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the Time Integration of 
Atmospheric Models
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ABSTRACT
In this paper we derive a fourth order two step Runge-Kutta method with four stages, 
for additively partitioned systems of ordinary differential equations. Our main objective 
is that it will be useful as a horizontally explicit and vertically implicit (HEVI) method for 
atmospheric models.

In our method the diagonal coefficients in the implicit part are all equal, and the 
HEVI-stability properties seem to be excellent. Further, the accuracies obtained for 
two simple test problems, used with different resolutions and integration intervals, 
considerably surpass those of a third order one step Runge-Kutta method also with 
four stages, used for comparison.
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1. INTRODUCTION

In a typical 3-dimensional discrete version of an 
atmospheric model the meshlength Δz in the vertical 
direction is considerably smaller than the horizontal 
ones, here both called Δx. The ratio Δx/Δz can, e.g., 
exceed 100. One way to avoid severe restrictions on the 
time step, Δt, is to use a horizontally explicit and vertically 
implicit (HEVI) method for the time integration. This is a 
considerable simplification, compared to a fully implicit 
method, since the implicit/vertical part is 1-dimensional 
and thus a related Jacobian matrix consists of only a 
narrow dense band.

We mention that in a nonhydrostatic model, see for 
instance (Giraldo, Kelly and Constantinescu, 2012) and 
(Staniforth and Wood, 2008), vertically propagating 
acoustic waves will appear and make the vertical Courant 
number even greater.

In (Mengaldo et al., 2018), current and emerging 
time integration strategies for atmospheric models are 
discussed.

In this paper we develop a family of fourth order two 
step Runge-Kutta methods with four stages, for an initial 
value problem for an additively partitioned system of 
ordinary differential equations y′ = s(y) + f(y), y ∈ Rd, d > 1, 
where s is the slow and f the fast part of the system. The 
free parameters in the family are defined by optimising 
the HEVI-stability, or shorter H-stability, properties 
related to the test equation y′ = –ikxy – ikzy, where kx and 
kz are real numbers and i2 = –1, see for instance (Lock, 
Wood and Weller, 2014). The result, H-stability if |Δtkx| ≤ 
2 with no restriction on kz, seems to be quite satisfactory. 
Our methods will not use stage values from previous 
steps as is done for instance in (Zharovski, Sandu and 
Zhang, 2015), where there is no emphasis on H-stability 
but rather on approximation orders and A(α)-stability.

Since it is beyond the scope of this paper to apply 
our time integration method to realistic atmospheric 
problems, we will only consider some very simple 
numerical examples in order to illustrate some properties 
of our method.

The present paper is organized as follows. In Section 2, 
we rewrite our additively partitioned system as a 
partitioned system by replacing y with two new variables 
p and q such that y = p + q. For this system we define 
two step Runge-Kutta methods and then by just addition 
arrive at the corresponding discretisation for y′ = s(y) 
+ f(y). Appropriate notation for the local discretisation 
errors is also introduced. At the end of the section we 
define H-stability in detail.

In Section 3, the family of fourth order two step 
Runge-Kutta methods with four stages are derived in a 
fairly detailed manner. The free parameters of the family 
are determined by an attempt to optimise the H-stability 
properties of the resulting method. This method is given 

in a direct and simple way, that is without a new kind 
of Butcher tableau. We note that it is possible to derive 
fourth order methods in this context with only three 
stages, but it seems impossible to get good H-stability 
properties as well.

In Section 4, we compare our two step Runge-
Kutta method tsRK4(4,4,4) with the one step method 
ARS3(4,4,3), by (Ascher, Ruuth and Spiteri, 1997). Both 
use four stages but have different approximation orders, 
namely four and three, respectively. According to a 
convention by (Pareschi and Russo, 2005) the numbers 
k(ρ, σ, κ) mean: k is the order of the explicit part, ρ 
is the number of implicit stages, σ is the number of 
explicit stages, and κ is the order of the whole method. 
To our knowledge there is no known one step method 
characterized by 4(4,4,4), which we could use for 
comparison purposes, instead of ARS3 (4,4,3).

In the beginning of Section 4 the H-stability properties 
for the two methods are compared. For ARS3(4,4,3) 
these are significantly less satisfactory than for 
tsRK4(4,4,4). Further, a comparison is made between 
the two methods by applying them to two simple test 
problems. The first problem contains only one time scale 
and does not require a partitioned method, but is suitable 
for comparing accuracies and checking approximation 
orders. The second test problem contains two quite 
different time scales, of which only the slowest is of 
interest to us. The fast scale is not resolved and is not 
allowed to interfere harmfully with the slow part of the 
numerical solution.

2. SOME PRELIMINARIES FOR TWO 
STEP RUNGE-KUTTA METHODS FOR 
PARTITIONED SYSTEMS OF ORDINARY 
DIFFERENTIAL EQUATIONS

Let us consider an initial value problem for additively 
partitioned systems of ordinary differential equations

 0( ) ( ), for 0 with y(0) y .y s y f y t¢ = + ³ =  (1)

In the right hand side of the equation, s and f are given 
functions from Rd to Rd, where d is an integer with d > 1 
and R denotes the set of real numbers. In (1) s(y) can, 
e.g., represent the horizontal part of a discretisation of an 
atmospheric model and f(y) the corresponding vertical 
part. We will treat f(y) implicitly in order to avoid very 
small time steps and s(y) explicitly to make reasonable 
computing times possible.

Following (Ascher, Ruuth and Spiteri, 1997) we rewrite 
the system (1) as a partitioned system by introducing p 
and q so that p′ = s(y) and q′ = f(y). It follows that p′ + q′ 
= y′ and we choose p + q = y. Fortunately, p or q do not 
have to be known, they are only intermediate variables 
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used for determining the coefficients in the Runge-Kutta 
methods for (1). We write down the partitioned system

 
( )

, where ,
( )

p s p q
p q y

q f p q

ì ¢ï = +ï + =íï ¢ = +ïî
 (2)

for later references.
Two step Runge-Kutta methods for (2), using data 

from the time-levels tn = nΔt and tn–1 = tn – Δt to evaluate 
values corresponding to tn+1 = tn + Δt, can be written as
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=
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å
å

 (3)

where i = 2, …, r and r – 1 is the number of stages in the 
method. Further, pn+1 = Pr and qn+1 = Qr are the numerical 
approximations to p(tn+1) and q(tn+1). The second and 
third rows of (3) are called the explicit and implicit part, 
respectively.

By addition in (3) and setting Yi = Pi + Qi, yn–1 = pn–1 + qn–1 
and yn = pn + qn we obtain Runge-Kutta methods for (1)

 
0 1 1

1

1
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, ,
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i i
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 (4)

where i = 2, …, r and in accordance with the above yn+1 = 
Yr is the numerical approximation to y(tn+1). In this paper 
all stages in (4) will be implicit.

We now consider the local discretisation errors for (3) 
by first defining Pi and Qi as

 
0 1 0 1

1

0

0
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Q ( ) (1 ) ( ) (P Q ),
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 (5)

where i = 2, …, r. We note that the corresponding numerical 
quantities Pi and Qi only appear before (5) and therefore 
cannot be confused with Pi and Qi. The second terms 
below are the local discretisation errors for each stage

 P ( ) (P ( )),

Q ( ) (Q ( )),
i i i i

i i i i

p t c t p t c t

q t c t q t c t

ì = + D + - + Dïïíï = + D + - + Dïî
 (6)

where i = 0, …, r. The coefficients ci, i = 2, …, r – 1 are still 
free but, according to the above, we must set c0 = –1, c1 = 
0 and cr = 1. For i = r in (6) we get the local discretisation 
errors for the method (3), which we want to be of order 
Δtκ+1 for some reasonable value of κ.

We now briefly recall the HEVI- or H-stability concept 
for the Runge-Kutta method (4). Apply the method to the 
scalar test equation

 x z, where k and k are real numbers.x zy ik y ik y¢ =- -  (7)

If for a pair (Δtkx, Δtkz), all numerical solutions yn, n = 1, 2, 
3, … are bounded, we say that (4) is H-stable for that pair. 
The set of such pairs is called the H-stability region of (4).

3. FOURTH ORDER TWO STEP RUNGE-
KUTTA METHODS FOR PARTITIONED 
SYSTEMS OF ORDINARY DIFFERENTIAL 
EQUATIONS

We will now derive fourth order methods with r – 1 = 4 stages, 
good H-stability properties and finally with bii = b, for i = 2, …, 
5. For a method (3) to be of order four the local discretisation 
errors for the method must be one order higher, that is

 
5

5 5

5
5 5

L P ( )) ( ),

L Q ( )) ( ).

p

q

p t t O t

q t t O t

ìï = - +D = Dïïíï = - +D = Dïïî
 (8)

We investigate the local discretisation errors (6) by using 
Taylor expansion, first for the case i = 2
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 (9)

By requiring that the first two terms in each right hand 
side of (9) vanish, we obtain
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1
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6
1

Q ( ) ( ).
6
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 (10)

The conditions for (10) to hold can also be expressed as

 
2 2

21 2 2 20 2 2 20

2
20 2 2 2 21 2 20 2

, 2 and

( ) / 2, ,
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= + + = +
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 (11)

where we have chosen to let c2, a20 and b(= b22) be free 
parameters. Later, when values are assigned to them, p23 
and q23 in (9) are also determined.

In analogy to (10) we require that
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 (12)

where p33, q33, p43 and q43 shall be determined such that 
(8) holds.

We shall now expand the errors in (8) by inserting the 
stages 2, 3 and 4 in stage 5 and make use of equalities like
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3 3 3 3

3 4
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and s(p(t + c3Δt) + q(t + c3Δt)) = p′(t + c3Δt) according to 
(2). Taylor expansion and requiring that the coefficients 
of p′, p″, p‴, p(4) and q′, q″, q‴, q(4) vanish lead to the two 
systems of linear equations
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and h1 = (1 + d5 – b, 1 – d5 – 2b, 1 + d5 – 3b, 1 – d5 – 4b)T. 
Provided that the two systems in (13) hold true the local 
discretisation errors can be written as
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Since we want the global errors of (3) to be of order four, 
all terms in (14) of the same order must vanish, which 
lead to the following equations
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We will now give equations for determination of the 
coefficients in the stages 3 and 4 by Taylor expansion and 
by requiring (12) to hold. For the explicit part of stage 3 
we obtain
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 (16)

and for the implicit part
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For stage 4, with a40 = b40 = 0, we obtain in a similar 
way
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and h2 = (c4 + d4 – b, c4
2 – d4 – 2c4b, c4

3 + d4 – 3c4
2b + q43)

T.
To avoid unnecessarily complex methods we will 

restrict ourselves to the subclass characterized by

20 30 40 50 40 50 4 50, 0, and 0.a a a a b b d d= = = = = = = =

The remaining free parameters are c2, c3, c4 and b, which 
we have used in an attempt to optimise the H-stability 
properties of our method for (1). Each method occurring 
in the optimisational process is obtained by using (11), 
(13) and (15–18). Simple tabulation and subtabulation 
has given us the values

2 3 40.4, 1.2, 0.5 and 0.6,c c c b= = = =

which correspond to a H-stability region containing the 
set

 {( , ) : 2 2.1and an arbitrary real number}.x z x ztk tk tk kD D - £D £  (19)

For the convenience of potential users, we write down 
the corresponding method in detail
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where b22 = b33 = b44 = b55 = b = 3/5, and further

 

2 21
2

20 21

3 31 32
3

30 31 32

41 42 43
4

41 42 43

4 / 25, 14 / 25,
:

6 / 25, 7 / 25,

11/ 25, 39 / 100, 5 / 4,
:

222 / 175, 57 / 20, 367 / 140,

49 / 288, 65 / 192, 5 / 576,
:

371/ 1440, 61/ 192, 23/ 576,

d a
Y

b b

d a a
Y

b b b

a a a
Y

b b b

ì = =ïïíï = =-ïî
ì = = =ïïíï = =- =ïî
ì = = =-ïïíï = =- =-ïî

51 52 53 54
5

51 52 53 54

5 / 24, 25 / 48, 25 / 336, 26 / 21,
:

7 / 120, 65 / 48, 65 / 336, 86 / 105.

a a a a
Y

b b b b

ì = =- = =ïïíï = = =- =-ïî

 (21)

We recall that yn+1 = Y5 is the numerical approximation 
to y(tn+1).
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If the functions s or f in (1) explicitly depend on the 
time t, then s(t+ci Δt, Yi) or f(t+ci Δt, Yi) shall be used in (4) 
instead of s(Yi) or f(Yi).

4. NUMERICAL EXPERIMENTS

The main purpose of this section is to compare our 
method tsRK4(4,4,4) with the method ARS3 (4,4,3) by 
(Ascher, Ruuth and Spiteri, 1997). Both methods require 
about the same amount of computational work per time 
step, since they use the same number of stages.

For tsRK4(4,4,4) the first step, from 0 to Δt, will be 
made by making two steps by ARS3(4,4,3), with time 
step Δt/2. The error at t = Δt will be of order four, and so 
will the global error.

The H-stability properties of our method are given 
in (19) and can be contracted to the simple form |Δtkx| 
≤ 2. For ARS3 (4,4,3) with kx < 0 the situation is more 
complicated. Let λ be the amplification factor, then we 
can summarize the stability properties for ARS3(4,4,3) as

0 1.5, with| | 1 or 1.3 0, with| | 1.003.x xtk tkl l£D £ £ - £D < £

This is definitively less satisfactory than for the method 
tsRK4(4,4,4). Note that if the point (Δtkx, Δtkz) is H-stable 
so is (–Δtkx, –Δtkz), provided the coefficients in the 
numerical method are all real.

We will now use the two numerical methods on 
two simple test problems. The first one contains only 
one time scale and thus does not require a partitioned 
method, but is suitable for comparing accuracies and 
checking approximation orders. Our first problem, with 
oscillating solution, is

 
10 ( ) (0)

, ,
0( ) 0 (0)

u ua t u

v va t v

¢ æ ö æ öæ ö æ ö æ ö- ÷ ÷÷ ÷ ÷ç çç ç ç÷ ÷÷ ÷ ÷= =ç çç ç ç÷ ÷÷ ÷ ÷ç çç ç ç÷ ÷÷ ÷ ÷ç ç çç çè ø è ø è øè ø è ø
 (22)

where a(t) = 1–1/(1 + t)2. Denote the right hand side of 
the system by rs, which we split like rs = α ∙ rs+ (1 – α) 
∙ rs and treat the first term explicitly and the second 
implicitly. We will choose α =2(1 – α), which gives α = 
2/3. By defining y = u+iv, u and v real, then (22) can be 
rewritten as y′ = ia(t) y, y(0) = 1 and we easily get the 
solution 1 1( ) cos( ) sin( )t t

t ty t t i t+ += + . We mention that the 
real and complex form of the problem give the same 
numerical solution.

We note that the solution is approximately 2π periodic 
for t ≫ 1. Let us define the time steps as Δt = 2π/m and 
let the integration intervals be [0, T], where T = 2πN and 
N is the number of approximate periods we integrate 
over. Finally, we let m = 5, 10, 20, 40 and N = 5, 10, 20 
and compute the errors |yn – y(2πN)| with n = mN, which 
since |y(t)| = 1 are also the relative errors, see Table 1 
below.

The difference in accuracy is obvious even for small 
resolutions, m = 5 or 10 say. By for instance using the 

last two rows in Table 1 we have 1.7635/0.11197 = 
23.9772 … ≈ 24 and 6.8352/0.88442 = 22.9501 … ≈ 23. The 
quotients for tsRK4(4,4,4) and ARS3(4,4,3) clearly indicate 
approximation orders four and three, respectively.

We now consider our second test problem, which 
contains two quite different time scales. The fastest of 
these is of no interest to us, and therefore we will not 
resolve it and rather not allow it to influence the slow 
part of the numerical solution in a harmful way.

Let us consider the initial value problem

 ( 1) 0, (0) 1, (0) (1 ),u i u u u u iw w¢¢ ¢ ¢- + - = = = +   (23)

where ω ≫ 1 and ϵ > 0 are parameters. The solution is 
given by

( ) (1 / ( 1)) / ( 1) .it i tu t e e ww w= - - + - 

By introducing v = u′ and the vector yT = (u v) we obtain 
the system

 

0 1 0 1

( 1) 0

0 0 1
, (0) ,

(1 )

y y y
i i

y y
i i

w w

w w

æ ö æ ö÷ ÷ç ç¢ ÷ ÷= =ç ç÷ ÷ç ç÷ ÷ç ç+è ø è ø
æ ö æ ö÷ ÷ç ç÷ ÷+ =ç ç÷ ÷ç ç÷ ÷ç ç +è ø è ø

 (24)

where the first term in the splitted right hand side will be 
treated explicitly and the second implicitly. The complex 
system (24) can of course be rewritten as a real 4 × 4 
system of the form (1).

Since we do not resolve the fastest time scale, the 
magnitude of the last term in u(t) = (1 – ϵ/(ω – 1))eit + ϵ/
(ω – 1)eiωt, that is

4| / ( 1) | 5.1 10 ,i te ww -- £ ⋅

m N error tsRK4(4,4,4) error ARS3(4,4,3)

5 5 8.7501e-02 6.6770e-01

10 5 6.4467e-03 1.2622e-01

20 5 4.2897e-04 1.6895e-02

40 5 2.7854e-05 2.1340e-03

5 10 1.8045e-01 9.1760e-01

10 10 1.3314e-02 2.4161e-01

20 10 8.7283e-04 3.4335e-02

40 10 5.5842e-05 4.3733e-03

5 20 3.5877e-01 1.0068e+00

10 20 2.7080e-02 4.2989e-01

20 20 1.7635e-03 6.8352e-02

40 20 1.1197e-04 8.8442e-03

Table 1 Comparison between the methods tsRK4(4,4,4) and 
ARS3(4,4,3) for the problem (22), with α = 2/3. Time steps Δt = 
2π/m and integration intervals [0, 2πN].
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will be a limit for the maximal reliable accuracy, which 
seems to be attainable for tsRK4(4,4,4) but not for 
ARS3(4,4,3), see Table 2. No surprise that the accuracy 
obtained by tsRK4(4,4,4) increases much faster for 
decreasing Δt, than is the case for ARS3(4,4,3).

5. SUMMARY AND CONCLUSIONS

Our two step Runge-Kutta method tsRK4(4,4,4) and 
the one step method ARS3(4,4,3), by (Ascher, Ruuth 
and Spiteri, 1997), use the same number of stages and 
therefore require about the same computational work 
per time step. The results for the problem (22) in Table 1 
with only one time scale, and the problem (24) in Table 2 
with two quite different scales both clearly show that 
tsRK4(4,4,4) is much more accurate than ARS3 (4,4,3), 
for different resolutions and integration intervals.

The H-stability, related to the test equation y′ = –ikxy 
– ikzy, can be summarized for tsRK4(4,4,4) by |Δtkx| ≤ 2 
and no condition on Δkz. H-stability for ARS3(4,4,3) holds 
for 0 ≤ Δtkx ≤ 1.5 and no condition on kz, but for the case 
kx < 0 the situation is unsatisfactory, for details see the 
beginning of Section 4.

The method tsRK4(4,4,4) is likely to be suitable for 
spatial discretisations of order four, e.g., for finite volume 
methods on cubed sphere or icosahedral grids according 
to for instance (Ullrich, Jablonowski and Leer, 2010) and 
Pudykiewics (2011) and for centred finite differences on 
an Equator-Pole grid system according to (Starius, 2018; 
Starius, 2020). By using an Equator-Pole grid system the 
spatial discretisations can easily and with low extra cost 
attain the orders 6, 8 or 10, say. To find time integrators 

of the same orders κ, with κ or perhaps κ + 1 stages and 
with H-stability properties, such that the time step Δt 
can be chosen mainly by accuracy considerartions, that 
is by balancing spatial and temporal discretisation errors, 
is probably not possible for κ much greater than four. 
Thus, it is reasonable to consider methods with spatial 
order greater than the temporal one. Let us, as a thought 
experiment, consider the method we get by decreasing 
the spatial order to the temporal one and assume that 
it is well balanced. If we now increase the spatial order 
to its original value, balancing will lead to an increase of 
the spatial steps Δx and the quotient Δt/Δx will decrease. 
This means that spatial order greater than the temporal 
one may imply reduced H-stability requirements on the 
time integrator, which can be adventageous.
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