
3D Localization with a Single Partially-Connected Receiving RIS:
Positioning Error Analysis and Algorithmic Design

Downloaded from: https://research.chalmers.se, 2024-03-20 10:12 UTC

Citation for the original published paper (version of record):
He, J., Fakhreddine, A., Vanwynsberghe, C. et al (2023). 3D Localization with a Single
Partially-Connected Receiving RIS: Positioning Error Analysis and
Algorithmic Design. IEEE Transactions on Vehicular Technology, 72(10): 13190-13202.
http://dx.doi.org/10.1109/TVT.2023.3275987

N.B. When citing this work, cite the original published paper.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



1

3D Localization with a Single Partially-Connected
Receiving RIS: Positioning Error Analysis and

Algorithmic Design
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Abstract—In this paper, we introduce the concept of partially-
connected receiving reconfigurable intelligent surfaces (R-RISs),
which refers to metasurfaces designed to efficiently sense electro-
magnetic waveforms impinging on them, and perform localization
of the users emitting them. The presented R-RIS hardware
architecture comprises subarrays of meta-atoms, with each of
them incorporating a waveguide assigned to direct the waveforms
reaching its meta-atoms to a reception radio-frequency (RF)
chain, enabling signal/channel parameter estimation. We partic-
ularly focus on the scenarios where the user is located in the far-
field of all the R-RIS subarrays, and present a three-dimensional
(3D) localization method which is based on narrowband signaling
and angle of arrival (AoA) estimates of the impinging signals at
each single-receive-RF R-RIS subarray. For the AoA estimation,
which relies on spatially sampled versions of the received signals
via each subarray’s phase configuration of meta-atoms, we
devise an off-grid atomic norm minimization approach, which
is followed by subspace-based root multiple signal classification
(MUSIC). The AoA estimates are finally combined via a least-
squared line intersection method to obtain the position coordi-
nates of a user emitting synchronized localization pilots. Our
derived theoretical Cramér Rao lower bounds (CRLBs) on the
estimation parameters, which are compared with extensive com-
puter simulation results of our localization approach, verify the
effectiveness of the proposed R-RIS-empowered 3D localization
system, which is showcased to offer cm-level positioning accuracy.
Our comprehensive performance evaluations also demonstrate
the impact of various system parameters on the localization
performance, namely the training overhead and the distance
between the R-RIS and the user, as well as the spacing among
the R-RIS’s subarrays and its partitioning patterns.

Index Terms—Reconfigurable intelligent surface, 3D localiza-
tion, array partitioning, atomic norm minimization, Cramér Rao
lower bound, MUSIC, direction estimation.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs), mainly acting
as passive yet tunable smart reflectors, have been recently
introduced as a cost- and energy-efficient means to boost the
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performance of various wireless applications [1]–[3], by alter-
ing the signal propagation environment [4], [5]. Among them
belong the radio localization and sensing applications [6]–[12],
especially in high-frequency systems, e.g., millimeter Wave
(mmWave), where it has been identified that the deployment
of RISs can create additional signal propagation paths, serving
as extra degrees of freedom for the design of localization
schemes. It has already been widely accepted [13] that RISs
can provide a virtual line-of-sight (LoS) path from the base
station (BS) to mobile stations (MSs) when the direct LoS
path is spatiotemporally blocked; this situation can appear
frequently in practice both in outdoor and indoor network de-
ployments [14], [15]. Actually, even when the direct LoS path
exists, an RIS can further enhance the localization performance
by leveraging spatial diversity. In fact, an RIS can be regarded
as an additional reference node (a.k.a. anchor) in addition to
conventional access points. In certain envisioned applications,
RISs can enable localization even when a BS is not part of
the localization mechanism [10].

It has been shown in the literature that a single mmWave
BS equipped with a large number of antenna elements and
operating over a very large bandwidth can also achieve highly
accurate positioning performance [16]. However, to accom-
plish this, the BS needs to rely on both temporal and angular
channel parameters, e.g., time or time difference of arrival as
well as angles of arrival (AoAs) or angles of departure (AoDs).
In principle, high-accuracy recovery of the angular channel
parameters requires large-sized antenna arrays, and that of
the temporal parameters requires large communication signal
bandwidths. It is noted that, up to date, radio localization
based on cellular network infrastructure is deemed as an
additional functionality of BSs, implying that the network
resources allocated to three-dimensional (3D) localization (es-
pecially bandwidth/spectrum and time) should be minimized
so that the major network functionality, which is wireless
communications, will not be significantly affected [6]. To this
end, localization schemes that solely rely on angular channel
parameters are highly desirable, since wideband operation is
not necessary.1

The design of RISs with signal reception capabilities has

1The resolution and accuracy of angular parameters’ estimation are inde-
pendent of the operation bandwidth of the localization system. Therefore,
localization system based on pure AoAs can rely on narrowband sounding
signals other than wideband ones.
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recently attracted remarkable attention as a means to enable ef-
ficient or explicit parametric channel estimation [17], [18]. Up-
to-date approaches incorporate receive (RX) radio frequency
(RF) chains within the RIS controller, with each connected
either via a customized waveguide to groups of the RIS’s meta-
atoms [17] or to a dedicated antenna/sensor embedded within
the metasurface [18]. The former architecture was recently
considered in [19], where multiple spatially distributed RISs,
each equipped with a single RX RF chain and being capable to
collect baseband measurements of spatially sampled versions
of their impinging signal, were deployed to perform highly
accurate 3D localization. However, the proposed framework
necessitated wired/wireless backhaul links to gather the re-
ceived signals from each RIS to a central processing unit,
which was assigned with the localization computation task.
The latter coordination approach inevitably increases the de-
ployment cost and the system’s implementation complexity.
Very recently, in [20], a similar access-point-free localization
scheme was presented, which relies on a single RIS structure
incorporating sensors and respective number of RX RF chains
for baseband measurements’ collection.

In this paper, we capitalize on the localization framework
of [19] and present a novel partially-connected receiving RIS
(R-RIS) hardware architecture, comprising a few co-located
single-RX-RF RIS subarrays, which can offer 3D localization
in a computationally autonomous manner (i.e., without the
intervention of any BS or access point). The proposed archi-
tecture, where each RIS subarray is attached via a customized
waveguide to a separate RX RF chain, and thus, its received
signal can be processed individually, resembling that of the
array of subarrays (AoSA) considered in mmWave and THz
systems [21], [22]. However, it realizes only analog combining
with tunable-response metamaterials [23] instead of networks
of phase shifters. Unlike [22] and similar AoSA-based works
that mainly target extremely high data rate communications,
our intention in this paper is the development of a low-cost,
low-complexity, energy-efficient, yet highly efficient, narrow-
band localization system, acting as the sole anchor for this
computation task. In particular, any MS lying in the vicinity
of the proposed system is assumed to transmit narrowband
sounding reference signals (SRSs), whose reception at the
proposed partially-connected R-RIS, via its individual RX RF
chains attached to distinct subarrays of meta-atoms, is used to
obtain multiple independent angular measurements. The angle
estimates are then mapped into the 3D Cartesian coordinates
of the MSs, which is assumed to be located in the far-field of
each R-RIS subarray.

The proposed 3D localization system requires only a small
amount of bandwidth without any demand for wideband im-
plementation. For the angular parameter estimation, the previ-
ous works [24], [25] considered the latest off-grid compressive
sensing (CS) technique, known as atomic norm minimization
(ANM), for one-dimensional (1D) AoA estimation in the case
of a uniform linear array (ULA). In our study, we leverage the
channel sparsity at mmWave frequencies, which is invoked in
the form of rank deficiency of its autocorrelation matrix, and
use off-grid ANM [24], [25] in conjunction with subspace-
based root multiple signal classification (MUSIC) [26] to

extract the two-dimensional (2D) AoA information of the
LoS channel path at each R-RIS subarray. This is different
from the conventional 2D-MUSIC, 2D estimation of signal
parameters via rotational invariant techniques (ESPRIT), or
their variants based direction finding [27]–[29], which requires
sample correlation matrix of the received signals and neglects
the channel sparsity. Thus, our proposed 2D AoA estimation
algorithm is more efficient with reduced training overhead.
Thanks to the similar path loss and received signal-to-noise
ratio (SNR), all the angular estimates possess similar perfor-
mance in terms of the estimation error variance. Thus, for
the mapping from the AoA estimates to the 3D coordinate
of the MS, a least squares (LS) approach2 is sufficient. Our
derived theoretical Cramér Rao lower bounds (CRLBs) and
simulated performance evaluation results showcase that the
proposed R-RIS-based single-anchor 3D localization system
can achieve cm-level estimation accuracy. In addition, we
investigate the impact of the training overhead, MS-to-R-
RIS distance, inter R-RIS subarray spacing, and the R-RIS
partitioning patterns on the localization performance, offering
useful insights for the practical deployment of the proposed
system. The contributions of this paper are summarized as
follows:

• We present a partially-connected R-RIS hardware archi-
tecture and study the feasibility of its deployment for
highly accurate 3D localization from both theoretical
and algorithmic perspectives. Our extensive numerical
investigations showcase that the proposed single-anchor
system can achieve cm-level localization in a cost- and
time-efficient manner.

• We analyze the influence of the existence of non-line-of-
sight (NLoS) paths on the angular parameter estimation
of the LoS path, considering two different assumptions
for the angle difference among them, specifically, a
deterministic and a random angle difference.

• We present a localization algorithm, which is based on
off-grid ANM for high-precision channel vector estima-
tion, followed by subspace-oriented root MUSIC intended
for super-resolution recovery of the angular parameters.
The proposed algorithm approaches the theoretical per-
formance limits, as characterized by our CRLB analyses.

• We present a method for mapping the estimate of the
angular channel parameters for the MS to its 3D co-
ordinates, which includes an outliers’ finding method
that excludes the respective estimates to eliminate their
negative effect on the localization performance.

• Comprehensive performance evaluations of the role of
key system parameters (i.e., training overhead, MS-to-
R-RIS distance, inter R-RIS subarray spacing, and the
R-RIS partitioning patterns) on the accuracy of the pre-
sented localization framework are provided.

The remainder of the paper is organized as follows: Sec-

2In general, if the error variance for the estimation at each R-RIS sub-
array differs, a weighted LS will offer better performance compared to its
unweighted counterpart. However, in all investigated cases in this paper, the
error variances for the AoA estimates are approximately equal, thus, the
weight matrix is in the form of a scaled identity matrix. In this sense, the
weighted LS offers the same solution with the classical LS.
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Fig. 1: The proposed 3D localization system model which is based on a single partially-connected R-RIS architecture. The metasurface is
partitioned into subarrays of meta-atoms, with each subarray attached to an RX RF chain, and processes pilots intended for localization.
When a MS transmits the localization SRSs, the R-RIS computes the user’s 3D position via processing the baseband received signals at the
outputs of the RX RF chains of its distinct subarrays.

tion II introduces the proposed 3D localization system model
as well as the channel model, the geometric relationships of its
parameters, and the received signal model. Section III presents
the theoretical performance limits via CRLB analyses, where
the impact of the angle difference between the LoS and NLoS
paths is investigated. The proposed 3D localization algorithm,
leveraging ANM and subspace-oriented root MUSIC, and per-
forming close to our derived CRLBs, is provided in Section IV.
Our numerical evaluations on the localization performance
are presented in Section V, including extensive investigations
over various system operation parameters (training overhead,
MS-to-R-RIS distance, inter R-RIS subarray spacing, and R-
RIS partitioning patterns). Finally, the paper is concluded in
Section VI, where representative directions for potential future
works are also presented.

Notations: Bold lowercase letters denote vectors (e.g., a),
while bold capital letters represent matrices (e.g., A). The
operators (·)∗, (·)T, (·)H, and (·)−1 denote conjugate of a
complex number, the matrix or vector transpose, Hermitian
transpose, and matrix inverse, respectively. diag(a) denotes a
square diagonal matrix with the entries of a on its maindiago-
nal, ⊗ denotes the Kronecker product, E[·] is the expectation
operator, 0 denotes the all-zero vector or matrix, IM (M ≥ 2)
denotes the M × M identity matrix, and j =

√
−1. Tr(·)

and Toep(·) represent the trace operator and a Toeplitz matrix
formulated by the argument within the brackets, respectively,
∥ · ∥2 denotes the Euclidean norm of a vector, and | · | returns
the absolute value of a complex number. [a]m, [A]mn, [a]m:n,
and [A]m:n,m:n denote the mth element of a, the (m,n)th
element or submatrix of A, the subvector of a composed of
its elements with indices m,m+ 1, . . . , n, and the submatrix
of A formed by its elements in the rows m,m + 1, . . . , n
and columns m,m+ 1, . . . , n. U [a, b] stands for the uniform
distribution within the range [a, b] and CN (a, b) denotes the
complex Gaussian distribution with mean a and variance b.
Finally, ℜ{·} returns the real part of its complex argument.

II. SYSTEM AND CHANNEL MODELS

In this section, we introduce the proposed 3D localiza-
tion system model, which is based on a single partially-
connected R-RIS composed of a few single-RX-RF subarrays
of meta-atoms. The considered channel model, the geometric
relationships of its parameters that are essential for position
estimation, and the received signal model are also presented.

A. Proposed Localization System

The proposed 3D localization system, which is based on a
single partially-connected R-RIS hardware architecture com-
prising subarrays of meta-atoms and autonomously estimates
the position of mobile users lying within the surface’s area
of influence [15], is illustrated in Fig. 1.3 The impact of the
number of RIS subarrays and that of the R-RIS partitioning
on the localization accuracy of our localization scheme will be
investigated in Section V. It is finally noted that the proposed
RIS framework, comprising subarrays of meta-atoms, could
replace the RF front-end of a conventional multi-antenna
BS, realizing a metasurface-based holographic RX [23], [30],
[31] capable of MS localization through narrowband measure-
ments. Following the metasurface hardware designs in [17],
[23], [32], each R-RIS subarray incorporates a customized
waveguide that directs the impinging signals on its meta-
atoms to a single output port feeding an RX RF chain. In this
way, multiple observations, up to the number of subarrays,
can be collected in baseband during each single time slot.
Note that an RX RF chain consists of a low noise amplifier,
a mixer that downconverts the signal from RF to baseband,
and an analog-to-digital converter [33]. The phase profiles

3Although Fig. 1 depicts an R-RIS as a uniform planar array with
regular partitioning comprising four subarrays, our proposed AoA-based 3D
localization system requires, in principle, only three subarrays, irrespective of
the number of MSs to localize. Note that, when multiple MSs are present, the
proposed system can localize them in a time division multiple access (TDMA)
or a non-orthogonal multiple access (NOMA) manner. However, the latter
encounters inter-MS interference, which may cause performance degradation
in terms of localization accuracy.
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of each R-RIS subarray’s elements result effectively in an
analog combining configuration realizing a spatial reception
filter via tunable-response meta-atoms (instead of conventional
of phase shifters [21], [22]), which is applied on the impinging
waveform. In this paper’s framework, this feature implies the
spatial sampling of the MS transmitted pilots intended for
localization. We assume that the MS is located far from each
R-RIS subarray. Without loss of generality, we further assume
a single-antenna MS, and leave the multi-antenna case as well
as the tracking problem for the case of mobile MSs for future
works. It is finally noted that a fully-connected R-RIS hard-
ware architecture is also feasible, similar to the fully-connected
AoSA-based architecture in [21]. This version will, however,
require that all R-RIS’s meta-atoms are waveguided to all
RX RF chains, thus, imposing extra fabrication complexity
and potential inter-waveguide crosstalk. We leave the fully-
connected version and its efficiency investigation for a future
study.

We consider that the R-RIS consists of single-RX-RF uni-
form planar subarrays (UPAs) of meta-atoms and, according
to Fig. 1, is placed parallel to the y-z plane. It is also shown
in the figure that the outputs of the reception RF chains of all
subarrays feed a baseband AoA estimation and localization
module, which is part of the R-RIS controller and is based on
the extraction of the impinging signal’s angular parameters
with respect to each subarray, similar to the localization
mechanism of multi-anchor systems operating in narrowband
transmission conditions [19]. To this end, the R-RIS controller
has basic storage and computing capabilities.4 The impact
of the R-RIS partitioning on the position estimation, whose
optimization is left for future work, will be investigated in
Section V-D.

B. Channel Model

In this paper, we consider the general channel model used
in [34] for formulating the channel gain vector h ∈ CM for
the wireless link between the MS and the R-RIS, which is:

h ≜
L∑

l=1

al/
√
ρl, (1)

where M and L represent the numbers of the R-RIS elements
and channel paths, whereas ρl and al ∈ CM are the path loss
and near-field R-RIS steering vector associated with the lth
path, respectively. Without loss of generality, we assume in
the sequel that l = 1 is associated with the LoS path in h, and
the rest are associated with the NLoS paths. Taking the LoS
path as an example, the mth coefficient of a1 can be expressed
as

[a1]m ≜ exp
(
j
2π

λ

(
∥pMS − p

(m)
RIS ∥ − ∥pMS − pRIS,c∥

))
, (2)

where pMS ≜ [xMS, yMS, zMS]
T, p

(m)
RIS , and pRIS,c are the

3D Cartesian coordinates of the MS, the mth R-RIS ele-
ment, and the centroid of the R-RIS, respectively, and λ is

4It is noted that the proposed baseband AoA estimation and localization
module can be a part of the R-RIS. In this case, the R-RIS controller collecting
the output signals from the reception RF chains needs to convey them to the
AoA estimation and localization module.

the wavelength. By following Eq. (1), the channel vector
hi ∈ CMi between the MS and each ith R-RIS subarray,
where i = 1, 2, . . . , I (an example with I = 4 R-RIS
subarrays is included in Fig. 1), is mathematically expressed as
hi ≜

∑Li

l=1 ai,l/
√
ρi,l, where Mi and Li represent the number

of elements for the ith R-RIS subarray and the total number
of paths in hi, respectively, and ρi,l is the corresponding path
loss. Similarly, [ai,1]m with l = 1 is in the following form:

[ai,1]m ≜ exp
(
j
2π

λ

(
∥pMS−p

(m)
RIS,i∥−∥pMS−pRIS,i∥

))
, (3)

where p
(m)
RIS,i and pRIS,i are the 3D Cartesian coordinates of

the mth element and the centroid of the ith R-RIS subar-
ray, respectively. When the MS is located far from the R-
RIS subarrays, i.e., ∥pMS − pRIS,i∥ ≫ ∥pRIS,i − p

(m)
RIS,i∥,

the steering vector ai,1 in hi can be approximated as [34]:
ai,1 ≈ e−j2πdi,1/λαy(θi,1, ϕi,1) ⊗ αz(ϕi,1) with di,1 =
∥pMS − pRIS,i∥ and θi,1 and ϕi,1 being the LoS azimuth and
elevation AoAs at the ith R-RIS subarray; this approximation
can be used for the NLoS paths as well. The mathematical ex-
pressions for the array response vectors αy(θi,1, ϕi,1) ∈ CMi,y

and αz(ϕi,1) ∈ CMi,z in the previous approximation, where
Mi ≜ Mi,yMi,z with Mi,y and Mi,z being the number of the
horizontal and vertical elements of the ith R-RIS subarray, are
given as follows:

αy(θi,1, ϕi,1) ≜
[
1, ej

2πdi,y
λ sin(θi,1) sin(ϕi,1),

· · · , ej
2πdi,y

λ (Mi,y−1) sin(θi,1) sin(ϕi,1)
]T

, (4)

αz(ϕi,1) ≜
[
1, ej

2πdi,z
λ cos(ϕi,1),

· · · , ej
2πdi,z

λ (Mi,z−1) cos(ϕi,l)
]T

, (5)

where di,y and di,z are the inter-element spacings for the
horizontal and vertical elements in each ith R-RIS subarray.
It is noted that, for quasi-free-space propagation conditions,
fine-grained control over the reflected signals from each R-
RIS subarray is essential for accurate reflective beamforming.
This fact motivated researchers to rely on meta-atoms of sub-
wavelength sizes [30], despite inevitable strong mutual cou-
pling among those elements [35], [36] (e.g., when the spacing
of adjacent meta-atoms is λ/10). In contrast, in rich scattering
environments, the wave energy is statistically equally spread
throughout the wireless medium, and λ/2-sized meta-atoms,
and consequently inter-element spacing, suffice [37].

Recall that we assume that MS is located far from each
R-RIS subarray. Based on this assumption, hi can be refor-
mulated as

hi ≜
Li∑
l=1

e−j2πdi,l/λ

√
ρi,l

αy(θi,l, ϕi,l)⊗αz(ϕi,l), (6)

where di,l denotes the (total) Euclidean distance between the
MS and the ith R-RIS subarray over the lth path, θi,l and
ϕi,l are the lth azimuth and elevation AoAs at the ith R-RIS
subarray. We consider the free-space path loss for ρi,1, which
is modeled as [38] ρi,1 = 103.245d2i,1f

2
c with fc (in GHz)

being the carrier frequency and defined as fc = c
λ , where c
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is the speed of light. In Fig. 1, we define the angle vectors
θi ≜ [θi,1 · · · θi,Li ]

T ∈ RLi and ϕi ≜ [ϕi,1 · · · ϕi,Li ]
T ∈ RLi

for the collection of the same type of angles. We focus on the
scenario that the MS is located in the near field of the entire
R-RIS but in the far field of each R-RIS subarray. Since the
I R-RIS subarrays are closely co-located, we have that: i)
d1,1 ≈ d2,1 ≈ · · · ≈ dI,1; ii) θ1,1 ≈ θ2,1 ≈ · · · ≈ θI,1; and
iii) ϕ1,1 ≈ ϕ2,1 ≈ · · · ≈ ϕI,1. It should be noted that the LoS
azimuth and elevation AoAs in the above are approximately
the same but not equal. Such a nice property will be exploited
in Section IV-D for finding the outliers. We also make the
assumption that ρi,1 ≪ ρi,2 ≤ · · · ≤ ρi,Li

.
The geometric relationship between the proposed

R-RIS-based 3D localization system and the
MS to be localized is essential for the location
estimation. By introducing the three-tuple vector
ξi ≜ [cos(θi,1) cos(ϕi,1), sin(θi,1) cos(ϕi,1), sin(ϕi,1)]

T

including the azimuth and elevation AoAs, the geometric
relationship between the MS and the ith R-RIS subarray is:

pMS = pRIS,i + di,1ξi. (7)

C. Received Signal Model

Unlike [20] where probing signals are communicated over
the downlink, a sequence of SRSs are transmitted over the
uplink from the MS to the R-RIS comprising several subarrays.
The received signal at each ith R-RIS subarray during the kth
time slot can be expressed as follows:

yi,k ≜ wH
i,khisk + ni,k, (8)

where sk ∈ C is the SRS with the power constraint E[|sk|2] =
P , and wi,k ∈ CMi is the effective analog combining vector
at the ith R-RIS subarray during the kth time slot, such that
|[wi,k]m| = 1 ∀m = 1, 2, . . . ,Mi. In addition, ni,k ∈ C
follows CN (0, σ2

i ). By collecting the received signals across
a total of K time slots (implying the training overhead) to the
vector yi ≜ [yi,1 · · · yi,K ]T ∈ CK , and setting sk to

√
P ∀k

for the sake of simplicity, the following expression is deduced:

yi =
√
PWH

i hi + ni, (9)

where Wi ≜ [wi,1 · · · wi,K ] ∈ CMi×K and ni ≜
[ni,1 · · · ni,K ]T ∈ CK .

By using the received signal vector yi, the ith R-RIS
subarray can extract the angular parameters in the LoS path
of hi, i.e., θi,1 and ϕi,1. Then, the mapping of the estimated
angles at all R-RIS subarrays to the 3D coordinate of the MS
can be performed based on the pre-known coordinates of the
R-RIS subarrays, as will be shown in the sequel.

III. CRLB ANALYSES

In this section, by following the CRLB analysis [39], we
present mathematical derivations for the theoretically achiev-
able performance limits of 3D localization with the proposed
system model. We also investigate analytically the role of
multipath components (MPCs), and in particular the angle
difference between the LoS and NLoS paths, on the angular
parameter estimation problem for the LoS path, which in turn
impacts 3D localization.

A. CRLB on the Channel Parameters Estimation

By defining µi ≜ WH
i hi ∈ CK focusing on each ith R-

RIS subarray, we derive the Fisher information matrix (FIM)
according to the partial derivatives related to the channel
parameters (θi,l, ϕi,l, and di,l), which can be computed as
follows:

∂µi

∂θi,l
= WH

i

(
D

(1)
i,l ⊗ IMi,z

)
hi,l, (10)

∂µi

∂ϕi,l
= WH

i

(
D

(2)
i,l ⊗ IMi,z

+ IMi,y
⊗D

(3)
i,l

)
hi,l, (11)

∂µi

∂di,l
=

−jπ − 1

di,l
WH

i hi,l, (12)

where hi,l ≜ e−j2πdi,l/λ

√
ρi,l

αy(θi,l, ϕi,l) ⊗ αz(ϕi,l) is the lth
channel term in hi. The other newly introduced notations are

D
(1)
i,l = diag

([
0, jπ cos(θi,l) sin(ϕi,l), · · · ,

jπ
(
Mi,y − 1

)
cos(θi,l) sin(ϕi,l)

])
, (13)

D
(2)
i,l = diag

([
0, jπ sin(θi,l) cos(ϕi,l), · · · ,

jπ
(
Mi,y − 1

)
sin(θi,l) cos(ϕi,l)

])
, (14)

D
(3)
i,l = diag

([
0,−jπ sin(ϕi,l) · · · ,

− jπ
(
Mi,z − 1

)
sin(ϕi,l)

])
. (15)

The (m,n)th element of the FIM J(νi) ∈ R3Li×3Li

associated with the 3Li-tuple channel parameters νi ≜
[θi,1, ϕi,1, di,1, · · · , θi,Li

, ϕi,Li
, di,Li

]T can be calculated as

[J(νi)]mn =
2P

σ2
i

ℜ
{ ∂µH

i

∂[νi]m

∂µi

∂[νi]n

}
, (16)

where the partial derivatives in Eqs. (10)–(12) need to be
substituted.

The error covariance matrix of νi is then bounded as

E
{
(νi − ν̂i)(νi − ν̂i)

T
}
≥ J−1(νi), (17)

where ν̂i is supposed to be the unbiased estimate of νi. In
order to guarantee the non-singularity of J(νi) in Eq. (17),
the training overhead should meet the following necessary
condition: K ≥ 3Li.

B. Effect of NLoS Paths on LoS Angular Parameter Estimation

There are existing works that exploit both LoS and NLoS
paths for localization, e.g., [16], [40], [41]. However, in this
paper, for the sake of tractability/simplicity, we only focus on
extracting the angular parameters of the LoS path for the 3D
localization. It will be shown in the results (see Section V)
that our approach can achieve high-precision localization
performance up to cm level. By following this principle, let
us define the matrices Gi,1 ≜ [ ∂µi

∂θi,1
, ∂µi

∂ϕi,1
] ∈ CK×2 and

Gi,2 ≜ [ ∂µi

∂di,1
, ∂µi

∂θi,2
, ∂µi

∂ϕi,2
, ∂µi

∂di,2
, · · · , ∂µi

∂θi,Li
, ∂µi

∂ϕi,Li
, ∂µi

∂di,Li
] ∈

CK×(3Li−2), which are the collections of the partial deriva-
tives related to the angular parameters in the LoS path of
hi and that of the remaining ones, respectively. Therefore,
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Fig. 2: The effect of angle difference δ between the LoS path and a
sole NLoS path on the angular parameter estimation of the former,
where the power ratio between the LoS and the NLoS paths is set to
be 20 dB. We have set K = 64, M1 = 4× 4, and P = 0 dBm.

J−1(νi) in Eq. (17) can be presented in the form of [42],
[43]:

J−1(νi) =

σ2
i

2P


(
GH

i,1(IK−PGi,2)Gi,1

)−1

∗

∗
(
GH

i,2(IK−PGi,1)Gi,2

)−1

,
(18)

where PGi,m
= Gi,m(GH

i,mGi,m)−1GH
i,m is the orthogonal

projection onto the column space of Gi,m for m = 1 and 2.
By inspecting Eq. (18), we next study the effect of Gi,2

on the first submatrix on the diagonal of J−1(νi), i.e.,
σ2
i

2P (GH
i,1(IK−PGi,2)Gi,1)

−1, which represents the estimation
error bound of [θi,1, ϕi,1]

T. It is readily known that this
influence comes from the orthogonal projection term PGi,2 .
Two examples will be provided in the sequel for different
assumptions on the angle difference between the LoS and
NLoS paths.

1) Example 1: In this study, we take the first R-RIS subar-
ray as an example (i.e., i = 1) and evaluate the angular param-
eter estimation performance as a function of a deterministic
and fixed angle difference δ between the LoS path and a sole
NLoS path. We consider the scenario of a two-path channel
and set the angle difference δ the same for both azimuth and
elevation AoAs for the ease of tractability, i.e., θ1,2 = θ1,1+δ
and ϕ1,2 = ϕ1,1 + δ. The power ratio between the LoS and
NLoS paths is set to be 20 dB, by simply setting d1,2 = 10d1,1.
The coordinates for the MS and the first R-RIS subarray are
pMS = [0, 0, 0]T and pRIS,1 = [2, 4.6, 5.4]T, respectively. The
theoretical CRLB results for the effect of the value for δ on the
estimation of θ1,1 and ϕ1,1 are shown in Fig. 2, considering
the parameter setting K = 64, M1 = 4 × 4, and P = 0
dBm. The analog combining matrix W1 has been constructed
as [W1]mn = exp(j[Ψ]mn), where the random phase [Ψ]mn

follows U [0, 2π]. The bandwidth B was chosen to be 10 MHz
(so that the noise variance is −174+10 log10(10

6B) = −104
dBm), and the carrier frequency was set to 28 GHz.

As depicted in Fig. 2, when the deterministic angle differ-
ence δ increases within [0, π/2], the performance of the LoS
channel angular parameter estimation in the considered MPC
scenario asymptotically approaches that in the pure LoS (i.e.,
single-path) scenario. This is illustrated in the figure by the
two straight lines and the two curves marked with ∆ = 0.
Note that ∆ = 0 stands for the case with deterministic and
fixed angle difference δ. The other ∆ values in the figure
will be introduced in the next example. The aforementioned
observation is closely related to the correlation between the
two subspaces spanned by G1,1 and G1,2. Two extreme cases
are: i) G1,1 ≈ 10Ĝ1,2 with Ĝ1,2 ≜ [ ∂µ1

∂θ1,2
, ∂µ1

∂ϕ1,2
], yielding

GH
1,1(IK − PG1,2

)G1,1 ≈ 0; and ii) G1,1 ⊥ G1,2, where ⊥
means being perpendicular/orthogonal (i.e., GH

1,1G1,2 = 0),
which results in GH

1,1(IK − PG1,2
)G1,1 = GH

1,1G1,1. The
proofs for these two cases are delegated in the Appendix A.
These proofs indicate that when the angle difference increases,
the performance on the angular parameters improves as well.
When δ ≈ 0, case i) applies, whereas when δ is large enough,
case ii) applies. As shown in Fig. 2, when the angle difference
is within the range [0.6, 1.4] in radians, the performance of the
LoS path’s angular parameter estimation is approximately the
same for both single-path and two-path scenarios.

2) Example 2: Instead of relying on deterministic and fixed
angle difference, in this example, we introduce randomness
to the angle difference and evaluate its effect on the angular
parameter estimation. We consider that the random angle
difference δ̂ follows U [δ − ∆, δ + ∆] with a fixed ∆ value,
which meets the following conditions: mean E{δ̂} = δ and
variance σ2

δ̂
= ∆2/3. The other parameters are kept the same

as those in Example 1. The theoretical CRLB results are also
included in Fig. 2. As demonstrated, in the low δ regime,
the effect of the randomness on angle difference, increasing
proportionally to the variance of the angle difference (i.e.,
∆2/3), is more significant compared to that in the high δ
regime.

C. CRLB on 3D Localization

The FIM of the MS’s coordinates pMS can be obtained via
the Jacobian matrix Ti, which is defined as [Ti]mn ≜ ∂[νi]n

∂[pMS]m
∀m = 1, 2, . . . , 3 and ∀n = 1 and 2. Since we only exploit
the azimuth and elevation AoAs of the LoS path in our 3D
localization systems, i.e., [νi]1 and [νi]2, Ti is a 3×2 matrix
having the following elements [44]:

[Ti]11 = ∂θi,1/∂xMS = − sin(θi,1)

di,1 cos(ϕi,1)
, (19)

[Ti]21 = ∂θi,1/∂yMS =
cos(θi,1)

di,1 cos(ϕi,1)
, (20)

[Ti]31 = ∂θi,1/∂zMS = 0, (21)

[Ti]12 = ∂ϕi,1/∂xMS = −cos(θi,1) sin(ϕi,1)

di,1
, (22)
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[Ti]22 = ∂ϕi,1/∂yMS = − sin(θi,1) sin(ϕi,1)

di,1
, (23)

[Ti]32 = ∂ϕi,1/∂zMS =
cos(ϕi,1)

di,1
. (24)

Hence, the FIM associated with the MS’s coordinates, as
estimated from the ith R-RIS subarray, can expressed as
J(pMS) = TiJ([νi]1:2)T

T
i where J([νi]1:2) =

(
GH

i,1(IK −
PGi,2

)Gi,1

)
. By adding all the contributions across the I R-

RIS subarrays, the position error bound (PEB) of the proposed
3D localization system can be computed as follows:

σ2
p̂MS

= E{(pMS − p̂MS)
T(pMS − p̂MS)}

≥ Tr

{( I∑
i=1

TiJ([νi]1:2)T
T
i

)−1
}
,

=
σ2
i

2P
Tr

{( I∑
i=1

Ti(G
H
i,1(IK−PGi,2

)Gi,1)T
T
i

)−1
}
, (25)

where p̂MS represents the unbiased estimate of pMS.

IV. PROPOSED 3D LOCALIZATION

In this section, we capitalize on the two-step theoretical
analyses conducted in Section III and design a practical local-
ization scheme. We first resort to the ANM and subspace-based
root MUSIC algorithms to estimate the angular parameters for
the LoS path at each R-RIS subarray, and then apply the LS
principle to map those angular estimates to the 3D location of
the MS.

A. Atomic Set and Norm

ANM falls into the category of off-grid CS, which pro-
vides a powerful mathematical tool for eliminating the basis
mismatch and power leakage problem, while offering high-
accuracy angle estimation [24], [45]. To this end, we start
the definition of the atomic set [24], [25], [45], [46] for our
estimation problem:

A ≜ {αy(x1, x2)⊗αz(x2), x1 ∈ [0, π], x2 ∈ [−π/2, π/2]},
(26)

where each atom possesses the same structure with the linear
terms in Eq. (6). For any vector hi ∈ CMi,yMi,z of the form
hi =

∑
l ηlαy(x1,l, x2,l) ⊗ αz(x2,l) with each ηl > 0 being

a coefficient, x1,l ∈ [0, π], and x2,l ∈ [−π/2, π/2], its atomic
norm with respect to the atomic set A is written as follows:

∥hi∥A =infB

{ 1

2Mi,yMi,z
Tr(Toep(U2)) +

t

2

}
,

s.t.
[
Toep(U2) hi

hH
i ti

]
⪰ 0, (27)

where set B ≜ {U2 ∈ CMi,y×Mi,z , ti ∈ R} with U2 being a
2-way tensor and Toep(U2) is a 2-level block Toeplitz matrix,
which results from the Vandermonde decomposition lemma
for positive semidefinite Toeplitz matrices [45].

B. Problem Formulation

Based on the received signal model in Eq. (9) and by taking
into consideration the channel sparsity (in the form of Li ≪
Mi ∀i) and the noise contribution, we consider the following
regularized optimization problem formulation:

min
hi∈CMi , B

µi∥hi∥A +
1

2
∥yi −

√
PWH

i hi∥22

s.t.
[
Toep(U2) hi

hH
i ti

]
⪰ 0, (28)

where µi ∝ σi

√
Mi log(Mi) is the regularization term of the

atomic norm penalty. This problem can be efficiently solved
using the Matlab CVX toolbox [47]. Unlike the overcomplete
dictionary, let alone the dictionary’s undercomplete counter-
part, in orthogonal matching pursuit (OMP), since the number
of atoms in Eq. (26) is infinite, high accuracy recovery of hi

can be achieved by well controlling the regularization term µi.
The computational complexity in this stage is O

(
M3.5

i

)
[48].

After getting the estimate of hi, denoted henceforth as ĥi,
from Eq. (28), we can extract its angular parameters, e.g., via
the subspace-oriented root MUSIC algorithm [26], as detailed
in the next subsection.

C. Azimuth and Elevation Angle Estimation

After obtaining ĥi, we formulate the estimated autocorre-
lation matrix Ĉi ≜ ĥiĥ

H
i ∈ CMi×Mi . The ground-truth Ci

based on hi is expressed in Eq. (29) on the top of the next
page, where the following two properties of the Kronecker
product have been considered: i) (a⊗ b)H = (aH ⊗ bH); and
ii) (a⊗b)(c⊗d) = (ac)⊗ (bd). For simplicity, in Eq. (29),
we have introduced γi,l ≜ e−j2πdi,l/λ

√
ρi,l

. Note that, from our
assumptions in Section II, it holds that |γi,1| ≫ |γi,2| ≥ · · · ≥
γi,Li . Finally, C(l,k)

i,y ∈ CMi,y×Mi,y and C
(l,k)
i,z ∈ CMi,z×Mi,z

represent the cross-correlation matrices between αy(θi,l, ϕi,l)
and αy(θi,k, ϕi,k) as well as between αz(ϕi,l) and αz(ϕi,k),
respectively. We next write the ground-truth autocorrelation
matrix Ci in the following block matrix form:

Ci =

[Ci]11 ∗ ∗

∗
. . . ∗

∗ ∗ [Ci]Mi,yMi,y

 . (30)

By following Eq. (4) and Eq. (30), the diagonal elements of
Ci with m = 1, 2, . . . ,Mi are given by

[Ci]mm =

Li∑
l=1

Li∑
k=1

γi,lγ
∗
i,ke

jπ(m−1)φi,l,k [αz(ϕi,l)αz(ϕi,k)
H],

=
[ Li∑

l=1

ejπ(m−1) sin(θi,l) sin(ϕi,l)γi,lαz(ϕi,l)
]

×
[ Li∑

l=1

ejπ(m−1) sin(θi,k) sin(ϕi,k)γi,kαz(ϕi,k)
]H

,

(31)

where φi,l,k ≜ sin(θi,l) sin(ϕi,l) − sin(θi,k) sin(ϕi,k). We
know, however, that the submatrices included on the di-
agonal of Ci are related to the autocorrelation matrix of
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Ci = hih
H
i =

(
Li∑
l=1

γi,lαy(θi,l, ϕi,l)⊗αz(ϕi,l)

)(
Li∑
l=1

γi,lαy(θi,l, ϕi,l)⊗αz(ϕi,l)

)H

=

Li∑
l=1

Li∑
k=1

γi,lγ
∗
i,k [αy(θi,l, ϕi,l)αy(θi,k, ϕi,k)

H]︸ ︷︷ ︸
C

(l,k)
i,y

⊗ [αz(ϕi,l)αz(ϕi,k)
H]︸ ︷︷ ︸

C
(l,k)
i,z

, (29)

∑Li

l=1 e
jπ(m−1) sin(θi,l) sin(ϕi,l)γi,lαz(ϕi,l), which is the lin-

ear combination of the array response vectors αz(ϕi,l) for
l = 1, 2, . . . , Li. We calculate Ci,z =

∑Mi,y

m=1[Ci]mm, based
on which we can apply the root MUSIC algorithm [26] for
estimating ϕi,1, . . . , ϕi,Li

.5 In practice, we replace Ci with
Ĉi for performing the estimation. The calculation of Eq. (31)
involves Mi,yL

2
iM

2
i,z addition operations and Mi,yL

2
iM

2
i,z

multiplication operations. In addition, the computational com-
plexity for root MUSIC here is O

(
M3

i,z

)
.

Similarly, based on the definition of the Kronecker
product [C

(l,k)
i,y ⊗ C

(l,k)
i,z ]Mi,z(r−1)+m Mi,z(s−1)+n =

[C
(l,k)
i,y ]rs[C

(l,k)
i,z ]mn, we can extract C

(l,k)
i,y from Ci

corresponding to [C
(l,k)
i,z ]mm = ejπ(m−1)[cos(ϕi,l)−cos(ϕi,k)].

By doing this, the autocorrelation matrix C
(m)
i,y for∑Li

l=1 e
jπ(m−1) cos(ϕi,l)γi,lαy(θi,l, ϕi,l) is obtained, which

is the linear combination of the array response vectors
αy(θi,l, ϕi,l) for l = 1, 2, . . . , Li. Similarly, after getting
Ci,y =

∑Mi,z

m=1 C
(m)
i,y , we can extract the estimation of θi,1

using via the root MUSIC algorithm [26], which, as previously
mentioned, has computational complexity O

(
M3

i,y

)
.

D. Estimation of the 3D Location Coordinates

After estimating the AoAs of the LoS paths at each ith R-
RIS subarray (i.e., θi,1 and ϕi,1 ∀i = 1, 2, . . . , I), we apply the
LS principle for mapping those estimates to the 3D position
of MS, pMS, as follows [19]:

p̂MS =

(
I∑

i=1

Bi

)−1( I∑
i=1

BipRIS,i

)
, (32)

where Bi ≜ I3 − ξ̂iξ̂
T

i and ξ̂i ≜
[cos(θ̂i,1) cos(ϕ̂i,1), sin(θ̂i,1) cos(ϕ̂i,1), sin(ϕ̂i,1)]

T. We
henceforth use the symbols θ̂i,1 and ϕ̂i,1 for the estimates of
the azimuth and elevation AoAs, respectively, associated with
the LoS path in each hi. The computational complexity of
this operation can be neglected due to the small size of Bi.

In order to eliminate the negative effect introduced by
potentially poor angular estimates, we resort to an outliers’
finding approach to identify any outliers and exclude their con-
tributions in Eq. (32). The outliers are elements which are by
default more than three times of the median absolute deviations
(MAD) away from the median [49]. We specifically seek for
any outliers in the sets {θ̂1,1, . . . , θ̂I,1} and {ϕ̂1,1, . . . , ϕ̂I,1}

5In this paper, we assume that the gain of the LoS path is much larger than
that of any of the NLoS paths. In this way, it is highly probable to find the
correct LoS AoA without encountering any path association/mismatch issue.

Algorithm 1 Proposed 3D Localization
Input: yi from Eq. (9), Wi, P , Mi, and σi.
Output: p̂MS via Eq. (32);

1: Solve the formulated ANM problem in Eq. (28) to get ĥi;
2: Decompose the autocorrelation matrix Ĉi ≜ ĥiĥ

H
i into

Ci,z and Ci,y , as described in Section IV-C;
3: Estimate the azimuth and elevation AoAs from Ci,z and

Ci,y via the root MUSIC algorithm;
4: Map the angular estimates to coordinates of the targeted

MS using Eq. (32).

separately, which is beneficial from the fact that the RIS
subarrays are closely co-located, i.e., θ1,1 ≈ θ2,1 ≈ · · · ≈ θI,1
and ϕ1,1 ≈ ϕ2,1 ≈ · · · ≈ ϕI,1 as specified in Section II-B. If
neither θ̂i,1 nor ϕ̂i,1 is an outlier, we include them in Eq. (32);
otherwise, their contributions are excluded.

Putting all above together, the overall computational com-
plexity of the proposed 3D localization approach is dominated
by the ANM technique, which brings O

(
M3.5

i

)
computational

complexity. The major steps of the proposed 3D localization
scheme are summarized in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we investigate the feasibility of the proposed
single R-RIS-based 3D localization approach, which is based
on the R-RIS partitioning into several single-RX-RF R-RIS
subarrays. In the performance evaluation results that follow,
without otherwise stated, the positions of the MS and I = 4
R-RIS subarrays are set as: pMS = [0, 0, 0]T, pRIS,1 =
[2, 4.6, 5.4]T, pRIS,2 = [2, 4.6, 4.6]T, pRIS,3 = [2, 5.4, 5.4]T,
and pRIS,4 = [2, 5.4, 4.6]T, where the centroid of the overall
R-RIS is set to pRIS,c = [2, 5, 5]T. By following the parameter
setup of Example 1 in Section III-B, each R-RIS subarray
has 16 = (4 × 4) meta-atom elements. The bandwidth B is
chosen to be 10 MHz and the carrier frequency is set to 28
GHz. Under such setups, the Rayleigh distance for the entire
R-RIS is around 2×D2/λ = 238 meters with the aperture size
D ≈

√
0.82 + 0.82 ≈ 1.13 meters, while that for each R-RIS

subarray is around 2×4λ×4λ/λ = 0.34 meters. The distance
between the MS and R-RIS is around

√
22 + 52 + 52 ≈ 7.34

meters. Thus, the MS is located in the near field of the entire
R-RIS, and in the far field of each R-RIS subarray. Since
no prior information on the location of the MS is available,
the analog combining matrix WH

i in Eq. (9) is constructed
from the first Mi columns of a K × K discrete Fourier
transform (DFT) matrix. This phase configuration satisfies the
hardware-imposed unit-modulus constraint for each meta-atom
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TABLE I: Parameters’ Setup in the Simulation Results.

Parameter Value Parameter Value
Mi 16 δ π/4
I 4 ∆ 0
K {16, 32, 64} B 10 MHz
Li 2 fc 28 GHz
pMS [0, 0, 0]T pRIS,1 [2, 4.6, 5.4]T

pRIS,2 [2, 4.6, 4.6]T pRIS,3 [2, 5.4, 5.4]T

pRIS,4 [2, 5.4, 4.6]T pRIS,c [2, 5, 5]T

and possesses the orthogonality property. In addition, it is
well-structured, enabling fast computation and reduced storage
compared to its random counterpart. Another good option for
the R-RIS analog combining is the Hadamard matrix. It is
noted that similar trends to the DFT are expected from prac-
tical RIS phase configuration codebooks [50]. All individual
channels in the results that follow have been generated using
the general model Eq. (3). The number of paths for each R-
RIS subarray channel is set as Li = 2,6 where the average
power ratio between LoS and NLoS paths was set to 20 dB.
All the simulations results are obtained via 1000 trials. The
parameters setup is summarized in Table I.

A. Effect of the Training Overhead

The simulation results in terms of the root mean square
error (RMSE) in meters, i.e., σp̂MS in Eq. (25), as a function
of the transmit power P in [dBm] are included in Fig. 3, where
different training overheads values K = {16, 32, 64} and the
fixed δ = π/4 (∆ = 0) are considered. Results obtained from
the OMP algorithm considering very high resolution on the
quantization of azimuth and elevation angles (we specifically
used 2048 grid points for each dimension) are also included
for performance comparison. As shown in the figure and
as expected, the higher the training overhead is, the better
becomes the estimation performance. When P = 20 dBm,
ANM with K = 64 can achieve roughly 0.7 cm localization
accuracy, while with K = 16 the accuracy is around 1 cm.
Taking into consideration LoS information can bring cm-
level localization accuracy. Thus, there is no need to exploit
NLoS path information, which will significantly increase the
computational complexity of the algorithm. The figure also
depicts that the performance of the introduced OMP saturates
to 7 cm when the transmit power increases due to inevitable
quantization error; recall that, for the proposed algorithm, an
extremely large dictionary has been used. It is also evident in
Fig. 3 that the performance gap between the theoretical and
practical results stays constant within the studied SNR range.
Under the same RMSE level, the gap is roughly 5 dB in terms
of the transmit power.

B. Effect of the Distance between the MS and the R-RIS

In this experiment, we evaluate the effect of MS-to-R-RIS
distance on the RMSE performance, where we fix the x-
coordinate of the MS to be 0, while changing the other two
coordinates. We set P = −20 dBm and K = 32 and keep

6It is noted that the proposed localization algorithm can be directly applied
to cases with Li > 2.

Fig. 3: RMSE performance of the proposed 3D localization system
with different training overhead values.

Fig. 4: RMSE performance of the proposed localization system with
different MS-to-R-RIS distances d1,1. Recall from our assumptions
that d1,1 ≈ d2,1 ≈ d3,1 ≈ d4,1.

the other system parameters as in Table I. The simulation
results are shown in Fig. 4. Note that we only include d1,1
in the figure since the other distances d2,1, . . . , d4,1 are in fact
approximately the same. As can be observed from the figure,
the performance is not strictly inversely proportional to the
distance, since the angle values also play an important role in
the 3D localization performance.

Let’s assume that J−1([νi]1:2) ≥ diag([ϵi,1, ϵi,2]
T), where

ϵi,1 and ϵi,2 are introduced to characterize the performance
bounds on the angular parameter estimation related to the
LoS path. The FIM for the 3D coordinates is J(pMS) =∑2

m=1 ϵ
−1
i,mti,mtTi,m, where ti,m is the mth column vector of

the Jacobian matrix Ti. According to Eqs. (19)–(24), it holds
that ti,m’s are orthogonal vectors. Therefore, tr{J−1(pMS)} =∑2

m=1 ϵi,m/∥ti,m∥22 = ϵi,1d
2
i,1 cos

2(ϕi,1) + ϵi,2d
2
i,1. It can be

concluded from this expression that the position error variance
increases linearly with the angular parameter estimation error
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Fig. 5: Effect of the inter R-RIS subarray spacing on the RMSE
performance from both the theoretical and practical perspectives.

variance and quadratically with the distance between the MS
and the ith R-RIS subarray. We also note that, when di,1 ≫ 1,
the requirement for high accuracy of the angular parameter
increases if we aim at achieving the same level of positioning
accuracy as for a case with a small di,1. We further know that
the 3D localization not only depends on the angular parameter
estimation, but also on the elevation angle and distance. These
factors jointly affect the 3D localization accuracy, as revealed
in Fig. 4. It can be concluded from this investigation that, when
z ≈ 5 results in ϕi,1 ≈ 0, which constitutes the worst case
for our 3D localization system, since satisfying performance
becomes infeasible.

C. Effect of the Inter R-RIS Subarray Spacing

We hereinafter consider different inter R-RIS subarray spac-
ings and evaluate the their impact on the 3D localization
accuracy. We assume that the centroid of the whole R-RIS
is located at [2, 5, 5] and change the vertical and horizontal
distances of the R-RIS subarrays to it. For instance, in Sec-
tions V-A and V-B, both the vertical and horizontal distances
dV and dH are set to 0.4, i.e., dV = dH = 0.4. We extend
it to the cases where dV = dH = 0.8, dV = dH = 1.2,
and dV = dH = 0.2. The simulation results are shown in
Fig. 5 with K = 32. As can be seen from the figure, when
fixing P = 10 dBm, the case where dV = dH = 1.2 with
the proposed localization scheme can achieve around 2-cm
accuracy, while when dV = dH = 0.2 only 6-cm accuracy can
be reached. As a conclusion, larger spacing in general can
bring better localization performance, but at a sacrifice of a
larger space for installing the overall R-RIS structure.

D. R-RIS Partitioning Patterns

In addition to the 2×2 R-RIS partitioning pattern studied so
far, we further introduce another two partitioning designs for
the R-RIS: i) all the R-RIS subarrays are deployed vertically
in a line, i.e., 1 × 4; and ii) all the R-RIS subarrays are

TABLE II: GDoP values and theoretical RMSE (via CRLB) values
in meters at P = 20 dBm for different R-RIS partitioning patterns
and R-RIS centroids.

Design GDoP Value RMSE at P = 20 dBm
2× 2, [2, 5, 5] 34.7729 0.0060
1× 4, [2, 5, 5] 5.5910 0.0035
4× 1, [2, 5, 5] 5.5910 0.0045
2× 2, [2, 2, 7] 36.7671 0.0045
1× 4, [2, 2, 7] 11.0305 0.0066
4× 1, [2, 2, 7] 4.4438 0.0021
2× 2, [2, 7, 2] 36.7671 0.0134 (0.0804)
1× 4, [2, 7, 2] 4.4438 0.0112 (0.0207)
4× 1, [2, 7, 2] 11.0305 0.0174 (0.2664)

deployed horizontally in a line, i.e., 4 × 1. The rest of the
parameters are set as follows: dV = 0.4 and/or dH = 0.4, and
K = 32. In order to examine these designs, we introduce the
concept of the geometric dilution of precision (GDoP) [51],
expressed in the form of

√
Tr{(HTH)−1}, where H =

[pRIS,1/d1,1;pRIS,2/d2,1;pRIS,3/d3,1;pRIS,4/d4,1]
T ∈ R4×3

with the semicolons implying the separation of the column
vectors in the matrix. For the calculation of the GDoP value,
we replace the matrix inverse with the Moore–Penrose on in
the previous expression, whenever HTH is singular. It is noted
that, in general, holds that the smaller the GDoP value is, the
better is the deployment of the anchors.

The simulation results on 3D localization are provided in
Fig. 6 considering different R-RIS centroids, as marked in the
legend. Note that we only provide simulation results for the
cases with centroid [2, 7, 2], consistent with theoretical limits,
in order to avoid overcrowding of the figure. The GDoP values
and theoretical RMSE (via CRLB) values at P = 20 dBm for
all the partitioning patterns are included in Table II, where
we mark the RMSE values from the proposed 3D localization
scheme in bold for the last three cases. It can be seen from the
figure that, for most of the cases, the vertical deployment of the
R-RIS subarrays yields the best performance, e.g., the patterns
“1× 4, [2, 5, 5]” and “1× 4, [2, 7, 2]” outperforming the other
two cases with the same R-RIS centroid, which is consistent
with the GDoP analyses in Table II. Note that the GDoP
provides a rule of thumb regarding the “anchors” geometry for
localization purposes. In other words, it is independent from
the localization algorithm itself, but it gives a rough idea about
the anchors deployment (i.e., the R-RIS subarrays deployment
in this paper). In terms of the trade-off between compactness
and performance, the 2 × 2 R-RIS partitioning is shown to
stand out among the others considered in Fig. 6.

VI. CONCLUSIONS

In this paper, we introduced the R-RIS hardware architecture
that is capable to receive pilot signals and perform 3D localiza-
tion of the MSs transmitting them in a cost-efficient manner.
This operation is accomplished via a few R-RIS subarrays of
meta-atoms that are placed adjacently to form a single scalable
platform, where each subarray is attached to a reception RF
chain, enabling estimation of the impinging signal’s AoAs.
By using spatially sampled versions of the received pilots, we
presented a localization method based on off-grid ANM and
root MUSIC for the per R-RIS subarray angular parameter
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Fig. 6: Effect of R-RIS partitioning on the RMSE performance from
both the theoretical and practical perspectives.

estimates, which was followed by a fused LS approach for
computing the MS’s 3D coordinate estimates. Our extensive
performance evaluations, which have been verified by our
derived CRLBs for the estimation parameters, demonstrated
the impact of the number of pilots, MS-to-R-RIS distance,
inter-subarray spacing, and the R-RIS partitioning pattern on
the localization performance.

The proposed 3D localization system, which does not
require any access point and operates in far-field region of
each of the R-RIS subarrays, has the following advantageous
features: i) it does not require ultra-wide bandwidth, relying
only on AoA estimates; ii) the intermediate AoA estimates
possess similar performance thanks to the close proximity
among the R-RIS subarrays, rendering the presented LS-based
mapping of the AoAs to the MS 3D Cartesian coordinate
sufficient; and iii) it provides accurate MS location estimation
with three RX RF chains. For future work, we intend to extend
the considered framework to tracking of mobile multi-antenna
MSs, and study the optimization of the R-RIS partitioning
pattern in subarrays of meta-atoms. In addition, the inherent
reflection capability of an R-RIS, which is not available in
conventional AoSA-based BSs, will be leveraged for further
enhancing its sensing capabilities.
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APPENDIX

Let R(G1,m) be the column space of G1,m defined in
Section III-B. Then, for any matrix M such that R(M) ⊂
R(G1,2), the equality PG1,2

M = M holds, since PG1,2
is

the projector onto R(G1,2). Assume first the strict equality
in the case i), namely G1,1 = 10Ĝ1,2. It follows that
R(G1,1) ⊂ R(G1,2) yielding either PG1,2

G1,1 = G1,1 or
(PG1,2

−IK)G1,1 = 0. Multiplying GH
1,1 on the left completes

the proof. For the case ii), the hypothesis that G1,1 ⊥ G1,2

means that R(G1,1) is in the left null space of G1,2. Since
the projector onto the left null space of G1,2 is IK −PG1,2

,
the equality (IK − PG1,2

)G1,1 = G1,1 holds. Multiplying
GH

1,1 on the left completes the proof.
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