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Abstract—Machine Learning (ML) systems have seen widespread
use for automated decision making. Testing is essential to ensure
the quality of these systems, especially safety-critical autonomous
systems in the automotive domain. ML systems introduce new
challenges with the potential to affect test maintenance, the
process of updating test cases to match the evolving system.
We conducted an exploratory case study in the automotive
domain to identify factors that affect test maintenance for ML
systems, as well as to make recommendations to improve the
maintenance process. Based on interview and artifact analysis,
we identified 14 factors affecting maintenance, including five
especially relevant for ML systems—with the most important
relating to non-determinism and large input spaces. We also
proposed ten recommendations for improving test maintenance,
including four targeting ML systems—in particular, emphasizing
the use of test oracles tolerant to acceptable non-determinism.
The study’s findings expand our knowledge of test maintenance
for an emerging class of systems, benefiting the practitioners
testing these systems.

Index Terms—Software Testing, Test Maintenance, Test Evolu-
tion, Machine Learning, Automotive Software

I. INTRODUCTION

Software testing aims to find faults in the behavior of a
system-under-test (SUT) through the execution of test cases.
Each test case applies input to the SUT and judges the
subsequent output using a test oracle—embedded expectations
on that output, often in the form of assertions. Testing is
especially important in safety-critical domains, such as the
automotive industry, since undetected faults can lead to life-
threatening failures. The risks of failure intensify as systems
grow more complex, as is the case with the emergence of
autonomous vehicles. Machine Learning (ML) is at the core
of the functionality of autonomous vehicles, supporting tasks
such as collision avoidance and lane-keeping. A common form
of ML, supervised learning, trains a model to make predictions
using labeled training data [1]. Autonomous vehicles are an
example of the emerging category of ML systems—software
systems that contain components that depend on ML, e.g., that
use a model as the basis of functional logic.

ML systems present new testing challenges. For example,
ML algorithms and models are usually non-deterministic,
introducing challenges in specifying expected output [1]. In
addition, many ML problems have a large input space—e.g.,
potential traffic situations—making it challenging to identify

failure-revealing test inputs [1]. Finally, common ways of
measuring how well a system is tested (e.g., code coverage)
cannot be applied to ML systems as behavioral logic is often
embedded in models instead of code [1].

Tests created for a SUT typically require maintenance as
the project evolves [2]. Tests must be updated when, e.g.,
requirements are refined, new functionality is implemented,
or a model is retrained. While research has been conducted
on test maintenance in the past (e.g., [2]–[4]), there is a lack
of knowledge on factors that affect test maintenance for ML
systems [5]. Past research for traditional systems may not be
directly applicable due to differences in system design and
behavior between ML and traditional systems.

The purpose of this study is to gain understanding of the
factors that affect test maintenance for ML systems, as well
as to make recommendations on how to minimize or improve
the maintenance process. To that end, we have conducted an
exploratory case study at Zenseact, a company specializing in
software for autonomous driving. This study was motivated by
three challenges encountered at Zenseact regarding test design
and maintenance for ML systems. First, developers have
encountered flaky test cases that yield inconsistent results.
Second, it was noticed that test cases often had to be updated
after retraining an ML model. Changed predictions caused
test failures, causing testers to expend effort to communicate
with other teams and understand whether the failure was fault-
revealing or indicative of the need for test maintenance (i.e.,
updating the test oracle). Finally, ML systems are challenging
to test at the unit level, as components cannot be tested in
isolation without—at least—integration of the model.

We conducted a semi-structured interview study and an artifact
analysis to identify test maintenance factors, examine the
influence of flaky tests on test maintenance, and provide
recommendations on reducing the test maintenance effort.
In addition, we compared our results with test maintenance
factors reported in past research for traditional systems. Ulti-
mately, we observed:

• Nine factors were identified that affect test maintenance
for all systems. Continuity and scenario setup are es-
pecially relevant in the automotive context. Additional
factors that affect maintenance for ML systems include



Figure 1: Example ML system, including the flow between
model and components. A sensor provides input.

amount and quality of training data, non-determinism,
explainability, input space size, and testing granularity.

• The main differences between ML and traditional systems
are the degree of determinism, explainability of the code,
and scope and testing granularity.

• It is not clear that flaky tests influence test maintenance
for ML systems differently from traditional systems. ML
systems result in more tests with flaky behavior—because
the SUT is non-deterministic—but the tests themselves
are not inherently more flaky.

• Discussion threads and test cases show the influence of
non-determinism, testing granularity, explainability, and
communication on test maintenance. In particular, non-
determinism creates the need for test maintenance and
introduces challenges with regard to explainability and
communication.

• Knowledge sharing, maintainer tags, slack bots, test-
driven development, detailed failure messages, and a
unified scenario setup can improve or reduce test mainte-
nance for all systems. For ML systems, tolerant oracles,
forced determinism and isolation, consistent hardware,
and property-based testing can have a further impact.

Our findings offer insights into test maintenance of ML sys-
tems from an industrial context. We offer our observations and
recommendations to researchers and practitioners to inspire
future advances in this rapidly evolving area.

II. BACKGROUND

ML Systems: ML algorithms infer patterns from observa-
tions to make predictions in previously-unseen situations [1].
ML has become especially popular in the last decade, as
new techniques can make complex predictions based on vast
amounts of data. ML is regularly used to enable autonomy,
support decision making, process images, and perform natural
language processing, among other applications [1]. We discuss
ML in terms of “models” and “ML systems”. In supervised
learning, a model is responsible for making predictions after
being trained on pre-labeled data. In the context of autonomous
vehicles, models often process images or sensor data to iden-
tify objects (e.g., pedestrians, lane markers, or traffic signs).

An ML system is a system whose components depend on
ML—e.g., a model or a Reinforcement Learning agent [6]—
to determine how the system behaves. Figure 1 shows an ML
system where one component uses the output of the model
and the second component uses the output of the first. As an

example, an emergency braking system stops a vehicle if an
object is detected. Object detection is performed by an ML
model, and the predictions are acted upon by the emergency
braking system components.

Test Maintenance: When changes are made to a SUT, the
corresponding test cases must be updated. Test maintenance
(or test evolution) is the act of maintaining or repairing test
cases to keep them up to date with the requirements, design,
and source code of the SUT [4], [7].

Testing is one of several factors that can affect the development
cost of a system, consuming up to 50% of effort and cost [8],
[9]. Test maintenance adds to this cost. For instance, Alégroth
et al. found that maintaining test cases constitutes up to 60%
of the time spent on testing [2]. Consequently, it is possible
to significantly reduce development costs by designing test
cases that require less maintenance and streamlining the main-
tenance process when it must occur.

Flaky Tests: A flaky test is a test that produces inconsistent
results, and can fail even when the SUT has not been changed.
Flaky tests disturb the flow in the CI pipeline and add signif-
icant noise to the process of determining whether a system
is acting correctly. Parry et al. found that 59% of developers
have to deal with flaky tests frequently [10].

Flakiness can be caused by test or source code, or other
external factors such as a network connection—e.g., if a
database cannot be reached, tests can fail. Even if an external
factor caused flakiness, this could still indicate the need for
the system or tests to be more robust. Another common cause
for flakiness is dependency on a specific execution order for
events. If the order of execution changes, resources might not
be in the expected state, leading to a failure.

If a system is non-deterministic, this must be accounted for in
test design. If flaky tests occur, a root cause analysis should be
done. If the test itself leads to flakiness, it should be refactored.
This requires maintenance effort, but is better than ignoring
flaky tests, which leads to a costly long-term maintenance
effort the longer the necessary refactoring is postponed [11].

III. RELATED WORK

There is limited research explicitly on test maintenance for ML
systems [5]. However, past research has been conducted on
testing ML systems and on factors affecting test maintenance
for traditional systems. This research informs our efforts.

Challenges of testing ML systems: In Table I, we collect
challenges identified in past studies on testing ML systems.
In contrast to traditional systems, characteristics like non-
determinism and large input spaces are prevalent for ML
systems, increasing the difficulty of testing.

Factors affecting test maintenance: Factors from studies ex-
ploring test maintenance for traditional systems are presented
in Table II. We compare our findings for ML systems against
these factors in Section V-D.



Table I: Challenges of testing ML systems, from literature.

Challenge Description Ref.

Non-
determinism
and Test
Oracles

When retraining on the same training data,
there is no guarantee that the model delivers
the same output. This makes it harder to
define a test oracle.

[1], [12], [13]

Large Input
Space

It is difficult to find valid, representative, real-
istic, or fault-revealing test input. Identifying
enough valuable input is costly.

[1], [12], [13]

Model Mispre-
dictions

Tests need to be tolerant against mispredic-
tions from a model, as long as the system
still fulfills the requirements.

[1]

Code
Coverage
Not Relevant

Since at least parts of the logic is within
the model and not code, traditional coverage
criteria are not effective in evaluating test
suites.

[1], [12]

Difficulties in
Debugging
and
Understanding

Since parts of logic are within the model,
stack traces may not enable analysis of the
SUT. It is challenging to understand behavior
and failures.

[1]

Table II: Test maintenance factors, from literature.

Factor Description Ref.

Knowledge
and
Experience

Tester experience and knowledge (both general
and of the SUT) may affect optimality of test
design and ease of maintenance.

[2]

Variable
Names, Script
Logic

Names and logic are connected to understandabil-
ity and readability of tests and can affect the ability
to perform maintenance.

[2]

Test
Length and
Complexity

Long tests are often complex and test several
scenarios simultaneously. Branching paths in tests
can increase complexity. This makes it difficult
to gain a clear overview, affecting readability,
understandability, and maintainability.

[2], [14]

Missing Func-
tionality

Functionality that is not yet implemented can hin-
der the testing process. It can be hard to maintain
existing test cases until functionality is added.

[2]

Faults in SUT Faults in the SUT can affect how and when test
maintenance can be performed. Test cases depend-
ing on a faulty SUT should not be maintained
before the SUT is fixed.

[2]

Suite Size A large test suite can increase the amount of test
maintenance effort. Tests can also overlap, which
increases the maintenance needed for updates to
the same functionality.

[4]

Interaction
Quantity

The number of input interactions affects the main-
tenance effort. If behavior or requirements of a
component change, then many test inputs must
also change. If a test with many interactions fails,
more effort will be needed for analysis than for a
test with few interactions.

[4]

Test Debugga-
bility

Tests should be informative and help explain the
cause of a failure. If not, maintenance cost can
increase due to additional time spent on under-
standing the test and failure.

[4]

Test Interde-
pendency

Tests may rely on each other. If one fails, others
may fail as well. Interdependencies are fine if the
tests are created with this in mind and the result
is examined correctly. However, this complicates
understandability and maintainability.

[4], [14]

Naming Con-
ventions

Naming conventions can increase consistency and
mitigate the risk of confusion due to low un-
derstandability. As such, naming conventions can
make test maintenance easier.

[4]

Test Docu-
mentation

Documentation should give a general overview of
the test case and its purpose, which helps improve
understandability while performing maintenance.

[4]

Flaky tests and test maintenance: In traditional software
systems, flaky tests are a well-known problem, introducing
noise in fault analysis and hindering reproducibility of test
results [15]. In an ML context, Dutta et al. found that algorith-
mic non-determinism commonly led to test flakiness, and that
it could be fixed by using a more permissive test oracle [16].

Flaky tests impose a maintenance cost if time is taken to fix
them [17]. Tests can be disabled if they cannot be immediately
fixed, but this also imposes a long-term technical debt and
maintenance cost [11].

IV. METHODOLOGY

In this study, we investigated the following research questions:

• RQ1: What are the factors that affect test maintenance
for ML systems and the resulting challenges that emerge?
– RQ1.1: What factors affect test maintenance for all

systems (traditional and ML)?
– RQ1.2: What factors affect test maintenance specifi-

cally for ML systems?
– RQ1.3: What are the main differences in test mainte-

nance between ML and traditional systems?
– RQ1.4: How do flaky tests affect test maintenance for

ML systems?
• RQ2: How are the identified factors reflected in the test

design and maintenance process?
• RQ3: How can the test maintenance process for ML

systems be improved?

We answer these questions through an exploratory case study
conducted at Zenseact, a Swedish company in the automotive
industry specializing in autonomous vehicle software. We
conducted our study based on the guidelines by Runeson and
Höst [18]. Figure 2 presents an overview of the case study
process and the artifacts used for different research questions.
Each step is further explained below.

• Conduct literature study: We gathered test maintenance
factors for traditional systems and challenges for ML
system testing from past research (Section IV-B).

• Conduct interview study: We conducted semi-structured
interviews with employees at Zenseact to gather knowl-
edge about test maintenance and to identify potential test
maintenance factors (Section IV-C).

• Collect and analyze artifacts: Test cases and discussion
artifacts were collected and analyzed to evaluate the
effect of test maintenance factors in the testing process
(Section IV-D).

• Form recommendations: We synthesize our findings
into guidelines on how to potentially lower the need for,
and cost of, test maintenance.

A. Case Study Context

Zenseact’s system includes the whole stack, from low-level
sensors to decision-making based on sensor data. ML is, for
example, used in combination with data input from cameras
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Figure 2: Overview of the case study, including the activities (rounded rectangles) and corresponding deliverable (rectangles).

and sensors to make precise inferences about the surroundings
and detect objects.

The usage of ML in the company is divided into three stages.
First, ML teams are responsible for creating and training
models based on input from low-level sensors and cameras. In
a second step, the produced result is filtered and processed by
the ML teams to prepare the data for the consuming systems.
Finally, the refined output is used to perform functionality such
as emergency braking and steering. These are the system com-
ponents responsible for deciding when an intervention—e.g.,
braking the car—is required. This functionality is developed
by separate “feature teams”. In this case study, we focus on
feature teams and their test cases.

The models are continuously refined to improve efficiency
and accuracy. While doing this, the behavior of the models
can change, which can lead to test failures. An example is
timing problems that emerge when tests expect an intervention
at a specific timestamp. Hence, they might fail if the updated
model affects when the intervention takes place. In such cases,
the SUT behavior may still meet the requirements, but the
specific expectation of the test case is violated.

B. Literature Study

A literature study was conducted to collect test maintenance
factors and challenges of testing ML systems encountered in
the past, for comparison with our findings. Past research also
indicated the need for further exploration and validation of
test maintenance factors, which is also provided by our case
study [2]. The literature study was intended to be lightweight,
and to provide inspiration and a basis for comparison. It was
not intended to fully capture all possible studies on this topic,
as would be done for a full systematic literature review.

Database Search: We gathered publications from Google
Scholar using search strings related to test maintenance and
testing ML systems (including synonyms such as “test evolu-
tion”). Publications with the following keywords in the title,
introduction, or conclusion were selected to form a starting
set [19]: challenges, difficulties, factors, maintainability, main-
tenance, or repair. After evaluation, several of the papers in
the set were found to be irrelevant and were removed.

Snowballing and Literature Analysis: We used backward
and forward snowballing on the filtered starting set of pa-
pers [19]. We selected additional papers when snowballing
following the same criteria used for the database search. The
process was conducted iteratively. After filtering for topic

Table III: Demographics of interviewees. MLS=ML System.

ID Roles Experience in Years
Zenseact SW Testing MLS Testing

P1 Developer 3 3 1.5

P2 Developer, Scrum Master 3 3.5 3

P3 Developer 8 10 1

P4 Developer 4 4 4

P5 Developer 4.5 4.5 4.5

P6 Deep Learning Engineer 2.5 3 2.5

P7 Developer, Scrum Master 2 6 0.5

P8 Developer, Test Engineer 9 11 8

P9 Developer, Researcher 5 10 5

relevance, we retained 6 relevant publications, where three
cover the challenges of testing ML systems and three discuss
test maintenance factors for traditional systems. Most of the
publications defined lists of factors and challenges. However,
some factors or challenges were domain or project-dependent,
and were excluded from our analysis (e.g., maintenance factors
that exclusively apply to GUIs [2]). Lastly, we merged similar
factors and challenges resulting in the lists from Tables I-II.

C. Interview Study

Selection of Interviewees: The selection of the interviewees
was based on convenience sampling [20]. However, we took
some measures to select interviewees with knowledge of the
research topic. We contacted teams based on their descriptions
in internal documentation and recommendations of Zenseact
employees. We were interested in teams that work with ML
systems and have tests that depend on ML models directly
or indirectly. Nine employees from five teams agreed to
participate in interviews. A summary of the participants and
their background is given in Table III1.

Interview Instrument: We conducted semi-structured inter-
views with a length of approximately 60 minutes. Inter-
views were conducted remotely, and participants agreed to
be recorded. The interview consisted of three parts2. The
first section covers general questions about the interviewee’s
experience and how testing and test maintenance is handled in
their team. The second section deals with challenges of testing
ML systems and traditional systems, how these challenges
affect test maintenance, how challenges can be mitigated,

1Zenseact, in its current form, was founded in 2020. Experience at the
company includes both experience at Zenseact, as well as employment at
predecessors Zenuity (2017-2020) and Volvo Cars (until 2017).

2The interview guide can be found in [21] (Appendix A).



Table IV: Questions used to guide artifact analysis.

Questions for both test cases and discussion threads:

• How is the artifact connected to test maintenance for ML systems?
– What is the issue or reason for the maintenance need?

• Which factors from RQ1 is the artifact connected to?

Questions only for discussion threads:

• To which test cases does the discussion thread connect?
– How are the tests connected to ML?
– How have the tests evolved in relation to the discussion?

Questions analyzing test history, using Git history and commit messages:

• How old is the test?
• Did the test replace another test when created?
• Is the test still in use?
• How often has the test been updated?
• How often has the test oracle tolerance been updated?
• How many different people have updated the test?

and whether there are any other factors to be considered. If
applicable, we also asked more detailed questions on specific
company tests and how they have been maintained. In the third
section, the reasons why flaky tests occur were discussed, as
well as how to deal with them, whether they influence test
maintenance and whether there is a difference between flaky
tests in ML systems and traditional systems.

Interview Analysis: All interviews were transcribed and
anonymized to remove sensitive material. After that, impor-
tant parts of the interviews were identified. These sections
(“codes”) are assigned a label that allows clustering of codes
into themes and sub-themes. We applied open coding [22],
where codes are summarized with a label in our own words.
We followed an inductive coding approach [22]. Two authors
coded and labelled all interviews individually, then compared
results to mitigate the effects of bias.

After coding and labeling, we clustered the results to form a
theme map. The themes represent our findings, such as factors
affecting maintenance. Even though we familiarized ourselves
with the topics, we did not predefine themes.

D. Artifact Evaluation

Artifact Selection: We selected test cases based on informa-
tion from the feature teams who participated in interviews.
We identified six relevant test cases and a further two already-
replaced test cases that help support analysis of test evolu-
tion. Discussion threads were also collected from Zenseact’s
primary communication tool. Discussions of interest were
connected to at least one factor in RQ1 and, at times, included
relevant test cases. We received recommendations on relevant
discussions, and also searched in the communication tool for
the keywords maintenance, update, tolerance, failure, factor,
flaky, and the names of relevant test cases.

Artifact Analysis: The artifact analysis was qualitative, and
based on three sets of questions similar to those used in past
research [23]. The questions are listed in Table IV.

We inspected all artifacts aiming to answer the applicable
questions. We complemented our answers with knowledge
from employees who participated in the discussions or were

involved in test evolution. Answering these questions enabled
linking artifacts to the factors from RQ1. Finally, we analyzed
the factors to report how they affect the testing process
at Zenseact, and support these observations with concrete
examples from the artifacts.

V. RESULTS AND DISCUSSION

A. Test Maintenance Factors (RQ1)

Factors Affecting Traditional and ML Systems: The iden-
tified factors affecting test maintenance for all systems are
presented and explained in Table V.

RQ1.1 (Factors, All Systems): Nine factors affect test
maintenance for all systems. Continuity and scenario
setup are especially relevant in the automotive context.

Factors Affecting ML Systems: Table VI presents and ex-
plains identified test maintenance factors relating specifically
to ML systems for autonomous driving.

RQ1.2 (Factors, ML Systems): Factors that affect
test maintenance for ML systems include amount and
quality of training data, non-determinism, explainabil-
ity, input space size, and testing granularity.

Comparing Factors Between Traditional and ML Systems:
Test maintenance factors for traditional systems also affect ML
systems. In addition, specific characteristics of ML systems
introduce unique factors described below. An ML system
behaves differently than a traditional system, mostly because
of non-determinism and lack of transparency of models. This
creates unpredictability that makes it more challenging to
design and update tests. It can also be challenging to get an
overview of the system and break it into smaller pieces due to
dependencies between components and development teams.

Degree of Determinism: Non-determinism makes it challeng-
ing to design test cases. It also leads to more maintenance,
often requiring adjustment of the test oracle. It is more
important to design test oracles that are tolerant of some non-
determinism, and that do not expect a precise value. Several
tests at Zenseact expect interventions at certain timestamps.
Rather than expecting an intervention at exactly 20 seconds, it
may be better to establish an acceptable interval (e.g., +/- 200
ms) around this timestamp where the intervention can occur.

Over-precision of an oracle can affect any system where vari-
ance can occur, but ML systems are more non-deterministic
by nature. Defining the correct tolerance can be challenging
as well, but consideration of it can significantly reduce main-
tenance in the longer term.

“When writing tests cases and interpreting the results [for ML
systems], you need to be a little bit tolerant. And that is not
necessarily the case for the traditional systems.” - P7



Table V: Test maintenance factors affecting traditional and ML systems.

Factor Definition Impact on Maintenance

Communication How easy it is to communicate between
teams regarding testing and test maintenance
activities.

Teams responsible for different features must collaborate. Poor decisions on how and when to communicate
when a test case fails or needs to be updated increases maintenance effort.

Consistency
Between
Teams

How consistent testing practices and tools are
applied across teams.

Low consistency in testing practices and tool use can lead to higher maintenance efforts due to overlapping
work, inconsistent testing thoroughness, unclear responsibilities related to development and testing activities,
and ineffective collaboration between teams.

Continuity How much test cases, practices, and tools
change over time.

Changes in test cases, practices, or tools over time are unavoidable and even desirable when they bring
testing in line with state-to-the-art. Nevertheless, these changes usually require adaptation of existing test
cases. Testers also must learn to use new tools, requiring effort. Decisions of when to change the testing
process must be considered carefully. E.g., changes in simulation tools introduced maintenance effort.

Debugging
Support

Ability of test cases to support a failure anal-
ysis with insights into the underlying system.

If a test does not support failure analyses sufficiently, it may need to be maintained to improve its
observability into the SUT. E.g., after changes to a dependency caused tests to fail, affected tests were
updated with checks on dependency output.

Dependency
on Implemen-
tation

Degree of dependency of test cases on im-
plementation details (e.g., tests written based
on the code instead of intended behavior).

Tests can be written based on existing source code or behavioral expectations (e.g., requirements). When
there is a high dependency on implementation details, tests need to be updated more often as they are
highly sensitive to changes in the code.

Oracle
Precision

The precision of the output expected by the
test oracle.

Sensitive test oracles (e.g., an oracle that requires specific timing when variation is possible) require frequent
updates to account for variance in SUT output. Precise expectations are also hard to update, as detailed
feature knowledge is required to know what precise values to expect after an update.

Scenario Setup The source of information for scenarios cov-
ered in test cases (simulations or real-world
data collection from a road vehicle).

Scenario creation techniques differ in their realism and the time required to create test cases and perform
maintenance. Scenarios from real-world data are more realistic, but data is time-consuming to collect as
a human must collect it. It can also be hard for humans to replicate the intended scenario. In contrast,
scenarios created from simulations may lack realism and require human effort to evaluate and improve
realism. Simulations have complex configuration parameters that may be difficult to understand or use
correctly during test creation or maintenance.

Understandability How easy it is to understand the purpose of a
test, how it assesses SUT behavior, and how
it supports attainment of acceptance criteria.

An understandable test case requires less maintenance because it has a clear purpose, supports the assessment
of an SUT, and supports debugging if it fails (because one can understand how it interacts with the code).

When Mainte-
nance is Per-
formed

The reason for, and point in time when, test
maintenance is performed.

Depending on the way of working, this factor can lead to technical debt (if maintenance is not done regularly)
or more work than necessary (if tests are always refactored following every code change). Consideration
must be given to the conditions that trigger test maintenance.

Table VI: Test maintenance factors affecting ML systems.

Factor Definition Impact on Maintenance

Amount and
Quality of
Training Data

The quality of ML models strongly depends
on the amount and quality of training data.

Early versions of a model often have low accuracy and improve over time with retraining on additional
data. Tests need to be designed to deal with this uncertainty and maintained accordingly. To avoid early test
failures, tests should be designed with a more tolerant oracle. Later, stricter oracles should be employed.
There are also challenges associated with maintaining data quality and with required processing time and
power as datasets grow.

Non-
determinism

ML algorithms and models can yield non-
deterministic output even with the same setup
and input. Output can differ even after re-
training with the same training data.

Varying output due to non-determinism must be factored into test design to minimize later maintenance
effort. Both software and hardware (e.g., GPUs running at different clock speeds) can induce non-
determinism. Oracles should be as flexible as possible, while ensuring requirements are met. Early in
the project, failing tests can be disabled rather than maintained. However, these tests must eventually be
refactored or removed, or they will lead to technical debt.

Explainability The ability to explain the intended system
behavior from looking at the code and the
model output.

ML systems are considered black-box systems due to their reliance on complex, non-transparent models.
This makes it hard to design test cases by looking solely at code or requirements, leading to maintenance
effort redesigning and adjusting tests. There is a lack of traceability between tests and distinct code elements.

Input Space Describes the size of the input space. The
input space of ML systems is often huge
(e.g., environments surrounding a vehicle).

Many test cases are required to cover a reasonable variety of input from a large and complex input space,
and it is challenging to find all important edge cases. Consequently, many tests may need to be maintained,
and the test suite needs to be updated when new edge cases are identified.

Testing Granu-
larity

The level of code granularity tests are written
at (i.e., unit, integration, system tests).

Test design at unit level for ML systems is challenging, as modeling complex scenarios requires model
integration and multiple interacting components. Tests at system level are easier to design, but introduce
complex interdependencies where a change to one component causes tests for other components to fail.
Performing maintenance at system level requires detailed knowledge of many components. High code
modularity increases understandability and decreases maintenance effort.

Explainability: While traditional systems can be understood
by inspecting the code, much of the logic of ML systems is
hidden within opaque models. This makes it challenging to
understand processing between input and output. Even though
ML systems have similar development challenges to traditional
systems, the lack of explainability of the code makes those
challenges harder to handle.

Scope and Testing Granularity: Traditional systems are tested

at multiple levels of granularity, enabling separation of con-
cerns and testing of components in isolation. ML systems are
difficult to test at lower—e.g., unit—levels, as integration of
ML elements such as models typically requires integration
of multiple system components. This necessitates that more
testing take place at higher—e.g., system—levels.

It is generally harder to create test cases of isolated portions of
the SUT at higher levels, as many dependencies exist. If there



Table VII: Causes for the occurrence of flaky test cases.

Cause Description

Test Teardown
and Execution
Order

If tests manipulate shared resources (e.g., a database), execution
of other tests may be affected. Every test should reset data and
shared variables after execution (teardown). Otherwise, a test can
fail because it is executed after a test without proper teardown.

Infrastructure Sudden infrastructure issues can lead to temporary test failures—
e.g., network issues, overloaded servers, and timing issues when
building components.

Parallel Test
Execution

Parallel test execution can lead to data races and synchronization
issues—e.g., if thread A changes a value in a database and thread
B expects another value, thread B’s test fails. If the timing is
different, it would pass.

Table VIII: Approaches to handle flaky test cases.

Approach Description

Analyze Flaki-
ness

Analyze the test failure, find the issue, and fix software or tests.
For example, one participant had to mirror a repository to avoid
server issues.

Rerun Tests Rerun a test until it passes or fails a set number of times.
However, this requires additional time, reduces trust in the test,
and may hide faults.

Remove Test A viable solution if flakiness is due to the test being deprecated.

Configure CI Make the CI system tolerant of failures of the test. However, that
lowers meaningfulness of the test and adds noise to analysis.

Increase
Awareness

Bots can report test results and provide information on whether
a test has shown flaky behavior before.

is a failure, it can be hard to trace it to a single component. If
a dependency changes, tests for an unchanged component can
fail. All of this introduces challenges when testing ML systems
that are less of a concern when testing traditional systems,
where testing can more easily take place at unit level.

RQ1.3 (Factors, Comparison): ML and traditional
systems differ in their degree of determinism, explain-
ability, and scope and testing granularity.

Effect of Flaky Tests on Test Maintenance: Our interviews
did not suggest that flaky tests affect ML systems differently
from traditional systems. However, flaky tests are still a factor
that influences the cost of test maintenance for all systems.
Identified causes for flaky tests are described in Table VII,
while ways to handle them are described in Table VIII.

The connection to test maintenance can be seen in two aspects.
First, flaky tests cause repetitive failure analyses, as developers
must assess whether the test itself or the SUT is responsible
for flakiness. Second, if the test causes flakiness, the test must
be refactored. Redesigning and updating the test cases adds
to the test maintenance effort. Interviewees saw flakiness as
more of a test design concern than a maintenance concern—
stressing the importance of designing tests to be robust and
deterministic in the first place.

“I wouldn’t say that it’s more on the maintenance, but more on
the design and on the robustness of the setup.” - P9

The interviewees noted that ML systems have more tests
with flaky behavior than traditional systems. After retraining a

Table IX: Overview of analyzed discussion threads, including
their connection to test cases and maintenance factors.

Thread Summary Tests Factors

D1 A test had a too strict oracle, which
made it fail when updating other fea-
tures. Maintenance effort was required
to evaluate the new feature behavior
before the oracle could be updated.

T3,
T3.1

Non-determinism

D2 Thread about how to design end-to-end
tests and collaborate between teams to
neither disturb ML developers’ work-
flow nor reduce feature team test quality.

T3 Non-determinism,
Communication,
Testing Granularity,
Explainability

D3 Example of how ML and feature teams
agreed to work together (after D2). An
ML team had issues with a test failure,
so they contacted the feature team, who
increased the oracle’s tolerance based on
their feature knowledge.

T1 Non-determinism,
Communication

D4 An ML team contacted a feature team
to get help with a test failure. There
was difficulty explaining why this spe-
cific code change exceeded the oracle
tolerance—the main reason could be an
already-integrated code change.

T3 Non-determinism,
Explainability

D5 An ML system test case was affected
by a dependent feature change, leading
to a test failure and the need for test
maintenance.

T1 Testing Granularity

D6 Discussion on whether the oracle tol-
erance should be increased after a test
failure. The test was still failing for
some team members even though the
tolerance was increased. The reason was
execution on different hardware.

T3 Non-determinism

model, or when executing tests on different GPUs, tests may
yield different results even though neither the tests nor SUT
code were altered. The core problem is the non-determinism of
the SUT. ML systems do not tend to have more flaky tests than
traditional systems, but they may have more tests with flaky
behavior. Test design must account for such non-determinism
to avoid flaky results.

RQ1.4 (Factors, Flaky Tests): Flaky tests seem to not
influence test maintenance differently for ML systems.
ML systems result in more tests with flaky behavior—
because the SUT is more non-deterministic—but the
tests are not more inherently flaky.

B. Effect of Test Maintenance Factors (RQ2)

Analyzed discussion threads are listed in Table IX, where each
discussion thread is connected to one or more test cases. Data
about analyzed test cases is shown in Table X, including the
age of the test, whether it is currently in use, how many times
it was updated, how many people updated it, and how many
times the oracle tolerance was changed3.

Non-Determinism: Many maintenance issues are caused by
retraining the ML model. Table X shows that test maintenance
frequently involves an update to the oracle tolerance. The

3Test T6 has a strict oracle with no tolerance for varying output. The other
tests all have some tolerance built into the oracle.



Table X: Overview of analyzed test cases. Tests T3.1 and T3.2
were merged to form T3.

Test Age In Use Times People Tolerance
Case (Months) Updated Updating Updated

T1 9 Yes 14 11 13 (92.9%)

T2 9 Yes 6 5 5 (83.3%)

T3 6 Yes 10 7 7 (70.0%)

T3.1 15 No 14 11 10 (71.4%)

T3.2 8 No 7 7 3 (42.9%)

T4 5 Yes 1 1 0 (0.0%)

T5 15 No 4 4 3 (75.0%)

T6 11 Yes 10 8 No Tolerance

frequency of oracle updates indicates how challenging non-
determinism can be in test design and maintenance.

In artifact D2, it was discussed how a ML system, includ-
ing the model, should be tested. One participant stated that
the tests should be based on statistical measures instead
of deterministic thresholds. However, even if an ML model
becomes statistically better, the performance for particular
scenarios can still worsen. Therefore, in addition to statistical
measures, critical concrete scenarios should still be checked
(e.g., checking that emergency braking intervenes).

“We should all keep in mind that even if the network statistically
improves, it can degrade in one particular sequence.” - D2

Since the model’s overall accuracy can differ from correctness
in a specific scenario, tests need to be designed robustly. An
interval must be defined for acceptable timing and number of
interventions made by a feature. Four approaches for assessing
correctness were seen in the analyzed test cases. T1, T2, and
T5 checked the number of sent intervention requests, while T3
checked when the first intervention request was triggered. T4
used reference GPS data to set a distance range for braking.
Finally, T6 used an exact, but simple, oracle that checked
whether there was an intervention request at all.

T4 and T6 were rarely updated, while T1–T3, and T5 were up-
dated many times to adjust the oracle. Much analysis time was
spent on T1–T3 to determine whether the tolerance was too
strict or if there was a fault. The approach used for T4—using
recorded data and precisely calculated tolerances—avoided
later maintenance effort. If a test fails, it should indicate a
fault and not an inadequate oracle tolerance. However, this
can be difficult to define in the early phases of a project.
In D2, participants raise the need for experimentation during
development of the model. It might be necessary to exceed
the tolerance until the model fulfills all requirements. This ad-
ditional “experimental” tolerance must be distinguished from
the tolerance that describes the actual acceptable behavior
range. D2 suggests that when a model change breaks a test,
a specific data set should be collected for use together with
a tool to visualize the influence of the model change on the
feature. Then, a decision can be made on whether a tolerance

adjustment is acceptable.

Testing Granularity: Interdependencies between components
affects T1 and T3, and were discussed in D5. A change made
by Team A to one of their features caused T1, which was
owned by Team B, to fail. Because T1 was a system-level test,
it was sensitive to changes in any of its connected components.
This is not necessarily negative, but can complicate test
analysis and add noise to test execution results.

Explainability: D2 and D4 discussed the inability to under-
stand the code alone. Model opacity made it challenging to
understand the code’s behavior, which affected the outcome of
test cases and increased test maintenance. Developers on ML
teams understood the model better than developers on other
teams, and could explain the behavior. This is an example
of why it is important to have good communication and
knowledge sharing, e.g., documentation of tests and code.

Communication: Discussions D2–D3 were particularly af-
fected by team communication. D2 discussed a failure in a
feature test caused by non-determinism from retraining of an
ML model. Consequently, the ML team had to contact the
responsible feature team to inform them about the updates that
made the test fail. There was no clear process to communicate
this kind of test failure. Consequently, there was confusion in
the ML team on whom to contact and when to do it, which
affected the test maintenance time and hindered development.
Agreements on communicating test failures were later visible
in D3, where the process discussed in D2 was applied. This
is also reported by participants in our interview data.

“For a period of time we had quite frustrating attempts at just
merging a simple change or updating one model. And only after
setting up a good communication channel and discussing it across
teams, we were able to come up with a good workflow.” - P6

RQ2 (Effect of Factors): Discussion threads and test
cases show the influence of non-determinism, testing
granularity, explainability, and communication on test
maintenance. In particular, non-determinism creates
the need for maintenance and introduces challenges
with regard to explainability and communication.

C. Recommendations for Test Maintenance Process (RQ3)

This section presents recommendations for reducing the need
for test maintenance or for improving the maintenance process,
based on observations made while answering RQ1 and RQ2.

Recommendations for ML Systems:

Use Tolerance in the Test Oracle: Defining and using a suitable
tolerance rather than a precise oracle is especially important
in an ML system to handle non-determinism. In almost all
cases in Table X, the tolerance was updated in >70% of test
updates. Therefore, selecting the correct tolerance is tightly
connected with the total amount of test maintenance required.



Too large of a tolerance can make a test case insensitive
to actual faults. It is crucially important—given the safety-
critical nature of automotive systems—that faults be detected.
Care must be taken in defining a tolerance to ensure that the
risk of missing a fault is minimized. It is better to be strict,
even if some test maintenance effort remains. However, careful
definition of oracles can reduce the need for test maintenance
while ensuring faults are detected.

One way to better define a tolerance is by collecting statistical
data from a real-world situation. For instance, test T4 uses
reference data from a car with a high-precision GPS, which
was used to determine a range for the braking distance in a
particular situation. In Table X, it can be seen that the tolerance
in T4 has not been updated. The other test cases did not use
reference data for the tolerance, which can be one reason for
higher maintenance efforts. However, collecting such data is
not always possible or may be too costly, so additional research
is needed on defining tolerance.

Early in development, the model can be less precise and
produce more significant output variations compared to later
in development. A test that is too strict at the beginning can
hinder the development process. Therefore, it needs to be
examined whether (a) test failures are accepted and useful for
providing feedback, (b) the tolerance should be allowed to be
exceeded temporarily (while being closely observed), or (c),
the oracle should check properties of the output rather than
specific values. Ideally, tolerances should represent absolute
boundaries in behavior that should not be crossed, indicating
that any violation represents a situation that must be addressed.

Force Determinism / Isolation: A component can be tested in
isolation from the model to force determinism. This can be
done by mocking the output from the model when testing. We
identified two mocking strategies at Zenseact. First, the output
of models can be replaced with manually-selected mocked
values that represent a scenario that the feature needs to react
to. These mocked values are fixed and only change when it
is decided that they need to be updated. Another strategy is
to record model output and save it in log files, which can
later be used to mock the model output. Compared to the first
approach, the data is less prone to human bias and may be
less time consuming to collect. The disadvantage is that data
is limited to the scenarios represented in the log file.

This approach allows for lower-level testing or components in
isolation, which can reduce maintenance effort. Nevertheless,
end-to-end tests cannot and should not be avoided since
only those tests can ensure that everything works together
appropriately. In addition, consideration must be given to when
mocked input should be updated—it should reflect the current
model, especially if major changes have occurred.

Use Consistent Hardware: The performance difference be-
tween hardware platforms (e.g., GPU architectures) can affect
SUT behavior in tests related to performance or timing. This
is especially important in automotive since the hardware in a

Table XI: Recommended improvements for all systems.

Rec. Maintenance Improvement

Knowledge
Sharing

General knowledge sharing activities like a book circle and mob
reviews can improve shared understanding of the SUT and teach
developers about new testing tools or practices.

Maintainer
Tags

A maintainer tag (information about the responsible person or
team) in the test case can ease communication by increasing
understanding of whom to contact.

Slack Bots Slack bots can share information about test failures, flaky test
cases, and other testing issues. This allows for quicker informa-
tion sharing among developers, reducing maintenance time.

Test-driven
Development

TDD can improve the quality of tests and ensure they reflect the
requirements, reducing dependency on implementation details.

Failure
Messages

Using detailed failure messages in tests increases understandabil-
ity and provides insights into the system at the time of the failure.

Unified
Scenario
Setup

Complex scenarios require configuration, which can be difficult
to maintain. Unifying the scenario setup, e.g., by providing a
framework or template for setup, encapsulates the required logic.
Complex parts of the scenario setup only need to be maintained
in one place, which is also advantageous when refactoring tests.

vehicle may not be same as that used during development and
testing. In cases where hardware specifications are changing
rapidly, simulation should be used heavily, as it can be more
easily controlled. However, hardware-in-the-loop testing is
also needed, and the hardware used should match the final
hardware as closely as possible.

Property-Based Testing (PBT): PBT frameworks generate a
large volume of random inputs, which are applied to the SUT.
The output is evaluated by oracles, expressed in the form of
properties that can be applied to any input situation [24]. PBT
enables coverage of large input spaces without the need to
manually maintain all tests. Zenseact uses PBT already in
some circumstances. However, PBT should not be seen as a
replacement, but as an addition, to unit testing.

Recommendations for All Systems: Additional recommen-
dations for all systems are listed and explained in Table XI.

RQ3 (Recommendations): Knowledge sharing, main-
tainer tags, slack bots, test-driven development, de-
tailed failure messages, and a unified scenario setup
can improve or reduce test maintenance for all systems.
For ML systems, tolerant oracles, forced determinism
and isolation, consistent hardware, and property-based
testing can have a further impact.

D. Comparison With Existing Literature

ML Testing Challenges: In Table I, we identified five chal-
lenges of testing ML systems with relevance to test main-
tenance in past literature. The most important challenge is
non-determinism and, consequently, the difficulty of defining
a test oracle for varying model outputs [1], [12], [13]. This
has been confirmed by the observations in our study. Another
challenge from the literature are model mispredictions, which
a ML system must be tolerant against while still ensuring
requirements are fulfilled [1]. Similarly, tests must also be
tolerant to non-determinism.



The challenge of a large input space is also reflected in our
observations. A large input space leads to challenges, such
as finding effective test input. The two remaining challenges
are the limitations of coverage-based testing and difficulties
in debugging and understanding. Both are caused by lack of
model transparency. These five challenges from literature also
affected test maintenance in our study. In general, the factors
and challenges identified tend to be domain-specific rather than
specific to the partner company.

Maintenance Factors: We list 11 factors (Table II) that affect
test maintenance observed in past studies which, in turn,
highlight the need to confirm the impact of these factors [2].
Our case study contributes to this need. The factors vari-
able names and script logic, interdependences between tests,
naming conventions, and test documentation connect to the
understandability factor from our case study. Documentation
and naming conventions are tightly connected with the degree
of understandability of a test [4]. The ability of a test case to
support debugging also was observed in both past literature
and in our case study. Both literature (knowledge/experience)
and our observations suggest a clear need for knowledge
sharing and communication for improved test maintenance.

Other literature factors—test length and complexity, missing
functionality, faults in SUT, suite size, and interaction quan-
tity—were briefly mentioned by individual interviewees, but
not encountered to a broader extent in our study. However,
they are still important to consider. We also identified further
factors for validation and deeper exploration in future research.

Flaky Tests: Dutta et al. [16] found that most flaky tests in
ML systems occur due to SUT non-determinism rather than the
tests themselves being flaky. We came to similar conclusions,
where non-determinism—especially from model retraining—
led to flaky behavior, rather than factors of test design. In the
literature, there are indications that flaky tests influence test
maintenance, especially when postponing analysis [11]. Our
study confirmed this, although some interviewees thought of
flaky tests as primarily a test design issue.

VI. THREATS TO VALIDITY

Construct Validity: Multiple terms are used for test mainte-
nance (e.g., test evolution) and ML system (e.g., ML-enabled
system). Hence, the interpretation of terms could have differed
between us and the interviewees. We mitigated this threat by
giving an introduction to terms during interviews.

Internal Validity: Discussions before interviews, and inter-
view questions themselves, could have planted suggestions on
factors that influence test maintenance. We mitigated this risk
by not stating possible factors ourselves. Another risk was
not finding valid or sufficient artifacts in the relatively large
codebase. We addressed this issue by contacting employees
in a discussion channel and meeting with employees with
expertise in testing and ML. Since a wide range of topics
needed to be covered, there is a risk that the interview guide

was not focused enough or did not include all relevant ques-
tions. In addition, even though we conducted semi-structured
interviews, we might have missed opportunities to expand on
topics. We mitigated these risks through iterative refinement
of the interview guide. We asked additional questions during
the interviews if it made sense.

External Validity: The study was only conducted at one
company, and the results may not be applicable to other
contexts. We formulated the factors and suggestions so that
they should apply, at least, to companies from the same
domain. The results of RQ2 are more company-specific than
RQ1 and RQ3. However, the observations should also be of
interest to others. The literature comparison shows that many
of the factors identified in this study confirm past literature.

Reliability: Thematic analysis introduces risk of biased in-
terpretations. The authors mitigated this risk by coding sep-
arately before comparing results. If there were doubts about
a statement, the interviewee was contacted for clarification.
This study is based on a relatively small number of interviews
and artifacts. However, multiple Zenseact employees were able
to provide feedback and clarification to address ambiguities.
The analyzed artifacts were identified by several employees
and seemed to be the most relevant. Interviewees were also
selected from several different teams to be representative.

VII. CONCLUSION

In this study, we explored test maintenance for ML systems.
We identified 14 factors that affect test maintenance, including
five especially relevant for ML systems. The most frequently-
mentioned factor was non-determinism, which led to frequent
test case updates—particularly adjustments to test oracles.
Finally, we reported ten recommendations that can help im-
prove test maintenance. Four of them (test oracle tolerances,
force determinism, consistent hardware, and property-based
testing) are especially suitable for ML systems. These recom-
mendations address the test maintenance factors particularly
prominent in this study—non-determinism and a large input
space—and the corresponding challenges of ML testing.

We hope to inspire future research on test maintenance for
ML systems. Many of our recommendations are not simple
to implement, and further exploration will reveal how to best
perform these actions. Therefore, future work aims to explore
test maintenance at more companies and domains outside
the automotive industry to validate the factors identified. In
addition, a longer-term study on how test maintenance differs
over time between traditional and ML systems would benefit
knowledge in this area, as would quantitative studies on the
impact of oracle tolerances on test maintenance. Automated
methods of adjusting oracle tolerance could also be explored.
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