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A Lemmas

We present in this section two lemmas that are needed for our main results. Proofs are provided in Appendix B.

Lemma 1
Let π = (π1, . . . , πN ) and consider the function

f(π) =

N∑
i=1

ωi
πi
, ωi > 0 ,

subject to the constraints

N∑
i=1

πi = 1 ,

πi ∈ (0, 1) , i = 1, . . . , N .

Then, the function f(π) is minimised by choosing πi according to

πi =

√
ωi∑N

j=1

√
ωj

, i = 1, . . . , N .

Lemma 2
Under assumptions A1 - A3 in Section 3, it holds that

Varπ(θ̂t − θ0) = H(θ0)−1Varπ(Ŝ(θ0))H(θ0)−1 + o(t−1) ,

where for vector-valued random variables o(·) is interpreted elementwise as its scalar analogue.

B Proofs

B.1 Proof of Lemma 1

Using the method of Lagrange multipliers, we introduce the auxiliary function

Λ(π, λ) = f(π) + λh(π) , h(π) =

N∑
i=1

πi − 1 .

Critical points of the Lagrangian are found by solving the equation system

∇Λ(π, λ) = 0 ⇔

{
h(π) = 0

−∇πf(π) = λ∇πh(π)
.
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Since ∂f(π)
∂πi

= −ωi/π2
i and ∂h(π)

∂πi
= 1, this implies that λ = ω1/π

2
1 = . . . = ωN/π

2
N , and further that

πi ∝
√
ωi .

By the constraints πi > 0 and
∑N
i=1 πi = 1, we obtain

πi =

√
ωi∑N

j=1

√
ωj

. (S.1)

Thus, the point (π∗, λ∗) with entries π∗i defined according to (S.1) and λ∗ = ω1/π
∗2
1 is a stationary point of

Λ(π, λ). Hence, π∗ is a stationary point of f(π) under the specified constraints. Furthermore, the Hessian of
f(π) is positive definite on the domain specified by πi ∈ (0, 1), so π∗ is a local minimum. By convexity, this
implies that π∗ is the global minimum of f(π) under the specified constraints. �

B.2 Proof of Lemma 2

The result follows from Binder (1983). A sketch of the proof is provided here for completeness.

We will need the following error bounds, deduced from assumptions A2 and A3:

θ̂t − θ0 = Op(t−1/2) ,

1

N

(
Ŝ(θ0)− S(θ0)

)
= Op(t−1/2) , (S.2)

1

N

(
Ĥ(θ0)−H(θ0)

)
= op(1) ,

where for vector and matrix-valued random variables Op(·) and op(·) are interpreted elementwise as their scalar
analogues. These error bounds in turn imply that

op(θ̂t − θ0) = op(Op(t−1/2)) = op(t
−1/2) , (S.3)

1

N
Ĥ(θ0)(θ̂t − θ0) =

1

N
H(θ0)(θ̂t − θ0) + op(t

−1/2) . (S.4)

We point out that the limiting procedure is such that N →∞, t→∞ and N − t→∞, and that we implicitly
assume the existence of a sequence of (hypothetical) populations P1,P2, . . . of increasing sizes N1, N2, . . . such
that A2 and A3 holds. We do, however, omit the dependence on this sequence from the notation.

Under the assumed regularity conditions, we first note that θ̂t may be defined as the solution to the estimating
equation Ŝ(θ) = 0 , where Ŝ(θ) := ∇θ

ˆ̀
t(θ). A Taylor expansion of Ŝ(θ) in a neighbourhood of the optimal

parameter θ0 gives
1

N
Ŝ(θ) =

1

N
Ŝ(θ0) +

1

N
Ĥ(θ0)(θ − θ0) + o(θ − θ0) .

Taking θ = θ̂t and using that Ŝ(θ̂t) = 0, we obtain by (S.3) and (S.4) that

0 =
1

N
Ŝ(θ0) +

1

N
Ĥ(θ0)(θ̂t − θ0) + op(θ̂t − θ0)⇔ − 1

N
Ĥ(θ0)(θ̂t − θ0) =

1

N
Ŝ(θ0) + op(t

−1/2)

⇔ − 1

N
H(θ0)(θ̂t − θ0) =

1

N
Ŝ(θ0) + op(t

−1/2) .

Taking variances and using (S.2), we get

H(θ0)

N
Varπ(θ̂t − θ0)

H(θ0)

N
=

Varπ(Ŝ(θ0))

N2
+ o(t−1) ,

where we have used that H(θ0) = H(θ0)T since the Hessian is a symmetric matrix. The desired result is now
obtained by a final rearrangement of the terms:

Varπ(θ̂t − θ0) =
(
NH(θ0)−1

) Varπ(Ŝ(θ0))

N2

(
NH(θ0)−1

)
+ o(t−1)

= H(θ0)−1Varπ(Ŝ(θ0))H(θ0)−1 + o(t−1) .

�
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B.3 Proof of Proposition 1

Using multinomial sampling, i.e. for Qt := (Qt,1, . . . , Qt,N ) ∼ Multinomial(1,πt), we have that

Varπ(Qt,i) = πt,i(1− πt,i) ,
Covπ(Qt,i, Qt,j) = −πt,iπt,j .

Taking y := (y1, . . . , yN ) as fixed, we therefore have that

Varπ

(
1

t

∑
i∈P

Qt,i
πt,i

`(yi,xi,θ)

)
=

1

t2

∑
i∈P

πt,i(1− πt,i)
π2
t,i

`2i −
∑
i,j∈P
i 6=j

πt,iπt,j
πt,iπt,j

`i`j


=

1

t2

∑
i∈P

`(yi,xi,θ)2

πt,i
−
∑
i,j∈P

`(yi,xi,θ)`(yj ,xj ,θ)


=

1

t2

∑
i∈P

`(yi,xi,θ)2

πt,i
+ k ,

where k is a constant not depending on πt. The anticipated variance (5) is thus given by

Eθ

[
Varπ

(
1

t

∑
i∈P

Qt,i
πt,i

`(Y ∗i ,xi, θ̃)
∣∣Y ∗)] =

1

t2

∑
i∈P

Eθ[`(Y ∗i ,xi, θ̃)2]

πt,i
+ k2 ,

where the outer expectation is taken respect to {Y ∗i }i∈P under the model fθ(y|x) and k2 is a constant not
depending on πt. The desired result is now obtained by application of Lemma 1. �

B.4 Proof of Proposition 2

First, a second order Taylor expansion of the total loss in a neighbourhood of the optimal parameter θ0 gives

`0(θ) = `0(θ0) +∇θ`0(θ)T
∣∣
θ=θ0

(θ − θ0) +
1

2
(θ − θ0)TH(θ0)(θ − θ0) + o(||θ − θ0||2) . (S.5)

We next note that θ0, under the assumed regularity conditions, may be defined as the solution to the estimating
equation ∇θ`0(θ) = 0, implying that the second term in (S.5) vanishes. Taking θ = θ̂t, we thus get

Eπ

[
1

N
`0(θ̂t)

]
=

1

N
`0(θ0) +

1

2N
Eπ

[
(θ̂t − θ0)TH(θ0)(θ̂t − θ0)

]
+ o(t−1) , (S.6)

using the fact that op(||θ̂t − θ0||) = op(t
−1/2), as implied by assumption A2. By properties on quadratic forms

in random variables (Mathai, 1992), we may next write

1

N
Eπ

[
(θ̂t − θ0)TH(θ0)(θ̂t − θ0)

]
=

1

N
tr
(
H(θ0)Varπ(θ̂t − θ0)

)
+

1

N
Eπ

[
(θ̂t − θ0)T

]
H(θ0)Eπ

[
(θ̂t − θ0)

]
=

1

N
tr
(
H(θ0)Varπ(θ̂t − θ0)

)
+ o(t−1) , (S.7)

where tr(·) denotes the trace of a matrix, and the second equality follows from assumption A2. By Lemma 2,
we also have that

Varπ(θ̂t − θ0) = H(θ0)−1Varπ(Ŝ(θ0))H(θ0)−1 + o(t−1) ,

where, in analogy with the proof of Proposition 1 (Appendix B.3), the variance-covariance matrix of Ŝ(θ0) is
given by

Varπ(Ŝ(θ0)) =
1

t2

t∑
s=1

N∑
i=1

si(θ0)si(θ0)T

πs,i
+K ,
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and K is a constant matrix not depending on π1:t. Using the linearity and cyclic properties of the trace, we may
now write

1

N
tr
(
H(θ0)Varπ(θ̂t − θ0)

)
= tr

(
1

N
H(θ0)H(θ0)−1

(
1

t2

t∑
s=1

N∑
i=1

si(θ0)si(θ0)T

πs,i
+K

)
H(θ0)−1 + o(t−1)

)

= tr

(
1

Nt2

t∑
s=1

N∑
i=1

si(θ0)si(θ0)T

πs,i
H(θ0)−1 +K2 + o(t−1)

)

= tr

(
1

Nt2

t∑
s=1

N∑
i=1

si(θ0)TH(θ0)−1si(θ0)

πs,i

)
+ k3 + o(t−1)

=
1

Nt2

t∑
s=1

N∑
i=1

si(θ0)TH(θ0)−1si(θ0)

πs,i
+ k3 + o(t−1) , (S.8)

where k3 is a constant not depending on π1:t. Combining (S.6) - (S.8), we obtain the desired result:

Eπ

[
1

N
`0(θ̂t)

]
=

1

N
`0(θ0) +

1

2Nt2

t∑
s=1

N∑
i=1

si(θ0)TH(θ0)−1si(θ0)

πs,i
+ k4 + o(t−1) ,

where k4 is a constant not depending on π1:t. This proves the first part of the theorem. The optimality of the
sampling scheme (8) now follows by application of Lemma 1. �

B.5 Proof of Proposition 3

Under assumption A2 and by application of the Delta theorem (DasGupta, 2008), we have, for a differentiable
function g : Rp → R, that

Varπ(g(θ̂t)− g(θ0)) = ∇θg(θ)T
∣∣
θ=θ0

Varπ(θ̂t − θ0)∇θg(θ)
∣∣
θ=θ0

+ o(t−1) , (S.9)

provided that the first term of the right hand side is greater than zero. By Lemma 2, we also have that

Varπ(θ̂t − θ0) = H(θ0)−1Varπ(Ŝ(θ0))H(θ0)−1 + o(t−1) , (S.10)

where, in analogy with the proof of Proposition 1 (Appendix B.3), the variance-covariance matrix of Ŝ(θ0) is
given by

Varπ(Ŝ(θ0)) =
1

t2

t∑
s=1

N∑
i=1

si(θ0)si(θ0)T

πs,i
+K , (S.11)

and K is a constant matrix not depending on π1:t.

Next, a Taylor expansion of µ(x,θ) in a neighbourhood of θ0 gives

µ(x,θ) = µ(x,θ0) +∇θµ(x,θ)T
∣∣
θ=θ0

(θ − θ0) + o(||θ − θ0||) ,

Thus, for a single term µ(x, θ̂t)− µ(x,θ0), we have that

Eπ

[
µ(x, θ̂t)− µ(x,θ0)

]
= Eπ

[
µ(x,θ0) +∇θµ(x,θ)T

∣∣
θ=θ0

(θ̂t − θ0) + op(||θ̂t − θ0||)− µ(x,θ0)
]

= Eπ

[
∇θµ(x,θ)T

∣∣
θ=θ0

(θ̂t − θ0) + op(||θ̂t − θ0||)
]

= ∇θµ(x,θ)T
∣∣
θ=θ0

Eπ

[
(θ̂t − θ0)

]
+ Eπ

[
op(||θ̂t − θ0||)

]
= o(t−1/2) ,

(S.12)

where the last step follows from assumption A2.
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Now, combining (S.12) with (S.9) - (S.11) and taking g(θ) = µ(x,θ), we get

Eπ

[(
µ(x, θ̂t)− µ(x,θ0)

)2]
= Varπ

(
µ(x, θ̂t)− µ(x,θ0)

)
+
(

Eπ

[
µ(x, θ̂t)− µ(x,θ0)

])2
= Varπ

(
µ(x, θ̂t)− µ(x,θ0)

)
+ o(t−1)

= ∇θµ(x,θ)T
∣∣
θ=θ0

Varπ(θ̂t − θ0)∇θµ(x,θ)
∣∣
θ=θ0

+ o(t−1)

= ...

=
1

t2

t∑
s=1

N∑
i=1

di(y,X,θ0)

πs(i)
+ k2 + o(t−1) , (S.13)

where

di(y,X,θ0) =
(
∇θµ(x,θ)T

∣∣
θ=θ0

H(θ0)−1si(θ0)
)2

and k2 is a constant not depending on π1:t. Considering all the predictions {µ(xi, θ̂t)}i∈P , the result in (S.13)
generalises to

Eπ

[
1

N

N∑
i=1

(
µ(xi, θ̂t)− µ(xi,θ0)

)2]
=

1

Nt2

t∑
s=1

N∑
i=1

di(y,X,θ0)

πs(i)
+ k3 + o(t−1) ,

where di(y,X,θ) now is given by

di(y,X,θ) = ||M(θ0)H(θ0)
−1
si(θ0)||2 ,

and k3 is a constant not depending on π1:t. This proves the first part of the theorem. The optimality of the
sampling scheme (10) now follows by application of Lemma 1. �

B.6 Proof of Corollary 1

Before giving the proof of Corollary 1, we need the following preliminaries concerning the exponential family and
generalised linear models. See McCullagh and Nelder (1989) for additional details.

Preliminaries

For a random variable Yi in an exponential family with parameters (ζi, φ), we can write the density function on
the form

f(yi; ζi, φ) = exp

{
yiζi − b(ζi)

φ
+ γ(yi, φ)

}
,

where ζi is the called the canonical parameter, φ is a dispersion parameter, and b(·) is a function satisfying

b′(ζi) = E[Yi] ,

b′′(ζi) =
1

φ
Var(Yi) .

(S.14)

In generalised linear models, the mean of the response variable Yi given the predictors xi is related to the
parameter θ through the relation Eθ[Yi|xi] =: µ(xi,θ) = g−1(xTi θ) for some function g(·), referred to as the
link function. Similarly, the canonical parameter ζi is related to the parameter θ through h(ζi) = xTi θ for some
function h(·). Using the canonical link function, h(·) is simply the identity function and ζi = xTi θ.

Given independent observations (xi, yi), i = 1, . . . , N , and using the canonical link function, we can write the
log-likelihood of θ as

N∑
i=1

yix
T
i θ − b(xTi θ)

φ
+ γ(yi, φ) ,
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and the maximum likelihood estimator is defined as the maximiser of this function. However, for the purpose of
estimating the parameter θ, we note that the dispersion parameter φ and the terms γ(yi, φ) can be ignored, and
we may equivalently define the maximum likelihood estimator of θ as the minimiser of the loss

`0(θ) = −
N∑
i=1

yix
T
i θ − b(xTi θ) .

The corresponding score vector and Hessian matrix are given by

S(θ) := ∇θ`0(θ) = −
N∑
i=1

yixi − b′(xTi θ)xi = −
N∑
i=1

(yi − µ(xi,θ))xi , (S.15)

H(θ) =

N∑
i=1

b′′(xTi θ)xix
T
i =

1

φ
XTV (θ)X ,

where V (θ) is the diagonal matrix with entries Varθ(Yi|xi), i = 1, . . . , N . Within this class of models, the
statistical leverage score pertaining to instance i is given by the i-th diagonal element of the matrix

V 1/2X(XTV X)−1XTV 1/2 ,

which we also may write as

hii(θ) :=
(
V 1/2X(XTV X)−1XTV 1/2

)
ii

= SDθ(Yi|xi)xTi (XTV X)−1xiSDθ(Yi|xi)
∝ Varθ(Yi|xi)xTi H(θ)−1xi ,

which for a linear regression model with constant error variance simplifies further to hii = xTi (XTX)−1xi.

We are now ready to present the proof of Corollary 1.

Proof of Corollary 1a

We first note that assumption A1 is immediately fulfilled for the class of the models under consideration. As-
suming that A2 and A3 also hold we may apply the result of Proposition 2, stating that the expectation of the
total loss `0(θ̂t) of the active learning algorithm with respect to the subsampling mechanism can be expressed as

Eπ

[
1

N
`0(θ̂t)

]
=

1

N
`0(θ0) +

1

2Nt2

t∑
s=1

N∑
i=1

ci(y,X,θ0)

πs,i
+ k + o(t−1) ,

where ci(y,X,θ) = si(θ)TH(θ)−1si(θ), H(θ) is the Hessian matrix of the total loss, si(θ) the gradient of the
individual loss `i(θ), and k is a constant not depending on π1:t.

Taking θ0 = θ, the anticipated generalisation error can thus be expressed as

Eθ

[
Eπ

[
1

N
`0(θ̂t)

∣∣Y ∗]] =
1

N
Eθ [`0(θ0)] + Eθ

[
1

2Nt2

t∑
s=1

N∑
i=1

ci(Y
∗,X,θ)

πs,i
+ k

]
+ o(t−1)

=
1

N
Eθ [`0(θ0)] +

1

2Nt2

t∑
s=1

N∑
i=1

Eθ [ci(Y
∗,X,θ)]

πs,i
+ k2 + o(t−1) ,

where the outer expectation is taken respect to {Y ∗i }i∈P under the model fθ(y|x), and k2 is a constant not
depending on π1:t. By application of Lemma 1, this expectation is minimised by choosing

πs,i ∝
√

Eθ [ci(Y
∗,X,θ)]

for all i ∈ P and s = 1, . . . , t, normalised so that
∑
i∈P πs,i = 1. What remains is to show that this is equivalent

to choosing

πs,i ∝
√

Varθ(Y ∗i |xi)xTi H
−1xi
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within the specified class of models, i.e. that

Eθ [ci(Y
∗,X,θ)] ∝ Varθ(Y ∗i |xi)xTi H

−1xi ,

where H ∝XTV X.

According to the preliminaries, we may, for a generalised linear model with canonical link function, write the
total loss as `0(θ) = −

∑N
i=1 yix

T
i θ − b(xTi θ), ignoring terms that do not involve the parameter θ, and the

individual losses as `(yi,xi,θ) = −(yix
T
i θ − b(xTi θ)). We further have that the Hessian matrix of the total loss

is given by H(θ) = 1
φX

TV (θ)X, and, in analogy with (S.15), that the gradient of loss pertaining to instance i
is given by

si(θ) := ∇θ`(yi,xi,θ) = −(yi − µi)xi ,

where µi := µ(xi,θ) = Eθ[Y ∗i |xi]. Taking expectation with respect to Y ∗i , we thus have that

Eθ[ci(Y
∗,X,θ)] : = Eθ

[
si(θ)TH(θ)−1si(θ)

]
= Eθ[(Y ∗i − µi)2]xTi H

−1xi

= Varθ(Y ∗i |xi)xTi H
−1xi

∝ Varθ(Y ∗i |xi)xTi (XTV X)−1xi . (S.16)

This gives the desired result and completes the first part of the proof. For a linear regression model with
constant error variance, we further have that Varθ(Y ∗i |xi) =: σ2 does not depend on i. From this, it follows that
V = σ2IN×N , where IN×N is an (N ×N) identity matrix, and that H ∝XTX. This now implies that

Varθ(Y ∗i |xi)xTi H
−1xi ∝ xTi (XTX)−1xi

=: hii ,

which is known as the statistical leverage score for linear regression (Rawlings et al., 1998). �

Proof of Corollary 1b

We first note that assumptions A1 and A4 are immediately fulfilled for the class of the models under consideration.
Assuming that A2 and A3 also hold we may apply the result of Proposition 3, stating that the mean squared
error of the predictions {µ(xi, θ̂t)} can be expressed as

Eπ

[
1

N

N∑
i=1

(
µ(xi, θ̂t)− µ(xi,θ0)

)2]
=

1

Nt2

t∑
s=1

N∑
i=1

di(y,X,θ0)

πs,i
+ k + o(t−1) ,

where di(y,X,θ) = ||M(θ)H(θ)
−1
si(θ)||2, H(θ) is the Hessian matrix of the total loss, si(θ) the gradient of

the individual loss `i(θ), M(θ) the matrix with rows ∇θµ(xi,θ)T , and k is a constant not depending on π1:t.

Taking θ0 = θ, the anticipated mean squared error of the predictions {µ(xi, θ̂t)} can thus be expressed as

Eθ

[
Eπ

[
1

N

N∑
i=1

(
µ(xi, θ̂t)− µ(xi,θ)

)2∣∣Y ∗]] = Eθ

[
1

Nt2

t∑
s=1

N∑
i=1

di(Y
∗,X,θ)

πs,i
+ k

]
+ o(t−1)

=
1

Nt2

t∑
s=1

N∑
i=1

Eθ [di(Y
∗,X,θ)]

πs,i
+ k2 + o(t−1) ,

where the outer expectation is taken respect to {Y ∗i }i∈P under the model fθ(y|x), and k2 is a constant not
depending on π1:t. By application of Lemma 1, the anticipated asymptotic mean squared error of the predictions
{µ(xi, θ̂t)} is thus minimised by choosing

πs,i ∝
√

Eθ [di(Y
∗,X,θ)]

for all i ∈ P and s = 1, . . . , t, normalised so that
∑
i∈P πs,i = 1. What remains is to show that this is equivalent

to choosing
πs,i ∝ ||SDθ(Y ∗i |xi)V XH

−1xi||
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within the specified class of models, i.e. that

Eθ [di(Y
∗,X,θ)] ∝ ||SDθ(Y ∗i |xi)V XH

−1xi||2 .

According to the preliminaries, we may, for a generalised linear model with canonical link function, write the
total loss as `0(θ) = −

∑N
i=1 yix

T
i θ − b(xTi θ), ignoring terms that do not involve the parameter θ, and the

individual losses as `(yi,xi,θ) = −(yix
T
i θ − b(xTi θ)). In analogy (S.15), the gradient of the loss pertaining to

instance i is given by
si(θ) := ∇θ`(yi,xi,θ) = −(yi − µi)xi ,

where µi = µ(xi,θ) := Eθ[Y ∗i |xi]. By (S.14), we also have that the gradient of the mean function µ(xi,θ) with
respect to θ is given by

∇θµ(xi,θ) = ∇θb
′(xTi θ) = b′′(xTi θ)xi =

1

φ
Varθ(Y ∗i |xi)xi ,

and consequently that M(θ) = 1
φV (θ)X. The coefficients di(Y

∗,X,θ) can thus be written as

di(Y
∗,X,θ) = ||M(θ)H(θ)

−1∇θ`(Y
∗
i ,xi,θ)||2 = || 1

φ
V (θ)XH(θ)−1(Y ∗i − µi)xi||2 .

Taking expectation with respect to Y ∗i , we now get

Eθ[di(Y
∗,X,θ)] = Eθ

[
|| 1
φ
V XH−1(Y ∗i − µi)xi||2

]
=

1

φ2
Eθ[(Y ∗i − µi)2]xTi H

−1XTV 2XH−1xi

=
1

φ2
Varθ(Y ∗i |xi)xTi H

−1XTV 2XH−1xi

=
1

φ2
||SDθ(Y ∗i |xi)V XH

−1xi||2

∝ ||SDθ(Y ∗i |xi)V XH
−1xi||2 .

This gives the desired result and completes the first part of the proof.

For a linear regression model with constant error variance, we further have that SDθ(Y ∗i |xi) =: σ does not
depend on i. From this, it follows that V = σ2IN×N , where IN×N is an (N × N) identity matrix, and that
H ∝XTX. This now implies that

||SDθ(Y ∗i |xi)V XH
−1xi||2 ∝ ||X(XTX)−1xi||2

= xTi (XTX)−1XTX(XTX)−1xi

= xTi (XTX)−1xi

=: hii ,

which is known as the statistical leverage score for linear regression (Rawlings et al., 1998). �

C Additional experiment results

In all tables and figures that follow, ’Prop. 1’ refers to unbiased active learning with a sampling scheme that is
optimised to minimise the anticipated variance of the estimated loss, ’Cor. 1a’ to leverage sampling, optimised
to minimise the anticipated generalisation error in terms of total loss of the active learning algorithm, ’Cor.
1b’ to sampling optimised to minimise the anticipated mean squared error of the predictions, ’Prob. un.’ to
probabilistic uncertainty sampling (Chu 2011, Ganti and Gray 2012), ’Det. un.’ to deterministic uncertainty
sampling (Lewis and Gale, 1994), and ’Uniform’ to uniform or simple random sampling, i.e. passive learning.
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Table S1: Descriptive statistics of benchmark datasets.

Feature Abalone Australian E. coli German Red Wine White Wine
Number of records 4177 690 9090 1000 1599 4898
n (%) in minority class 1447 307 3861 300 217 1060

(34.6%) (44.5%) (42.5%) (30.0%) (13.6%) (21.6%)
Number of predictorsa 10 35 15 24 11 11
Performance under optimal modelb

Accuracyc 0.75 0.88 0.81 0.78 0.88 0.80
AUC 0.83 0.94 0.85 0.82 0.88 0.79

a After re-coding of categorical predictors and removal of redundant variables.
b Using L2-penalised logistic regression on the entire data set.
c Using 50% probability cut-off.

AUC, area under the receiver operating characteristic curve.
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Figure S1: Average misclassification rate in 10 000 active learning experiments. The grey solid line shows the
performance when using the entire dataset for training.
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Figure S2: Average of the proportion correctly classified minority examples in 10 000 active learning experiments.
The grey solid line shows the performance when using the entire dataset for training.
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Figure S3: Mean AUC in 10 000 active learning experiments. The grey solid line shows the performance when
using the entire dataset for training. AUC, area under the receiver operating characteristic curve.



Henrik Imberg, Johan Jonasson, Marina Axelson-Fisk

German Credit Data Red Wine White Wine

Abalone Australian Credit Approval E. coli
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Figure S4: Median of the negative log-likelihood (scaled by a factor 1/N) of the predicted class probabilities in
10 000 active learning experiments. The grey solid line shows the performance when using the entire dataset for
training.
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Figure S5: Average root mean squared error (RMSE) of the predictions in 10 000 active learning experiments,
as compared to the predictions obtained when using the entire datasets for training. The RMSE was computed

as
√

1
N

∑N
i=1 (p̂i − pi)2, where p̂i = Pθ̂t

(Yi = 1|xi) and pi = Pθ0(Yi = 1|xi).
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German Credit Data Red Wine White Wine

Abalone Australian Credit Approval E. coli
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Figure S6: Mean of the ratio between the observed and predicted (expected) number of minority examples

in 10 000 active learning experiments, computed as
∑N
i=1 yi/

∑N
i=1 p̂i, where p̂i = Pθ̂t

(Yi = 1|xi) and Y = 1
is coded as the minority class. The grey solid line represents the ideal performance, i.e. perfect agreement
between observed and expected number of minority examples. A value greater than 1 corresponds to a bias in
the predicted probabilities towards the majority class, and a value smaller than 1 to a bias towards the minority
class.
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Figure S7: Median of the calibration slope between the observed outcomes and predicted probabilities in 10 000
active learning experiments, computed as described in Steyerberg and Vergouwe (2014). The grey solid line
represents the ideal performance. A value > 1 correspond to conservative predictions that are shrunk towards
the overall mean, and a value < 1 to overfitting in the sense that the predicted class probabilities are too extreme:
low predictions too low and high predictions too high.
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German Red Wine White Wine

Abalone Australian E. coli
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Figure S8: Number of training examples needed for active learning to achieve equal performance in terms of
misclassification rate as passive learning with a given sample size. The diagonal line represents no improvement
compared to passive learning.
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Figure S9: Number of training examples needed for active learning to achieve equal performance in terms of
AUC as passive learning with a given sample size. The diagonal line represents no improvement compared to
passive learning. AUC, area under the receiver operating characteristic curve.
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German Red Wine White Wine

Abalone Australian E. coli
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Figure S10: Number of training examples needed for active learning to achieve equal performance in terms of
the negative log-likelihood of the predictions as passive learning with a given sample size. The diagonal line
represents no improvement compared to passive learning.
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Figure S11: Number of training examples needed for active learning to achieve equal performance in terms of
the RMSE of the predictions as passive learning with a given sample size. The diagonal line represents no

improvement compared to passive learning. The RMSE was computed as
√

1
N

∑N
i=1 (p̂i − pi)2, where p̂i =

Pθ̂t
(Yi = 1|xi) and pi = Pθ0

(Yi = 1|xi).
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Table S2: Label complexity of active vs. passive learning, presented as the relative increase (ratio > 1) or decrease
(ratio < 1) in the sample size needed for active learning to achieve equal performance as passive learning with
n = 250 training examples.

Ratio of sample sizes using active vs. passive learning

Dataset Performance metric Prop. 1 Cor. 1a Cor. 1b Prob. un. Det. un.
Abalone AUC 1.00 0.93 0.91 0.91 0.56

Misclassification rate 1.01 0.93 0.88 0.87 0.41
Negative log-likelihood 1.02 0.96 0.95 1.00 0.71
RMSE of predictions 1.01 0.94 0.94 0.97 >2.00

Australian Credit Approval AUC 1.06 0.86 0.94 1.12 0.80
Misclassification rate 1.07 0.93 0.92 0.95 0.47
Negative log-likelihood 1.06 0.89 0.93 1.06 0.68
RMSE of predictions 1.07 0.91 0.94 1.08 0.89

E. coli AUC 1.11 0.82 0.84 1.39 1.18
Misclassification rate 1.10 0.84 0.85 1.32 0.77
Negative log-likelihood 1.08 0.82 0.85 1.28 1.56
RMSE of predictions 1.16 0.90 0.92 1.58 >2.00

German Credit Data AUC 1.04 0.97 0.98 1.04 1.11
Misclassification rate 1.03 0.96 0.96 1.01 0.50
Negative log-likelihood 1.04 0.97 0.98 1.05 1.29
RMSE of predictions 1.04 0.98 0.98 1.05 1.36

Red Wine AUC 0.98 0.80 0.79 0.92 1.27
Misclassification rate 0.97 0.79 0.77 0.80 0.42
Negative log-likelihood 0.96 0.81 0.80 0.87 1.12
RMSE of predictions 0.98 0.80 0.78 0.89 1.14

White Wine AUC 1.01 0.96 0.96 1.10 1.68
Misclassification rate 1.02 0.97 0.95 1.03 0.50
Negative log-likelihood 1.01 0.99 1.00 1.13 >2.00
RMSE of predictions 1.02 0.98 0.98 1.12 >2.00

AUC, area under the receiver operating characteristic curve; RMSE, root mean squared error.


	Lemmas
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 1

	Additional experiment results

