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A B S T R A C T

The influence of crack face friction on predicted crack growth in a 2D rail model is investigated numerically.
An isolated surface-breaking inclined rolling contact fatigue crack is propagated into a rail under (i) a moving
contact load, (ii) a combined thermal and contact load, and (iii) a combination of (rail) bending and contact
load. Crack face friction is modelled by the Coulomb friction model. The crack growth direction is predicted
using an accumulated vector crack tip displacement criterion and two Paris-type equations are employed to
estimate crack growth rates. The model is validated towards a twin-disc experiment in the literature. The
influence of the crack face friction coefficient and parameters in the crack growth direction criterion are
assessed. Frictional cracks tend to go deeper into the rail although the influence under combined thermal and
contact loading is minor. In all investigated load scenarios, crack face friction is shown to reduce crack growth
rates.
1. Introduction

Managing Rolling Contact Fatigue (RCF) cracks is an inevitable and
expensive part of the maintenance of railway tracks with potential
safety-related consequences [1]. Cost and risk magnitudes are largely
governed by the depth of crack propagation – shallow cracks result
in limited material fall-out, and require moderate surface reprofiling
through grinding or milling, whereas deeper cracks cause deeper ma-
terial fall-out or transverse fracture, which requires heavy reprofiling
or rail replacement. The main motivation for the current study is to
be able to predict how operational conditions influence the propensity
for deeper and transverse growth. Since the ability for tests is limited
due to scaling issues and the requirements for complex and timely
tests, this requires the development of a reliable numerical framework
and predictive models. In previous studies [2,3] such a predictive
framework has been developed and verified towards biaxial fatigue
crack growth tests and twin-disc tests featuring RCF crack growth.
The framework has been employed to investigate the influence of the
operational loads on the RCF crack path for a frictionless crack [4]. The
current study aims at improving the predictive model by accounting for
crack face friction as well as estimating crack growth rates.

In the context of RCF of wheels and rails, crack face friction is
affected by the penetration of lubrication (e.g., water or grease) into
the RCF cracks. This will lubricate crack faces and thereby decrease
crack face friction. In addition, lubrication trapped in the crack may
distribute pressure deeper into the crack and induce local pressurisation
of the crack [5]. The effect of crack face friction on the shear loading of
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a crack subjected to rolling contact has been found to be significant [6].
Also, the combined influence of decreased friction and pressurisation
on the crack loading has been extensively investigated [7–9]. In short,
pressurisation of the crack will tend to open the crack (mode I), which
prevents crack face contact. In the case of a closed crack, decreased
friction will facilitate the sliding of the crack faces (modes II and III).

It has been shown in field tests [10] that water is indeed prone to
penetrate surface initiated RCF cracks. However, for pressurisation to
occur, the crack (or parts of it) also has to be fully sealed during the
rolling contact in order to maintain the pressure. In a real wheel–rail
contact where the cracking more relates to a network, see e.g. [11],
this may be hard to achieve. Also, any pressurisation is likely confined
to some parts of the cracks, and systematic analysis of this effect is
challenging. For this reason, the current study focuses solely on the
influence of crack face friction. Further, the study leaves the influ-
ence of different load scenarios on the crack loading, i.e. evolution of
Stress Intensity Factors (SIFs), and focuses solely on the direction of
crack propagation and estimation of relative crack growth rates under
varying loading conditions.

Experimental assessment of the frictional behaviour at crack faces
in contact is inherently difficult, and the conditions in the field are even
more difficult to measure. Therefore, the most basic Coulomb model,
characterised by a single coefficient of friction, is adopted in this study
to quantify the effect of friction.

Crack growth rate is usually predicted by a growth law. The major
challenge in this study is to account for the mixed-mode loading and
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Fig. 1. A sketch of the 2D rail part with an inclined surface-breaking crack subjected
to a Hertzian contact load (𝑝n, 𝑝t ) and constant longitudinal boundary displacements
𝑢p𝑥 (red), or boundary displacements 𝑢p𝑥(𝑥̄; 𝑦) pertinent to rail bending (blue). The
global Cartesian (𝑥, 𝑦) coordinate system is indicated in the lower left corner. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

crack path deviations, which alter the crack loading. To address this,
it has for example been proposed in [12] to evaluate growth rates
and directions using criteria based on material forces. Another widely
used formulation for predicting crack growth rate is based on the
Paris law [13]. Paris-type equations may employ different parameters
as the driving force such as SIFs, e.g. [14], strain energy density
factors, for instance [15], and cyclic J-integral (𝛥𝐽 ), e.g. [16]. The
SIF-based Paris-type equations usually use an equivalent SIF parameter
under mixed-mode loading to account for mode interaction, see for
instance [14,17,18].

Loading and deformation of propagating RCF cracks are in the
current study evaluated using Finite Element (FE) simulations. Thereby,
the study presents an extension of [4], where propagation of cracks
under operational conditions was considered for the frictionless case.
Motivated by the findings in [2,3], the direction of growth is predicted
using an accumulative Vector Crack Tip Displacement (VCTD) criterion
based on displacements extracted from linear elastic FE analyses. Two
Paris-type equations are employed to estimate bounds for the crack
growth rates. The qualitative influence of crack face friction on RCF
crack growth is obtained by comparing predicted crack growth paths
and rates for frictional and frictionless cracks.

2. Numerical framework

2.1. Model

Fig. 1 shows a rectangular (rail) section of width 𝑤 = 300mm and
height ℎ = 100mm, which represents the rail domain in a 2D FE-model.
The bottom side of the rail is restrained in the vertical direction (𝑢𝑦 = 0)
and side edge displacements are prescribed in the horizontal direction
(𝑢𝑥 = 𝑢p𝑥).

A 𝑑 = 2mm deep surface-breaking inclined crack with a length
of 𝑎0 = 4.3mm (initial inclination 𝜑0 = −25° [19,20]), see Fig. 1, is
modelled as a discrete crack. For crack face constraints in the normal
and tangential directions, penalty formulations are employed in the FE-
model. Coulomb friction is used in the constitutive equation where the
tangential traction between two contacting surfaces, 𝑝t , is evaluated as
{

|𝑝t | ≤ 𝜇CF𝑝n 𝑣t = 0 (stick condition)
𝑝t = −𝜇CF𝑝n

𝑣t
|𝑣t |

𝑣t ≠ 0 (slip condition)
. (1)

Here, 𝑣t denotes the tangential (sliding) velocity, 𝜇CF and 𝑝n are friction
coefficient and normal contact pressure on the contacting surfaces,
respectively. The employed FE-mesh is shown in Fig. 2 and consists
of standard second-order quadrilateral (8-noded) elements with a size
of 17 μm near the crack tip. The rail section is modelled as linearly
elastic under plane strain conditions. The modulus of elasticity and
the Poisson’s ratio of the rail material are taken as 𝐸r = 210GPa and
𝜈 = 0.3, respectively.
2

r

2.2. Load scenarios

Cyclic loading of the rail is considered, and the rail part is subjected
to three different loads: wheel–rail contact load, rail bending load, and
thermal load.

2.2.1. Contact load
The wheel–rail contact loads consist of contact pressure and fric-

tional stresses. The wheel–rail contact is modelled using Hertzian the-
ory. The 2D contact pressure, 𝑝n, has an elliptic distribution along the
contact surface, which for a given wheel load position, 𝑥̄, is expressed
as [21]

𝑝n(𝑥̄; 𝑥) =

{

2𝑃
𝜋𝑏2

√

𝑏2 − [𝑥 − 𝑥̄]2 |𝑥 − 𝑥̄| < 𝑏
0 |𝑥 − 𝑥̄| ≥ 𝑏

, (2)

where 𝑃 is the 2D contact load magnitude (per unit thickness) and
| ∙ | represents the absolute value. For a given load magnitude, 𝑃 , the
semi-axis of the contact patch, 𝑏, is computed as

𝑏 =

√

√

√

√

4𝑃𝑅
𝜋

(

1 − 𝜈2r
𝐸r

+
1 − 𝜈2w
𝐸w

)

. (3)

Here, 𝑅 = 0.46m is the radius of the wheel and the elastic properties
of the wheel material are taken as 𝐸w = 199GPa and 𝜈w = 0.3.

It is presumed that frictional stresses in the wheel–rail interface
follow the spatial distribution of the contact pressure (i.e. they are
evaluated under an assumption of full slip) with a traction coefficient of
𝑓wr which gives the frictional stresses as 𝑝t (𝑥̄; 𝑥) = 𝑓wr 𝑝n(𝑥̄; 𝑥). A wheel
passage is simulated by moving the contact load along the top surface
of the rail. During pure contact loading, the vertical edges of the rail
are clamped in the global 𝑥−direction (𝑢p𝑥 = 0), see Fig. 1.

2.2.2. Rail bending load
Rail bending occurs as a wheel traverses the rail. To evaluate the

bending moment, a 6m section of the track with a rail profile of 60E1
subjected to a passing wheel load of 7.5 t with a velocity of 100 km∕h has
been considered. The crack mouth is assumed to be positioned midspan
in-between two adjacent sleepers, which corresponds to the centre of
the considered track section. The evolution of the bending moment at
the position of the crack mouth is computed by the in-house vertical
dynamic vehicle–track interaction analysis code, DIFF [22]. The result
is presented in Fig. 3, where the bending moment at the position of
the crack mouth is evaluated for each position 𝑥̄ of the load. The load
position 𝑥̄ = 0.15m corresponds to the situation that the load is at the
position of the crack mouth. To quantify the magnitude of the boundary
displacements of the 2D rail section due to the rail bending load, the
rail section is modelled as an Euler–Bernoulli beam. Thus, the 𝑢p𝑥(𝑥̄; 𝑦)
is evaluated based on the moment–curvature relation for the presumed
rail section using [23]

𝑢p𝑥(𝑥̄; 𝑦) =
𝑀(𝑥̄)

[

𝑦 −
[

ℎ − ℎc
]]

𝑤
2𝐸r𝐼𝑧

, (4)

where 𝑀(𝑥̄) is the bending moment at the wheel load position, 𝑥̄,
evaluated from Fig. 3, 𝑤 is the length of the rail section, ℎc = 0.091m
and 𝐼𝑧 = 30.5 × 10−6 m4 are the distance from the top surface of the
rail to the neutral axis, see Fig. 1, and the moment of inertia of the rail
profile [24], respectively.

2.2.3. Thermal load
Thermal stresses in rail result from restricted thermal contractions

due to ambient temperature variations 𝛥𝑇 from the stress-free tempera-
ture. These longitudinal stresses along the rail can be quantified using a
linear thermoelasticity assumption. More precisely, approximating the
rail as homogeneous and perfectly confined in the axial direction, the
corresponding boundary displacements are [23]

𝑢px = −𝛼r𝛥𝑇
𝑤
2
. (5)

Here, 𝛼r = 11.5 × 10−6 [1∕°C] is the coefficient of thermal expansion for
the rail material and 𝑤 is the length of the rail section.
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Fig. 2. The employed FE-mesh for the initial crack configuration. Thick blue lines show the crack. (a) Whole model. The crack area shown in (b) is marked with a white box.
(b) Crack area. The smallest element size close to the crack tip is 17 μm.
]

Fig. 3. Evolution of bending moment at the position of crack mouth as a function of
the relative position of the wheel. Results from the dynamic vehicle–track simulation
software DIFF [22].

2.3. Crack propagation

An (incrementally) stationary crack has been considered in this
study, i.e. there is only propagation at the end of each load cycle. The
crack growth direction and rate are predicted at the end of each load
cycle using the accumulative VCTD criterion described in Section 2.3.1,
and the procedure detailed in Section 2.3.2, respectively. The accu-
mulated growth for multiple cycles is simulated by propagating the
discrete crack in the predicted direction and repeating the process for
each cycle. In this study, the incremental propagation of the crack
is a pure discretisation parameter (rather than representing a certain
number of load cycles). Hence, the crack path is predicted independent
of the crack growth rate.
3

2.3.1. Crack growth direction criterion

The VCTD criterion proposed in [2] was developed based on the cri-
terion suggested in [25] and modified to account for out-of-phase load-
ing. It is utilised to predict crack growth direction for cyclic loading.
Kinematic hardening effects are implicitly considered in the criterion,
whereas effects from isotropic hardening are discarded since they are
less pronounced for rail steel [26]. The criterion employs the relative
crack face deformations in the normal and tangential directions, 𝛿I(𝑡)
and 𝛿II(𝑡) respectively, as shown in Fig. 4b and postulates that the
crack growth direction resulting from the presumed load cycle is in the
direction of the crack driving displacement vector. A modified version
of the VCTD criterion proposed in [2] is employed in this study, as
briefly described below:

1. 𝛿I(𝑡) and 𝛿II(𝑡) are computed at each time instance 𝑡 of the load
cycle at a constant distance, 𝑑h, from the crack tip, see Fig. 4. In
this study, 𝑑h ≈ 52 μm was used.

2. To reflect kinematic hardening effects due to local plasticity at
the crack tip, the ‘amplitudes’ of the crack face deformations,
𝛿I∕II(𝑡), are employed. Using 𝛿I∕II =

1
2

[

max
𝑡

(

𝛿I∕II(𝑡)
)

+ min
𝑡

(

𝛿I∕II(𝑡)
)

as mid-values over the load cycle, ‘amplitudes’ of 𝛿I(𝑡) and 𝛿II(𝑡)
are defined as

𝛿I∕II(𝑡) = 𝛿I∕II(𝑡) − 𝛿I∕II. (6)

3. Similar to [25], the instantaneous crack growth direction, 𝜗(𝑡),
in the crack local coordinate system shown in Fig. 4a, and the
instantaneous crack driving displacement, 𝛿(𝑡), are introduced as

𝜗(𝑡) = arcsin
(

𝛿II(𝑡)
)

, (7)

𝛿(𝑡)
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Fig. 4. Crack geometry configurations with local coordinate systems (𝐞̂∥, 𝐞̂⟂). Dashed lines indicate the orientation of the undeformed crack. (a) Undeformed closed crack. (b)
Crack face displacements. (c) Illustration of positive crack opening, 𝛿I. (d) Illustration of positive crack sliding, 𝛿II.
and1

𝛿(𝑡) =
√

⟨𝛿I(𝑡)⟩2 + 2⟨𝛿I(𝑡)⟩|𝛿II(𝑡)| + 2𝛿II(𝑡)2. (8)

4. Finally, the crack propagation direction resulting from the full
load cycle, 𝜙, is defined by a unit vector in the crack tip local
coordinate system, see Fig. 4a, as

𝐞̂𝜙 = 𝛥𝐚
‖𝛥𝐚‖

, (9)

where 𝛥𝐚 is the crack driving displacement vector and ‖ ∙ ‖
indicates the Euclidean norm. The crack driving displacement
vector is defined based on the ‘rate-independent’ response over
the entire load cycle using

𝛥𝐚 = ∫

𝑇c

0
⟨

d𝛿(𝑡)
d𝑡

⟩𝐞̂𝜗(𝑡) d𝑡. (10)

Here, 𝑇c denotes the duration of the load cycle and 𝐞̂𝜗 is the
unit vector in the direction of the 𝜗(𝑡), evaluated from Eq. (7).
In addition, the influence of the reversed shear deformations2

can be accounted for in the evaluation of the crack driving
displacement vector by utilising a reversed shear threshold
parameter, 𝜓 . Thereby, contributions to the integral in Eq. (10)
can be omitted if the shear is acting in the reversed direction
for (sufficiently) closed cracks. More detailed information in
this regard was presented in [2,4]. The formulation in Eq. (10)
implies neglecting the reversed shear condition.

2.3.2. Crack growth rate
The phase angle between the modes changes over time in the

considered non-proportional loading. There are then two possible ways
to evaluate the resulting crack growth rate for the entire load cycle:
the accumulation of instantaneous contribution (similar to what is
employed in Section 2.3.1 for the growth direction), or using classical
growth laws. Having 2D plane strain models as well as considering the

1
⟨∙⟩ denotes the Macaulay brackets, ⟨∙⟩ = 1

2
[∙ + |∙|].

2 The reversed shear deformations are defined as shear deformations of the
crack which are in the opposite direction to the assumed direction of crack
growth, cf [4].
4

complexity of the accumulation scheme of the instantaneous contribu-
tions and lack of sufficiently large experimental data to calibrate the
adopted scheme, the crack growth rate is in this study evaluated using
growth laws available in the literature.

One of the most common baselines for predicting crack growth rate
is Paris law [13]. It relates the crack growth rate, d𝑎/d𝑁 , to the range
of SIF, 𝛥𝐾, with a power law, d𝑎/d𝑁 = 𝐶(𝛥𝐾)𝑚. In this equation, 𝐶
and 𝑚 are material parameters. In the following, these are taken the
same in modes I and II3. To account for the non-proportionality of
the loads, two Paris-type equations are employed in this study for rate
predictions assuming different interactions between mode I and mode
II loads. For a lower estimate, the loading of the modes is presumed
to be sequentially applied and the total growth rate is the sum of the
contributions of mode I and mode II [27], see Fig. 5a,

( 𝑑𝑎
𝑑𝑁

)l = 𝐶(𝛥𝐾I)𝑚 + 𝐶(𝛥𝐾II)𝑚. (11)

The second extreme is to consider the loading of the modes simul-
taneously applied. The driving force in Paris law, 𝛥𝐾, is then evaluated
based on energy considerations as 𝛥𝐾eq. =

√

(𝛥𝐾I)2 + (𝛥𝐾II)2 [18]
whereby the upper estimate of the crack growth rate can then be
evaluated as

( 𝑑𝑎
𝑑𝑁

)u = 𝐶(𝛥𝐾eq.)𝑚. (12)

In this study, 𝐶 = 6.89 × 10−9 mm∕cycle
(MPa

√

m)𝑚
and 𝑚 = 3 is employed, which

is pertinent to Ferritic-pearlitic steel in mode I loading with 𝑅 =
𝜎min∕𝜎max ≈ 0 [28].

Eqs. (11) and (12) require the calculation of SIFs. There are several
methods in computational fracture mechanics to evaluate SIFs values
such as utilising Green’s function [29], the stress interpretation method,
the displacement interpretation method, and from the J-integral, see
e.g. [30]. One computationally efficient way is to use the displacement
fields close to the crack tip for mixed-mode loading of mode I and mode
II in an isotropic linear elastic material. In the crack tip local coordinate
system shown in Fig. 4a, the displacement fields in the vicinity of the

3 Since the aim of the current study is to qualitatively compare the crack
growth rates under different load scenarios, this assumption is utilised. For a
case of quantitative rate prediction, the assumption causes some inaccuracies
in the predicted rates.
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Fig. 5. An illustration of SIF evolutions for crack growth rate estimates under mixed-mode loading. (a) Lower estimate. (b) Upper estimate.
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rack tip in time step 𝑡 are expressed in terms of SIFs (𝐾I and 𝐾II)
as [30]

𝑢∥(𝑟, 𝜗, 𝑡) =
𝐾I(𝑡)
2𝜇

√

𝑟
2𝜋

cos (𝜗
2
)[𝜅 − 1 + 2 sin2 (𝜗

2
)]

+
𝐾II(𝑡)
2𝜇

√

𝑟
2𝜋

sin (𝜗
2
)[𝜅 + 1 + 2 cos2 (𝜗

2
)],

⟂(𝑟, 𝜗, 𝑡) =
𝐾I(𝑡)
2𝜇

√

𝑟
2𝜋

sin (𝜗
2
)[𝜅 + 1 − 2 cos2 (𝜗

2
)]

−
𝐾II(𝑡)
2𝜇

√

𝑟
2𝜋

cos (𝜗
2
)[𝜅 − 1 − 2 sin2 (𝜗

2
)],

(13)

here 𝑟 shows the radial distance from the crack tip, 𝜇 = 𝐸
2(1+𝜈) is

the shear modulus and 𝜅 = 3 − 4𝜈 for plane strain conditions. In
order to use the crack face displacements measured in Section 2.3.1
for evaluating SIFs, the top and bottom surface of the crack can be
expressed as (𝑟, 𝜗, 𝑡)=(𝑑h, 𝜋, 𝑡) and (𝑟, 𝜗, 𝑡)=(𝑑h,−𝜋, 𝑡), respectively. Using
𝛿I(𝑑h, 𝑡) = 𝑢⟂(𝑑h, 𝜋, 𝑡)−𝑢⟂(𝑑h,−𝜋, 𝑡) and 𝛿II(𝑑h, 𝑡) = 𝑢∥(𝑑h, 𝜋, 𝑡)−𝑢∥(𝑑h,−𝜋, 𝑡)
gives the approximations

𝐾I(𝑑h, 𝑡) = 𝐴(𝑑h)𝛿I(𝑡), 𝐾II(𝑑h, 𝑡) = 𝐴(𝑑h)𝛿II(𝑡), (14)

where the scaling for varying distance 𝑑h can be identified as

𝐴(𝑑h) =
𝐸

8(1 − 𝜈2)

√

2𝜋
𝑑h
. (15)

his shows that SIFs can be evaluated directly from the crack face
isplacements if a sufficiently dense mesh is employed in the vicinity of
he crack tip. The ranges of SIFs over a load cycle can then be computed
sing

𝐾I(𝑑h) = max
𝑡

(

𝐾I(𝑑h, 𝑡)
)

− min
𝑡

(

𝐾I(𝑑h, 𝑡)
)

,

𝐾II(𝑑h) = max
𝑡

(

𝐾II(𝑑h, 𝑡)
)

− min
𝑡

(

𝐾II(𝑑h, 𝑡)
)

.
(16)

3. Analyses and results

The FE-model detailed in Section 2.1 subjected to the three dif-
ferent load scenarios of pure contact load, combined thermal and
contact loads, and combined bending and contact loads, as described
in Section 2.2, was implemented in ABAQUS/CAE [31]. The crack was
propagated in an unbiased fashion in the predicted direction with a
growth increment of 0.2mm, as discussed in Section 2.3. The resolved
displacement fields were post-processed in MATLAB [32] in order to
evaluate the crack growth direction and rate at the end of the load cycle
based on the accumulated VCTD criterion outlined in Section 2.3.1
and the procedure described in Section 2.3.2, respectively. Crack paths
presented in the following subsections were evaluated during three
growth increments, unless otherwise stated. The crack growth rate was
also predicted to qualitatively compare the influence of the considered
load scenarios on the crack growth rate.
5
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3.1. Validation towards twin-disc experiment

The numerical predictions were compared against a twin-disc ex-
periment described in [33]. In the considered experiment (designated
as ‘GO’ in [33]), 500 unlubricated cycles were initially applied to
initiate damage in the specimen and then 30 554 cycles with ‘graphite
in mineral oil’ as the lubricant between wheel and rail discs were
considered. The maximum Hertzian contact pressure and the traction
coefficient in the lubricated phase were measured as 𝑝max = 1500MPa
and 𝑓wr = 0.04, respectively. After the test, a crack with a depth of
280 μm and approximately 900 μm long was found. The crack path and
the average crack growth rate, i.e. the total length of the crack divided
by the total number of lubricated cycles, are shown in Fig. 6 (labelled
as ‘experiment’).

A rectangular part of the rail disc with width 𝑤 = 20mm and
height ℎ = 10mm, which has a frictionless surface-breaking crack of
ength 𝑎0 = 450 μm in the direction of 𝜑0 ≈ −18°, was simulated

under plane strain conditions and loaded by a contact load with 𝑓wr =
0.04, see Fig. 1. The employed FE-mesh consists of standard second-
order quadrilateral (8-noded) elements with a size of 11 μm near the
rack tip. Using contact formulae in [23] considering the maximum
ertzian contact pressure employed in the test gives the magnitude of
ontact load and the contact patch as 𝑃 ≈ 0.72MN∕m and 𝑏 ≈ 0.3mm,
espectively.

The predicted crack path considering the reversed shear condition
n the VCTD criterion (cf. [4]) with the reversed shear threshold
arameter 𝜓 = 0.01 and growth rates for two growth increments are
hown in Fig. 6 (named as ‘𝜓 = 0.01’). The predicted crack path
oes not capture the experimental path. This can be due to employing
he reversed shear condition in the growth direction criterion since
eversed shear instances, in this case, can promote crack growth in the
egative direction of the crack tip local coordinate system, see Fig. 4a.
o investigate this, the reversed shear condition is removed from the
rowth direction criterion, i.e. following the formulation detailed in
ection 2.3.1, and the predicted crack path and the growth rate are pre-
ented in Fig. 6 (labelled as ‘w/o 𝜓 ’). The predicted crack path is now
ollowing the observed path in the experiment better. The average crack
rowth rate in the experiment may not be fully representative of the
omparison of the predicted crack growth rates against the experiment
ue to estimations regarding material parameters, etc. Nevertheless, the
rder of the predicted crack growth rates is considered reasonable.

.2. Load scenario – Pure contact load

A pure contact load magnitude of 𝑃 = 33.8MN∕m with a traction
oefficient of 𝑓wr = 0.3 was applied to the FE-model shown in Fig. 1
ith 𝑢p𝑥 = 0. According to Eq. (3), the semi-axis of the contact patch

as 𝑏 = 13.3mm.



Wear 530–531 (2023) 205003M. Salahi Nezhad et al.

𝑃

t
a
p
c
t
𝜓
s
s
t
m
t

c
p
s
s
r
f

Fig. 6. Comparison of the predicted crack growth for a twin-disc experiment with a frictionless crack (𝜇CF = 0) and experimental results [33] under pure contact load with
≈ 0.72MN∕m and 𝑓wr = 0.04. (a) Crack paths. (b) Crack growth rates.
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In order to investigate the influence of the crack face friction on
he crack growth direction, the predicted crack paths for a crack with
crack face friction coefficient of 𝜇CF = 0, 𝜇CF = 0.3 and 𝜇CF = 0.5 are
resented in Fig. 7. The crack growth directions were here evaluated
onsidering the reversed shear condition in the growth direction cri-
erion, as proposed in [4], with a reversed shear threshold parameter
= 0.01. It is expected that crack face friction truncates the crack

hear deformations. This means a crack with higher crack face friction
hould have a higher share of mode I loading, and should grow into
he rail with less deviation from the initial crack, i.e. more towards
ode I growth, in comparison to the frictionless crack. Fig. 7 reflects

his expectation.
Neglecting the reversed shear condition in the growth direction

riterion, similar to Section 3.1, can be considered for the results
resented in Fig. 7. This gives the predicted crack paths and rates
hown in Fig. 8. The trend of the predicted crack paths is almost
imilar to the results in Fig. 7 with cracks growing deeper into the
ail with increased friction and minor differences between crack paths
or frictional cracks with 𝜇CF = 0.3 and 𝜇CF = 0.5. As shown in

Fig. 8b, crack face friction reduces the growth rate of the crack by
truncating the crack shear deformations and decreasing its loading. In
addition, the higher share of mode I with increased friction leads to
more distinction between lower and upper estimates of crack growth
6

rate. p
A mesh sensitivity analysis with three different mesh sizes was
performed to study the effect of FE-discretisation on crack growth
predictions. The predicted crack paths and growth rates using ‘normal
mesh’ (as described in Section 2.1) with 64 262 Degrees Of Freedom
(DOFs) (element size down to 17 μm near the crack tip) are then
compared against predictions featuring a ‘coarse mesh’ with 42 500
DOFs (element size down to 22 μm near the crack tip) and a ‘fine mesh’
with 146 372 DOFs (element size down to 11 μm near the crack tip) in
Figs. 9 and 10, respectively. The same 𝑑h value was employed for all the
studied FE-meshes. It is seen that the predictions are almost identical
and it is concluded that the ‘normal mesh’ is sufficiently fine to be used
in the analyses in this research.

3.3. Load scenario – Combined thermal and contact load

Boundary displacements, 𝑢p𝑥, corresponding to 𝛥𝑇 = −20 °C from
Eq. (5) were applied to the model depicted in Fig. 1 in combination
with contact loads 𝑃 = 7.3MN∕m and 𝑃 = 33.8MN∕m with 𝑓wr = 0.3.

he crack face friction coefficient was set to 𝜇CF = 0.3.
Fig. 11a demonstrates the predicted crack paths for these load

ombinations considering the reversed shear condition in the crack
rowth direction criterion (cf. [4]) with the reversed shear threshold

arameter 𝜓 = 0.01. It is seen that the crack subjected to a combined
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Fig. 7. Predicted crack paths for frictional crack with 𝜇CF = 0.3 and 𝜇CF = 0.5 and frictionless crack (𝜇CF = 0) under pure contact load with 𝑃 = 33.8MN∕m, 𝑓wr = 0.3 and 𝜓 = 0.01.
Fig. 8. Predicted crack growth for frictional crack with 𝜇CF = 0.3 and 𝜇CF = 0.5 and frictionless crack (𝜇CF = 0) under pure contact load with 𝑃 = 33.8MN∕m, 𝑓wr = 0.3 and
neglecting the reversed shear condition. (a) Crack paths. (b) Crack growth rates.
loading of thermal and 7.3MN∕m contact load tends to grow shallower
than under pure contact load. This is not in line with the observations
for a frictionless crack in [4], where gradual changes in the crack
path from pure thermal to pure contact load were predicted. There are
two possible reasons for this behaviour. It can be the influence of the
7

mid-value (𝛿) correction (explained below), and/or an influence of the
reversed shear condition employed in the growth direction criterion.

In operations, the length of the temperature load cycle, being on
the order of hours or days, is much longer than the contact load cycle,
which is on the order of milliseconds. Thus, several contact load cycles
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Fig. 9. Predicted crack paths for three different FE-meshes for frictional crack with 𝜇CF = 0.3 and 𝜇CF = 0.5 and frictionless crack (𝜇CF = 0) under pure contact load with
𝑃 = 33.8MN∕m, 𝑓wr = 0.3 and neglecting the reversed shear condition.

Fig. 10. Predicted crack growth rate for three different FE-meshes for frictional crack with 𝜇CF = 0.3 and 𝜇CF = 0.5 and frictionless crack (𝜇CF = 0) under pure contact load with
𝑃 = 33.8MN∕m, 𝑓wr = 0.3 and neglecting the reversed shear condition. (a) Upper estimates. (b) Lower estimates.
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Fig. 11. Predicted crack paths for a frictional crack with 𝜇CF = 0.3 under combined tensile thermal and contact loads with 𝑓wr = 0.3 for 𝜓 = 0.01. (a) Without 𝛿-correction. (b)
Considering 𝛿-correction.
can occur within a certain temperature load cycle and the kinematic
hardening effects at the crack tip thus mainly pertain to the contact
load part for each load cycle. To consider this effect in the simulations,
𝛿 is calculated based solely on the pure contact load part (henceforth
denoted 𝛿-correction). The pertinent results are presented in Fig. 11b.
The predicted crack path for thermal and 7.3MN∕m contact load using
𝛿-correction shows an expected behaviour based on the results from
the frictionless crack in the last growth increment, cf. [4]. However,
the crack under this load combination initially tends to grow deeper
than for pure thermal load and has a ‘jagged’ path. This behaviour
can be the influence of truncating contributions of the reversed shear
instances since these should promote a shallower growth in general,
and in particular in the first growth increment.

Figs. 12 and 13 show the predicted crack paths and growth rates,
respectively, when neglecting the reversed shear condition in the
growth direction criterion and considering the 𝛿-correction. Comparing
Fig. 11b and frictional paths in Fig. 12, it is seen that the ‘jagged’
path observed in Fig. 11b for the thermal and 7.3MN∕m contact load
is eliminated.

Regarding the influence of the crack face friction on the predicted
crack path, the trend of the results in Fig. 12 is the same for the
frictional and frictionless paths with a little more deviation towards
transverse growth for the thermal and 7.3MN∕m contact load in the
case of a frictionless crack. This can be reasonable due to the fact that
the frictionless crack should deviate more towards the shearing mode
9

(mode II) as a result of having higher shear loading. Based on Fig. 12,
it is concluded that the crack face friction has a moderate influence on
the predicted crack path for combined thermal and contact loads.

Fig. 13 shows that the crack growth rate for the pure thermal load
is much lower than the combined loads and pure contact load. This
highlights the large influence of contact load on the crack growth rate
due to the shallow crack. Moreover, it is observed that the crack growth
rate for a case of thermal and 7.3MN∕m contact load is higher than
for the pure thermal loading, and that the combination of thermal and
33.8MN∕m contact load has higher growth rate than a pure 33.8MN∕m
contact load. This is to be expected as a reflection of the increased
loading. Regarding the influence of crack face friction, it is seen that
the crack face friction reduces the crack growth rate. These trends are
consistent for lower and upper estimates.

To investigate crack growth predictions under a combination of
compressive thermal and contact loads, the contact loads described
earlier in this section were applied to the model shown in Fig. 1 in
combination with boundary displacements, 𝑢p𝑥, corresponding to 𝛥𝑇 =
20 °C from Eq. (5).

The predicted crack paths when neglecting the reversed shear con-
dition in the growth direction criterion and considering the 𝛿-correction
are presented in Fig. 14. It can be seen that the crack under pure
compressive thermal load kinks upwards and has a ‘jagged’ path due
to the crack opening occurring in the kinked branch of the crack after
the first growth increment. For the combined loads, the crack paths
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Fig. 12. Comparison of predicted crack paths under combined tensile thermal and contact loads with 𝑓wr = 0.3 for frictional (𝜇CF = 0.3) and frictionless crack faces, neglecting the
reversed shear condition and employing 𝛿-correction.

Fig. 13. Comparison of predicted crack growth rates under combined tensile thermal and contact loads with 𝑓wr = 0.3 for frictional (𝜇CF = 0.3) and frictionless crack faces,
neglecting the reversed shear condition and employing 𝛿-correction. (a) Upper estimates. (b) Lower estimates.
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Fig. 14. Comparison of predicted crack paths under combined compressive thermal and contact loads with 𝑓wr = 0.3 for frictional (𝜇CF = 0.3) and frictionless crack faces, neglecting
the reversed shear condition and employing 𝛿-correction.
are shallower than the pure contact path as a result of additional
shear loading from the thermal load. Similar to the results in Fig. 12,
a gradual change between the pure load cases is also observed in
the predicted crack paths under combined loads while the paths here
are closer to the pure contact path. In addition, the predicted crack
paths under combined loads for frictional and frictionless cracks are
closer than the case with the tensile thermal load, but the crack face
friction still has a moderate influence in this case. Fig. 15 shows similar
observations regarding the crack growth rate with slightly lower values,
especially for the pure compressive thermal load case.

3.4. Load scenario – Combinations of bending and contact load

The model illustrated in Fig. 1 was loaded by boundary displace-
ments pertinent to the bending load described by 𝑢p𝑥(𝑥̄; 𝑦) in Eq. (4).
In addition, Hertzian contact loads of three different magnitudes of
𝑃 = 7.3MN∕m, 𝑃 = 14.0MN∕m and 𝑃 = 33.8MN∕m were applied. The
traction and crack face friction coefficients were taken as 𝑓wr = 0.3 and
𝜇CF = 0.3, respectively.

The predicted crack paths under the combined loads are shown in
Fig. 16 employing the reversed shear condition in the crack growth
direction criterion (cf. [4]) with the reversed shear threshold parameter
𝜓 = 0.01. The general trend of crack paths is close to predictions
for frictionless cracks presented in [4] although two discrepancies
are found. The combination of bending and 33.8MN∕m contact load
results in a shallower path than the pure contact load, and the crack
path for the combination of bending and 7.3MN∕m is slightly ‘jagged’
although the crack deviates less from the previous crack segment when
it propagates, i.e. the share of the mode I in the crack loading is
increasing.

The 𝛿-correction, explained in Section 3.3, is not applicable to this
load combination since the load cycle length of bending and contact are
on the same order. Hence, what remains to investigate compared to the
previous load scenarios is the influence of the reversed shear condition
employed in the growth direction criterion. The predicted results when
neglecting the reversed shear condition are presented in Figs. 17 and
18. The crack path predictions in Fig. 17 show a gradual change in
predicted crack paths from the pure bending load to a pure contact
load. Also, it is observed that the ‘jagged’ path for the combination of
bending and 7.3MN∕m contact load is eliminated. In addition, Fig. 17
demonstrates that a crack with crack face friction is predicted to grow
deeper into the rail than a frictionless crack.

Similar to the results in Section 3.3, Fig. 18 shows that the crack
growth rate for the pure bending load is much lower compared to the
combined loads and pure contact load. This shows the contact load
has a large influence on the crack growth rate for the shallow crack.
11
Furthermore, the crack could be expected to grow faster than under
pure bending when it is subjected to combined loading due to the
overall larger loads acting on the crack. However, for this load case, the
combination of bending and 33.8MN∕m contact load results in a slower
crack propagation than a pure contact load. This is due to the large
compressive loading from bending that closes the crack as the contact
load passes, see Fig. 3. Moreover, Fig. 18 demonstrates that the crack
growth rate for a frictional crack is lower than a frictionless crack under
combinations of bending and contact load due to the decreased shear
deformation. These trends are consistent for upper and lower estimates.

4. Conclusions and outlook

A numerical procedure for simulating RCF crack growth under
operational load scenarios while accounting for crack face friction has
been developed. An isolated surface-breaking inclined crack is included
in a 2D representation of the rail. The numerical model features linear
elastic material under plane strain conditions and crack face friction is
included using the Coulomb friction model. The crack growth direction
has been evaluated from an accumulative VCTD criterion and two
estimates for the crack growth rate have been computed based on the
Paris law.

Comparing predictions of a twin-disc experiment against the exper-
imental results and also results from simulations of combined contact
load and bending or thermal loading identified the need to reconsider
some of the adopted parameter values in the VCTD criterion. Neglecting
the reversed shear condition led to a better match with the twin-disc
experimental results. It was shown that frictional cracks under pure
contact loading tend to grow deeper into the rail in comparison to
frictionless cracks. By applying a 𝛿-correction and neglecting the re-
versed shear condition previously employed in the criterion, a gradual
transition in the predicted crack path from pure thermal to pure contact
load conditions was observed as the contact load magnitudes were
increased. For this load combination, friction had a moderate influence
on predicted crack paths. Similar results were also achieved under
combined compressive thermal and contact loads. A trend of gradual
change between the pure load cases was also obtained for predicted
crack paths under combinations of bending and contact load when the
reversed shear condition was neglected. Similar to the case of a pure
contact load, a frictional crack was predicted to propagate deeper into
the rail. Regarding crack growth rates, it was concluded that crack face
friction slows down the crack growth rate for all of the considered load
cases by limiting the crack sliding.

The above conclusions were drawn based on a limited number of in-
vestigated loading scenarios. A full verification of 2D model predictions
under operational loading scenarios is complex due to a scale difference
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Fig. 15. Comparison of predicted crack growth rates under combined compressive thermal and contact loads with 𝑓wr = 0.3 for frictional (𝜇CF = 0.3) and frictionless crack faces,
neglecting the reversed shear condition and employing 𝛿-correction. (a) Upper estimates. (b) Lower estimates.

Fig. 16. Predicted crack paths for a crack with a friction coefficient of 𝜇CF = 0.3 under combinations of bending and contact load with 𝑓wr = 0.3 for 𝜓 = 0.01.
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Fig. 17. Comparison of predicted crack paths for frictional (𝜇CF = 0.3) and frictionless crack faces under combinations of bending and contact load neglecting the reversed shear
condition with 𝑓wr = 0.3.
Fig. 18. Comparison of predicted crack growth rates for frictional (𝜇CF = 0.3) and frictionless crack faces under combinations of bending and contact load neglecting the reversed
hear condition with 𝑓wr = 0.3. (a) Upper estimates. (b) Lower estimates.
a
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etween the model (2D) and the measured data (3D). Verification
owards field data for the combined loads has therefore so far not
een considered in this research. The predictive model has however
reviously been validated towards controlled biaxial (tensile) tests [2]
13

p

nd in this study validated against a twin-disc test. In the extension, 3D
odelling of the rail would allow for better quantitative verification.

n the current study, it has been shown that the predicted crack
ath is sensitive to the employed values of parameters in the growth
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direction criterion and the computational procedure: Good matches
between simulations and four mixed-mode fatigue test experiments
were reported by employing a reversed shear condition in the growth
direction criterion in [2] while a better match was found for the twin-
disc experiment simulation in this study by neglecting the reversed
shear condition. Hence, special attention needs to be observed in the
calibration of the model towards experimental results/field data.
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