
1;

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2

and for i > m′
1 and i ∈ Iy(�) , we set

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

whereγ
(�)
i , r̂ (�)

i , ρ
(�)
i ← Zp. As there are no condition on

∑
i∈Iy(�) (x

(1)
i − x (0)

i)

y(�)
i i.e.,

∑
i∈Iy(�) (x

(1)
i − x (0)

i)y(�)
i �= 0 or not, let us define ŝ

(�)
i = ŝ(�)

i −
x (1)
i −x (0)

i
σ

y(�)
i which is uniformly random in Zp for i ≤ m′

1 as ŝ(�)
i is uniformly

random over Zp.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 47 of 73 29

For j ≤ m∗
2, we set

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

and for j > m∗
2, we set

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂ (�)j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�)

with γ̃
(�)
j , t̂ (�)j , ρ̃

(�)
j , ω(�) ← Zp. As

∑
j∈Iv(�) (w

(1)
j − w

(0)
j)v

(�)
i �= 0, t̂ j = t̂ (�)j −

ω(�)δ(w
(1)
j −w

(0)
j)

σ
v

(�)
j for j ≤ m∗

2 are independently random elements from Zp and for

j > m∗
2, the fifth component of [[k2

j]]2 is also random.

Case II when 〈w(0), v(�)〉 = 〈w(1), v(�)〉 = 0.

(v) If max(Iy(�)) ≤ m′
1) ∧ (max(Iv(�)) ≤ m∗

2, then

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , s(�)i − ξi y

(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)i − y(�)

i (ξ ′
i + x(1)

i − x(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)i − ξ ′

i y
(�)
i − x(1)

i − x(0)
i

σ
y(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�) ,

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

∀ j ∈ Iv(�)

whereγ
(�)
i , s(�)

i , ρ
(�)
i ← Zp and γ̃

(�)
j , t (�)j , ρ̃

(�)
j , ω(�) ← Zp such that

∑
i∈Iy(�) s

(�)
i +

∑
j∈Iv(�) t

(�)
j = 0 and

∑
i∈Iy(�) γ

(�)
i + ∑

j∈Iv(�) γ̃
(�)
j = 0. Since 〈x(0), y(�)〉 =

〈x(1), y(�)〉 in challenge query phase as per Definition 2, we get
∑

i∈Iy(�) y
(�)
i (x (0)

i −
x (1)
i) = 0 when 〈w(0), v(�)〉 = 〈w(1), v(�)〉 = 0 which yields

∑
j∈Iv(�) v

(�)
j (w

(0)
j −

w
(1)
j) = 0. We set s′(�)

i = s(�)
i − x (1)

i −x (0)
i

σ
y(�)
i and t ′(�)j = t (�)j − ω(�)δ(w

(1)
j −w

(0)
j)

σ
v

(�)
j

which are uniformly random over Zp for all i ∈ Iy(�) , j ∈ Iv(�) , respectively, and

these satisfy
∑

i∈Iy(�) s
′(�)
i +∑ j∈Iv(�) t

′(�)
j = 0 as in Game 7.

(vi) If (max(Iy(�)) > m′
1) ∧ (max(Iv(�)) ≤ m∗

2, then

 29 Page 48 of 73 U. Dowerah et al.

For i ≤ m′
1,

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�) .

For i > m′
1;

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)i , 0, 0)B∗]]2

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

∀ j ∈ Iv(�) .

Hence, we set ŝ(�)
i = ŝ(�)

i − x (1)
i −x (0)

i
σ

y(�)
i for i ≤ m′

1 which are independently

random elements from Zp as we have no condition on (x (0)
i − x (1)

i)y(�)
i , also ŝ

(�)
i

are independently random elements from i > m′
1, so fifth component of k1

i is

uniform inZp for all i ∈ Iy(�) . Also set, t(�)j = t (�)j (as
∑

j∈Iv(�) (w
(0)
j −w

(1)
j)v

(�)
j =

0) which are uniformly random in Zp since the corresponding fifth element of
k2
j is set as random.

(vi i) If max(Iy(�)) ≤ m′
1) ∧ (max(Iv(�)) > m∗

2, then

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , s(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , s(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2 ∀i ∈ Iy(�) .

For j ≤ m∗
2;

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

∀ j ∈ Iv(�) .

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 49 of 73 29

For j > m∗
2;

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂ (�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃

∗]]2.

Hence, we set s(�)
i = s(�)

i − x (1)
i −x (0)

i
σ

y(�)
i for i ∈ Iy(�) which are independently

random elements from Zp as we have no condition on (x (0)
i − x (1)

i)y(�)
i , Also

set, t̂(�)j = t̂ (�)j − ω(�)δ(w
(1)
j −w

(0)
j)

σ
v

(�)
j for j ≤ m∗

2, which are uniformly random

elements fromZp and for j > m∗
2,̂ t(�)j ’s are uniform inZp.So the fifth component

of k2
j are independently random elements from Zp.

(vi i i) If max(Iy(�)) > m′
1) ∧ (max(Iv(�)) > m∗

2, then: For i ≤ m′
1;

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i − ξi y
(�)
i , 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − y(�)
i (ξ ′

i + x (1)
i − x (0)

i

σ
), 0, 0)B∗]]2

= [[(ρ(�)
i (−i, 1), y(�)

i , γ
(�)
i , ŝ(�)

i − ξ ′
i y

(�)
i − x (1)

i − x (0)
i

σ
y(�)
i , 0, 0)B∗]]2

also for i > m′
1 and i ∈ Iy(�) , we set

[[k1
i]]2 = [[(ρ(�)

i (−i, 1), y(�)
i , γ

(�)
i , ŝ(�)

i , 0, 0)B∗]]2

whereγ
(�)
i , r̂ (�)

i , ρ
(�)
i ← Zp. Since there are no condition on

∑
i∈Iy(�) (x

(1)
i − x (0)

i)

y(�)
i . Let us define ŝ

(�)
i = ŝ(�)

i − x (1)
i −x (0)

i
σ

y(�)
i , which is uniformly random in Zp

for i ≤ m′
1 as ŝ(�)

i is uniformly random in Zp.
For j ≤ m∗

2, we set

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂(�)j − ξ̃ jω

(�)v
(�)
j , 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j (̃ξ ′

j +
δ(w

(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(�)
j (− j, 1), ω(�)v

(�)
j , γ̃

(�)
j , t̂(�)j − ω(�)v

(�)
j ξ̃ ′

j −
ω(�)δ(w

(1)
j − w

(0)
j)

σ
v
(�)
j , 0, 0)B̃∗]]2

and for j > m∗
2, we set

[[k2
j]]2 = [[(ρ̃(�)

j (− j, 1), ω(�)v
(�)
j , γ̃

(�)
j , t̂ (�)j , 0, 0)B̃

∗]]2 ∀ j ∈ Iv(�)

with γ̃
(�)
j , t̂ (�)j , ρ̃

(�)
j , ω(�) ← Zp. Since, t̂(�)j = t̂ (�)j − ω(�)δ(w

(1)
j −w

(0)
j)

σ
v

(�)
j for

j ≤ m∗
2 are independently random elements from Zp and for j > m∗

2 the fifth
component of k2

j are also random.

 29 Page 50 of 73 U. Dowerah et al.

Therefore, Game 7 and Game 8 are indistinguishable except a negligible probability
i.e.,

|Pr(E8) − Pr(E7)| = ∣∣Pr(Ẽ8) · Pr(E8|Ẽ8) − Pr(Ẽ7) · Pr(E7|Ẽ7)
∣
∣ ≤ 2−�(λ).

This establishes the claim. �

Claim 11. |Pr(E9) − Pr(E8)| ≤[

8(m1,max + m2,max) + 4(smax − 1) + 4m2,max(tmax − 1)

]

AdvSXDHB (λ) + 2−�(λ).

The proof of this claim can be achieved utilizing the proofs of claims 9, 7 and 5.

Claim 12. Pr(E9) ≤ 1
m1,max

· Pr(G10).

This proof is exactly the same as that of claim 6.

Claim 13. |Pr(E11) − Pr(E10)| ≤ AdvSXDHB (λ) + 2−�(λ).

This proof is exactly the same as that of claim 4.

Claim 14. |Pr(E12) − Pr(E11)| ≤ AdvSXDHB (λ) + 2−�(λ).

This proof is exactly the same as that of claim 3. �

5. Our Succinct UQFE

In the following, we define unbounded quadratic functional encryption (UQFE) for the
message spaces {Xλ}2

λ, a key space {Yλ}λ for any λ ∈ N which is a security parameter.
In our definition, the message vectors z1 ∈ Z

n1
p , z2 ∈ Z

n2
p are associated with index sets

Iz1 , Iz2 , respectively, and the key vector f ∈ Z
n1n2
p is associated with the index set If.

We assume that the index set If is a Cartesian product between two index sets If1 , If2 .
In the permissive case of UQFE scheme, it recovers (z1 ⊗ z2)f� if and only if If1 ⊆ Iz1

and If2 ⊆ Iz2 and in the strict case, it outputs (z1 ⊗ z2)f� if and only if Iz1 = If1 and
Iz2 = If2 . Clearly, it can be observed that if the UQFE scheme is permissive then it
also satisfies the condition of strict relation. So for simplicity here we define the UQFE
scheme in permissive setting. Our UQFE = (Setup,Enc,KeyGen,Dec) consists of
four PPT algorithms satisfying the following requirements.
Setup(1λ) → (PP,MSK) The setup algorithm takes as input the security parameter
1λ, and outputs a public parameter and a master secret key pair (PP,MSK).
Enc(PP, z1, z2) → CT The encryption algorithm takes as input the public parameter
PP and a pair of message vectors (z1, z2) ∈ Xλ ×Xλ with associated index sets Iz1 , Iz2 ,
respectively, and outputs a ciphertext CT.
KeyGen(PP,MSK, f) → SKf The key generation algorithm takes as input the public
parameter PP, the master secret key MSK and a function f ∈ Yλ with an associated
index set If, and outputs a secret key SKf.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 51 of 73 29

Dec(PP,SKf,CT) → d/⊥ The decryption algorithm takes as input the secret keySKf,
a ciphertext CT and the vector f, and outputs a value d or the symbol ⊥.
CorrectnessAn UQFE scheme is said to be correct if for any λ ∈ N, any pair of message
vectors (z1, z2) with associated index sets Iz1 , Iz2 , any secret key vector fwith associated
index set If = If1 × If2 satisfying If1 ⊆ Iz1 and If2 ⊆ Iz2 , it holds that

Pr

⎡

⎢
⎣Dec(PP,SKf,CT) = (z1 ⊗ z2)f� :

(PP,MSK) ← Setup(1λ)

CT ← Enc(PP,MSK, z1, z2)

SKf ← KeyGen(PP,MSK, f)

⎤

⎥
⎦ = 1.

Succinctness and Compactness An UQFE is said to be succinct if the secret key size
is independent of the size of the function f, i.e. |SKf| = O(1), and the ciphertext size is
linear in the size of z1 and z2, i.e. |CT| = O(|z1|) + O(|z2|).

Concurrently, Tomida [48] studied UQFE in the public key setting and presented
a construction with IND-based security model. We use UQFE of [48] to instantiate
our public key UNP-IPFE. The secret key UNP-IPFE is, however, proved in the SIM-
based model and depends on a secret key UQFE which encrypts message vectors in
the presence of MSK. Thus, we present the SIM-based security notion of UQFE in the
secret key setting below and for completeness the IND-based security model is given in
Appendix A.

Definition 4. (SA-SIMSecurity forUQFE) TheUQFE = (Setup,Enc,KeyGen,Dec)
is said to be semi-adaptive simulation (SA-SIM) secure if for any security parameter
λ, any PPT adversary A, there exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗)
such that the following holds

AdvUQFE
A,SA-SIM(λ) :=

∣
∣
∣Pr[ExpRealUQFE,A(λ) = 1] − Pr[ExpIdealUQFE,A,S(λ) = 1]

∣
∣
∣ ≤ negl(λ)

where the experiments ExpRealUQFE,A(λ) and ExpIdealUQFE,A,S(λ) are defined as follows:

ExpRealUQFE,A(λ)

1: (PP,MSK) ← Setup(1λ)

2: (z∗1, z∗2) ← A(PP)

3: CT∗ ← Enc(PP,MSK, z∗1, z∗2)

4: b ← AKeyGen(PP,MSK,·)(CT∗).

ExpIdealUQFE,A,S (λ)

1: (PP∗,MSK∗) ← Setup∗(1λ)

2: (z∗1, z∗2) ← A(PP∗)

3: CT∗ ← Enc∗(PP∗,MSK∗, Iz∗1 , Iz∗2)

4: b ← AKeyGen∗(PP∗,MSK∗,·,·)(CT∗).

In theReal security experiment,KeyGen(PP,MSK, ·) is an oracle that takes input the
secret key vector fwith associated the index set If and outputsSKf ← KeyGen(PP,MSK, f).
In the Ideal security experiment, KeyGen∗(PP∗,MSK∗, ·, ·) oracle returns a simulated
secret key SK∗

f on input a key vector f with index set If and μ where the value of μ is
(z∗

1 ⊗ z∗
2)f

� whenever the conditions If1 ⊆ Iz∗1 and If2 ⊆ Iz∗2 hold, else μ = ⊥.

 29 Page 52 of 73 U. Dowerah et al.

5.1. Construction of UQFE

In this section, we construct a secret key UQFE scheme with strict relation. Let us
consider two hash functions H1,H2 and two PRF families F1 = {FK1}K1∈Kλ

, F2 =
{FK2}K2∈Kλ

with the key space Kλ defined as follows:

• H1 : Z → G
k+1
1 × G

k+1
2 s.t. H1(i) = ([[ai]]1, [[ai]]2) ∈ G

k+1
1 × G

k+1
2 .

• H2 : Z → G
k′+1
2 s.t. H2(i) = [[bi]]2 ∈ G

k′+1
2 .

• F1 = {FK1 |FK1 : Z → Zp, K1 ∈ Kλ} s.t. FK1(i) = wi ∈ Zp.
• F2 = {FK2 |FK2 : Z → Zp, K2 ∈ Kλ} s.t. FK2(j) = w j ∈ Zp.

Our UQFE = (Setup,Enc,KeyGen,Dec) scheme is described below. As all prior
works on FEs from DDH and bilinear groups, the required functional value comes from
a polynomial range so that at the end of the decryption phase, we can efficiently perform
an exhaustive search to obtain the value (z1 ⊗ z2)f�.
Setup(1λ) → (PP,MSK) The setup algorithm takes as input security parameter 1λ

and proceeds the following steps:

1. Sample bilinear group G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ).

2. Sample A0 ← Z
k′×(k′+1)
p ,W1 ← Z

(k′+1)×k′
p , W2 ← Z

(k′+1)×k
p .

3. Chooses PRF keys K1, K2 ← Kλ.

4. Output PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1) and MSK = (K1, K2,W1,W2).

Enc(PP,MSK, z1, z2) → CT The encryption algorithm takes as input the public pa-
rameter PP, the master secret key MSK, a message (z1, z2) ∈ Z

n1
p × Z

n2
p with its

associated index sets Iz1, Iz2 and executes the following steps:

1. Parse PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).
2. Parse Iz1 := {i1, . . . , in1}, Iz2 := { j1, . . . , jn2} for some n1, n2 ≥ 1.
3. Compute the following vectors using the hash functions as

H1(i�) =
(
[[a(1)

i�
]]1, [[a(1)

i�
]]2

)
∈ G

k×1
1 × G

k×1
2 , ∀� ∈ [n1] (5.1)

H2(j�) =[[a(2)
j�

]]2 ∈ G
k′×1
2 , ∀� ∈ [n2]. (5.2)

4. Set the vectors w1 = (FK1(it))t∈[n1] ∈ Z
n1
p and w2 = (FK2(jt))t∈[n2] ∈ Z

n2
p .

5. Set the matrices

[[A1]]1 =[[a(1)
i1

‖ . . . ‖ a(1)
in1

]]1 ∈ G
k×n1
1 , (5.3)

[[A2]]2 =[[a(2)
j1

‖ . . . ‖ a(2)
jn2

]]2 ∈ G
k′×n2
2 (5.4)

6. Compute and set [[A0W]]1:=[[A0W̃1 ‖A0W̃2]]1 where W̃1 = W1⊗w1 ∈ Z
(k′+1)×k′n1
p

and W̃2 = W2 ⊗ w2 ∈ Z
(k′+1)×kn2
p .

7. Sample s1 ← Z
k
p and s0, s2 ← Z

k′
p

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 53 of 73 29

8. Output the ciphertext

CT =
⎛

⎜
⎝[[s1A1 + z1︸ ︷︷ ︸

y1

]]1, [[s2A2 + z2︸ ︷︷ ︸
y2

]]2, [[s0A0︸ ︷︷ ︸
c0

]]1, [[s0A0W + (s1 ⊗ z2 ‖ y1 ⊗ s2)
︸ ︷︷ ︸

y0

]]1, Iz1 , Iz2

⎞

⎟
⎠ .

KeyGen(PP,MSK, f) → SKf The key generation algorithm takes as input the public

parameter PP, the master secret keys MSK and a function f ∈ Z
n′

1n
′
2

p which is associated
with an index set If. It performs as follows:

1. Parse MSK = (W1,W2).
2. Parse If = If1 ⊗ If2 where If1 :={i ′1, . . . , i ′n′

1
}, If2 :={ j ′1, . . . , j ′n′

2
}.

3. Use H1 and H2 (as in Eq. 5.1, 5.2) for the index sets If1 and If2 to generate

the matrices [[A′
1]]2 ∈ G

k×n′
1

2 and [[A′
2]]2 ∈ G

k′×n′
2

2 similar to Eq. 5.3 and 5.4,
respectively.

4. Set the vectors w′
1 = (FK1(i

′
t))t∈[n′

1] ∈ Z
n′

1
p and w′

2 = (FK2(j
′
t))t∈[n′

2] ∈ Z
n′

2
p .

5. Define W′:=(W1 ⊗ w′
1 ‖ W2 ⊗ w′

2).
6. Output the secret key

SKf =
(

[[W′ ·
(

(A′
1 ⊗ In′

2
)f�

(In′
1

⊗ A′
2)f�

)

]]2, f, If1 , If2

)

.

Dec(PP,SKf,CT) → d The decryption algorithm takes as input the public parameter
PP, the secret key SKf of a function f and a ciphertext CT. It works as follows:

1. Parse SKf = ([[k�
1]]2, f, If1, If2) and CT = ([[y1]]1, [[y2]]2, [[c0]]1, [[y0]]1, Iz1, Iz2).

2. If Iz1 �= If1 or Iz2 �= If2 , then output ⊥.

3. Else compute k�
2 = [[

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

]]2 where [[A1]]2, [[A2]]2 are generated as

Eqs. 5.3 and 5.4 over the index sets If1, If2 , respectively, and output loggT d where

[[d]]T = [[(y1 ⊗ y2)f
�]]T · e

(
[[c0]]1, [[k�

1]]2

)
· e
(
[[y0]]1, [[k�

2]]2

)−1
. (5.5)

Correctness If Iz1 = If1 and Iz2 = If2 then we have A′
1 = A1,A′

2 = A2,W′ = W. The
terms in the decryption equation can be simplified as follows:

[[(y1 ⊗ y2)fT]]T = [[(z1 ⊗ z2)f� + (y1 ⊗ s2A2)f� + (s1A1 ⊗ z2)f�]]T
= [[(z1 ⊗ z2)f�]]T · [[(s1 ⊗ z2 ‖ y1 ⊗ s2)

(
(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

]]T .

e
(
[[c0]]1, [[k�

1]]2
)

= e

(

[[s0A0]]1, [[W ·
(

(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

]]2
)

= [[s0A0W
(

(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

]]T .

e
(
[[y0]]1, [[k�

2]]2
)

= e

(

[[s0A0W + (s1 ⊗ z2 ‖ y1 ⊗ s2)]]1, [[
(

(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

]]2
)

 29 Page 54 of 73 U. Dowerah et al.

= [[s0A0W
(

(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

+ (s1 ⊗ z2 ‖ y1 ⊗ s2)

(
(A1 ⊗ In2)f�
(In1 ⊗ A2)f�

)

]]T .

Putting everything together, it can be seen that correctness follows from Eq. 5.5.
Succinctness and Compactness A salient feature of our UQFE is the succinctness of
secret keys. A secret key SKf consists of only (k′ + 1) elements of G2,3 no matter how
long is the vector f. Further, the ciphertext size is compact. It consists of (k′ +1)(n1 +1)

elements fromG1 and kn2 elements fromG2. Concretely, the size of the secret key could
be as small as 2|G2| and the ciphertext is 2(n1 + 1)|G1|+ 2n2|G2| where |G| represents
the size of a single element of the group G. The public key UQFE of [48] is designed
for n1 = n2 = n. For message vectors of lengths n and key vectors of length (n′)2, the
size of the ciphertext is (26n + 21)|G1| + 12n|G2| and that of the secret key is at least
(14n′ + 9)|G2|.

5.2. Simulator

We now describe the simulator of our UQFE before going to the formal security analysis.

Setup∗(1λ) Sample A0 ← Z
k′×(k′+1)
p ,W1 ← Z

(k′+1)×k′
p ,W2 ← Z

(k′+1)×k
p ,W ←

Z
(k′+1)×(kn2+k′n1)
p , a⊥

0 ← Z
k′+1
p ,u ← Z

1×(k′+1)
p such that A0 · a⊥

0 = 0;u · a⊥
0 = 1.

Choose K1, K2 ← Kλ. Then it generates

PP∗ = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1) , MSK∗ = (K1, K2,W1,W2,W,u, a⊥
0).

Enc∗(PP∗,MSK∗, Iz∗1 , Iz∗2) Outputs

CT∗ =
(
y1, y2, c0 = [[u]]1, y0 = [[uW]]1, Iz∗1 , Iz∗2

)

where y1 ← G

|Iz∗1 |
1 , y2 ← G

|Iz∗2 |
2 .

KeyGen∗(PP∗,MSK∗,μ, f) Parse If = If1 ⊗ If2 . If If1 �= Iz∗1 or If2 �= Iz∗2 then the
secret key is computed as in the real key generation algorithm, i.e., using W1,W2, it
outputs

SKf =
(

k�
1 = [[W′

(
(A′

1 ⊗ In′
2
)f�

(In′
1
⊗ A′

2)f
�

)

]]2, f, If1, If2

)

where W′:=(W1 ⊗ w′
1 ‖ W2 ⊗ w′

2) with (w′
1,w

′
2) and (A′

1,A
′
2) are generated via the

PRF functions FK1 , FK2 and hash functions H1,H2, respectively (similar to Eqs. 5.3
and 5.4). Otherwise, if If1 = Iz∗1 , If2 = Iz∗2 , it outputs

SKf =
(
k�

1 = [[W̃f
� − μ′a⊥

0]]2, f, If1 , If2
)

3We do not include the function f while measuring the actual size of SKf since a secret key holder always
has the corresponding to the key.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 55 of 73 29

where [[A1]]2 ← G
k×|If1 |
2 , [[A2]]2 ← G

k′×|If2 |
2 , f̃

� =
(

(A1 ⊗ In2)f
�

(In1 ⊗ A2)f�
)

, μ′ = (y1 ⊗
y2)f

� − μ with μ = (z∗
1 ⊗ z∗

2)f
� and y1 ← G

|If1 |
1 , y2 ← G

|If2 |
2 .

5.3. Security Analysis

Theorem 2. Assuming the hardness of the bilateral k-Lin and k′-Lin assumptions, our
UQFE = (Setup, Enc, KeyGen, Dec) scheme isSA-SIM secure in the randomoracle
model as per Definition 4. More precisely, if there exists a PPT adversaryA that breaks
the SA-SIM security of our UQFE then we construct PPT machines B1,B2 and B3 such
that for any security parameter λ, the advantage

AdvUQFE
A,SA-SIM(λ) ≤ Adv

MDDHk′+1
k′,1

B1
(λ) + Adv

bi-MDDH
n1
k,1

B2
(λ) + Adv

MDDH
n2
k′,1

B3
(λ)

where (n1, n2) is the lengths of challenge message vectors.

Proof. We consider a sequence of games to prove the theorem. Suppose A be a PPT
adversary against SA-SIM experiment of our UQFE scheme. The games are described
below. In the description of these games, a part framed by a box indicates the elements
that are altered in a transition from its previous game.
Game 0: This game corresponds to the experiment ExpRealUQFE,A(1λ) as defined in Defi-
nition 4 where the ciphertext CT∗ associated with the vectors pair (z∗

1, z∗
2) is generated

as

CT∗ =

⎛

⎜
⎜
⎝[[s1A1 + z∗1︸ ︷︷ ︸

y1

]]1, [[s2A2 + z∗2︸ ︷︷ ︸
y2

]]2, [[s0A0︸ ︷︷ ︸
c0

]]1, [[s0A0W + (s1 ⊗ z∗2 ‖ y1 ⊗ s2)
︸ ︷︷ ︸

y0

]]1, Iz∗1 , Iz∗2

⎞

⎟
⎟
⎠ .

Here, s1 ← Z
k
q , s2 ← Z

k′
q and [[A1]]1, [[A2]]2 are generated similarly as Eqs. 5.3 and 5.4.

Also, [[A0W]]1:=[[A0(W1 ⊗ w1) ‖ A0(W2 ⊗ w2)]]1 with w1 = (FK1(it))t∈[n1] ∈ Z
n1
p

and w2 = (FK2(jt))t∈[n2] ∈ Z
n2
p . The secret key queried by A corresponding to the

function f with the index sets If1 , If2 is formed as SKf = (k�
1 , f, If1 , If2) such that

SKf =
(

k�
1 = [[W

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

]]2, f, If1, If2

)

whenever If1 = Iz∗1 , If2 = Iz∗2 .
Game 1: This game is identical with the Game 0 except that the challenge ciphertext
component y0 is set as

CT∗ =
(
[[s1A1 + z∗1]]1, [[s2A2 + z∗2]]2, [[s0A0]]1, [[s0A0W + (s1 ⊗ z∗2||y1 ⊗ s2)]]1, Iz∗1 , Iz∗2

)

where [[A0W]]1 = [[A0(W1⊗w1)||A0(W2⊗w2)]]1 such that w1←Z
1×n1
p ,w2←Z

1×n2
p .

In this Game, we replace the PRFs FK1(·), FK2(·)with the random functionsRand1(·) ←

 29 Page 56 of 73 U. Dowerah et al.

Rand1,λ,Rand2(·) ← Rand2,λ where Rand1,λ,Rand2,λ are the set of functions that
have the same domain and range space as FK1 and FK2 , respectively. Therefore, from
the security of PRF, the Game 0 and Game 1 are computationally indistinguishable.
Game 2: Game 2 is the same as Game 1 except that the challenge ciphertext component
c0 are generated as follows:

CT∗ =
(
[[s1A1 + z∗

1]]1, [[s2A2 + z∗
2]]2, [[u]]1 , [[uW + (s1 ⊗ z∗

1||y1 ⊗ s2)]]1, Iz∗1 , Iz∗2

)

where u ← Z
k′+1
p . All others components are generated similarly by B as Game 1.

We prove the indistinguishability between Game 1 and Game 2 in the Lemma 4.
Game 3: This is exactly the same as Game 2 except the secret key SKf for If1 = Iz∗1 and
If2 = Iz∗2 , and the challenge ciphertext text CT∗ are computed as

CT∗ =
(
[[s1A1 + z∗

1]]1, [[s2A2 + z∗
2]]2, [[u]]1, [[uW̃]]1 , Iz∗1 , Iz∗2

)

SKf =
(

[[W̃̃f
� − a⊥

0 (〈z∗, f̃〉)]]2 , f, If1, If2

)

where W̃ is chosen uniformly from Z
(k′+1)×(k′n1+kn2)
p . We justify the transition between

Game 2 and Game 3 in the Lemma 5.
Game 4: Game 4 is the same as Game 3 except that the secret key component k�

1
associated with the function f ∈ Z

n1n2
p is generated as

SKf =
(
k�

1 = [[W̃̃f
� − a⊥

0 μ′]]2, f, If1 , If2
)

where μ′ = (y1 ⊗ y2)f
� − (z∗

1 ⊗ z∗
2)f

� and f̃
� =

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

.

We justify the game transition between Game 3 and Game 4 in the Lemma 6.
Game 5: This game is the same as Game 4 except that we program

[[A1]]1 = [[a(1)
i1

‖ . . . ‖ a(1)
in1

]]1 ∈ G

k×|Iz∗1 |
1 by [[a(1)

i�
]]1 ← G

k×1
1 for Iz∗1 = {i1, . . . , in1}

and the challenge ciphertext as

CT∗ =
(
y1 , y2 = [[s2A2 + z∗

2]]2, c0 = [[u]]1, y0 = [[uW̃]]1, Iz∗1 , Iz∗2

)

where y1 ← G

|Iz∗1 |
1 .

We prove the indistinguishability between Game 4 and Game 5 in Lemma 7.
Game 6: This game is the same as Game 5 except that we program

[[A2]]2 = [[a(2)
j1

‖ . . . ‖ a(2)
jn2

]]2 ∈ G

k′×|Iz∗2 |
2 by [[a(2)

j�
]]2 ← G

k′×1
2 for Iz∗2 = { j1, . . . , jn2}

and the challenge ciphertext is computed as

CT∗ =
(
y1, y2 , c0 = [[u]]1, y0 = [[uW̃]]1, Iz∗1 , Iz∗2

)

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 57 of 73 29

where y2 ← G

|Iz∗2 |
2 .

We justify the transition from Game 5 to Game 6 in Lemma 8. �

Finally, note that Game 6 is exactly the output of the simulator. We represent Eι as
the event that A outputs 1 in Game ι. We prove the following lemmas by showing the
indistinguishability of adjacent games listed above.

Lemma 4. For all adversary A, there exist B1 such that

|Pr[E2] − Pr[E1]| ≤ Adv
MDDHk′+1

k′,1
B1

(λ).

Proof. Let us assume that the challenger obtains an instance (G, [[A0]]1, [[ub]]1) of
MDDHk′+1

k′,1 assumption where

ub =
{
s0A0 if b = 0,

u ← Z
k′+1
p if b = 1.

The challenger uses the MDDHk′+1
k′,1 instance to traverse from Game 2 to Game 1.

Public key simulation. The reduction samples W1 ← Z
(k′+1)×k′
p , W2 ← Z

(k′+1)×k
p

and sets PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).
Ciphertext simulation. The challenge ciphertext CT∗ = (y1, y2, c0, y0, Iz∗1 , Iz∗2) cor-
responding to the challenge message (z∗

1, z
∗
2) is generated as follows:

– Sample s1 ← Z
k
p and s2 ← Z

k′
p and generate y1 = [[s1A1 + z∗

1]]1, y2 = [[s2A2 +
z∗

2]]2, c0 = [[ub]]1 where

[[A1]]1 =[[a(1)
i1

‖ . . . ‖ a(1)
in1

]]1 ∈ G
k×n1
1 ,

[[A2]]2 =[[a(2)
j1

‖ . . . ‖ a(2)
jn2

]]2 ∈ G
k′×n2
2

and H1(i�) =
(
[[a(1)

i�
]]1, [[a(1)

i�
]]2

)
∈ G

k×1
1 × G

k×1
2 for all � ∈ [n1] and H2(j�) =

[[a(2)
j�

]]2 ∈ G
k′×1
2 for all � ∈ [n2].

– Compute y0 = [[ubW+ (s1 ⊗ z∗
2 ‖ y1 ⊗ s2)]]1 where [[ubW]]1:=[[ubW̃1 ‖ ubW̃2]]1

and W̃1 = W1⊗w1 ∈ Z
(k′+1)×k′n1
p , W̃2 = W2⊗w2 ∈ Z

(k′+1)×kn2
p withw1 ← Z

n1
p ,

w2 ← Z
n2
p .

Secret key simulation. In the following, we describe how challenger simulates the secret
key SKf = (k�

1 , f, If1 , If2) associated with the function f ∈ Z
n1n2
p .

– Using the hash functions H1,H2 over the index sets If1 , If2 , generate the matrices

[[A1]]2 ∈ G
k×n1
2 , [[A2]]2 ∈ G

k′×n2
2 as described in ciphertext simulation phase.

 29 Page 58 of 73 U. Dowerah et al.

– Generate the secret key component k�
1 corresponding to the function f ∈ Zn1n2

p as

k�
1 = [[W

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

]]2

where W:=(W1 ⊗ w1 ‖ W2 ⊗ w2) such that w1 ← Z
n1
p , w2 ← Z

n2
p .

Analysis. According to the MDDHk′+1
k′,1 assumption, we have

(G, [[A0]]1, [[s0A0]]1) ≈c (G, [[A0]]1, [[u]]1).

If b = 0, ub = [[s0A0]]1, then the adversarial view is the same as Game 1; otherwise for
b = 1, ub is randomly chosen from the group G

k′+1
1 and hence the adversarial view is

similar to Game 2. Thus, we have Game 1 ≈c Game 2 via the MDDHk′+1
k′,1 assumption.

�

Lemma 5. For all adversary A, we have E3 ≈s E2.

Proof. The change from Game 2 to Game 3 follows from the following change of
variables which embeds the selective challenge z∗ into W:

W̃ = W + a⊥
0 z

∗

where a⊥
0 ∈ Z

(k′+1)
p such that A0 · a⊥

0 = 0,u · a⊥
0 = 1. Since W is chosen uniformly

from Z
(k′+1)×(k′n1+kn2)
p , then the matrix W̃ is also uniform over Z(k′+1)×(k′n1+kn2)

p .

Let us denote (z∗)� = (s1 ⊗ z∗
1||y1 ⊗ s2) ∈ Z

k′n1+kn2
p . We have

W̃1 = W1 ⊗ w∗
1; W̃2 = W2 ⊗ w∗

2; W = (W̃1||W̃2) ∈ Z
(k′+1)×(k′n1+kn2)
p

which in particular implies that

A0W̃ = A0W + A0a⊥
0 z = A0W = (A0W̃1||A0W̃2) (5.6)

uW̃ = uW + u(a⊥
0 z

∗) = uW + z∗ (5.7)

W̃̃f
� = W̃f

� + a⊥
0 (z∗̃f�) = W̃f

� + a⊥
0 (〈z∗, f̃〉)

W̃f
� = W̃̃f

� − a⊥
0 (〈z∗, f̃〉) = k�

1

where f̃
� =

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

(5.8)

Formally to justify the change of variables, observe that for all A0, z∗, we have

(
A0W,W + a⊥

0 z
∗) ≡ (A0W̃, W̃

)
(5.9)

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 59 of 73 29

where the distributions are taken over the random choice ofW. Then, whenever If1 = Iz∗1
and If2 = Iz∗2 we have

CT∗ =
(
[s1A1 + z∗

1]1, [s2A2 + z∗
2]2, [u]1, [uW̃]1, Iz∗1 , Iz∗2

)
,

SKf =
(
[[W̃̃f

� − a⊥
0 (〈z∗, f̃〉)]]2, f, If1, If2

)
.

If If1 �= Iz∗1 or If2 �= Iz∗2 then the secret key corresponding to the vector f is generated as

SKf =
(

k�
1 = [[W′

(
(A′

1 ⊗ In′
2
)f�

(In′
1
⊗ A′

2)f
�

)

]]2, f, If1, If2

)

where [[A′
1]]2 ∈ G

k×n′
1

2 , [[A′
2]]2 ∈ G

k′×n′
2

2 are generated by using the hash functions
H1,H2 over the index sets If1, If2 and W:=(W1 ⊗ w1 ‖ W2 ⊗ w2) with w1 =
(FK1(it))t∈[n′

1] ∈ Z
n′

1
p ,w2 = (FK2(jt))t∈[n′

2] ∈ Z
n′

2
p .

So from the above, we can conclude that the distribution of Eq. 5.9 are identically
distributed even if z∗ is selectively chosen. Therefore, Game 2 and Game 3 are statistically
indistinguishable. �

Lemma 6. For all adversary A, we have Pr[E4] = Pr[E3].

Proof. The secret key SKf = (k�
1 , f, If1, If2) for If1 = Iz∗1 and If2 = Iz∗2 is given by

the component

k�
1 = W̃̃f

� − a⊥
0 〈z∗, f̃〉.

To see that the Game 3 and Game 4 follow the same distribution, we use the following
identity

(y1 ⊗ y2)f
� = (z∗

1 ⊗ z∗
2)f

� + (s1 ⊗ z∗
1||y1 ⊗ s2)

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

= (z∗
1 ⊗ z∗

2)f
� + 〈z∗, f̃〉

�⇒ 〈z∗, f̃〉 = (y1 ⊗ y2)f
� − (z∗

1 ⊗ z∗
2)f

� = μ′.

It is now clear that the distribution of secret keys in Game 3 and Game 4 are identical.
Hence, Game 3 and Game 4 are identically in the adversary’s view. �

Lemma 7. For all adversary A, there exist B2 in the random oracle model such that

|Pr[E5] − Pr[E4]| ≤ Adv
bi-MDDH

n1
k,1

B2
(λ).

 29 Page 60 of 73 U. Dowerah et al.

Proof. We will now show that the challengerB2 can break the bi-MDDHn1
k,1 assumption

usingA as a subroutine. The adversaryB2 obtains the instances (G, [[A1]]1, [[A1]]2, [[tb]]1,

[[tb]]2) of bi-MDDHn1
k,1 assumption where

tb =
{
s1A1 + z∗

1 if b = 0,

t ← Z
n1
p if b = 1.

We have to show that B2 can interpolate between Game 4 and Game 5 by using the
bi-MDDHn1

k,1 instances.

Public parameter simulation.SamplesW1 ← Z
(k′+1)×k′
p ,W2 ← Z

(k′+1)×k
p andA0 ←

Z
k′×(k′+1)
p generate PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).

Random oracle simulation. When the adversary A gives out Iz∗1 and Iz∗2 , we initiate the

random oracle H1(i) = ([[a(1)
i]]1, [[a(1)

i]]2) for all i ∈ Iz∗1 where a(1)
i is the i th column of

A1 and H2 = φ. When the adversary A makes random oracle query on j ,

– onH1: ifH1(j) is empty, we sampleu j ← Z
k
p and assignH1(j) = ([[u(1)

j]]1, [[u(1)
j]]2)

before sending H1(j) back. Otherwise, we just send H1(j) back.
– on H2: if H2(j) is empty, we sample a j ← Z

k′
p and assign H2(j) = ([[a(2)

j]]2)

before sending H2(j) back. Otherwise, we just send H2(j) back.

Ciphertext simulation. The challenger simulates the challenge ciphertext CT∗ =
(y1, y2, c0, y0, Iz∗1 , Iz∗2) as follows:

– Sample s2 ← Z
k′
p ,u ← Z

k′
p and set y1 = [[tb]]1, y2 = [[s2A2 + z∗

2]]2, c0 = [[u]]1,

y0 = [[uW̃]]1 where

[[A2]]2 =[[a(2)
j1

‖ . . . ‖ a(2)
jn2

]]2 ∈ G
k′×n2
2

such that [[a(2)
j�

]]2 ← G
k′×1
2 for all � ∈ [n2], and W̃ ← Z

(k′+1)×(k′n1+kn2)
p .

Secret key simulation. In the following, we describe how the challenger simulates the
secret key SKf using the given instance whenever If1 = Iz∗1 , If2 = Iz∗2 .

– Generate the secret key SKf = (k�
1 , f, If1, If2) corresponding to the secret key

vector f ∈ Z
n1n2
p as

SKf =
(
k�

1 = [W̃̃f
� − a⊥

0 μ′]2, f, If1 , If2
)

where μ′ = (y1 ⊗ y2)f
� − (z∗

1 ⊗ z∗
2)f

� and f̃
� =

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

.

If If1 �= Iz∗1 or If2 �= Iz∗2 then the secret key SKf = (k�
1 , f, If1 , If2) corresponding to the

secret key vector f is generated as

SKf =
(

k�
1 =

[

W′
(

(A′
1 ⊗ In′

2
)f�

(In′
1
⊗ A′

2)f
�

)]

2

, f, If1, If2

)

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 61 of 73 29

where [[A′
1]]2 ∈ G

k×n′
1

2 and [[A′
2]]2 ∈ G

k′×n′
2

2 are computed honestly by using the hash
functions H1 and H2 over the index set If1 , If2 and W:=(W1 ⊗ w1 ‖ W2 ⊗ w2) with

w1 = (FK1(it))t∈[n′
1] ∈ Z

n′
1
p ,w2 = (FK2(jt))t∈[n′

2] ∈ Z
n′

2
p .

Analysis. According to the security of bilateral k-Lin assumption, we have

([[A1]]1, [[A1]]2, [[s1A1 + z∗
1]]1, [[s1A1 + z∗

1]]2) ≈c ([[A1]]1, [[A1]]2, [[t]]1, [[t]]2) .

In that case, for b = 0, i.e., [t′b] = [[s1A1 +z∗
1]], then B3 simulates the Game 4; otherwise

for b = 1, [t′b] = [t′] is uniformly chosen from the group Z
n1
p and hence B simulates the

Game 5. Therefore, we can conclude that Game 4 ≈c Game 5, i.e., Game 4 and Game
5 are computationally indistinguishable. �

Lemma 8. For all adversary A, there exist B3 in the random oracle model such that

|Pr[E6] − Pr[E5]| ≤ Adv
MDDH

n2
k′,1

B3
(λ).

Proof. We will now show that the challenger B3 can break the MDDHn2
k′,1 problem

using A as a subroutine. The adversary B3 obtains the instance (G, [[A2]]2, [[t’b]]2) of
MDDHn2

k′,1 problem where

t’b =
{
s2A2 + z∗

2 if b = 0,

t’ ← Z
n2
p if b = 1

by using the instance of MDDHn2
k′,1, the challenger B3 can interpolate between Game 5

and Game 6.
Public parameter simulation. Sample W1 ← Z

(k′+1)×k′
p , W2 ← Z

(k′+1)×k
p and A0 ←

Z
k′×(k′+1)
p to generate the public parameter PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).

Random oracle simulation. When the adversary A gives out Iz∗1 and Iz∗2 , we initiate

the random oracles H1 = φ and H2(i) = ([[a(2)
i]]2) for all i ∈ Iz∗2 where a(2)

i is the i th

column of A2. When the adversary A makes random oracle query on j ,

– onH1: ifH1(j) is empty, we samplea(1)
j ← Z

k
p and assignH1(j) = ([[a(1)

j]]1, [[a(1)
j]]2)

before sending H1(j) back. Otherwise, we just send H1(j) back.
– on H2: if H2(j) is empty, we sample d j ← Z

k′
p and assign H2(j) = ([[d(1)

j]]2)

before sending H2(j) back. Otherwise, we just send H2(j) back.

Ciphertext simulation.NowB3 simulates the challenge ciphertextCT∗ = (y1, y2, c0, y0,

Iz∗1 , Iz∗2) as follows:

– Sample u ← Z
k′
p , y1 ← G

n1 and sets y2 = [[t′b]]2, c0 = [[u]]1, y0 = [[uW̃]]1 where

W̃ ← Z
(k′+1)×(k′n1+kn2)
p .

Secret key simulation. In the following, we describe how B3 simulates the secret key
SKf using the given instance whenever Iz∗1 = If1 and Iz∗2 = If2 :

 29 Page 62 of 73 U. Dowerah et al.

– Generate the secret key SKf = (k�
1 , f, If1, If2) corresponding to the secret key

vector f ∈ Z
n1n2
p as

SKf =
(
k�

1 = [[W̃̃f
� − a⊥

0 μ′]]2, f, If1 , If2
)

where μ′ = (y1 ⊗ y2)f
� − (z∗

1 ⊗ z∗
2)f

�, f̃
� =

(
(A1 ⊗ In2)f

�
(In1 ⊗ A2)f�

)

and [[A1]]2 ←
G

k×|If1 |
2 .

If If1 �= Iz∗1 or If2 �= Iz∗2 then the secret key corresponding to the vector f is generated as

SKf =
(

k�
1 = [[W′

(
(A′

1 ⊗ In′
2
)f�

(In′
1
⊗ A′

2)f
�

)

]]2, f, If1, If2

)

where [[A′
1]]2 = [[a(1)

i1
‖ . . . ‖ a(1)

in1
]]2 ∈ G

k×n′
1

2 and [[A′
2]]2 = [[a(2)

j1
‖ . . . ‖ a(2)

jn2
]]2 ∈

G
k′×n2
2 such that H1(i�) =

(
[[a(1)

i�
]]1, [[a(1)

i�
]]2

)
∈ G

k×1
1 × G

k×1
2 for all � ∈ [n′

1] and

H2(j�) = [[a(2)
j�

]]2 ∈ G
k′×1
2 for all � ∈ [n′

2] and W′:=(W1 ⊗ w′
1 ‖ W2 ⊗ w′

2) with

w′
1 = (FK1(it))t∈[n′

1] ∈ Z
n′

1
p ,w′

2 = (FK2(jt))t∈[n′
2] ∈ Z

n′
2
p .

Analysis. According to the security of k′-Lin assumption, we have

([[A2]]2, [[s2A2 + z∗
2]]2
) ≈c

([[A2]]2, [[y2]]2
)
.

In that case, if b = 0, then t’b = s2A2 + z∗
2, then B3 simulates the Game 5; otherwise

for b = 1, t’b = t’ is uniformly chosen from Z
n2
p and hence B3 simulates the Game

6. Therefore, we can conclude that Game 5 ≈c Game 6, i.e., Game 5 and Game 6 are
computationally indistinguishable. �

6. Weak Attribute-Hiding UNP-IPFE

We consider aUQFE = (UQFE.Setup,UQFE.Enc,UQFE.KeyGen,UQFE.Dec) and
a UIPFE = (UIPFE.Setup, UIPFE.Enc,UIPFE.KeyGen,UIPFE.Dec) scheme to
construct an UNP-IPFE = (Setup,KeyGen,Enc,Dec) scheme. Recall that a UNP-
IPFE computes ciphertexts for vectors (x,w) and generate secret keys for vectors (y, v)
such that decryption algorithm recovers 〈x, y〉 if 〈w, v〉 �= 0 and the vectors satisfy a
strict/permissive relation, i.e., (x, y), (w, v) ∈ Rs or Rp. Depending on the underlying
UQFE and UIPFE, our generic construction yields a permissive or strict UNP-IPFE.
Here, we present the strict case where the correctness holds only when (x, y), (w, v) ∈
Rs .

We slightly modify the Dec algorithms of UIPFE and UQFE schemes, which now
return the inner product and quadratic values in the exponent of the underlying target
group (that is, before solving the discrete logarithm problem). As with all pairing-based
IPFE in the literature, our required inner product value comes from a polynomial range

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 63 of 73 29

so that we can efficiently perform an exhaustive search to obtain the value at the end of
the decryption phase.

6.1. Construction

Our UNP-IPFE = (Setup, Enc,KeyGen, Dec) scheme works as follows:
Setup(1λ) → (MPK,MSK) The setup algorithm takes input the security parameter λ

and performs the following steps:

1. Generate

(UQFE.MPK, UQFE.MSK) ← UQFE.Setup(1λ)

(UIPFE.MPK, UIPFE.MSK) ← UIPFE.Setup(1λ).

2. SetMSK = (UQFE.MSK,UIPFE.MSK) andMPK = (UQFE.MPK, UIPFE.MPK)

Enc(MPK, x,w) → CTx,w The encryption algorithm takes input the master key MPK,
message-attribute vector pair (x,w) ∈ Z

|Ix| ×Z
|Iw| with the associated index sets Ix, Iw

and executes the following steps:

1. Parse MPK = (UQFE.MPK,UIPFE.MPK).
2. Compute

UQFE.CTx,w ← UQFE.Enc(UQFE.MPK, x,w)

UIPFE.CTw ← UIPFE.Enc(UIPFE.MPK,w).

3. Output CTx,w = (UQFE.CTx,w,UIPFE.CTw).

KeyGen(MPK,MSK, y,v) → SKy,v The key generation algorithm takes input the
master public key MPK, the master secret key MSK, key–predicate vector pair (y, v) ∈
Z

|Iy| × Z
|Iv| with the associated index sets Iy, Iv and performs the following steps:

1. ParseMSK = (UQFE.MSK,UIPFE.MSK) andMPK = (UQFE.MPK, UIPFE.MPK).
2. Compute

UQFE.SKy⊗v ← UQFE.KeyGen(UQFE.MPK,UQFE.MSK, y ⊗ v)

UIPFE.SKv ← UIPFE.KeyGen(UIPFE.MPK,UIPFE.MSK, v).

3. Output SKy,v = (UQFE.SKy⊗v,UIPFE.SKv).

Dec(MPK,SKy,v,CTx,w) → d/ ⊥ The decryptor takes as input the master public key
MPK, a ciphertext CTx,w for the associated vectors x,w with the index sets Ix, Iw and
a secret key SKy,v corresponding to the vectors y,v with index sets Iy, Iv, respectively.
Then the decryption algorithm runs the following steps:

1. Parse SKy,v = (UQFE.SKy⊗v,UIPFE.SKv).
2. Parse CTx,w = (UQFE.CTx,w,UIPFE.CTw).
3. If (x, y) �∈ Rs or (w, v) �∈ Rs , return ⊥.

 29 Page 64 of 73 U. Dowerah et al.

4. Else, compute

ζ ← UQFE.Dec(UQFE.MPK,UQFE.SKy⊗v,UQFE.CTx,w)

η ← UIPFE.Dec(UIPFE.MPK,UIPFE.SKv,UIPFE.CTw).

5. Output logη ζ.

Correctness. Let the ciphertext CTx,w = (UQFE.CTx,w,UIPFE.CTw) be computed
for a pair of vectors x = (xi)i∈Ix ∈ Z

|Ix|,w = (w j) j∈Iw ∈ Z
|Iw| and the secret

key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) be generated for a pair of vectors y =
(yi)i∈Iy ∈ Z

|Iy|, v = (v j) j∈Iv ∈ Z
|Iv|. If R(w, v) = 1, i.e., 〈w, v〉 �= 0 with (x, y), (w, v) ∈

Rs , then we have

UQFE.Dec(UQFE.MPK,UQFE.SKf,UQFE.CTx,w) = [[〈x, y〉〈w, v〉]]T = ζ

UIPFE.Dec(UIPFE.MPK,UIPFE.SKv,UIPFE.CTw) = [[〈w, v〉]]T = η.

Since 〈w, v〉 �= 0, the correctness follows as one can compute logη ζ = 〈x, y〉 by
performing an exhaustive search over a polynomial range where 〈x, y〉 belongs.

Remark 2. In this paper, we consider IND-based security for our UNP-IPFE in the
public key setting and SIM-based security in the secret key setting. We present two
instantiations accordingly and compare the efficiency of the concrete schemes. For now,
we prove the SIM-based security of our UNP-IPFE in the secret key setting. The IND-
based security can be proved similarly, however, for completeness we provide the security
analysis of the public key version in Appendix A.

6.2. Simulator of our UNP-IPFE

We present the PPT simulator of our secret key UNP-IPFE scheme in the SA-WAH-
SIM security model. Let S := (Setup∗,Enc∗,KeyGen∗) be a PPT simulator for
our UNP-IPFE scheme and also let S1 := UQFE.(Setup∗,Enc∗,KeyGen∗), S2 :=
UIPFE.(Setup∗,Enc∗,KeyGen∗) be the PPT simulators for the SA-SIM simulation
secure UQFE and UIPFE, respectively.
Setup∗(1λ) Run

(UQFE.PP∗,UQFE.MSK∗) ← UQFE.Setup∗(1λ),

(UIPFE.PP∗,UIPFE.MSK∗) ← UIPFE.Setup∗(1λ)

and outputPP∗ = (UQFE.PP∗,UIPFE.PP∗); MSK∗ = (UQFE.MSK∗,UIPFE.MSK∗).
Enc∗(PP∗,MSK∗, Ix∗ , Iw∗) Compute

UQFE.CT∗ ← UQFE.Enc∗(UQFE.PP∗,UQFE.MSK∗, Ix∗ , Iw∗),

UIPFE.CT∗ ← UIPFE.Enc∗(UIPFE.PP∗,UIPFE.MSK∗, Iw∗)

and output CT∗ = (UQFE.CT∗, UIPFE.CT∗).

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 65 of 73 29

KeyGen∗(PP∗,MSK∗, y, v, (σ ,μ)) Compute

UQFE.SK∗
y⊗v ← UQFE.KeyGen∗(UQFE,PP∗,UQFE.MSK∗, μσ, y ⊗ v),

UIPFE.SK∗
v ← UIPFE.KeyGen∗(UIPFE.PP∗,UIPFE.MSK∗, σ, v).

Output SK∗
y,v = (UQFE.SK∗

y⊗v,UIPFE.SK∗
v).

Note that, the pair (σ, μ) is set as in Definition 3, however, it can be seen from the
correctness of our UNP-IPFE that the decryption of both UIPFE and UQFE output [[0]]T
when R(w∗, v) �= 1, i.e., 〈w∗, v〉 = 0. Thus, the simulator reassigns (σ, μ) = (0, 0)

if 〈w∗, v〉 = 0 while simulating a secret key for (y, v) such that (y, v) ∈ Rs and
〈w∗, v〉 = 0.

6.3. SIM-Based Security Analysis of UNP-IPFE

Theorem 3. Assuming the underlyingUQFEandUIPFE schemes areSA-SIM secure,
our proposed UNP-IPFE scheme is SA-WAH-SIM secure as per Definition 3.

Proof. We consider a sequence of games to prove the above theorem. Let A be a
PPT adversary of the SA-WAH-SIM security experiment. For ι ∈ {0, 1, 2}, We rep-
resent Eι as the event that A outputs 1 in Game ι. We show that the games are com-
putationally indistinguishable ExpRealUNP-IPFE,A(λ) ≡ Game 0 ≈ Game 1 ≈ Game 2 ≡
ExpIdealUNP-IPFE,A,S(λ).

Game 0 This game corresponds to the experiment ExpRealUNP-IPFE,A(λ) as defined in
Definition 3. Therefore, it can be written as

Pr[ExpRealUNP-IPFE,A(λ) = 1] = Pr[E0]

In this experiment, the ciphertext CT∗ = (UQFE.CT∗,UIPFE.CT∗) corresponding to
the vector pair x∗ = (x∗

i)i∈Ix∗ ∈ Z
|Ix∗ |, w∗ = (w∗

i)i∈Iw∗ ∈ Z
|Iw∗ | is generated as

UQFE.CT∗ = UQFE.Enc(UQFE.PP,UQFE.MSK, x∗,w∗)
UIPFE.CT∗ = UIPFE.Enc(UIPFE.PP,UIPFE.MSK,w∗)

A secret key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) queried by the adversary A corre-
sponding to vectors y = (yi)i∈Iy ∈ Z

|Iy|, v = (vi)i∈Iv ∈ Z
|Iv| is computed as

UQFE.SKy⊗v = UQFE.KeyGen(UQFE.PP,UQFE.MSK, y ⊗ v)

UIPFE.SKv = UIPFE.KeyGen(UIPFE.PP,UIPFE.MSK,v)

Game 1 It proceeds exactly the same as Game 0 except the honest algorithms of
UIPFE are replaced by their simulated versions. In particular, the challenger replaces
UIPFE.(Setup,Enc,KeyGen) by UIPFE.(Setup∗, Enc∗,KeyGen∗). Therefore, the
challenge ciphertext and secret key components generated using the UIPFE are given

 29 Page 66 of 73 U. Dowerah et al.

by

UIPFE.CT∗ = UIPFE.Enc∗(UIPFE.PP∗,UIPFE.MSK∗, Iw∗)

UIPFE.SKv = UIPFE.KeyGen∗(UIPFE.PP∗,UIPFE.MSK∗, σ, v)

where σ = 〈w∗, v〉 if (w∗, v) ∈ Rs , else σ = ⊥.
Analysis. First, we note that all the secret key queries for the pair of vectors (v, y) satisfy
the condition that dim{v : (w∗, v) ∈ Rs} ≤ |Iw∗ | − 1. Thus, the SA-SIM security of the
underlying UIPFE guarantees that for any PPT adversary B1, we have

|Pr[E1] − Pr[E0]| ≤ AdvUIPFEB1,SA-SIM(λ).

Game 2 It proceeds exactly the same as Game 1 except the honest algorithms of
UQFE are replaced by their simulated versions. In particular, the challenger replaces
UQFE.(Setup,Enc,KeyGen) by UQFE.(Setup∗, Enc∗,KeyGen∗). Therefore, the
challenge ciphertext and secret key components generated using the UQFE are given
by

UQFE.CT∗ = UQFE.Enc∗(UQFE.PP∗,UQFE.MSK∗, Ix∗ , Iw∗)

UQFE.SKy⊗v = UQFE.KeyGen∗(UQFE.PP∗,UQFE.MSK∗, μ′, y ⊗ v)

where μ′ = μσ = 〈x∗, y〉σ if (x∗, y), (w∗, v) ∈ Rs ; else μ′ = ⊥. Here, we use the fact
that (x∗ ⊗ w∗)(y ⊗ v)� = 〈x∗, y〉〈w∗, v〉.
Analysis. From the SA-SIM security of the underlying UQFE scheme, it holds that for
any PPT adversary B2,

|Pr[E2] − Pr[E1]| ≤ AdvUQFE
B2,SA-SIM(λ).

Observe that, Game 2 coincides with the experiment ExpIdealUNP-IPFE,A,S(λ) of the
simulator S as described above. This concludes the proof. �

6.4. Instantiations

We instantiate our generic UNP-IPFE construction both in the public key setting as well
as the secret key setting. We obtain our pubic key UNP-IPFE by plugging the existing
UIPFE and UQFE schemes of [48,49] to our generic construction. To obtain the secret
key construction, we use the UQFE scheme proposed in this paper. In Table 3, we present
concrete efficiency matrices of the two instantiations with respect to 128-bit and 256-bit
security levels.
Public key UNP-IPFE In [49], Tomida and Takashima proposed two UIPFE schemes
where one is a public key scheme. Their public key UIPFE scheme is permissive
and achieves adaptive IND-based security under the SXDH assumption in the stan-
dard model. Recently in [48], Tomida proposed the first UQFE scheme in the public
key setting. Their UQFE construction is in a symmetric vector setting, i.e., the inputs
z1 = z2 = z and the UQFE scheme recovers (z ⊗ z)f� where f denotes the key vector.

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 67 of 73 29

Table 3. Sizes of our UNP-IPFE parameters in terms of kilo-bits .

Scheme (mes, att) vec. length (key, pred) vec. length 128-bit AES 256-bit AES
m1 = m2 = m n1 = n2 = n MPK CT SK MPK CT SK

Secret-key
UNP-IPFE

100 100 0.32 32.19 0.256 0.8 112.48 1.28

200 200 0.32 64.19 0.256 0.8 224.48 1.28
Public-key
UNP-IPFE

100 100 1.632 183.072 134.976 4.08 649.68 674.8

200 200 1.632 365.47 269.37 4.08 1297.68 1346.88

− (mes, att) vec.: (message, attribute) vectors; (key, pred) vec.: (key, predicate) vectors
−Group sizes of asymmetric pairing follows from 2007 NIST recommendations of [15]. Descriptions of an
elliptic curves are in [30]. We consider a 256-bit Barreto-Naehrig curve [16] with embedding degree 12 for
128 bit security and a 640-bit Brezing-Weng curve [22] with embedding degree 24 for 256-bit security

Their scheme achieves semi-adaptive IND-based security under the MDDH assumption
in the ROM. In both these schemes, the secret key and ciphertext sizes grow linearly
with the length of the vectors. By plugging these schemes in our generic UNP-IPFE con-
struction, we obtain a public key UNP-IPFE scheme in the permissive setting. Since the
underlying UIPFE and UQFE schemes are IND-based secure, our public key UNP-IPFE
scheme achieves semi-adaptive IND-based security in the ROM. Further, the secret key
and ciphertext sizes grow linearly with the length of the associated vectors. Concretely,
for a message-attribute pair of length m each, the ciphertext requires (33m + 21) group
elements in G1 and 12m group elements in G2. The secret key requires (21n+9) group
elements in G2 where n is the length of both key and predicate vectors.
Secret key UNP-IPFE We use the secret key UQFE scheme proposed in this work to
obtain our secret key UNP-IPFE scheme. Our UQFE is an upgrade of the QFE scheme
of Wee [51] in the strict setting with succinct secret keys and compact ciphertexts. The
proposed UQFE scheme achieves semi-adaptive SIM-based security in the ROM under
the bilateral k-Lin assumption. Since, UIPFE is a special case of UQFE, we instantiate
our secret key UNP-IPFE scheme in the strict setting by plugging our strict UQFE into
the generic construction. Since the underlying UQFE scheme is semi-adaptive SIM-
secure in the ROM, so is our UNP-IPFE scheme. Unlike our public key UNP-IPFE,
our secret key UNP-IPFE achieves succinct secret keys due to the succinctness of the
underlying UQFE scheme. The size of the ciphertext grows linearly with the length of
the vectors. More specifically, for a message-attribute pair with lengths m1 and m2, the
ciphertext requires (2m1 + 4m2 + 6) group elements in G1 and 2m2 group elements in
G2. The secret key only requires 4 group elements in G2.

Funding Open access funding provided by University of St.Gallen

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

 29 Page 68 of 73 U. Dowerah et al.

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A. Appendix

We provide the SIM-based security definition of UIPFE with permissive relations. As we mentioned earlier
that the permissive relation implies the strict relation, so we use the following security model in the security
analysis of our secret key UNP-IPFE in Sect. 6.3 with strict relation.

Definition 5. (SA-SIM Security for UIPFE) The UIPFE = (Setup,Enc,KeyGen,

Dec) is said to be semi-adaptive simulation (SA-SIM) secure if for any security parameter λ, any PPT
adversary A, there exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗) such that the following holds

AdvUIPFEA,SA-SIM(λ):=
∣
∣
∣Pr[ExpRealUIPFE,A(λ) = 1] − Pr[ExpIdealUIPFE,A,S (λ) = 1]

∣
∣
∣ ≤ negl(λ)

where the experiments ExpRealUIPFE,A(λ) and ExpIdealUIPFE,A,S (λ) are defined as follows:

ExpRealUIPFE,A(λ)

1: (PP,MSK) ← Setup(1λ)

2: x∗ ← A(PP)

3: CT∗ ← Enc(PP,MSK, x∗)

4: b ← AKeyGen(PP,MSK,·)(CT∗)

ExpIdealUIPFE,A,S (λ)

1: (PP∗,MSK∗) ← Setup∗(1λ)

2: x∗ ← A(PP∗)

3: CT∗ ← Enc∗(PP∗,MSK∗, Ix∗)

4: b ← AKeyGen∗(PP∗,MSK∗,·,·)(CT∗)

In the Real security experiment, KeyGen(PP,MSK, ·) is an oracle that takes input the secret key vector y
with associated the index set Iy and outputs SKy ← KeyGen(PP,MSK, y). In the Ideal security experiment,
KeyGen∗(PP∗,MSK∗, ·, ·) oracle returns a simulated secret key SK∗

y on input a key vector y with index set
Iy and μ where the value of μ is 〈x∗, y〉 whenever the condition (x∗, y) ∈ Rp holds, else μ = ⊥.

Now, we present the security definitions of UQFE and UP-IPFE with the permissive relation in the IND-based
model, which are needed for the security analysis of our UNP-IPFE in Appendix A.1.

Definition 6. (Semi-adaptive indistinguishability) The UQFE = (Setup,Enc,
KeyGen,Dec) is said to be semi-adaptive indistinguishability (SA-IND) secure if for any security parameter
λ, any PPT adversary A, there exists a negligible function negl such that the following holds

AdvUQFE
A,SA-IND(λ):=

∣
∣
∣Pr
[
ExptUQFE

0,A,SA-IND(λ) = 1
]

− Pr
[
ExptUQFE

1,A,SA-IND(λ) = 1
]∣
∣
∣ ≤ negl(λ)

where the experiment ExptUQFE
β,A,SA-IND(λ) is defined for β ∈ {0, 1} as follows:

ExptUQFE
β,A,SA-IND(λ)

1: (MPK,MSK) ← Setup(1λ)

2: ((z(0)
1 , z(0)

2), (z(1)
1 , z(1)

2)) ← A(1λ,MPK) where |I
z(0)

1
| = |I

z(1)
1

| and |I
z(0)

2
| = |I

z(1)
2

|
3: CT(β) ← Enc(MPK, z(β)

1 , z(β)
2)

4: β ′ ← AKeyGen(MPK,MSK,·)(MPK,CT(β))

5: Outputs: β ′

In this experiment, KeyGen(MPK,MSK, ·) is an oracle that takes input the secret key vector f with the
associated index set If (a Cartesian product between two index sets If1 , If2) and outputs the secret key SKf ←

http://creativecommons.org/licenses/by/4.0/

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 69 of 73 29

KeyGen(MPK,MSK,f) satisfying (z(0)
1 ⊗ z(0)

2)f� = (z(1)
1 ⊗ z(1)

2)f� whenever If1 ⊆ I
z(0)

1
, If2 ⊆ I

z(0)
2

and

If1 ⊆ I
z(1)

1
, If2 ⊆ I

z(1)
2

. Here (I
z(0)

1
, I

z(0)
2

) and (I
z(1)

1
, I

z(1)
2

) represents the index sets of the challenge message

vectors (z(0)
1 , z(0)

2) and (z(1)
1 , z(1)

2), respectively.

Definition 7. (Semi-adaptiveweakattribute-hiding indistinguishability) TheUP-IPFE = (Setup,Enc,KeyGen,Dec)
is said to be semi-adaptive weak attribute-hiding indistinguishability (SA-WAH-IND) secure if for any se-
curity parameter λ, any PPT adversary A, there exists a negligible function negl such that the following
holds

AdvUP-IPFEA,SA-WAH-IND(λ):=
∣
∣
∣Pr
[
ExptUP-IPFE0,A,SA-WAH-IND(λ) = 1

]
− Pr

[
ExptUP-IPFE1,A,SA-WAH-IND(λ) = 1

]∣
∣
∣ ≤ negl(λ)

where the experiment ExptUP-IPFE
β,A,SA-WAH-IND(λ) is defined for β ∈ {0, 1} as follows:

ExptUP-IPFE
β,A,SA-WAH-IND(λ)

1: (MPK,MSK) ← Setup(1λ)

2: (w(0),w(1)) ← A(1λ,MPK) where |Iw(0) | = |Iw(1) |
3: (x(0), x(1)) ← AKeyGen(MPK,MSK,·,·)(MPK) where |Ix(0) | = |Ix(1) |.
4: CT(β)

x,w ← Enc(MPK, x(β),w(β))

5: β ′ ← AKeyGen(MPK,MSK,·,·)(MPK,CT(β)
x,w)

6: Outputs: β ′

In this experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes input the key–predicate vector pair (y,v)
associated with the index sets Iy, Iv and outputs the secret key SKy,v ← KeyGen(MPK,MSK,y,v). The
secret key queries satisfy the following conditions:

– if (w(b), v) ∈ Rp for b = 1, 2 then 〈w(0), v〉 = 〈w(1), v〉,
– if R(w(0), v) = R(w(1), v) = 1 and (x(b), y), (w(b), v) ∈ Rp then 〈x(0), y〉 = 〈x(1), y〉.

A.1. IND-Based Security Analysis of UNP-IPFE

Theorem 4. Assuming the underlying UQFE and UIPFE schemes are SA-IND-based secure in the public
key setting, then UNP-IPFE scheme as described in Sect. 6 is a SA-WAH-IND secure as per Definition 7.

Proof. We consider a PPT adversary A against SA-WAH-IND security of the UNP-IPFE scheme. Let us
choose an adversaryB1 against SA-IND security of the underlying UQFE scheme and an adversaryB2 against
SA-IND security of the underlying UIPFE scheme. In particular, we show that if A can break the SA-WAH-
IND security of the UNP-IPFE scheme, then there exist PPT adversaries B1, B2 which will break SA-IND
security of the UQFE and SA-IND security of the UIPFE scheme.
To prove this theorem, consider the following games. We start with Game 0 which is the real SA-WAH-IND
security experiment as mentioned in Definition 7 where the challenger chooses the random bit as β = 0. Then
we modify this game in Game 1 and finally end up in Game 2 where the random bit (chosen by the challenger)
is converted to β = 1. We proof the indistinguishability between corresponding games using the security of
UQFE and UIPFE. Let Eι denotes the event that A outputs 1 in Game ι.
Now, we formally describe the games as follows:
Game 0 Game 0 is the same as real security experiment ExptUNP-IPFE0,A,SA-WAH-IND(λ) of Definition 7. All the
secret key queries corresponding to the key–predicate vector pair (y, v) associated with the index sets Iy, Iv
must satisfy the restrictions as given in Definition 7.

 29 Page 70 of 73 U. Dowerah et al.

The challenge ciphertext CT(0)
x,w = (UQFE.CT(0),UIPFE.CT(0)) corresponding to the pair of vectors (x(0),

w(0)) is generated as

UQFE.CT(0) = UQFE.Enc(UQFE.MPK, x(0),w(0)),

UIPFE.CT(0) = UIPFE.Enc(UIPFE.MPK,w(0)).

The secret key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) associated with the pair of vectors (y, v) are generated
as

UQFE.SKy⊗v = UQFE.KeyGen(UQFE.MSK, y ⊗ v),

UIPFE.SKv = UIPFE.KeyGen(UIPFE.MSK, v).

Game 1 Game 1 is identical with Game 0 except the second component of the challenge ciphertext is now
replaced with

UIPFE.CT(1) = UIPFE.Enc(UIPFE.MPK,w(1))

Therefore, the challenge ciphertext can be represented as (UQFE.CT(0), UIPFE.CT(1)). Consider, B2 is
an admissible adversary for the SA-IND security game of UIPFE. From the admissible condition of SA-
WAH-IND)(as per Definition 7), it holds that 〈w(0), v〉 = 〈w(1), v〉 for all secret key queries corresponding
to the key, predicate vectors y, v satisfying (w(b), v) ∈ Rp . Therefore, the advantage of A in distinguishing
between Game 1 and Game 2 is exactly the same as the advantage in distinguishing between the experiments
ExptUIPFE0,B2,SA-IND(λ) and ExptUIPFE1,B2,SA-IND(λ). Thus, we have

| Pr[E0] − Pr[E1]| ≤ AdvUIPFEB2,SA-IND(λ).

Game 2 Game 2 is the same as Game 1 except the second component of the challenger ciphertext is now
replaced by

UQFE.CT(1) = UQFE.Enc(UQFE.MPK, x(1),w(1))

Observe that, for 〈w(0), v〉 = 〈w(1), v〉 �= 0, i.e., when the decryption succeeds, it holds that 〈x(0), y〉 =
〈x(1), y〉 whenever (w(b), v), (x(b), y) ∈ Rp . Therefore, B1 is an admissible adversary for the SA-IND
security game of UQFE since

(x(0) ⊗ w(0))(y ⊗ v)� = 〈x(0), y〉〈w(0), v〉 = 〈x(1), y〉〈w(1), v〉 = (x(1) ⊗ w(1))(y ⊗ v)�

holds for all key queries made by B1 satisfying (w(b), v), (x(b), y) ∈ Rp . Thus, the advantage of A in
distinguishing between Game 1 and Game 2 is exactly the same as the advantage in distinguishing between
the experiments ExptUQFE

0,B1,SA-IND(λ) and ExptUQFE
1,B1,SA-IND(λ), and we have

| Pr[E1] − Pr[E2]| ≤ AdvUQFE
B1,SA-IND(λ).

This completes the security proof. �

References

[1] M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner, Decentralizing inner-product functional en-
cryption, in D. Lin, K. Sako (eds.) Public-Key Cryptography—PKC 2019, Lecture Notes in Computer
Science, vol. 11443 (Springer, 2019), pp. 128–157

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 71 of 73 29

[2] M. Abdalla, F. Bourse, A.D. Caro, D. Pointcheval, Simple functional encryption schemes for inner
products, in J. Katz (ed.) Public-Key Cryptography—PKC 2015, Lecture Notes in Computer Science,
vol. 9020 (Springer, 2015), pp. 733–751

[3] M. Abdalla, F. Bourse, A. De Caro, D. Pointcheval, Better security for functional encryption for inner
product evaluations. Cryptology ePrint Archive (2016). https://eprint.iacr.org/2016/011

[4] M. Abdalla, D. Catalano, D. Fiore, R. Gay, B. Ursu, Multi-input functional encryption for inner products:
function-hiding realizations and constructions without pairings, in H. Shacham, A. Boldyreva (eds.)
Advances in Cryptology—CRYPTO 2018, Lecture Notes in Computer Science, vol. 10991 (Springer,
2018), pp. 597–627

[5] M. Abdalla, D. Catalano, R. Gay, B. Ursu, Inner-product functional encryption with fine-grained access
control, in S. Moriai, H. Wang (eds.) Advances in Cryptology—ASIACRYPT 2020, Lecture Notes in
Computer Science, vol. 12493 (Springer, 2020), pp. 467–497

[6] M. Abdalla, R. Gay, M. Raykova, H. Wee, Multi-input inner-product functional encryption from pairings,
in J. Coron, J. Nielsen (eds.) Advances in Cryptology—EUROCRYPT 2017, Lecture Notes in Computer
Science, vol. 10210 (Springer, 2017), pp. 601–626

[7] M. Abdalla, J. Gong, H. Wee, Functional encryption for attribute-weighted sums from k-lin, in R.T.
Micciancio D. (ed.) Advances in Cryptology—CRYPTO 2020, Lecture Notes in Computer Science, vol.
12170 (Springer, 2020), pp. 685–716

[8] S. Agrawal, R. Goyal, J. Tomida, Multi-input quadratic functional encryption from pairings, in T. Malkin,
C. Peikert (eds.) Advances in Cryptology—CRYPTO 2021, Lecture Notes in Computer Science, vol.
12828 (Springer, 2021), pp. 208–238

[9] S. Agrawal, R. Goyal, J. Tomida, Multi-party functional encryption, in K. Nissim, B. Waters (eds.)Theory
of Cryptography Conference—TCC 2021, Lecture Notes in Computer Science, vol. 13043 (Springer,
2021), pp. 224–255

[10] S. Agrawal, B. Libert, D. Stehlé, Fully secure functional encryption for inner products, from standard
assumptions, in M. Robshaw, J. Katz (eds.) Advances in Cryptology—CRYPTO 2016, Lecture Notes in
Computer Science, vol. 9816 (Springer, 2016), pp. 333–362

[11] S. Agrawal, M. Maitra, S. Yamada, Attribute based encryption (and more) for nondeterministic finite
automata from LWE, in A. Boldyreva, D. Micciancio (eds.) Advances in Cryptology—CRYPTO 2019,
Lecture Notes in Computer Science, vol. 11693 (Springer, 2019), pp. 765–797

[12] S. Agrawal, A. Pellet-Mary, Indistinguishability obfuscation without maps: attacks and fixes for noisy
linear fe, in A. Canteaut, Y. Ishai (eds.) Advances in Cryptology—EUROCRYPT 2020, Lecture Notes in
Computer Science, vol. 12105 (Springer, 2020), pp. 110–140

[13] N. Attrapadung, Unbounded dynamic predicate compositions in attribute-based encryption, in Y. Ishai,
V. Rijmen (eds.) Advances in Cryptology—EUROCRYPT 2019, Lecture Notes in Computer Science,
vol. 11476 (Springer, 2019), pp. 34–67

[14] C.E.Z. Baltico, D. Catalano, D. Fiore, R. Gay, Practical functional encryption for quadratic functions with
applications to predicate encryption, in J. Katz, H. Shacham (eds.) Advances in Cryptology—CRYPTO
2017, Lecture Notes in Computer Science, vol. 10401 (Springer, 2017), pp. 67–98

[15] E. Barker, E. Barker, W. Burr, W. Polk, M. Smid, et al., Recommendation for key management: Part 1:
General. National Institute of Standards and Technology, Technology Administration... (2006)

[16] P.S. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in B. Preneel, S. Tavares (eds.)
International Workshop on Selected Areas in Cryptography—SAC 2005, Lecture Notes in Computer
Science, vol. 3897 (Springer, 2005), pp. 319–331

[17] F. Benhamouda, F. Bourse, H. Lipmaa, CCA-secure inner-product functional encryption from projective
hash functions, in S. Fehr (ed.) Public-Key Cryptography—PKC 2017, Lecture Notes in Computer
Science, vol. 10175 (Springer, 2017), pp. 36–66

[18] A. Bishop, A. Jain, L. Kowalczyk, Function-hiding inner product encryption, in T. Iwata, J. Cheon (eds.)
Advances in Cryptology—ASIACRYPT 2015, Lecture Notes in Computer Science, vol. 9452 (Springer,
2015), pp. 470–491

[19] N. Bitansky, V. Vaikuntanathan, Indistinguishability obfuscation from functional encryption. J. ACM
(JACM) 65(6), 1–37 (2018)

[20] D. Boneh, A. Sahai, B. Waters, Functional encryption: definitions and challenges, in Y. Ishai (ed.) Theory
of Cryptography Conference—TCC 2011, Lecture Notes in Computer Science, vol. 6597 (Springer,
2011), pp. 253–273

https://eprint.iacr.org/2016/011

 29 Page 72 of 73 U. Dowerah et al.

[21] Z. Brakerski, V. Vaikuntanathan, Circuit-ABE from LWE: unbounded attributes and semi-adaptive secu-
rity, in M. Robshaw, J. Katz (eds.) Advances in Cryptology—CRYPTO 2016, Lecture Notes in Computer
Science, vol. 9816 (Springer, 2016), pp. 363–384

[22] F. Brezing, A. Weng, Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37(1),
133–141 (2005)

[23] G. Castagnos, F. Laguillaumie, I. Tucker, Practical fully secure unrestricted inner product functional
encryption modulo p, in T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018,
Lecture Notes in Computer Science, vol. 11273 (Springer, 2018), pp. 733–764

[24] P. Datta, R. Dutta, S. Mukhopadhyay, Functional encryption for inner product with full function privacy,
in C. Cheng, K. Chung, G. Persiano, B. Yang (eds.) Public-Key Cryptography—PKC 2016, Lecture
Notes in Computer Science, vol. 9614 (Springer, 2016), pp. 164–195

[25] P. Datta, T. Okamoto, J. Tomida, Full-hiding (unbounded) multi-input inner product functional encryption
from the k-Linear assumption, in M. Abdalla, R. Dahab (eds.) Public-Key Cryptography—PKC 2018,
Lecture Notes in Computer Science, vol. 10770 (Springer, 2018), pp. 245–277

[26] P. Datta, T. Pal, (Compact) adaptively secure FE for attribute-weighted sums from k-lin, in Advances in
Cryptology—ASIACRYPT 2021, Lecture Notes in Computer Science, vol. 13093 (Springer, 2021), pp.
434–467

[27] E. Dufour-Sans, D. Pointcheval, Unbounded inner-product functional encryption with succinct keys, in
R. Deng, V. Gauthier-Umaña, M. Ochoa, M. Yung (eds.) Applied Cryptography and Network Security—
ACNS 2019, Lecture Notes in Computer Science, vol. 11464 (Springer, 2019), pp. 426–441

[28] S. Dutta, T. Pal, R. Dutta, Fully secure unbounded zero inner product encryption with short ciphertexts
and keys, in Q. Huang, Y. Yu (eds.) International Conference on Provable Security, Lecture Notes in
Computer Science, vol. 13059 (Springer, 2021), pp. 241–258

[29] A. Escala, G. Herold, E. Kiltz, C. Ràfols, J. Villar, An algebraic framework for diffie–hellman assump-
tions. J. Cryptol. 30(1), 242–288 (2017)

[30] D. Freeman, M. Scott, E. Teske, A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–
280 (2010)

[31] R. Gay, A new paradigm for public-key functional encryption for degree-2 polynomials, in IACR In-
ternational Conference on Public-Key Cryptography—PKC 2020, Lecture Notes in Computer Science,
vol. 12110 (Springer, 2020), pp. 95–120

[32] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich, Reusable garbled circuits and
succinct functional encryption, in Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing (2013), pp. 555–564

[33] S. Gorbunov, V. Vaikuntanathan, H. Wee, Attribute-based encryption for circuits. J. ACM (JACM) 62(6),
1–33 (2015)

[34] V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of
encrypted data, in Proceedings of the 13th ACMConference on Computer and Communications security
(2006), pp. 89–98

[35] A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from well-founded assumptions, in Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (2021), pp. 60–73

[36] S. Katsumata, S. Yamada, Non-zero inner product encryption schemes from various assumptions: LWE,
DDH and DCR, in D. Lin, K. Sako (eds.) Public-Key Cryptography—PKC 2019, Lecture Notes in
Computer Science, vol. 11443 (Springer, 2019), pp. 158–188

[37] J. Katz, A. Sahai, B. Waters, Predicate encryption supporting disjunctions, polynomial equations, and in-
ner products, in N. Smart (ed.)Advances inCryptology—EUROCRYPT2008, Lecture Notes in Computer
Science, vol. 4965 (Springer, 2008), pp. 146–162

[38] Q. Lai, F.H. Liu, Z. Wang, New lattice two-stage sampling technique and its applications to functional
encryption—stronger security and smaller ciphertexts, in A. Canteaut, F. Standaert (eds.) Advances in
Cryptology—EUROCRYPT 2021, Lecture Notes in Computer Science, vol. 12696 (Springer, 2021), pp.
498–527

[39] J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, J.H. Cheon, Instant privacy-preserving biometric authentication
for hamming distance. Cryptology ePrint Archive, Paper 2018/1214 (2018). https://eprint.iacr.org/2018/
1214

https://eprint.iacr.org/2018/1214
https://eprint.iacr.org/2018/1214

Unbounded Predicate Inner Product Functional Encryption from Pairings Page 73 of 73 29

[40] A. Lewko, B. Waters, Unbounded HIBE and attribute-based encryption, in K. Paterson (ed.) Advances
in Cryptology—EUROCRYPT 2011, Lecture Notes in Computer Science, vol. 6632 (Springer, 2011),
pp. 547–567

[41] B. Libert, R. Titiu, Multi-client functional encryption for linear functions in the standard model from
LWE, in S. Galbraith, S. Moriai (eds.) Advances in Cryptology—ASIACRYPT 2019, Lecture Notes in
Computer Science, vol. 11923 (Springer, 2019), pp. 520–551

[42] H. Lin, Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs, in J. Katz,
H. Shacham (eds.) Advances in Cryptology—CRYPTO 2017, Lecture Notes in Computer Science, vol.
10401 (Springer, 2017), pp. 599–629

[43] T. Okamoto, K. Takashima, Fully secure functional encryption with general relations from the decisional
linear assumption, in T. Rabin (ed.)Advances inCryptology—CRYPTO2010, Lecture Notes in Computer
Science, vol. 6223 (Springer, 2010), pp. 191–208

[44] T. Okamoto, K. Takashima, Adaptively attribute-hiding (hierarchical) inner product encryption, in
D. Pointcheval, T. Johansson (eds.) Advances in Cryptology—EUROCRYPT 2012, Lecture Notes in
Computer Science, vol. 7237 (Springer, 2012), pp. 591–608

[45] T. Okamoto, K. Takashima, Fully secure unbounded inner-product and attribute-based encryption, in
X. Wang, K. Sako (eds.) Advances in Cryptology—ASIACRYPT 2012, Lecture Notes in Computer Sci-
ence, vol. 7658 (Springer, 2012), pp. 349–366

[46] T. Okamoto, K. Takashima, Achieving short ciphertexts or short secret-keys for adaptively secure general
inner-product encryption. Des. Codes Cryptogr. 77(2), 725–771 (2015)

[47] T. Pal, R. Dutta, CCA secure attribute-hiding inner product encryption from minimal assumption, in
Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Virtual Event, December
1-3, 2021, Proceedings (Springer, Berlin, Heidelberg, 2021), pp. 254–274

[48] J. Tomida, Unbounded quadratic functional encryption and more from pairings. Cryptology ePrint
Archive, Paper 2022/1124 (2022). https://eprint.iacr.org/2022/1124

[49] J. Tomida, K. Takashima, Unbounded inner product functional encryption from bilinear maps, in
T. Peyrin, S. Galbraith (eds.) Advances in Cryptology—ASIACRYPT 2018, Lecture Notes in Computer
Science, vol. 11273 (Springer, 2018), pp. 609–639

[50] B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in
S. Halevi (ed.) Advances in Cryptology—CRYPTO 2009, Lecture Notes in Computer Science, vol. 5677
(Springer, 2009), pp. 619–636

[51] H. Wee, Functional encryption for quadratic functions from k-lin, revisited, in R. Pass, K. Pietrzak
(eds.) Theory of Cryptography Conference—TCC 2020, Lecture Notes in Computer Science, vol. 12550
(Springer, 2020), pp. 210–228

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://eprint.iacr.org/2022/1124

	Unbounded Predicate Inner Product Functional Encryption from Pairings
	1. Introduction
	1.1. Our Contributions
	1.2. Related Work
	2. Technical Overview
	2.1. Public Key UP-IPFE: UZP-IPFE
	2.2. Secret Key UP-IPFE: UNP-IPFE

	3. Preliminaries
	3.1. Bilinear Group
	3.2. Complexity Assumptions
	3.3. Dual Pairing Vector Space (DPVS) OT10
	3.4. Pseudo Random Function
	3.5. Unbounded Predicate Inner Product Functional Encryption

	4. Our Full Attribute-Hiding UZP-IPFE
	4.1. Construction
	4.2. Security

	5. Our Succinct UQFE
	5.1. Construction of UQFE
	5.2. Simulator
	5.3. Security Analysis

	6. Weak Attribute-Hiding UNP-IPFE
	6.1. Construction
	6.2. Simulator of our UNP-IPFE
	6.3. SIM-Based Security Analysis of UNP-IPFE
	6.4. Instantiations

	A. Appendix
	A.1. IND-Based Security Analysis of UNP-IPFE
	References

