
Investigating Software Engineering Artifacts in DevOps Through the Lens
of Boundary Objects

Downloaded from: https://research.chalmers.se, 2024-04-09 08:47 UTC

Citation for the original published paper (version of record):
Matthies, C., Heinrich, R., Wohlrab, R. (2023). Investigating Software Engineering Artifacts in
DevOps Through the Lens of Boundary Objects. ACM International Conference Proceeding Series:
12-21. http://dx.doi.org/10.1145/3593434.3593441

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Investigating Software Engineering Artifacts in DevOps
Through the Lens of Boundary Objects

Christoph Matthies
Hasso Plattner Institute

University of Potsdam, Germany
christoph.matthies@hpi.de

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Rebekka Wohlrab
Chalmers | University of Gothenburg

Gothenburg, Sweden
wohlrab@chalmers.se

ABSTRACT
Software engineering artifacts are central to DevOps, enabling
the collaboration of teams involved with integrating the devel-
opment and operations domains. However, collaboration around
DevOps artifacts has yet to receive detailed research attention. We
apply the sociological concept of Boundary Objects to describe and
evaluate the specific software engineering artifacts that enable a
cross-disciplinary understanding. Using this focus, we investigate
how different DevOps stakeholders can collaborate efficiently us-
ing common artifacts. We performed a multiple case study and
conducted twelve semi-structured interviews with DevOps practi-
tioners in nine companies. We elicited participants’ collaboration
practices, focusing on the coordination of stakeholders and the
use of engineering artifacts as a means of translation. This paper
presents a consolidated overview of four categories of DevOps
Boundary Objects and eleven stakeholder groups relevant to De-
vOps. To help practitioners assess cross-disciplinary knowledge
management strategies, we detail how DevOps Boundary Objects
contribute to four areas of DevOps knowledge and propose derived
dimensions to evaluate their use.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment.

KEYWORDS
DevOps, Boundary Objects, Software Engineering Artifacts, Knowl-
edge Management, Agile Software Development

ACM Reference Format:
Christoph Matthies, Robert Heinrich, and Rebekka Wohlrab. 2023. Inves-
tigating Software Engineering Artifacts in DevOps Through the Lens of
Boundary Objects. In Proceedings of the International Conference on Evalua-
tion and Assessment in Software Engineering (EASE ’23), June 14–16, 2023,
Oulu, Finland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3593434.3593441

1 INTRODUCTION
The DevOps development approach is widely employed in the
software industry to enable a rapid pace of innovation through the

This work is licensed under a Creative Commons Attribution International
4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0044-6/23/06.
https://doi.org/10.1145/3593434.3593441

continuous development and delivery of software.While DevOps fo-
cuses on the integration of dev(elopers) and op(eration)s to deliver
this speedup, additional stakeholder groups need to collaborate to
design, operate, adapt, and evolve a system (e.g., system architects
or product managers). It is challenging to share knowledge among
process participants with such different concerns. Having informal
conversations and relying on individuals’ memories has proven
to be insufficient for long-term knowledge management [24, 30].
Therefore, software development artifacts “play a vital role in soft-
ware and systems development processes” [8] and influence work
as they “capture all the information that [. . . ] actors require” [35].
Development artifacts are not restricted to source code but also
include, for example, “documentation, internationalization and lo-
calization modules and multimedia data” [28]. In the open-source
domain, artifacts that facilitate collaboration, e.g., contributors’
guides or release notes have become vital for communities [20].
The relevance of artifacts in professional software development
is evidenced by a “huge and confusing variety of tools, reusable
artifacts, and services” [38].

While DevOps artifacts are key for the daily work of practitioners
and coordination activities across team borders, recent work con-
siders these artifacts “neglected in terms of industrial and academic
research” [13]. There have been calls for a novel “data manage-
ment system for a DevOps process” [5]. This vision requires an
understanding of the relevant engineering artifacts and stakeholder
groups in DevOps contexts.

In this paper, we aim to contribute to the understanding of ar-
tifacts and their role in coordination within DevOps contexts. To
define the term DevOps artifact, we adapt previous definitions of
software engineering artifacts [8, 11] to the DevOps context:
� DevOps artifacts are individually storable and referenceable
work products in a software engineering process that intertwines
development and operations of software products. They are pro-
duced, modified, or used in a form that has value to a stakeholder.
Given that we are concerned with coordination issues, we apply
the concept of Boundary Objects (BOs) to the DevOps context in
our study. The concept focuses on artifacts that create a common
understanding between groups. We follow Star and Griesemer’s
original definition [37]:
� “Boundary Objects are objects which are both plastic enough to
adapt to local needs and constraints of the several parties employing
them, yet robust enough to maintain a common identity across sites.
[. . . ] They have different meanings in different social worlds but
their structure is common enough to more than one world to make
them recognizable, a means of translation.”

Assessing the current state of software artifacts and how they
might serve as BOs between groups can help organizations design

12

https://doi.org/10.1145/3593434.3593441
https://doi.org/10.1145/3593434.3593441
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593441
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593441&domain=pdf&date_stamp=2023-06-14


EASE ’23, June 14–16, 2023, Oulu, Finland Matthies, Heinrich, Wohlrab

more purposeful cross-disciplinary knowledge management strate-
gies. This is particularly the case in contemporary lean and agile
processes, which have been found to have insufficient support for
inter-team communication and require common information spaces
to work efficiently [25].

We investigate the collaboration artifacts used as BOs in DevOps
contexts, which stakeholders interact with them, what concerns
exist, and how an artifact’s characteristics affect its relevance. We
focus on the following research questions (RQ):

RQ1. What categories of artifacts do practitioners employ as
Boundary Objects (BOs) in DevOps contexts?

RQ2. Which groups of stakeholders in DevOps contexts are in-
volved with DevOps artifacts?

RQ3. In which areas of DevOps processes do practitioners see
concerns when employing DevOps artifacts?

RQ4. What attributes of Boundary Objects influence their per-
ceived relevance in DevOps practices?

We address these questions by conducting an in-depth, qualita-
tive case study involving twelve software practitioners with exten-
sive DevOps experience, working in different roles and software
development companies. In order to explore DevOps BOs, we col-
lect empirical insights on categories of BOs (RQ1) and the involved
stakeholders (RQ2) from industry practitioners. To evaluate a spe-
cific development setting using the lens of BOs, one should focus
on the process areas considered significant (RQ3) and consider the
critical properties of the individual BOs within these areas (RQ4).

The following sections present the related literature, the research
method, our findings structured by the RQs, a discussion of the
results, and our conclusions.

2 RELATEDWORK
We describe related work on artifacts in software engineering (SE),
and DevOps specifically, as well as the involved stakeholder groups.

2.1 Categories of DevOps Artifacts
To gain an initial understanding of the artifacts commonly studied
in DevOps contexts, we consulted previous descriptions of software
engineering artifacts. Multiple terms are used synonymously with
artifact in SE contexts, such as deliverable, work item, work product,
work result, and document [8, 16]. Additionally, multiple studies
are concerned with extensions of DevOps approaches, such as
DevSecOps, BizDevOps [19], as well as DataOps and DevNetOps [10].
We consulted the following 10 publications within the two last years
(2020-2022) that contained references to DevOps artifacts: [2, 3, 6, 13,
14, 17, 21, 23, 29, 36]. In particular, the IEEE Standards Association
published a Standard for DevOps (IEEE 2675-2021) in 2021 [36],
which provides structured guidance and defines stakeholder groups.
We categorized the described artifacts and created subcategories
when needed. For example: “Unix shell scripts, Chef cookbooks,
[. . . ] are a few prominent examples for NCAs” [39], groups Chef
cookbook under the Node-Centric artifacts category.

Additionally, structured approaches using (meta)models of SE
artifacts in DevOps-adjacent fields have recently been proposed.
These focus on artifacts involved in distributed projects [16], De-
vOps in cloud scenarios [39] and DevSecOps [4]. We noted the

artifact categories mentioned in these models and combined them
with the those from the previous step, resulting in ten categories:
• Compute Node Configurations (e.g., Chef Cookbook) [2, 4, 5,
13, 14, 29, 31, 38, 39]

• Environment Configurations (e.g., AWS CloudFormation tem-
plate) [15, 38, 39]

• Build Automation (e.g., Apache Maven script) [5, 15, 31, 32]
• Executable Software Packages (e.g., Docker image) [3, 4, 13,
15, 21, 38, 39]

• Prototypical Implementations (e.g., Excel formulas) [5, 12]
• Human Interaction Logs (e.g., end-user telemetry) [3–5, 27]
• Project Environment Information (e.g., cloud provider service
level agreements) [4, 22, 27, 32, 36]

• Software Design Artifacts (e.g., UML diagrams) [16, 23, 31, 32]
• Software Quality Documentation (e.g., static code analysis
result) [3–5, 22]

• Software Implementation Details (e.g., release notes) [2, 4–
6, 15–17, 21–23, 31, 32]

○We identified ten categories of SE artifacts mentioned in
DevOps literature ranging from executable software packages to
software design artifacts and software implementation details.

2.2 DevOps Stakeholders
We extracted the following list of specific DevOps stakeholder
groups from the previously collected literature.
• Open-source community. DevOps practices depend on
“reusable artifacts to package, deploy, and operate [. . . ] appli-
cation components” [38], which are maintained by open-source
communities that may offer (paid) support.

• Cloud operators. Modern DevOps processes commonly use
Cloud Computing resources to run services and applications [38].
Cloud operator teams act as stakeholders, e.g., offering SDKs or
self-service portals or providing support.

• Business users. In BizDevOps processes, business users act as
primary stakeholders as they “already play an active role in
creating or at least drafting [...] applications using well-known
office tools as Excel or Access” [12].

• Security teams. The term DevSecOps describes the “increased
[...] integration between the development and operations teams
with the security team” [27].

• Regulators. Lie et al. note that “regulators should be treated
as stakeholders in the DevOps process itself, rather than just
external partners” [18].

○ DevOps’s focus on integrating SE teams reaches past devel-
opment and operations teams. The literature lists varied groups,
including security teams (in DevSecOps), business users (in BizDe-
vOps), regulators, cloud operators, and open-source communities
who act as stakeholders in DevOps approaches.

2.3 Engineering Artifacts as Boundary Objects
The BO concept has been applied as an analytical lens in the SE
domain, e.g., [25, 26, 34, 40, 41]. Pareto et al. [25] proposed adopt-
ing architectural documentation as a BO between system engineer-
ing units (responsible for system specification) and design units
(responsible for implementation). The authors highlight a “single

13



DevOps Artifacts EASE ’23, June 14–16, 2023, Oulu, Finland

common view” as a goal of architecture descriptions which can
address inter-team communication issues in agile processes. In an
ethnographic field study, Phelps and Reddy [26] explored the role
of BOs in construction teams, reviewing meeting notes, plans and
project management systems. They point out that in this domain,
BOs served an influential role as an “integrated system of guides
to help manage ambiguity” in team collaboration. The BO concept
in agile contexts has previously been explored in the automotive
software engineering domain [41]. The authors find that different
practices exist to manage artifacts that are shared among teams (i.e.,
BOs) and those that are locally relevant within a specific team [41].
Another paper proposes a model of BOs and Methodological Islands
(teams that do not use the same methods as the organizational
parts surrounding them) to analyze coordination practices in large-
scale systems development [40]. Previous work has not focused on
DevOps BOs in particular, which is what we aim to do in this paper.

3 RESEARCH METHOD
We examine engineering artifacts in DevOps processes and their
use for coordination. Our research questions are exploratory, and
not all factors relevant to answering them were known in advance.
Therefore, we perform an exploratory multiple case study [7]. Se-
lecting participants from multiple sites (i.e., companies and devel-
opment contexts) helped scrutinize the phenomenon under study
from multiple perspectives.

The related literature on artifacts in DevOps processes informed
our qualitative research design and the interview guide. We con-
ducted 12 semi-structured interviews with software industry practi-
tioners, focusing on participants with experience in DevOps-related
practices in their daily work. The call for interviewees, the informed
consent form, and the interview guide are archived online1.

3.1 Description of Case Companies
Table 1 lists the interviewee details. Participants A–D worked at the
same large software development company. It is an international
companywith several thousand employees, developing and running
software products and services in the remote work tools domain.
The company is structured into cross-functional teams and has
dedicated teams for infrastructuremaintenance, security operations,
and other specialized tasks. The company actively subscribes to
DevOps practices and features explicit DevOps engineer positions.
We obtained themost in-depth insights from this company featuring
multiple roles explicitly involved with DevOps processes and chose
participants from eight other companies to triangulate our findings.

Similar to the company at which participants A–D worked, par-
ticipant I was employed at a large international corporation with
many teams and departments. Participant E and G were employed
at smaller software startups. Participant F and L were at a medium-
sized software corporation. Participant H worked at a company
that developed and sold software to larger companies. Participant K
was a consultant at a government contractor and Participant J at a
software consultancy. Most participants self-identified their role in
the company as software engineers or developers, reflecting more

1https://figshare.com/s/0bb84ba09a0f1031628d

ID Company Most Recent Role Work Exp.

A Large Software Senior Manager 6 years
B Development Software Engineer 16 years
C Company DevOps Engineer 14 months
D Software Engineer >10 years
E Software Startup Software Engineer >10 years
F Software Corp. Software Consultant >15 years
G Software Startup Engineer & Manager 15 years
H Software Vendor Software Developer 4 years
I Software Corp. Software Engineer >5 years
J Softw. Consultancy Business Consultant 15 years
K Gov. Contractor Software Consultant 9 years
L Software Corp. DevOps/Infra. Eng. 8 years

Table 1: Details of interview participants.

Topic Question

General

•What is your current role?
•What is your organizational unit/team?
• In which SE activities are you typically involved?
• How many years of experience in your profes-
sional (DevOps-related) career do you have?

Collab-
oration

• How do you approach collaboration with opera-
tions/development in your work?
• Do you face any other coordination challenges?
Which? How do you solve them?
• Which artifacts for collaboration are used be-
tween developers and operators? How? Why?
•What are your workflows with these artifacts?
• (How) do you handle artifact relationships?

Introduction of Boundary Object concept and stake-
holder groups using a map example, see Figure 1.

Boundary
Objects

• Do you have any examples of Boundary Objects
that you come across in your daily work?
•Which organizational groups use them?
• How are Boundary Objects related to each
other/other artifacts used by individual teams?
• (If not mentioned): What are your main activi-
ties/workflows with these boundary objects?

Table 2: Sequence of questions and prompts that interviewers
employed in the semi-structured interviews

traditional software development roles. Only two participants (in-
terviews C & L) stated their role specifically as DevOps engineers,
spending the majority of their time specifically on DevOps tasks.

3.2 Data Collection
We recruited participants via email and existing contacts with soft-
ware development companies. We recruited interviewees familiar
with their companies’ DevOps processes and the associated engi-
neering artifacts. When in-person meetings were not possible, we

14

https://figshare.com/s/0bb84ba09a0f1031628d


EASE ’23, June 14–16, 2023, Oulu, Finland Matthies, Heinrich, Wohlrab

Figure 1: Map Boundary Object annotated with roles

conducted interviews using video calls. After obtaining informed
consent from participants, the interviews were recorded and tran-
scribed. If the interviewee did not agree with recording, we took
detailed notes instead. Two authors conducted the interviews. In-
terviews were voluntary, not compensated, and designed to last 30
minutes. No interview lasted less than 30 minutes with an average
length of 44 minutes.

Table 2 shows an overview of the topics and questions. After a
preliminary phase, in which interviewees could ask questions, we
elicited participants’ organization, work experience, and role. We
asked about their organization’s collaboration practices, focusing
on the coordination of development and operations roles and the
significance of engineering artifacts. We then introduced the con-
cept of BOs using the definition in Section 1 and an example of a
map featuring roads, paths, lakes, and borders, see Figure 1. The
roles of a car driver, hiking tourist, politician, and hydrologist were
introduced, who use the same map but derive different insights
from it [37]. We then showed the participants a system architecture
diagram BO [25] featuring the roles of developer, system architect,
database specialist, and backend developer. Using this analogy, we
explained the goal of BOs of creating a shared understanding. Lastly,
we elicited participants’ impressions of the BO concept and asked
them to reflect on its potential application in their daily work.

3.3 Data Coding Procedure
We used the qualitative research tool Dedoose [1] to analyze the
interview transcripts. We employed the following high-level topics
(T1-T4) as a priori codes:

T1 Boundary Object: mentions a DevOps BO (cf. RQ1)
T2 DevOps Project Stakeholder : mentions a person or group in-

volved with or using a DevOps BO (cf. RQ2)
T3 Concerns: an appraisal or challenge regarding BO use in De-

vOps practices (cf. RQ3, RQ4)
T4 Interviewee Info: job description and work experience
We extracted 230 quotes related to our research questions from

the transcribed interviews. Of these, we coded 93 as mentions of
Boundary Objects (T1), 40 as mentions of DevOps Project Stakehold-
ers (T2) and 84 as Concerns (T3). The collected Interview Info (T4) is
presented in Table 1. We iteratively assigned more refined codes
to the interview quotes of the topics T1-T3. We created sub-codes
for each high-level code, relying on previous classification schemes
where available (see Section 2). Whenever we added an additional
code, all previous transcripts were reexamined for possible matches.

An example statement is: “some things are only known to dev and
some are only known to ops.” [interview B] It indicates that infor-
mation is spread out and is not always shared across team borders.
We coded it as a Concern with the Information Dispersal sub-code.

3.4 Threats to Validity
We identified threats to the validity of this research and imple-
mented the following procedures to mitigate them. We follow Rune-
son et al.’s classification of threats for case study research [33].

Internal Validity/Credibility. To establish the credibility of our
findings, we share our research method and the analysis steps in
Sections 3.2 and 3.3. We share the interview guide1. We minimized
the potential for misinterpretation by rephrasing the interviewer’s
understanding of responses and seeking explicit confirmations from
participants. We applied a structured review process and involved
multiple researchers. Whenever possible, one acted as the main
interviewer and the other was tasked with recording and asking
clarifying questions. The transcription, coding, and analysis steps
were reviewed through a shared research tool. During the tran-
scription and coding steps, we noted all cases of doubt regarding
the interpretation of statements, which we discussed separately.
In the cases where this approach did not lead to a consensus, we
re-contacted the respective interview partner. We include interview
quotes supporting our findings that can be traced back to individual
interviewees.

Construct Validity. In this study, it was vital to establish a com-
mon understanding of the concept “Boundary Object” with partic-
ipants. Before beginning the interview, we explained the context
and goals of the study and ensured that all participants’ questions
were answered. During the interview, we introduced the concept
of BOs using a detailed explanation featuring a map and associated
roles as an example, see Figure 1. In the semi-structured interviews,
participants were able to fully explain their work context, allowing
us to explore potentially confounding factors. While interviews
were scheduled for 30 minutes, we allowed participants to finish
their train of thought when running out of time.

Reliability. One potential threat when performing interviews
is that the presence of the interviewer and the way questions are
posed might impact the findings. To improve reliability, we aimed to
be transparent about our research method and made the interview
guide available. We also aimed to provide a clear chain of evidence
when reporting on research findings.

External validity/transferability. This study does not have broad
transferability as its goal. We present the perceptions of a group
of software practitioners and results on the applicability of the BO
concept in the DevOps domain. We provide descriptions of our
study context to help others evaluate the study’s transferability. We
detail the participant information in 1 and our participant selection
to allow traceability and to enable studies in similar contexts.

4 FINDINGS
We present the interview findings based on our research questions.

15



DevOps Artifacts EASE ’23, June 14–16, 2023, Oulu, Finland

Boundary Object Category Examples Abs. In Comp.

Requirements Issue Tracker Entry, Sprint Backlog Entry, Pseudo-Code, Text Document 12 4
Deployed System Information Production Metrics Dashboard, Software Log File 11 4
Process Checklists Operations Runbook, Checklist with Steps 10 3
Flexible-Format Artifacts Chat Message, Wiki Page, Email, Code Review Comment 29 6

Table 3: Categories of DevOps Boundary Objects mentioned by study participants. Abs. denotes the total number of mentions,
In Comp. number of unique companies (of 9 total).

Requirements
Deployed System 

Information

Process Checklists

Flexible-Format Artifacts

Dev. Ops.

aligned with

Figure 2: Categories of DevOps Boundary Objects arranged
by affiliation to development and operations domains

4.1 DevOps Boundary Objects (RQ1)
All 12 study participants stated that they could relate to the concept
of BOs as introduced using the map example and gave examples
of BOs that they had come across in their work. Table 3 presents
an overview of the key BO categories mentioned in the interviews,
including examples. Interviewees considered BOs important mecha-
nisms to connect different views in an organization and create a
common understanding: “Boundary Objects are the nucleus [. . . ] to
enable convergence points. They can synchronize different views. That
works from my point of view” [interview A].

The interviewees stressed the importance of four categories of
DevOps BOs: (i) Requirements, as summarized business needs; (ii)
Deployed System Information, indicating the current software sta-
tus; (iii) Process Checklists that capture explicit work procedures;
and (iv) Flexible-Format Artifacts for informal information collec-
tion. Figure 2 gives an overview of those DevOps BOs. It can be
seen that requirements are mainly created as part of development
(Dev.), whereas Deployed System Information originates from the
operations domain (Ops.). These artifacts are related, given that
information from operations needs to be checked with the initial
goals and requirements in mind. In that sense, requirements be-
come relevant for operations and the deployed system information
is relevant for developers when implementing new functionality.
At the same time, process checklists and flexible-format artifacts
are supporting artifacts that cover both areas.

Other DevOps artifacts were mentioned as well, e.g., software
design artifacts or implementation details. However, the ones de-
scribed here were found to serve as BOs and constitute a coordina-
tion mechanism between multiple teams.

Requirements. Software requirements, particularly as entries in
shared issue trackers, were mentioned as DevOps BOs. Require-
ments involve product management, concerned with business

needs, in addition to development and operations teams. Inter-
viewees noted: “the issue tracker is our main Boundary Object” [in-
terview I], “of course there is a task management, in our case Jira”
[interview A], and “we schedule a certain time in Jira and they [ops]
need to approve it” [interview B]. While work backlogs are used
within teams, participants also mentioned them as BOs across teams:
“we decide on the monitoring and add items to [dev] Sprint Backlogs”
[interview C]. In this study, we noted requirements in the forms
of task descriptions (e.g., backlog entry, Jira issue) and structured
Requirements (e.g., pseudo-code, Word document).

Deployed System Information. The DevOps aspect of continu-
ously monitoring deployed systems was highlighted by intervie-
wees whomentioned BOs offering views of “statistics and monitoring
in production” [interview H]. Regarding a dashboard used by de-
velopment and operations teams, an interviewee noted: “One role
checks how many specific errors there were, the other checks for met-
rics that influence the health status of a component” [interview A].
While the metrics of dashboards and the entries in software log
files are generated automatically, reports acting as BOs were created
manually. The types of reported Deployed System Information BOs
were: Production Metrics Dashboards, reports (e.g., on database
status, compliance), and software log files.

Process Checklists. Checklists, i.e., steps required to fulfill spe-
cific tasks were repeatedly mentioned as DevOps BOs. Participants
considered them particularly valuable in on-call scenarios and to
document standard practices. Examples of Checklists with Steps
included “deployment procedures” [interview E] and instructions on
“what to do if you want to block an API” [interview C].

Operations Runbooks were described as supersets of checklists
with additional information: “it states for each service what it is re-
sponsible for, where it is deployed and how to access it” [interview D].
Interviewees highlighted the contained debugging documentation:
“If something is up on the weekend, they [on-call teams] check it out
and have Runbooks at their disposal. For the typical errors they know
what to do” [interview A], “Checklists and Runbooks [are required]
for Site Reliability Engineers for incident response” [interview F].

Flexible-Format Artifacts. The majority of interviewees men-
tioned BOs that recorded information in unstructured, adaptable
forms. Incident alerts that capture information on errors in pro-
duction environments were mentioned in the context of on-call
scenarios: “then there are these alerts that the teams check every day”
[interview A]. Urgent situations can involve multiple teams inter-
acting with the BO: “If the impact level is high, [. . . ] we all (security,
devops, devs) come in to solve the issue” [interview C]. Furthermore,
instant messaging and email communication were mentioned as

16



EASE ’23, June 14–16, 2023, Oulu, Finland Matthies, Heinrich, Wohlrab

flexible format BOs of DevOps knowledge. Interviewees highlighted
“dedicated Slack channels for contact into individual teams” [inter-
view G] and “email threads where you ask why a database query
took so long” [interview A]. Overall, we identified the following
Flexible Format BOs: (i) Email or instant messaging platform (e.g.,
Slack); (ii) unstructured shared document (e.g., Wiki page, Excel
sheet); (iii) incident alert; and (iv) code review comment.

RQ1: What categories of artifacts do practitioners employ as
Boundary Objects (BOs) in DevOps contexts?

We identified four categories of DevOps BOs: Requirements (sum-
marized business needs), Deployed System Information (current
system status), Process Checklists (explicit work procedures) and
Flexible-Format Artifacts (informal information collections).

4.2 DevOps Stakeholders (RQ2)
Our interviewees explicitly mentioned the following 11 stakehold-
ers who interacted with BOs in their DevOps contexts:

• Infrastructure Team (mentions: 7, companies: 4)
• Product Manager (mentions: 4, companies: 4)
• Security Team (mentions: 3, companies: 2)
• Quality Assurance Team (mentions: 3, companies: 2)
• Operations (mentions: 8, companies: 2)
• Development (mentions: 8, companies: 2)
• DevOps Team (mentions: 6, companies: 2)
• Network Operations Center (mentions: 4, companies: 1)
• System Architect (mentions: 3, companies: 1)
• Change Advisory Council (mentions: 1, companies: 1)
• Software Bot (mentions: 1, companies: 1)

While we selected interviewees with DevOps experience, few
participants mentioned being part of an explicit “DevOps” team.
Instead, interviewees highlighted the increased collaboration be-
tween existing teams through DevOps approaches. Infrastructure
teams maintaining the system components that support software
delivery were most often identified as explicit DevOps BO stake-
holders. An interviewee explained their roles as “the infrastructure
providers for us, like all related to watching machines” [interview C].

Product Managers, while not typically directly associated with
DevOps practices, were nonetheless among the top mentioned
stakeholders. An interviewee explained: “Even with a narrower, more
technical definition of Boundary Objects there might be various non-
technical roles involved. [. . . ] The Product Manager needs to coordinate
with other services [. . . ]” [interview E]. Similarly, study participants
mentioned teams outside of development and operations areas, such
as Quality Assurance (QA) with “special training regarding testing
and non-functional aspects” [interview A] and security teams as
involved with DevOps practices. The experimental nature of some
of these approaches was noted: “We always collaborate with the
security operations team to see how that goes” [interview C].

Only few interviewees mentioned a dedicated System Architect
as a stakeholder. However, if present, the role was identified as
central: “The role of architect acts as a human Boundary Object”
[interview F] or boundary spanner. Furthermore, a Network Oper-
ations Center (“it monitors systems 24/7” [interview A]), a Change
Advisory Council (“where you need to propose the change, what
the rollback plan is, how to do it” [interview C]) and an advanced

Information
Dispersal

Information 
Silo

Information
Gatekeeping

Knowledge
Fragmentation

Development
Process

Overview

System
Knowledge

Process
Adherence

Stakeholder
Discoverability

Detailedness Employee
Onboarding

Team
Cooperation

Team Culture
and

Expectations

Shared
Language

Role 
Definiton

Boundary
Object

Maintenance

Added
Overhead

Outdated
Information

Automation

Consistency
Between
Objects

Implementation
Feasibility

Figure 3: Areas of concern regarding DevOps BOs

software bot were mentioned as interacting with DevOps BOs. The
interviewee described the bot as an “automatic fuzzer that generates
issues, finds people to tag, and closes issues”, behaving “almost like
another team member” [interview I].

RQ2: Which groups of stakeholders in DevOps contexts are
involved with DevOps artifacts?

We identified eleven stakeholder groups interacting with Bound-
ary Objects in DevOps. Interviewees mentioned dedicated De-
vOps teams, but committed infrastructure and operations teams
were also relevant in the surveyed companies. Product manage-
ment was highlighted as being involved from the non-technical
side. Furthermore, software quality and security teams were
mentioned as stakeholders of DevOps BOs as well.

4.3 Areas of Concern (RQ3)
Study participants reported success in employing software engi-
neering artifacts between teams and highlighted their central role
for coordination in DevOps. However, they also noted challenges
with their current use of DevOps artifacts. Some artifacts might
serve as BOs, but are not consistently maintained and are of little
use as BOs. We identified four main areas of concern:

• Boundary Object Maintenance. Artifact update procedures
and the overhead involved with them.

• Development Process Overview. Understanding the DevOps
process, the involved parties and their responsibilities.

• Team Cooperation. Using BOs to align mental models across
teams and expectations in BO use.

• Information Dispersal. Managing who has access to which
information and disseminating information.

Figure 3 presents an overview of these concerns, which we discuss
in the following subsections.

4.3.1 Boundary Object Maintenancer.
Once created, DevOps BOs require updates to remain relevant. In-
terviewees noted the issue of Outdated Information: “Writing the
initial version is typically easy, but it is not always updated [interview
B], “I’ve never worked on a team where diagrams were relevant for

17



DevOps Artifacts EASE ’23, June 14–16, 2023, Oulu, Finland

more than hours or days” [interview K]. A study participant noted
an extreme case of avoiding artifacts due to this issue: “Explicit
[architecture] diagrams aren’t used, they are always outdated due to
the dynamic nature of the system” [interview G].

Adding BOs increases Added Overhead: “additional Boundary
Objects require additional mental energy” [interview H]. An inter-
viewee noted when adding artifacts: “Ops Team will say ’please, not
another database’ and there will be accounting challenges” [interview
L]. To address this issue, Automation can be used: “[this artifact]
has to be written manually. That’s the reason we are focusing on
[automated] inventory services” [interview C]. DevOps BOs, such as
software environment configurations, can also act as automation
inputs: “Boundary objects that are required for automation get instan-
tiated, one of the benefits of CI [Continuous Integration] is making
Boundary Objects explicit” [interview K].

With different, concurrent ways of updating and maintaining
BOs the Consistency Between Objects was considered vital in
DevOps: “Since we don’t have automations that keep partial views
consistent [. . . ], they drift apart” [interview A]. A study participant
detailed consistency issues between two BOs: “There’s always a fight
between the priorities of the product road map and the technology
operational roadmap” [interview D].

4.3.2 Development Process Overview.
BOs capture the details of the organizations’ software development
approaches and outputs. This involves providing stakeholders with
System Knowledge, e.g., through system architecture diagrams.
System knowledge can include “which components do we even run,
[. . . ] where do they run, if relevant. It’s in the system [. . . ]” [interview
A]. Another interviewee reported: “As a team we know that [another
team] owns the services [. . . ], but as a whole we don’t know the whole
infrastructure” [interview C]. However, access to system knowledge
provided by BOs can be critical: “people lacked architecture knowledge
and couldn’t solve a problem. This escalated and a needless amount
of people were hauled out of bed” [interview A].

To identify contact points for help or in case of problems, BOs
may provide Stakeholder Discoverability, e.g in wiki pages or
issue tracker entries. An interviewee explained: “Getting the right
people is not always easy, but it’s critical” [interview C]. Another
participant pointed to the issue of keeping contact information
BOs updated: “a team that we don’t interact with often [. . . ] might
restructure and we don’t know whom to reach out to” [interview D].

BOs can encourage Process Adherence supporting teams in
following defined practices, e.g., as laid out in process checklists.
Interviewees noted: “You cannot just push stuff into the production
environment as there are established review processes that force discus-
sion and exchange” [interview A] “[. . . ] if the process gets bypassed,
it’s really hard to find issues” [interview C].

Interviewees highlighted the drawbacks of high levels of De-
tailedness in process knowledge descriptions, especially regarding
software design artifacts. Study participants warned: “if you saw the
whole system map from the whole environment, you would get lost
again” [interview B], “everyone has the views they need, normally. If
you were to combine all of that into a single view no-one would be
interested in maintaining it” [interview A].

Similarly, study participants expressed worries regarding Im-
plementation Feasibility of process overview BOs: “Of course I

would like to have a Boundary Object with Ops, but I don’t know if
there is a good way to introduce that so that everyone’s needs can be
satisfied” [interview B]. An interviewee noted the potentially high
complexity of these overviews: “A complete system overview is no
longer easy to grasp, so that makes no sense at this point” [interview
A].

4.3.3 Team Cooperation�.
DevOps BOs enable cooperation by multiple stakeholders through
frequent interactions. Interviewees highlighted the importance of
managing Team Culture and Expectations in this context: “Devs
follow a formal process [. . . ] That’s not followed in the infrastructure
team. [. . . ] it’s sometimes not easy to manage the different mentalities”
[interview C]. Failing to align expectations of BO use can cause
issues: “We ask whether we can do it or whether we should do it later.
That is what causes frustration on operations side” [interview B].

To enable cooperation, interviewees stressed the influence of
Shared Language in BOs, e.g., as part of email messages or in dia-
grams. A shared vocabulary “allows efficient communication between
dev and ops roles, e.g., using the names of folders or scripts” [interview
J]. A participant noted that “it’s very useful to have these drawings
[architecture diagrams. . . ] to ensure that we’re not just talking [. . . ]
and everybody has a different picture in mind” [interview D].

Interviewees emphasized the function of BOs as clarifying the
Role Definition of stakeholders, highlighting the need for atten-
tion to detail in defining which specific tasks the involved DevOps
roles perform. An interviewee pointed to the need for precision:
“What are typical DevOps activities anyway? [. . . ] you always have
to ask yourself, what is actually behind it?” [interview A] Another
study participant pointed to the cross-functionality of roles in De-
vOps and the challenges in delineating them: “Given the map exam-
ple, the politician also drives a car, the hiker might be interested in
rivers. Everyone has to wear each others hats to a certain degree, es-
pecially in a small company” [interview J]. The role/“hat” someone
wears influences their information needs and how they interact
with BOs.

4.3.4 Information Dispersal ø.
Interviewees highlighted the role of artifacts in distributing infor-
mation both in negative terms, as Information Silos (when not
adequately shared) and positive terms, facilitating Information
Gatekeeping of details that should not be shared. While a partici-
pant criticized that “operations for us is separated into different parts
and we are only in contact with one part” [interview B], another
praised the option of keeping information separate in artifacts: “In-
formation Gatekeeping is an aspect of slides. Not everything that is
said internally should get to the customer” [interview L].

Multiple related BOs can lead to Knowledge Fragmentation,
where associated information can no longer be connected. An in-
terviewee noted an extreme case of a fragmented artifact causing
issues: “We had aWiki for operations and one for developers [. . . ] they
shut down one [. . . ], but the content was not taken over” [interview
B].

BOs were mentioned as particularly useful in distributing infor-
mation as part of Employee Onboarding. The interviewees stated:
“If someone new started [. . . ] that [Architecture Diagram] was some-
thing to show him” [interview B] and “the Runbook [. . . is] especially
useful if we have new people in the team” [interview D].

18



EASE ’23, June 14–16, 2023, Oulu, Finland Matthies, Heinrich, Wohlrab

RQ3: In which areas of DevOps processes do practitioners see
concerns when employing DevOps artifacts?

We identified four main areas of concerns (see Figure 3): (i)
Boundary Object Maintenance (keeping information updated
and consistent, often using automation), (ii) Development Pro-
cess Knowledge (making details of the development practices
accessible), (iii) Team Cooperation (aligning team cultures and
clarifying language and responsibilities), and (iv) Information
Dispersal (managing which information is shared with whom).

4.4 Attributes of Boundary Objects (RQ4)
The set of BOs and the attributes influencing their relevance in
an organization must be known to create dedicated knowledge
management strategies. Some BOs are considered more crucial in
DevOps contexts than others. Those differences can be understood
by analyzing common attributes. We identified seven attributes of
DevOps BOs that influenced perceptions of their relevance.

4.4.1 Frequency of Change.
Every time an artifact is changed, all interested stakeholders may
want or need to be notified of the update. Furthermore, frequent
changes also lead to the information obtained from the artifact to
be outdated more quickly. A study participant highlighted the im-
portance of infrequent changes of BOs, using the map example: “one
of the reasons why a map might be a good Boundary Object is because
its speed of change is manageable” [interview K]. While lower rates
of change imply less overhead in managing the BO, it may also point
to a lack of specific update procedures: “during planning if someone
remembers that documentation needs to be updated, it is added to
the list of tasks. But other than that I cannot think of anything [that
would lead to regular BO updates]” [interview B].

○ Regarding Frequency of Change, ask: “Relative to other BOs in
a given context, how frequent are updates?”

4.4.2 Connectedness.
BOs can be connected to (multiple) other engineering artifacts to pro-
vide additional information, e.g., a Wiki page referencing an issue
tracker entry. The more connections a BO has, the higher the effort
is required to fully explore the contained knowledge. Connected
BOs can also describe an overarching knowledge concept together.
An interviewee gave an example: “That [system architecture] [. . . ] is
filed in different places [. . . ] there isn’t a single, consolidated status,
but that is how architecture is documented” [interview A].

○ Regarding Connectedness, ask: “How many explicit connections
to other engineering artifacts are there?”

4.4.3 Criticality.
Criticality relates to the impact of a BOwhen it is missing, not main-
tained or is considered “broken”. The criticality of an unusable BO
can be described by “how many people can’t work” [interview K] or
how fast others have to act when issues arise. Multiple stakeholders
may have to react to system issues involving BOs in a boundary-
spanning response, e.g., in on-call scenario: “If the impact level is
high, [. . . ] we all (security, DevOps, developers) come in to solve the
issue” [interview C]. BOs dealing with legal requirements and reg-
ulations are typically considered critical. An interviewee noted,

regarding consequences of missing mandatory security reports:
“They will literally send you to jail” [interview K].

○ Regarding Criticality, ask: “To what degree will the organiza-
tion’s performance degrade if the object is unavailable?”

4.4.4 Level of Automation.
BOs can be more or less involved with task automation. The general
goal expressed in interviews was to automate as much as possible,
also regarding inter-team communication: “If communication is ad-
hoc, it is slow, get rid of it and automate” [interview F]. Interviewee
C explained that a whole toolchain had been set up to handle infor-
mation and automate visualization functions for easier monitoring
and alerting. Being able to update BOs using reliable toolchains was
considered beneficial by the interviewees.

The notion of automation is related to prescriptiveness [40], i.e.,
whether an artifact is used to prescribe the system (so that code
can be generated from it) or whether it is descriptive. Software de-
sign artifacts and requirements (e.g., system architecture diagrams
or Epics in Jira) are of a more descriptive nature and inform the
system design. Descriptive artifacts are more difficult to keep up to
date, as maintenance cannot easily be automated. Prescriptive arti-
facts include those directly synchronized with the running system,
characterizing a system’s current status (e.g., software log files).

○ Regarding Level of Automation, ask: “How much repeated man-
ual effort is required to update the BO?”

4.4.5 Structuredness.
The BOs employed in the DevOps domain differ in their levels of
formalism, inherent structure and applicability for different use
cases. Less formalized BOs such as emails or digital documents are
able to capture arbitrary knowledge. Interviewees gave examples
of “reports via email on statistics and monitoring” [interview H] and
“Excel sheets used to track requirements” [interview K]. In contrast,
BOs such as issue trackers offer more rigid structures which enable
overviews and filtering: “Of course, there is task management, in our
case in Jira, where tasks follow a particular structure” [interview A].

○ Regarding Structuredness, ask: “How formalized is the BO?”

4.4.6 Lifespan.
BOs have a lifespan during which they provide value. They can be
relevant and kept updated for the lifetime of a system or may be
used only for a specific development phase and are then archived
or set as read-only. Issues arise when the lifespan is not clear and
stakeholders expect to find up to date information in an archived BO.
An interviewee mentioned: “The requirements discovery documents
sit idle after the project start phase” [interview L]. Other BOs feature
lifespans that only starts in later development phases, due to input
data requirements, e.g., “the stuff in dashboards is generated from
the running system data” [interview A].

○ Regarding Lifespan, ask: “In which development phase is the
BO created and for how long is it relevant to stakeholders?”

4.4.7 Number of Stakeholders.
The more stakeholder groups are involved with a BO, the more
central it is in a development context. Stakeholders may include
multiple non-technical roles that interact with BOs to gain insights
into the DevOps process. An interviewee gave the example: “If a
microservice is to be monetized, e.g., selling API access, the marketing
team must interact [. . . ], a Product Manager needs to coordinate with

19



DevOps Artifacts EASE ’23, June 14–16, 2023, Oulu, Finland

other services being sold” [interview E]. The number of involved
stakeholders differs over the lifespan of a BO: “There is a lot of infor-
mation for different roles that interact with the Operation Runbook
in different phases” [interview D].

○ RegardingNumber of Stakeholders, ask: “Howmany stakeholder
groups interact with the BO or derive value from it during its lifespan?”

RQ4: What attributes of Boundary Objects influence their per-
ceived relevance in DevOps practices?

We find that relevant Boundary Objects in the DevOps domain
tend to have a low frequency of change, high connectedness, and
high criticality. Moreover, relevant Boundary Objects tend to be
characterized by a high level of automation, Structuredness, long
lifespan, and high number of stakeholders.

5 DISCUSSION
Our findings on categories of DevOps BOs (RQ1) confirm that several
of the previously identified BOs in collaborative work environments
are present in companies employing DevOps processes. For exam-
ple, in line with our results, the Product Backlog was identified as
a software development BO that “helps bridge the gap between the
processes of generating user stories and realizing them in working
code” [34]. Similarly, checklists have demonstrated benefits as a BO
in the medical domain and software security [9]. At the same time,
some categories of BOs have yet to receive extensive study.

The artifacts that act as BOs in Software Engineering processes
are determined by the organization’s development approach, con-
text, and the stakeholder groups involved. Evenwithin the narrower
scope of DevOps processes we chose for this study, no single BO
acted as a central coordination point. Instead, different sets of BOs
are employed in companies with varying use cases. However, BOs
were explicitly mentioned and seen as starting points to structure
collaboration and connect different stakeholder roles (RQ2). The
stakeholder roles we identified were not limited to development
and operations experts, but also included infrastructure teams and
product managers. In fact, many interviewees mentioned stake-
holders that were not traditional DevOps teams. As part of future
work, a questionnaire survey can be performed to identify whether
these findings apply in other contexts as well.

Our results highlight the importance of consciously integrating
Boundary Objects into the work and collaboration practices that
drive DevOps processes. We believe that this view of DevOps pro-
cesses can help with designing cross-disciplinary knowledge man-
agement strategies. In particular, we present four areas of concern
(RQ3) regarding BO maintenance, process overview, team coopera-
tion, and information dispersal that study participants identified as
key to effectively employing and managing BOs.

We identified seven attributes of BOs (RQ4) that impact their
perceived usefulness. Any artifact that acts as a BO and is situated
at the extreme ends of one or multiple of these attributes is worth
investigating. For example, a BO with two involved stakeholders,
low criticality, and lacking automation might not be worth the
maintenance overhead it incurs. On the other hand, a BO that takes
a central position in a development process with high criticality,
multiple involved stakeholders, and a high rate of change should

demand attention and be introduced as part of employee onboard-
ing. We see promise in future work exploring these approaches in
additional industry studies.

We found three of previously identified attributes of general SE
BOs [40] (i.e., Frequency of Change, Connectedness, and Criticality)
explicitly reflected in our interviews. Several of these attributes re-
late to the maintenance of BOs. In the DevOps domain, it is possible
to automate much of the generation and maintenance of documen-
tation based on prescriptive artifacts. For example, our case study
companies automatically generated system overviews based on
system traffic. Therefore, the burden of maintaining descriptive
BOs vital for work processes is alleviated by the trend of increasing
automation in DevOps contexts. All interviewees recognized the
Boundary Object concept within their work and identified artifacts
in their work activities that take on this role. However, in line with
previous work, we provide evidence that in industry settings, the
“management of the data generated by the [DevOps] toolchain is
still undervalued” [5] in terms of practical implementation. Through
the lens of the BO concept, we found that this lack of management
approaches also applies to broader artifact categories used for col-
laboration and the involved stakeholder groups. When evaluating
knowledge management strategies in an organization, there is a
need to consider the discoverability of information, the embedding
of BOs in a process framework, the incentives for updating and fol-
lowing the defined processes, and ensuring that all involved parties
agree on the shared data across boundaries.

Summarizing the impact of DevOps approaches on teams, Lie et
al. state: “the more an agile team operates according to DevOps, the
more it benefits from its artifacts” [18]. Our work provides further
evidence for this claim. However, we add: The more a team operates
according to DevOps, the more it benefits from its artifacts, but
the more it needs to consciously manage the Boundary Objects that
facilitate collaboration.

6 CONCLUSION
In this paper, we investigated DevOps artifacts, directing attention
to the specific Boundary Objects that facilitate exchange and collab-
oration between development and operations teams as well as other
process stakeholders. This view contrasts a common perspective
of DevOps, which focuses on the tools and stages software must
pass through to be promoted to the production environment [36].
In other words, we investigated practitioners’ DevOps practices
based on the concrete inter-team BOs that facilitate regular collab-
oration between stakeholders rather than the sequence of actions
performed by stakeholders. As part of a case study, we identified
eleven DevOps stakeholder groups interacting with DevOps BOs.
While study participants mentioned dedicated DevOps teams, sep-
arate infrastructure and operations teams were still highly relevant
in the participating companies. We found that additional product
management, software quality, and security roles interacted with
DevOps BOs. We identified four categories of DevOps BOs, specifi-
cally Requirements, Deployed System Information, Process Checklists,
and Flexible-Format Artifacts.

While certain aspects related to BO maintenance were identified
as particularly challenging by study participants, the respective
artifacts were also considered useful when well-managed in line

20



EASE ’23, June 14–16, 2023, Oulu, Finland Matthies, Heinrich, Wohlrab

with their attributes. Evaluating the Boundary Objects present
in DevOps development processes, who interacts with them, how
they are maintained, and what attributes characterize the individual
objects can inform the design of knowledge management strategies
and represents a step towards improving collaboration.

7 DATA AVAILABILITY
The call for interviewees, the employed informed consent form, and
the interview guide are available, see the footnote in Section 3. Our
informed consent form included only a permission to share selected
anonymized quotes for the purposes of paper publication. We are
therefore not able to publicly share the full interview transcripts.

ACKNOWLEDGMENTS
We thank all interviewees for their time and valuable responses.
This work was partially supported by the Wallenberg AI, Auto-
nomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation, the topic Engineering Secure
Systems (46.23.03) of the Helmholtz Association (HGF) and KASTEL
Security Research Labs. We thank the GoTo Technologies Germany
GmbH and the SPEC Research Group for their valuable support.

REFERENCES
[1] SocioCultural Research Consultants, LLC. 2021. Dedoose Version 9.0.17.
[2] Ricardo Amaro, Ruben Pereira, and Miguel Mira da Silva. 2023. Capabilities

and Practices in DevOps: A Multivocal Literature Review. IEEE Transactions on
Software Engineering 49, 2 (feb 2023), 883–901.

[3] Sandip Bankar and Deven Shah. 2021. Blockchain based framework for Software
Development using DevOps. In 2021 4th Biennial International Conference on
Nascent Technologies in Engineering (ICNTE).

[4] Pranavi Bitra and Chandra Srilekha Achanta. 2021. Development and Evaluation
of an Artefact Model to Support Security Compliance for DevSecOps. mathesis.

[5] Antonio Capizzi, Salvatore Distefano, and Manuel Mazzara. 2020. From DevOps
to DevDataOps: Data Management in DevOps Processes. In Software Engineering
Aspects of Continuous Development. 52–62.

[6] Alessandro Colantoni, Antonio Garmendia, Luca Berardinelli, Manuel Wimmer,
and Johannes Brauer. 2021. Leveraging Model-Driven Technologies for JSON
Artefacts. In 24th Int. Conference on Model Driven Engineering Languages and
Systems. 250–260.

[7] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting empirical methods for software engineering research. In Guide
to advanced empirical software engineering. 285–311.

[8] Daniel Méndez Fernández, Wolfgang Böhm, Andreas Vogelsang, Jakob Mund,
Manfred Broy, Marco Kuhrmann, and ThorstenWeyer. 2019. Artefacts in software
engineering: a fundamental positioning. Software & Systems Modeling 18, 5 (jan
2019), 2777–2786.

[9] D.P. Gilliam, T.L. Wolfe, J.S. Sherif, and M. Bishop. 2003. Software Security
Checklist for the Software Life Cycle. In Twelfth IEEE International Workshops on
Enabling Technologies (WET 2003). 243–248.

[10] Shivakumar R Goniwada. 2022. Cloud Native Architecture and Design: A Handbook
for Modern Day Architecture and Design with Enterprise-Grade Examples.

[11] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. 2017. Towards
a Sustainable Artifact Model Artifacts in Generator-Based Model-Driven Projects.
Aachener Informatik-Berichte, Software Engineering, Vol. 30.

[12] Volker Gruhn and Clemens Schäfer. 2015. BizDevOps: Because DevOps Is Not
the End of the Story. In Intelligent Software Methodologies, Tools and Techniques.
Vol. 532. 388–398.

[13] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps. 2020.
Learning from, Understanding, and Supporting DevOps Artifacts for Docker. In
42nd International Conference on Software Engineering. 38–49.

[14] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’ Amorim, and Thomas
Reps. 2021. Shipwright: A Human-in-the-Loop System for Dockerfile Repair. In
43rd International Conference on Software Engineering. 1148–1160.

[15] Vitalii Ivanov. 2018. Implementation of Devops Pipeline for Serverless Applications.
Master’s thesis. Aalto University.

[16] Marco Kuhrmann, Daniel Mendez Fernandez, andMatthias Grober. 2013. Towards
Artifact Models as Process Interfaces in Distributed Software Projects. In 8th Int.
Conference on Global Software Engineering. 11–20.

[17] Alexandra Lapointe-Boisvert, Sebastien Mosser, and Sylvie Trudel. 2021. Towards
Modelling Acceptance Tests as a Support for Software Measurement. In 2021

ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion. 827–832.

[18] Martin Forsberg Lie, Mary Sánchez-Gordón, and Ricardo Colomo-Palacios. 2020.
DevOps in an ISO 13485 Regulated Environment. In 14th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement. 1–11.

[19] Iraj Lohrasbinasab, Prameet Bhakta Acharya, and Ricardo Colomo-Palacios. 2020.
BizDevOps: A Multivocal Literature Review. In Computational Science and Its
Applications. 698–713.

[20] Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed
Zogaan, and Mehdi Mirakhorli. 2018. Automatic Classification of Software
Artifacts in Open-Source Applications. In 15th International Conference on Mining
Software Repositories. 414–425.

[21] Jamal Mahboob and Joel Coffman. 2021. A Kubernetes CI/CD Pipeline with Asylo
as a Trusted Execution Environment Abstraction Framework. In 2021 IEEE 11th
Annual Computing and Communication Workshop and Conference (CCWC).

[22] Runfeng Mao, He Zhang, Qiming Dai, Huang Huang, Guoping Rong, Haifeng
Shen, Lianping Chen, and Kaixiang Lu. 2020. Preliminary Findings about DevSec-
Ops from Grey Literature. In 20th Int. Conference on Software Quality, Reliability
and Security. 450–457.

[23] David Monschein, Manar Mazkatli, Robert Heinrich, and Anne Koziolek. 2021.
Enabling Consistency between Software Artefacts for Software Adaption and
Evolution. In 18th Int. Conference on Software Architecture. 1–12.

[24] Maria Paasivaara, Casper Lassenius, and Ville T. Heikkilä. 2012. Inter-team
Coordination in Large-scale Globally Distributed Scrum: Do Scrum-of-scrums
Really Work?. In ESEM 2012. 235–238.

[25] Lars Pareto, Peter Eriksson, and Staffan Ehnebom. 2010. Architectural Descrip-
tions as Boundary Objects in System and Design Work. In Model Driven Engi-
neering Languages and Systems. Vol. 6395. 406–419.

[26] Andreas F. Phelps and Madhu Reddy. 2009. The Influence of Boundary Objects
on Group Collaboration in Construction Project Teams. In Int. Conference on
Supporting Group Work. 125.

[27] Roshan N. Rajapakse, Mansooreh Zahedi, M. Ali Babar, and Haifeng Shen. 2022.
Challenges and solutions when adopting DevSecOps: A systematic review. Infor-
mation and Software Technology 141 (jan 2022), 106700.

[28] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan Julian Merelo. 2006.
Beyond source code: The importance of other artifacts in software development
(a case study). Journal of Systems and Software 79, 9 (sep 2006), 1233–1248.

[29] Rodney Rodriguez and Xiaoyin Wang. 2021. Understanding Execution Environ-
ment of File-Manipulation Scripts by Extracting Pre-Conditions. In 29th Interna-
tional Conference on Program Comprehension. 406–410.

[30] Knut H Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. 2016.
Problematizing Agile in the Large. In Proc. of the 37th International Conference on
Information Systems. 1–21.

[31] Iresha Rubasinghe, Dulani Meedeniya, and Indika Perera. 2018. Automated Inter-
artefact Traceability Establishment for DevOps Practice. In 17th Int. Conference
on Computer and Information Science. 211–216.

[32] Iresha Rubasinghe, Dulani Meedeniya, and Indika Perera. 2020. Tool Support
for Software Artefact Traceability in DevOps Practice. In Advances in Systems
Analysis, Software Engineering, and High Performance Computing. 130–167.

[33] Per Runeson and Martin Höst. 2008. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14,
2 (dec 2008), 131–164.

[34] Todd Sedano, Paul Ralph, and Cécile Péraire. 2019. The Product Backlog. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).

[35] Marcos Silva and Toacy Oliveira. 2011. Towards Detailed Software Artifact
Specification with SPEMArti. In 2nd Workshop on Software Engineering for Sensor
Network Applications. 213.

[36] Software & Systems Engineering Standards Committee. 2021. IEEE Standard for
DevOps: Building Reliable and Secure Systems Including Application Build, Package,
and Deployment. Technical Report. IEEE SA. 91 pages.

[37] Susan Leigh Star and James R. Griesemer. 1989. Institutional Ecology, `Transla-
tions' and Boundary Objects: Amateurs and Professionals in Berkeley's Museum
of Vertebrate Zoology, 1907-39. Social Studies of Science 19, 3 (aug 1989), 387–420.

[38] Johannes Wettinger, Vasilios Andrikopoulos, and Frank Leymann. 2015. Auto-
mated Capturing and Systematic Usage of DevOps Knowledge for Cloud Appli-
cations. In International Conference on Cloud Engineering. 60–65.

[39] Johannes Wettinger, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2016.
Streamlining DevOps automation for Cloud applications using TOSCA as stan-
dardized metamodel. Future Generation Computer Systems 56 (2016), 317–332.

[40] Rebekka Wohlrab, Jennifer Horkoff, Rashidah Kasauli, Salome Maro, Jan-Philipp
Steghöfer, and Eric Knauss. 2020. Modeling and Analysis of Boundary Objects
and Methodological Islands in Large-Scale Systems Development. In Conceptual
Modeling. 575–589.

[41] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Mats Larsson. 2018.
Boundary Objects in Agile Practices: Continuous Management of Systems En-
gineering Artifacts in the Automotive Domain. In International Conference on
Software and System Process. 31–40.

21


	Abstract
	1 Introduction
	2 Related Work
	2.1 Categories of DevOps Artifacts
	2.2 DevOps Stakeholders
	2.3 Engineering Artifacts as Boundary Objects

	3 Research Method
	3.1 Description of Case Companies
	3.2 Data Collection
	3.3 Data Coding Procedure
	3.4 Threats to Validity

	4 Findings
	4.1 DevOps Boundary Objects (RQ1)
	4.2 DevOps Stakeholders (RQ2)
	4.3 Areas of Concern (RQ3)
	4.4 Attributes of Boundary Objects (RQ4)

	5 Discussion
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

